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The QCD challenge 

• We have some good tools but they all have limitations. For 
example:

‣ Perturbation theory: Weak coupling.
‣ Lattice: Difficult to apply to real-time phenomena.
‣ Etc.

• Topic of this talk with focus on far-from-equilibrium.

•  QCD remains a challenge after 40 years.

• A string reformulation might help.

• Of theoretical and experimental interest: 



Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration

Heavy Ion Collisions



Heavy Ion Collisions
Collision time

‣ Far from equilibrium dynamics ‣ Hydrodynamics
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• What determines when hydro becomes applicable?

• Is there a qualitative mechanism/model?

• What are the initial conditions for hydro?

• How long is             ?   Data indicates                                 .                         thydro (1)
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• How do initial-state fluctuations evolve?

‣ Hadronization

• And general questions about far-from-equilibrium QFT. 

• What is the nature of the hydro expansion? Michal Heller’s talk



Gauge/Gravity Duality

• However, it may still provide useful: 

‣ Quantitative ballpark estimates. 
‣ Qualitative insights.

• In particular, if strong coupling + far from equilibrium, then 
holography is the only first-principle tool.

• At present gauge/gravity duality is not a tool for precision QCD 
physics:

‣ Large N.
‣ No asymptotic freedom.



Last decade: Near equilibrium QGP

Black Hole

Near-equilibrium QGP  =  Near-equilibrium Black Hole



Far from equilibrium

Far-from-equilibrium QFT    

Classical but fully Dynamical General Relativity in AdS



Holographic Heavy Ion Collisions

• Collide two infinite sheets of energy in N=4 SYM.  

• Toy model for central collision of large nuclei.

Chesler & Yaffe ’10
Casalderrey, Heller, D.M. & van der Schee ’13

z

• Collision of gravitational shock waves in AdS (2+1 problem).

v=1



Holographic Heavy Ion Collisions
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Energy density at the centre 

Width 
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Energy density at the centre ⇢4

Width is !
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Scale invariance implies results depend only on ⇢!
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Holographic Heavy Ion Collisions
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⇢4: Energy density at the centre

!: Width

µ3 = !⇢4: Energy density per unit transverse area
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• Scale invariance: Results depend only on 

• In a real HIC 
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• Chesler & Yaffe choose 
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t

h + 1
2A @

r

h are derivatives along ingoing and outgoing null

geodesics, respectively.

A = ⇢2 +
a4
⇢2

� 2b4(t)
2

7⇢6
+ · · · ,

B =
b4(t)

⇢4
+

b04(t)
⇢5

+ · · · ,

⌃ = ⇢� b4(t)
2

7⇢7
+ · · · , (9)

⇤ > 0
⌘

s
' 1

4⇡
(10)
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• Dynamical crossover between fu!-stopping and transparency scenarios

Thin 
(high E) 

Thick
(low E)

• We therefore simulate values between               and             
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From full stopping to transparency in a holographic model of heavy ion collisions
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We numerically simulate planar shock wave collisions in anti-de Sitter space as a model for heavy
ion collisions of large nuclei. We uncover a cross-over between two di↵erent dynamical regimes
as a function of the collision energy. At low energies the shocks first stop and then explode in a
manner approximately described by hydrodynamics, in close similarity with the Landau model. At
high energies the receding fragments move outwards at the speed of light, with a region of negative
energy density and negative longitudinal pressure trailing behind them. The rapidity distribution
of the energy density at late times around mid-rapidity is not approximately boost-invariant but
Gaussian, albeit with a width that increases with the collision energy.

1. Introduction. Holography has provided successful
toy models for the study of (near)equilibrium properties
of the quark-gluon plasma created in heavy ion collisions
(HIC) at RHIC and LHC (see e.g. [1] for reviews). Ap-
plying holography to the far-from-equilibrium early stage
of a HIC is challenging and interesting. The challenge
arises because one must solve Einstein’s equations in a
dynamical setting, which generically must be done nu-
merically [2, 3]. The interest lies in that understanding
the strong coupling limit described by holography may
help us bracket the real-world situation.

Here we will follow the approach of Ref. [2], in which
a HIC was toy-modeled as a collision of two planar
shock waves of finite thickness in anti-de Sitter space
(AdS). In the dual conformal field theory (CFT) this
corresponds to a collision of two infinite sheets of en-
ergy characterized by a stress tensor whose only non-

zero component is T±±(z±) = N

2

c

2⇡2

⇢4 e−z2±�2w2

, where z
is the ‘beam direction’, z± = t ± z, w is the width of
the sheets and the sign depends on the direction of mo-
tion of the shock. We choose t = 0 to correspond to
the time at which the two shocks would exactly over-
lap if there were no interactions. We will work with en-
ergy densities, energy fluxes and pressures normalized as(E ,S,P

