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First, some obvious facts:

Gravity is observed as one of the basic forces in our Universe of
3 + 1 dimensions.

Described beautifully by general relativity (a geometric theory,
based on a gauge principle).

Reconciliation of gravity and quantum mechanics has driven
much of theoretical physics research for many decades, . . .

. . . leading to string theory: an über-geometric theory,
exhibiting a web of gauge principles, dualities, etc., with gravity
only a part of a bigger picture.
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In the 21st century, the focus is changing:

The idea of gravity is finding unexpected new relevance in other
areas of physics and mathematics.

(i) Gravity on the worldvolume of strings and branes;

(ii) Gravity-QFT duality;

(iii) Gravity and condensed matter (via dualities, emergence);

(iv) Mathematical applications (cf. Poincaré conjecture and
Ricci flows);

. . .

but the fundaments of gravity are still largely mysterious!

(String theory has been a tremendous success, but for gravity it
might be “too large” and “too small”.)
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Central idea of Lifshitz gravity

Combine gravity with the concept of anisotropic scaling.

In a spacetime with coordinates (t,x) ≡ (t, xi), i = 1, . . . D,
consider

x→ bx,

t→ bzt.

Here z is the dynamical critical exponent.

In condensed matter (and now even in string theory!), many
values of z are possible; integers (1, 2, . . . ), fractions, . . .

Example: Lifts of static critical systems (Euclidean QFTs) to
dynamical critical phenomena.

Goal: Construct similar models with propagating gravitons.
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Comparison to Asymptotic Safety

Search for a UV fixed point in gravity:

Asymptotic safety: looking for relativistic, nontrivial fixed
points. [Weinberg,. . . ]

Lifshitz gravity: looking for nonrelativistic, often Gaussian fixed
points.

Such fixed points can be UV (leading to improved
short-distance behavior of gravity), or IR (emergent in
condensed matter system).

Price paid for improved UV behavior: Anisotropy between space
and time (or even spatial anisotropy) at short distances.

Flow between UV and IR: from z > 1 to z = 1.
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Why is this interesting?

(i) Gravity duals of field theories in AdS/CFT; in particular,
candidates for duals of nonrelativistic field theories;

(ii) Gravity on worldvolumes of branes;

(iii) Mathematical applications (theory of the Ricci flow);

(iv) Emergent Gaussian IR fixed points in lattice systems of
condensed matter;

(v) Phenomenology of gravity in our Universe, 3 + 1 dimensions.
How close can this resemble GR in IR?

(vi) Conventional gravity, in spacetimes which are
asymptotically anisotropic!
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Example: Lifshitz scalar field theory
Many interesting features can be illustrated by:

S =
1
2

∫
dt dDx

{
φ̇2 − (∆φ)2

}
A theory closely related to the better-known

W =
1
2

∫
dDx ∂iφ∂iφ

The critical dimension has shifted:

[φ] =
D − 2

2
;

φ is dimensionless in 2 + 1 dimensions.

[Lifshitz,1941]
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Gravity at a Lifshitz point

Minimal starting point: fields gij(t,x) (the spatial metric),
action S = SK − SV , with the kinetic term

SK =
1
κ2

∫
dt dDx

√
g ġijG

ijk`ġk`

where Gijk` = gikgj` − λgijgk` is the De Witt metric, and the
“potential term”

SV =
1

4κ2

∫
dt dDx

√
g V (Rijk`)

containing all terms of the appropriate dimension.
Special case, theory in “detailed balance”: V = (δW/δgij)2.
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Extending the symmetries

A good starting point, but this action is only invariant under
time-independent spatial diffeomorphisms, x̃i = x̃i(xj), and
describes dynamical propagating components gij of the spatial
metric.

Covariantization of the theory:

(1) Introduce ADM-like variables N (lapse) and Ni (shift),
known from the space-time decomposition of the spacetime
metric;

(2) Replace ġij → Kij = 1
N (ġij −∇iNj −∇jNi),

√
g → N

√
g.
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Gauge symmetries: Foliation-preserving diffeomorphisms
DiffF(M),

δt = f(t), δxi = ξi(t, xj).