L

,P
T

) = 2⇡2

N

2

c

(−T t

t

, T z

t

, T z

z

, T x⊥
x⊥ ). We will thus re-

fer to ⇢4 as the maximum energy density of the incoming
shocks, which is related to the energy per unit transverse
area µ used in [2] through µ3 =√2⇡ ⇢4w. Scale invariance
of the CFT implies that the physics only depends on the
dimensionless product ⇢w. Ref. [2] chose µw

CY

= 0.75,
corresponding to ⇢w

CY

� 0.64. Note that for the incom-
ing shocks one has E = P

L

= ∓S and P
T

= 0.
Given the simplicity of the model, we will not attempt

to match the values of ⇢ and w to a specific HIC. Instead,
we note that, in a real HIC, the product ⇢w decreases as

�−1�2 as the total center-of-mass energy of the collision,√
s
coll

= 2�M
ion

, increases. This suggests that HICs at
increasingly higher energies may be modeled by decreas-
ingly smaller values of ⇢w. We will therefore simulate
collisions with several values of ⇢w ranging from 2⇢w

CY

to 1
8⇢wCY

. We will refer to the former as ‘thick shocks’
and to the latter as ‘thin shocks’. We will focus on our
physical results and refer the reader to [2] for technical
details [4]. We will work with fixed ⇢ and vary w, and
hence think of low-energy and high-energy collisions as
modeled by thick and thin shocks, respectively.
We will uncover a cross-over between two qualitatively

di↵erent dynamical regimes that correspond to a full-
stopping scenario for thick shocks, and to a transparency
scenario for thin ones. Among other things, the two
regimes are distinguished by the applicability of hydro-
dynamics. We will say that hydrodynamics is applicable
when the constitutive relations of first-order, viscous hy-
drodynamics predict P

L

in the local rest frame in units ofE
loc

�3 with a 20% accuracy, i.e. when 3 ��P loc

L

� �E
loc

≤ 0.2
with �P = P − P

hydro

. Tracelessness of the stress ten-
sor then implies that 3 ��P loc

T

� �E
loc

≤ 0.1. We define the
hydrodynamization time, t

hyd

, as the time after which
hydrodynamics becomes applicable at z = 0. Other rea-
sonable definitions include tmax

hyd

= t
hyd

− t
max

and t2w
hyd

=
t
hyd

+2w. The former measures hydrodynamization from
the time when the energy density achieves its maximum
value (see Fig. 1). The latter measures hydrodynamiza-
tion from the time when the two incoming shocks be-
gin to overlap significantly [2]. The di↵erences between
these definitions are significant for thick shocks but be-
come small for thin shocks. We will also consider another
hydrodynamization time, tP

hyd

, defined by the criterion��P loc

L

� �P loc

L

≤ 0.2. One advantage of t
hyd

over tP
hyd

is thatE
loc

is always non-zero, whereas P loc

L

may vanish.

v=1
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2. A dynamical cross-over. Fig. 1 shows the energy
density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,
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2. A dynamical cross-over. Fig. 1 shows the energy
density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,
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density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,
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2. A dynamical cross-over. Fig. 1 shows the energy
density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,

• At                         , 90% of the energy 
density is moving with v < 0.1.

Energy gets compressed, stops and explodes hydrodynamically.
Landau ’53

Thick shocks approx. realize Landau model 
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density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,
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2. A dynamical cross-over. Fig. 1 shows the energy
density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,

• At                         , 90% of the energy 
density is moving with v < 0.1.

• Deviation from hydrodynamics less than 
20% everywhere.

Thick shocks approx. realize Landau model 
Energy gets compressed, stops and explodes hydrodynamically.

Landau ’53
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L �Eloc for thick (left) and thin (right) shocks. The white areas indicate the vacuum regions outside the light cone.
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the maxima of the energy flux, as in Fig. 2.

the energy flux in this region is less than 10% of the max-
imum incoming flux, as illustrated by Fig. 2(left). At late
times, the velocity of the receding shocks can be read o↵
from the same figure as the inverse slope of the dotted
line. This is not constant in time, but at late times it
reaches a maximum of about v � 0.88. The validity of
the hydrodynamic description can be seen in Fig. 3(left)
and Fig. 4(left column). Hydrodynamics becomes appli-
cable even earlier than t

max

, and the region where it is
applicable extends from z = 0 to the location of the re-
ceding maxima. This is intuitive since gradients become
smaller as the width of the shocks increases. We conclude
that the thick-shocks collisions results in hydrodynamic
expansion with initial conditions in which all the veloci-
ties are close to zero, in close similarity with the Landau

model [5].

The thin shocks illustrate the transparency scenario.
In this case the shocks pass through each other and,
although their shape gets altered, they keep moving at
v � 1, as seen in Fig. 2(right). The most dramatic modifi-
cation in their shape is a region of negative E and P

L

that
trails right behind the receding shocks. While the nega-
tive E only develops away from the center of the collision,
the negative P

L

is already present at z = 0, as shown more
clearly in the top-right plot of Fig. 4. These features are
compatible with the general principles of Quantum Field
Theory [6], since the ‘negative region’ is far from equi-
librium and highly localized near a bigger region with
positive energy and pressure. In the case of thin shocks,
we see from Fig. 3(right) and Fig. 4(right column) that
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the energy flux in this region is less than 10% of the max-
imum incoming flux, as illustrated by Fig. 2(left). At late
times, the velocity of the receding shocks can be read o↵
from the same figure as the inverse slope of the dotted
line. This is not constant in time, but at late times it
reaches a maximum of about v � 0.88. The validity of
the hydrodynamic description can be seen in Fig. 3(left)
and Fig. 4(left column). Hydrodynamics becomes appli-
cable even earlier than t

max

, and the region where it is
applicable extends from z = 0 to the location of the re-
ceding maxima. This is intuitive since gradients become
smaller as the width of the shocks increases. We conclude
that the thick-shocks collisions results in hydrodynamic
expansion with initial conditions in which all the veloci-
ties are close to zero, in close similarity with the Landau

model [5].

The thin shocks illustrate the transparency scenario.
In this case the shocks pass through each other and,
although their shape gets altered, they keep moving at
v � 1, as seen in Fig. 2(right). The most dramatic modifi-
cation in their shape is a region of negative E and P

L

that
trails right behind the receding shocks. While the nega-
tive E only develops away from the center of the collision,
the negative P

L

is already present at z = 0, as shown more
clearly in the top-right plot of Fig. 4. These features are
compatible with the general principles of Quantum Field
Theory [6], since the ‘negative region’ is far from equi-
librium and highly localized near a bigger region with
positive energy and pressure. In the case of thin shocks,
we see from Fig. 3(right) and Fig. 4(right column) that

• No clear separation between 
plasma and receding fragments.
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2. A dynamical cross-over. Fig. 1 shows the energy
density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,

Energy gets compressed, stops and explodes hydrodynamically.
Landau ’53
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the energy flux in this region is less than 10% of the max-
imum incoming flux, as illustrated by Fig. 2(left). At late
times, the velocity of the receding shocks can be read o↵
from the same figure as the inverse slope of the dotted
line. This is not constant in time, but at late times it
reaches a maximum of about v � 0.88. The validity of
the hydrodynamic description can be seen in Fig. 3(left)
and Fig. 4(left column). Hydrodynamics becomes appli-
cable even earlier than t

max

, and the region where it is
applicable extends from z = 0 to the location of the re-
ceding maxima. This is intuitive since gradients become
smaller as the width of the shocks increases. We conclude
that the thick-shocks collisions results in hydrodynamic
expansion with initial conditions in which all the veloci-
ties are close to zero, in close similarity with the Landau

model [5].

The thin shocks illustrate the transparency scenario.
In this case the shocks pass through each other and,
although their shape gets altered, they keep moving at
v � 1, as seen in Fig. 2(right). The most dramatic modifi-
cation in their shape is a region of negative E and P

L

that
trails right behind the receding shocks. While the nega-
tive E only develops away from the center of the collision,
the negative P

L

is already present at z = 0, as shown more
clearly in the top-right plot of Fig. 4. These features are
compatible with the general principles of Quantum Field
Theory [6], since the ‘negative region’ is far from equi-
librium and highly localized near a bigger region with
positive energy and pressure. In the case of thin shocks,
we see from Fig. 3(right) and Fig. 4(right column) that

• The receding maxima move at v ~ 0.88.
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2. A dynamical cross-over. Fig. 1 shows the energy
density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,
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Thin shocks realize transparency 
Shocks pass through one another and plasma gets created in between.2
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FIG. 1. Energy and pressures for collisions of thick (left column) and thin (right column) shocks. The grey planes lie at the
origin of the vertical axes.

2. A dynamical cross-over. Fig. 1 shows the energy
density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,
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2. A dynamical cross-over. Fig. 1 shows the energy
density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,

• Most dramatic change is region of 
negative energy near the receding 
fragments. 
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FIG. 2. Energy flux for collisions of thick (left) and thin (right) shocks. The dotted curves show the location of the maxima of
the flux.
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FIG. 3. 3�P loc

L �Eloc for thick (left) and thin (right) shocks. The white areas indicate the vacuum regions outside the light cone.
The grey areas indicate regions where hydrodynamics deviates by more than 100%. The dotted curves indicate the location of
the maxima of the energy flux, as in Fig. 2.

the energy flux in this region is less than 10% of the max-
imum incoming flux, as illustrated by Fig. 2(left). At late
times, the velocity of the receding shocks can be read o↵
from the same figure as the inverse slope of the dotted
line. This is not constant in time, but at late times it
reaches a maximum of about v � 0.88. The validity of
the hydrodynamic description can be seen in Fig. 3(left)
and Fig. 4(left column). Hydrodynamics becomes appli-
cable even earlier than t

max

, and the region where it is
applicable extends from z = 0 to the location of the re-
ceding maxima. This is intuitive since gradients become
smaller as the width of the shocks increases. We conclude
that the thick-shocks collisions results in hydrodynamic
expansion with initial conditions in which all the veloci-
ties are close to zero, in close similarity with the Landau

model [5].