The transformation rules follow from a nonrelativistic
contraction of spacetime diffeomorphisms; N and Ni are gauge
fields of DiffF(M):

δN = ḟ(t)N + . . . , δNi = ξ̇j + . . .

In the minimal (=“projectable”) realization, N is a function of
only t.

Symmetries reminiscent of the Causal Dynamical Triangulations
(CDT) approach to quantum gravity on the lattice.
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Simplest example: z = 2 gravity

The action is S = SK − SV , with

Sk =
1
κ2

∫
dt dDx

√
gN

(
KijK

ij − λK2
)

and

SV =
∫
dt dDx

√
gN

(
αRijR

ij + βR2 + . . .
)
.

Shift in the critical dimension, as in the Lifshitz scalar:

[κ2] = 2−D.

The minimal theory with N(t) has the usual number of
transverse-traceless graviton polarizations, plus an extra scalar
DoF, all with the dispersion relation ω2 ∼ k4.

Two special values of λ: 1 and 1/D.
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Another example: z = 3 gravity

The action is again S = SK − SV , with

SK =
1
κ2

∫
dt dDx

√
gN

(
KijK

ij − λK2
)

and

SV =
∫
dt dDx

√
gN CijC

ij.

where Cij = εik`∇k(Rj
` −

1
4Rδ

j
`) is the Cotton-York-ADM

tensor. The shift of the critical dimension is

[κ2] = 3−D.

Anisotropic Weyl invariance eliminates the scalar graviton
classically.
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Emergent gravity at a Lifshitz point

[Cenke Xu and P.H., arXiv:1003.0009]

These models with z = 2 or z = 3 gravitons can emerge as IR
fixed points on the fcc lattice. Emergent gauge invariance
stabilizes new algebraic bose liquid phases.

Recall the emergence of U(1) “photons” in dimer models
[Fradkin,Kivelson,Rokhsar,...]:

Lattice symmetries protect z = 2 or z = 3 in IR, forbid GN .
But: interacting Abelian gravity is possible!
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Gravity on the lattice

Causal dynamical triangulations approach [Ambjørn,Jurkiewicz,Loll]

to 3 + 1 lattice gravity:

Naive sum over triangulations does not work (branched
polymers, crumpled phases).

Modify the rules, include a preferred causal structure:

With this relevant change of the rules, a continuum limit
appears to exist: The spectral dimension ds ≈ 4 in IR, and
ds ≈ 2 in UV. Continuum gravity with anisotropic scaling:
ds = 1 +D/z. ([Benedetti,Henson,2009]: works in 2 + 1 as well.)
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Relevant deformations, RG flows, phases
The Lifshitz scalar can be deformed by relevant terms:

S =
1
2

∫
dt dDx

{
φ̇2 − (∆φ)2−µ2∂iφ∂iφ+m4φ2 − φ4

}
The undeformed z = 2 theory describes a tricritical point,
connecting three phases – disordered, ordered, spatially
modulated (“striped”) [A. Michelson, 1976]:
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RG flows in gravity: z = 1 in IR

Theories with z > 1 represent candidates for the UV description.
Under relevant deformations, the theory will flow in the IR.
Relevant terms in the potential:

∆SV =
∫
dt dDx

√
gN

(
. . .+µ2R− 2Λ

)
.

the dispersion relation changes in IR to ω2 ∼ k2 + . . .
the IR speed of light is given by a combination of the couplings
µ2 combines with κ, . . . to give an effective GN .