The thin shocks illustrate the transparency scenario.
In this case the shocks pass through each other and,
although their shape gets altered, they keep moving at
v � 1, as seen in Fig. 2(right). The most dramatic modifi-
cation in their shape is a region of negative E and P

L

that
trails right behind the receding shocks. While the nega-
tive E only develops away from the center of the collision,
the negative P

L

is already present at z = 0, as shown more
clearly in the top-right plot of Fig. 4. These features are
compatible with the general principles of Quantum Field
Theory [6], since the ‘negative region’ is far from equi-
librium and highly localized near a bigger region with
positive energy and pressure. In the case of thin shocks,
we see from Fig. 3(right) and Fig. 4(right column) that

• Shape of shocks gets altered but they 
keep moving at v=1.
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2. A dynamical cross-over. Fig. 1 shows the energy
density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,
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the energy flux in this region is less than 10% of the max-
imum incoming flux, as illustrated by Fig. 2(left). At late
times, the velocity of the receding shocks can be read o↵
from the same figure as the inverse slope of the dotted
line. This is not constant in time, but at late times it
reaches a maximum of about v � 0.88. The validity of
the hydrodynamic description can be seen in Fig. 3(left)
and Fig. 4(left column). Hydrodynamics becomes appli-
cable even earlier than t

max

, and the region where it is
applicable extends from z = 0 to the location of the re-
ceding maxima. This is intuitive since gradients become
smaller as the width of the shocks increases. We conclude
that the thick-shocks collisions results in hydrodynamic
expansion with initial conditions in which all the veloci-
ties are close to zero, in close similarity with the Landau

model [5].

The thin shocks illustrate the transparency scenario.
In this case the shocks pass through each other and,
although their shape gets altered, they keep moving at
v � 1, as seen in Fig. 2(right). The most dramatic modifi-
cation in their shape is a region of negative E and P

L

that
trails right behind the receding shocks. While the nega-
tive E only develops away from the center of the collision,
the negative P

L

is already present at z = 0, as shown more
clearly in the top-right plot of Fig. 4. These features are
compatible with the general principles of Quantum Field
Theory [6], since the ‘negative region’ is far from equi-
librium and highly localized near a bigger region with
positive energy and pressure. In the case of thin shocks,
we see from Fig. 3(right) and Fig. 4(right column) that
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times, the velocity of the receding shocks can be read o↵
from the same figure as the inverse slope of the dotted
line. This is not constant in time, but at late times it
reaches a maximum of about v � 0.88. The validity of
the hydrodynamic description can be seen in Fig. 3(left)
and Fig. 4(left column). Hydrodynamics becomes appli-
cable even earlier than t

max

, and the region where it is
applicable extends from z = 0 to the location of the re-
ceding maxima. This is intuitive since gradients become
smaller as the width of the shocks increases. We conclude
that the thick-shocks collisions results in hydrodynamic
expansion with initial conditions in which all the veloci-
ties are close to zero, in close similarity with the Landau

model [5].

The thin shocks illustrate the transparency scenario.
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clearly in the top-right plot of Fig. 4. These features are
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librium and highly localized near a bigger region with
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the energy flux in this region is less than 10% of the max-
imum incoming flux, as illustrated by Fig. 2(left). At late
times, the velocity of the receding shocks can be read o↵
from the same figure as the inverse slope of the dotted
line. This is not constant in time, but at late times it
reaches a maximum of about v � 0.88. The validity of
the hydrodynamic description can be seen in Fig. 3(left)
and Fig. 4(left column). Hydrodynamics becomes appli-
cable even earlier than t

max

, and the region where it is
applicable extends from z = 0 to the location of the re-
ceding maxima. This is intuitive since gradients become
smaller as the width of the shocks increases. We conclude
that the thick-shocks collisions results in hydrodynamic
expansion with initial conditions in which all the veloci-
ties are close to zero, in close similarity with the Landau

model [5].

The thin shocks illustrate the transparency scenario.
In this case the shocks pass through each other and,
although their shape gets altered, they keep moving at
v � 1, as seen in Fig. 2(right). The most dramatic modifi-
cation in their shape is a region of negative E and P

L

that
trails right behind the receding shocks. While the nega-
tive E only develops away from the center of the collision,
the negative P

L

is already present at z = 0, as shown more
clearly in the top-right plot of Fig. 4. These features are
compatible with the general principles of Quantum Field
Theory [6], since the ‘negative region’ is far from equi-
librium and highly localized near a bigger region with
positive energy and pressure. In the case of thin shocks,
we see from Fig. 3(right) and Fig. 4(right column) that

• Hydrodynamics only applicable away 
from receding fragments and at late 
times.

• Shape of shocks gets altered but they 
keep moving at v=1.

• Clear separation between receding  
fragments and plasma in between.
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t

h + 1
2A @

r

h are derivatives along ingoing and outgoing null

geodesics, respectively.

A = ⇢2 +
a4
⇢2

� 2b4(t)
2

7⇢6
+ · · · ,

B =
b4(t)

⇢4
+

b04(t)
⇢5

+ · · · ,

⌃ = ⇢� b4(t)
2

7⇢7
+ · · · , (10)

⇤ > 0
⌘

s
' 1

4⇡
(11)
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the energy flux in this region is less than 10% of the max-
imum incoming flux, as illustrated by Fig. 2(left). At late
times, the velocity of the receding shocks can be read o↵
from the same figure as the inverse slope of the dotted
line. This is not constant in time, but at late times it
reaches a maximum of about v � 0.88. The validity of
the hydrodynamic description can be seen in Fig. 3(left)
and Fig. 4(left column). Hydrodynamics becomes appli-
cable even earlier than t

max

, and the region where it is
applicable extends from z = 0 to the location of the re-
ceding maxima. This is intuitive since gradients become
smaller as the width of the shocks increases. We conclude
that the thick-shocks collisions results in hydrodynamic
expansion with initial conditions in which all the veloci-
ties are close to zero, in close similarity with the Landau

model [5].

The thin shocks illustrate the transparency scenario.
In this case the shocks pass through each other and,
although their shape gets altered, they keep moving at
v � 1, as seen in Fig. 2(right). The most dramatic modifi-
cation in their shape is a region of negative E and P

L

that
trails right behind the receding shocks. While the nega-
tive E only develops away from the center of the collision,
the negative P

L

is already present at z = 0, as shown more
clearly in the top-right plot of Fig. 4. These features are
compatible with the general principles of Quantum Field
Theory [6], since the ‘negative region’ is far from equi-
librium and highly localized near a bigger region with
positive energy and pressure. In the case of thin shocks,
we see from Fig. 3(right) and Fig. 4(right column) that
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there is a clear separation between non-hydrodynamic re-
ceding maxima and a plasma in between that is described
by hydrodynamics only at su�ciently late times. At late
times it is also visible from Fig. 1 that the receding max-
ima su↵er significant attenuation [7].

Several quantities of interest are given in Table I. We
see that t

max

> 0 for thick shocks, whereas for thin shocks
t � 0, as it would be in the absence of interactions. Sim-
ilarly, the maximum energy density E

max

is just the sum
of the incoming energies for thin shocks, indicating that,
unlike for thick shocks, there is no compression or pil-
ing up for thin shocks. The minimum energy densityE

min

is negative for su�ciently thin shocks, as expected.
The fact that t

hyd

< 0 is negative for thick shocks sim-
ply means that hydrodynamics becomes applicable even
before the shocks fully overlap. In terms of the crite-
rion ��P loc

L

� �P loc

L

≤ 0.2, hydrodynamics becomes applica-
ble for thick shocks after this full-overlap time but still
before the complete stop, i.e. 0 < tP

hyd

< t
max

. Roughly
speaking, both t

hyd

and tP
hyd

increase in units of ⇢−1 or
w, and decrease in units of µ−1, as the width decreases.
The di↵erence between tmax

hyd

and t
hyd

becomes insignifi-
cant for thin shocks. As the width decreases, t2w

hyd

first
decreases and then increases, the reason being that t2w

hyd

is dominated by 2w (t
hyd

) for thick (thin) shocks. The
hydrodynamization temperature, T

hyd

, decreases with de-
creasing width in units of ⇢ or w−1. In contrast, T

hyd

is

almost constant in units of µ; we will come back to this
in Sec. 3. As in other models [2, 3], the products t

hyd

T
hyd

and tP
hyd

T
hyd

are smaller than unity and fairly constant,
which for typical values of T

hyd

at RHIC and LHC leads
to hydrodynamization times (significantly) shorter than
1 fm. The anisotropy P

T

�P
L

at these times increases as
the width decreases, reaching values as large as ∼ 15. It
is remarkable that such strong anisotropies can be well
described by first-order hydrodynamics.

3. Discussion. The crossover can be heuristically un-
derstood on the gravity side. Since each of the colliding
shock waves is a normalizable solution in the bulk, the
metric near the AdS boundary is a small deviation from
AdS. Consequently, the gravitational evolution is linear
near the boundary for some time t

lin

. The deviation be-
comes of order one at u ∼ ⇢−1, with u the usual Fe↵erman-
Graham holographic coordinate. At this depth gravity
becomes strong and the evolution is non-linear. This
non-linearity takes t

lin

∼ u ∼ ⇢−1 to propagate to the
boundary. If w � t

lin

, i.e. if ⇢w � 1, there is a clear sepa-
ration between the linear and the non-linear regimes. For
thin shocks, this is illustrated by e.g. Fig. 4(top-right),
where the energy density exhibits two maxima around
⇢t ∼ 0 and ⇢t ∼ 1. The former corresponds to the two
shocks passing through each other; the latter corresponds
to the arrival to the boundary of the non-linear pulse
from the bulk. In this sense the pulse is responsible for
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shock waves is a normalizable solution in the bulk, the
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. The deviation be-
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Two preconceptions dispelled
1. Strong coupling in the gauge theory may not lead to any significant 

stopping.