Sign of k2 in dispersion relation is opposite for the scalar and
the tensor modes! Can we classify the phases of gravity? Can
gravity be in a modulated phase?
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Modulated phases of gravity

[in progress, w/ Patrick Zulkowski and Charles Melby-Thompson]

First, classify all spatially homogeneous and isotropic phases.
Take gij = a2(t)γij(k), with k = 0,±1; set Ni = 0. The phase
diagram for k = 1 (at fixed R2 terms) looks like this:

forbidden zone

oscillating
(oscillating

hyperbolic)

de Sitter−like

Governed by the Friedmann equation,

(ġ)2 +R2 + µ2R− 2Λ = 0.
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Spatially homogeneous isotropic phases
of gravity

Examples of phases of gravity with k = 1: a de Sitter-like
phase, an oscillating cosmology (=“temporally modulated”
phase); the Einstein static universe appears at the phase
transition line, where the theory satisfies detailed balance.

Cosmology: [Kiritsis et al, Brandenberger et al, Lüst et al, many others]
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Phase structure in the CDT approach

Compare to the phase diagram in the causal dynamical
triangulations:
[Ambjørn et al, 1002.3298]

C

B

A

Note: z = 2 sufficient to explain three phases.
Possibility of a nontrivial z ≈ 2 fixed point in 3 + 1 dimensions?
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Spatially modulated phases of gravity

Simplify, go to 2 + 1 dimensions. In the forbidden zone, there is
a class of solutions: Flat space with a shift flow, for example

gij = δij, Nx = Cy, Ny = 0.

Couette flow (hydrodynamics): resulting geometry is spatially
inhomogeneous, but space-time homogeneous.

Another solution: Nx = Cx, Ny = −Cy.

What are these solutions? Snapshots of gravitational waves.
Expectation: Spatially modulated phases of gravity exist in
higher dimensions.
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Applications in General Relativity and
String Theory

[P.H. and Charles Melby-Thompson, arXiv:0909.3841]

The concept of anisotropic scaling in gravity is useful also in
conventional relativistic GR and string theory, for understanding
solutions which are asymptotically anisotropic near infinity (such
as in AdS/CMT).

Penrose’s notion of conformal infinity is insufficient for handling
holographic renormalization in such spaces, but can be extended
to the notion of anisotropic conformal infinity.

Another use: Defining boundary conditions for Euclidean path
integrals in gravity with anisotropic scaling near infinity.
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Anisotropic Weyl symmetry

First, local version of anisotropic scaling symmetries can be
defined,

In the simplest example, for general values of z, we define

gij → exp(2Ω(t,x))gij, Ni → exp(2Ω(t,x))Ni,

N → exp(zΩ(t,x))N.

Such anisotropic Weyl transformations form a closed symmetry
group with the foliation-preserving diffeomorphisms.
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Anisotropic conformal infinity

We have seen that anisotropic Weyl transformations with z 6= 1
are compatible with foliation-preserving diffeomorphisms,

Main point: In spacetime geometries whose asymptotic
isometries are compatible with DiffF(M), anisotropic conformal
transformations naturally define an anisotropic conformal
infinity/boundary of spacetime.

The boundary is equipped with a natural anisotropic conformal
structure.

Example: Black holes in spacetimes with anisotropic infinity
(e.g. in warped AdS3).
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Ultralocal gravity

In retrospect, one example of a theory of gravity with
anisotropic scaling has appeared in the literature already in the
1970’s: the ultralocal theory of gravity [Isham;Teitelboim;Henneaux]

It results simply from eliminating all derivative terms from the
potential, and setting

SV = 2Λ.

This case can be viewed from two perspectives, either as z = 0
or z =∞.

Remarkably, this theory is “generally covariant” – it has the
same number of gauge symmetries per spacetime point as GR.
The symmetry algebra is not that of GR, instead it is deformed
into spatial diffeomorphisms and a local U(1) symmetry.
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Projectable vs. nonprojectable

Simplest attempt to relax projectability: Declare N to be a
function of everything, see what happens. This approach has
worked in the ultralocal theory, leading to general covariance
and the closure of the constraints.

Effective field theory logic: Allow all terms in S compatible with
symmetries. New terms: built out of ∇iN/N . New constraints
second-class, no additional gauge invariance.