‣ In particular, it is compatible with receding fragments moving at v=1.



Two preconceptions dispelled
2. But this does not necessarily lead to Bjorken boost-

invariance at mid-rapidity.
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FIG. 6. Energy density in the local rest frame around mid-rapidity as a function of spacetime rapidity ⌘ and proper time ⌧ for
thick (left) and thin (right) shocks. In the latter case we have excluded from the plot the region in which the local rest frame
is not defined because 2�S � > �E +PL�.
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a di↵erent physical description. For large Nc SYM,
gauge/gravity duality provides an alternative picture in-
volving black hole formation in five dimensions. As we
discuss in Section II, the gravitational dual will involve
a 5d curved spacetime with a 4d boundary which has a
time dependent geometry. The boundary geometry cor-
responds to the spacetime geometry of the SYM field
theory. A time-dependent deformation in the 4d bound-
ary geometry will produce gravitational radiation which
propagates into the fifth dimension. This radiation will
necessarily produce a black hole [21]. It is natural that
the gravitational description of plasma formation and re-
laxation involves horizon formation, since at late times
the system will be in a near-equilibrium state with non-
zero entropy.

The presence of a black hole acts as an absorber of
gravitational radiation and therefore, after the produc-
tion of gravitational radiation on the boundary ceases,
the 5d geometry will relax onto a smooth and slowly
varying form. This relaxation is dual to the relaxation
of non-hydrodynamic degrees of freedom in the quantum
field theory [9]. Therefore, by studying the evolution of
the 5d black hole geometry, one can gain insight into the
creation and relaxation SYM plasma.

For simplicity, in this paper we limit attention to 4d ge-
ometries which have two dimensional spatial homogene-
ity and O(2) rotation invariance in the x? ⌘ {x1, x2}
directions, and which are invariant under boosts in the
xk ⌘ x3 direction. As we discuss in Section II, this
reduces the gravitational dynamics to a system of two-
dimensional PDEs, which we solve numerically. Besides
making the gravitational calculation simpler, these as-
sumptions serve an additional purpose. With these sym-
metries, the late time asymptotics of the 5d geometry
(and the corresponding asymptotics of the stress tensor)
are known analytically [24, 25, 26]. We will therefore be
able to compare directly our numerical results, valid at
all times, to the known late time asymptotics.

Boost invariance implies that the natural coordinates
to use are proper time ⌧ and rapidity y (with x0 ⌘
⌧ cosh y and xk ⌘ ⌧ sinh y). In these coordinates, the
metric of 4d Minkowski space (in the interior of the ⌧ = 0
cone) is ds2 = �d⌧2+dx

2
?+⌧2 dy2. A deformation of the

geometry, respecting the above symmetry constraints, in-
duced by a time-dependent shear may be written in the
form

ds2 = �d⌧2 + e�(⌧) dx

2
? + ⌧2 e�2�(⌧) dy2 . (1)

The function �(⌧) characterizes the time-dependent
shear; neglecting 4d gravity, �(⌧) is a function one is
free to choose arbitrarily. For this study, we chose

�(⌧) = c⇥
�
1� (⌧�⌧0)2/�2

� ⇥
1� (⌧�⌧0)2/�2

⇤6

⇥ e�1/[1�(⌧�⌧0)
2/�2], (2)

with ⇥ the unit step function. (Inclusion of the [1 �
(⌧�⌧0)2/�2]6 factor makes the first few derivatives of

⌧i

⌧f

⌧⇤

t

x||

III

II

I

Sunday, June 21, 2009

FIG. 1: A spacetime diagram depicting several stages of the
evolution of the field theory state in response to the changing
spatial geometry. At proper time ⌧ = ⌧i, the 4d spacetime ge-
ometry starts to deform. The region of spacetime where the
geometry undergoes time-dependent deformation is shown as
the red region, labeled I. After proper time ⌧ = ⌧f , the de-
formation in 4d spacetime geometry turns o↵ and the field
theory state is out of equilibrium. From proper time ⌧f to
⌧⇤, shown as the yellow region labeled II, the system is sig-
nificantly anisotropic and not yet close to local equilibrium.
After time ⌧⇤, shown in green and labeled III, the system is
close to local equilibrium and the evolution of the stress tensor
is well-described by hydrodynamics.

�(⌧) better behaved as ⌧�⌧0 ! ±�.) The function �(⌧)
has compact support and is infinitely di↵erentiable; �(⌧)
and all its derivatives vanish at the endpoints of the inter-
val (⌧i, ⌧f ), with ⌧i ⌘ ⌧0�� and ⌧f ⌘ ⌧0 +�. We choose
⌧0 ⌘ 5

4� so the geometry is flat at ⌧ = 0.1 We choose to
measure all dimensionful quantities in units where � = 1
(so ⌧i = 1/4 and ⌧f = 9/4).

Fig. 1 shows a spacetime diagram schematically de-
picting several stages in the evolution of the SYM state.
Hyperbola inside the forward lightcone are constant ⌧
surfaces. Prior to ⌧ = ⌧i, the system is in the ground
state. The region of spacetime where the geometry is
deformed from flat space is shown as the red region la-
beled I in Fig. 1. At coordinate time t = ⌧i the geometry
of spacetime begins to deform in the vicinity of xk = 0.
As time progresses, the deformation splits into two local-
ized regions centered about xk ⇠ ±t, which subsequently
separate and move in the ±xk directions at the speeds
asymptotically approaching the speed of light. After the
“pulse” of spacetime deformation passes, the system will
be left in an excited, anisotropic, non-equilibrium state.
That is, the deformation in the geometry will have done
work on the field theory state. This region, labeled II,

1 Choosing ⌧0 � � is convenient for numerics as our coordinate
system becomes singular on the ⌧ = 0 lightcone. The particular
choice ⌧0 = 5

4� was made so that our numerical results (which
begin at ⌧ = 0) contain a small interval of unmodified geometry
before the deformation turns on. For an interesting discussion of
non-equilibrium boost invariant states near ⌧ = 0 see Ref. [27].

z
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counters positioned on either side of the nominal vertex.
Particle identification (PID) for momenta below 2 GeV/c
is performed via time–of–flight (TOF) in the MRS. In
the FS, TOF capabilities allow π–K separation up to
p = 4.5 GeV/c, and is further extended up to 20 GeV/c
using a ring imaging Čerenkov detector. Further details
can be found in [7, 8].

Figure 1 shows transverse mass mT − m0 spectra
(mT =

√

p2
T + m2

0) for π− and K−. Particle spectra

]2 [GeV/c0 - mTm
0 0.5 1 1.5 2

]3 c
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FIG. 1: Invariant transverse mass mT −m0 spectra of π− (a)
and K− (b) from y ∼ 0 (top) to y ∼ 3.5 (bottom). Dashed
lines are fits to the data, namely a power law in pT for pi-
ons and an exponential in mT − m0 for kaons. Errors are
statistical. Spectra have been rescaled by powers of 10 for
clarity.

were obtained by combining data from several spectrom-
eter settings (magnetic field and angle), each of which
covers a small region of the phase–space (y, pT ). The
data have been corrected for the limited acceptance of
the spectrometers using a Monte-Carlo calculation simu-
lating the geometry and tracking of the BRAHMS detec-
tor system. Detector efficiency, multiple scattering and
in–flight decay corrections have been estimated using the
same technique. Hyperon (Λ) and neutral kaon K0s de-
cays may have contaminated the pion sample. For K0s,
it is assumed that its yields amount to the average be-
tween K+ and K− at each rapidity interval. For Λ yields,
since only mid–rapidity data are available, we used the
same assumptions as in [3], namely Λ/p = Λ̄/p̄ = 0.9 in
the phase–space covered in this analysis. The fraction of
pions originating from Λ and K0s decays was estimated
with a GEANT simulation where realistic particle distri-
butions (following an exponential in mT ) were generated
for several spectrometer settings. Particles were tracked
through the spectrometers and produced pions were ac-
cepted according to the same data cuts applied to the
experimental data. It has been found a K0s (Λ) contam-
ination of 4% (! 1%) in the MRS and 6% (! 1%) in the

forward spectrometer. In the following, the pion yields
are corrected unless stated otherwise.

The pion spectra are well described at all rapidities by
a power law in pT , A(1 + pT /p0)−n. For kaons, an ex-
ponential in mT − m0, A exp

(

mT −m0

T

)

, has been used.
The invariant yields dN/dy were calculated by integrat-
ing the fit functions over the full pT or mT range. The
two main sources of systematic error on dN/dy and 〈pT 〉
are the extrapolation in the low pT range outside the ac-
ceptance, and the normalization of the spectra. Other
fit functions were used in order to estimate the error on
the extrapolation. In the FS, due to a smaller acceptance
coverage at low pT , the error is systematically larger than
in the MRS. In total, the systematic error amounts to ∼
10% in the range −0.1 < y < 1.4 (MRS) and ∼ 15%
for y > 2 (FS). Mid–rapidity yields recently reported by
the STAR [9] and PHENIX experiments [10] are within
1 σsyst of these results.