Artificially disallowing such terms: The constraint algebra
appears in trouble, for z > 1. (Still, one apparently consistent
way of quantizing this system: With detailed balance, H⊥ are
quadratic in “aij variables.” Declaring aij’s to be the first-class

constraints (or aij and a†ij as second-class pairs) closes the
algebra. This leads to quantizing the theory as topological.)
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U(1)-Extended DiffF

Why do we want N to be the function of t and xi? N is related
to g00, and that is where the Newton potential is.

Strategy: Keep the subleading, O(1/c2) term in g00:

g00 = −N(t)2 +
A0(t,x)
c2

+ . . . ,

and the subleading term α in the time reparametrizations as we
take the c→∞ limit.

This α generates an extra U(1) gauge symmetry,

δA0 = α̇, δNi = ∂iα, δgij = 0.
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Requiring the invariance of the action under this U(1)-extended
DiffF(M) symmetry implies:

(1) freezing the value of λ = 1,

(2) the presence of additional couplings between A0 and R and
Ni.

The full nonlinear theory works straightforwardly only in 2 + 1
dimensions.

(More sophisticated constructions may work in higher spacetime
dimensions – work in progress.)
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More general Lifshitz scalars

A natural sequence of generalizations exists:

Split xi into groups,

xi1, xi2, . . . xin,

with i1 (i2, . . . in) taking D1 (D2, . . . Dn) values, and
D = D1 +D2 + . . . Dn.

Each k-th group has its own value of z, equal to k.

This leads to Lifshitz models with nested spatial anisotropy.

Generalizations to gravity are straightforward; in particular, a
(1 + 1) +D split is interesting: it captures features of gravity
near black-hole horizons.
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Theory with detailed balance

The role of the condition of detailed balance is twofold:

(1) A technical one: Reduces the number of independent
couplings in the action.
In condensed matter, nongravitational examples of theories with
detailed balance exhibit a simpler renormalization structure.

(2) Perhaps a more conceptual one: The condition of detailed
balance arises in systems out of equilibrium, relating S to the
equilibrium theory described by W .

Detailed balance can be softly broken, or eliminated altogether,
in favor of the most general action of the effective field theory
approach.
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Application to AdS/CFT

Anisotropic gravity systems, if consistent, could provide a new
class of gravity duals for CFTs, in particular those relevant for
condensed matter.

Example: Start with W which has a Euclidean AdSD solution.
Then the theory with detailed balance, described by S in D + 1
dimensions, has a static solution given by

N = 1, Ni = 0, gij = Euclidean AdSD metric.

This geometry has an SD−1 ×R boundary.

Bulk isometries = conformal symmetries of SD−1 plus time
translations.

These are the symmetries of a quantum critical system on the
boundary, already critical in the static limit.
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Mathematical applications

Using detailed balance, the theory is related (in imaginary time)
to the covariantized Ricci flow equation,

ġij = γN(Rij + αRgij) +∇iNj +∇jNi.

In particular, the topological version of this theory represents a
natural quantum field theory associated with the Ricci flow.

Ricci flow has been instrumental in Perelman’s proof of the
Poincaré conjecture.

Observables and their correlation functions should be of
mathematical interest.
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Entropic origin and detailed balance
Imposing detailed balance might be convenient for
mathematical simplicity. However, a remarkable physics parallel
exists: between gravity with detailed balance, and the
Onsager-Machlup theory of non-equilibrium thermodynamics.
[Onsager,Machlup 1953; Onsager 1931]

S =
∫
dt dDx

(
Φ̇aM

abΦ̇b −
δW

δΦa
Mab

δW

δΦb

)
.

This OM action describes the response of thermodynamic
variables Φa to entropic forces δW/δΦa; W itself is entropy!

Formally, gravity at a Lifshitz point with detailed balance has
the same structure; mathematical formalism for understanding
the possible entropic origin of gravity?

compare the heuristic ideas of [Verlinde,Jacobson,...]
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Conclusions

Many interesting open questions, lots of work to be done!