Rapidity densities and mean transverse momenta 〈pT 〉
extracted from the fits are shown in Fig. 2. Panel (a)
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FIG. 2: Pion and kaon rapidity densities (a) and their mean
transverse momentum 〈pT 〉 (b) as a function of rapidity. Er-
rors are statistical. The kaon yields were multiplied by 4 for
clarity. The dashed lines in (a) are Gaussian fits to the dN/dy
distributions (see text).

shows the pion and kaon yields. π+ and π− are found in
nearly equal amounts within the rapidity range covered,
while an excess of K+ over K− is observed to increase
with rapidity [11]. Figure 2(b) shows the rapidity depen-
dence of 〈pT 〉. There is no significant difference between
positive and negative particles of a given mass. For pi-
ons, 〈pT 〉 = 0.45±0.05 GeV/c (stat + syst) at y = 0 and
decreases little to 0.40± 0.06 GeV/c at y = 3.5, while for
kaons, 〈pT 〉 drops from 0.71 ± 0.07 GeV/c at y = 0 to
0.59 ± 0.09 GeV/c at y = 3.3 (see [11]).

In order to extract full phase space densities for π±
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√
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We have measured rapidity densities dN/dy of π± and K± over a broad rapidity range (−0.1 <
y < 3.5) for central Au+Au collisions at

√
sNN = 200 GeV. These data have significant implications

for the chemistry and dynamics of the dense system that is initially created in the collisions. The full
phase–space yields are 1660±15±133 (π+), 1683±16±135 (π−), 286±5±23 (K+) and 242±4±19
(K−). The systematics of the strange to non–strange meson ratios are found to track the variation of
the baryo–chemical potential with rapidity and energy. Landau–Carruthers hydrodynamic is found
to describe the bulk transport of the pions in the longitudinal direction.

In ultra–relativistic heavy ion collisions at RHIC en-
ergies, charged pions and kaons are produced copiously.
The yields of these light mesons are indicators of the en-
tropy and strangeness created in the reactions, sensitive
observables to the possible existence of an early color
deconfined phase, the so–called quark gluon plasma. In
such collisions, the large number of produced particles
and their subsequent reinteractions, either at the par-
tonic or hadronic level, motivate the application of con-
cepts of gas or fluid dynamics in their interpretation. Hy-
drodynamical properties of the expanding matter created
in heavy ion reactions have been discussed by Landau [1]
(full stopping) and Bjorken [2] (transparency), in theo-
retical pictures using different initial conditions. In both
scenarios, thermal equilibrium is quickly achieved and
the subsequent isentropic expansion is governed by hy-
drodynamics. The relative abundances and kinematic
properties of particles provide an important tool for test-
ing whether equilibrium occurs in the course of the colli-
sion. In discussing the source characteristics, it is impor-
tant to measure most of the produced particles in order
not to violate conservation laws (e.g. strangeness and
charge conservation).

In this letter, we report on the first measure-
ments at RHIC energies of transverse momentum

(pT ) spectra of π± and K± over the rapidity range
−0.1 < y < 3.5 for the 5% most central Au+Au collisions
at

√
sNN = 200 GeV. The spectra are integrated to

obtain yields as a function of rapidity (dN/dy), giving
full phase–space (4π) yields. At RHIC energies, a low
net–baryon density is observed at mid–rapidity [3],
so mesons may be predominantly produced from the
decay of the strong color field created initially. At
forward rapidities, where primordial baryons are more
abundant [4], other production mechanisms, for example
associated strangeness production, play a larger role.
Therefore, the observed rapidity distributions provide
a sensitive test of models describing the space–time
evolution of the reaction, such as Landau and Bjorken
models [1, 2]. In addition, integrated yields are a key
input to statistical models of particle production [5, 6].

BRAHMS consists of two hadron spectrometers, a
mid–rapidity arm (MRS) and a forward rapidity arm
(FS), as well as a set of detectors for global event char-
acterization [7]. Collision centrality is determined from
charged particle multiplicities, measured by scintillator
tile and silicon multiplicity arrays located around the
nominal interaction point. The interaction vertex is mea-
sured with a resolution of 0.6 cm by arrays of Čerenkov

• It is also nice that the width increases with 
energy, as expected.



Two universal lessons

1. Hydrodynamization time can be significantly shorter than                . 
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‣ Such short times are hard to achieve at weak coupling.
‣ Suggestive, but remember caveats.

2. Hydrodynamics can work despite large anisotropies.

‣ In other words, at strong coupling                          .
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‣ In contrast, at weak coupling                           . 
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Arnold, Moore & Yaffe ’04

‣ Mysterious from effective field theory viewpoint.

‣ Applicability of hydro governed by relaxation of non-hydro QNMs.

‣ Hydro expansion seems to be asymptotic. Heller, Janik & Witaszczyk ’13

Chesler & Yaffe ’09
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Finite impact parameter:  d=4+1 in AdS
‣ Transverse plane dynamics.
‣ Event-by-event fluctuations.

Outlook: General collisions in confining theories
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