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Motivations

I Ricci flow equation

∂

∂t
g(t) = −2Ric(g(t)).

I An ancient solution g(t) exists on (−∞,T0).

I Ancient solutions arise as the limit of a sequence of suitable
blow-ups, via the compactness result of Hamilton, as the time
approaches the singular time for Ricci flow on a manifold with
a generic initial Riemannian metric.

I Classifications/properties on the ancient solutions provide
useful information to understand the singularities.
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Non-collapsing

I (M, g) is called κ-noncollapsed if for any ball Bx(r) satisfying

|Rm |(y) ≤ r−2

for y ∈ Bx(r),
Vx(r) ≥ κrn.

I If the above only holds for r ≤ a, we say that (M, g) is
κ-noncollpased on the scale a. Perelman proved that for
(M, g(t)), any solution to Ricci flow on a compact manifold
M × [0,T ], there exists κ such that (M, g(t)) is
κ-noncollapsed on scale

√
T .

I This implies that all the ancient solutions arising from the
blow-up limit is κ-noncollapsed on all scales.

I Hence for the sake of understanding the singularities of Ricci
flow on compact manifolds, we can assume that the ancient
solutions are κ-noncollapsed.
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Why ancient solutions

I (Perelman) Any nonflat ancient solution with bounded
nonnegative curvature operator must satisfies

lim
r→∞

V (B(o, r))

rn
= 0.

I Consequences:
1) Curvature estimates for the ancient solutions.
2) Compactness on the space of 3-dimensional κ-noncollapsed
ancient solutions with bounded curvature.

I We proved a similar result (2005) on ancient solutions to
Kähler-Ricci flow on manifolds with nonnegative bisectional
curvature.

I Several geometric applications can be derived, including a
proof to speculation of Yau on the relation between the
curvature and volume of a Kähler manifold with nonnegative
bisectional curvature.
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Classification results-I

Theorem (Hamilton)

The only solutions to Ricci flow on a surface which are complete
with bounded curvature on an ancient time interval −∞ < t < T
and where the curvature S satisfies

lim sup
t→−∞

(T − t)|S | <∞

are round sphere and the flat plane, and their quotients.
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Remarks

I First S ≥ 0 by the maximum principle. In fact either S > 0 or
S ≡ 0.

I The condition
lim sup
t→−∞

(T − t)|S | <∞

is labeled Type I. (A singularity with such condition is also
called a fast-forming singularity.)

I The proof has two parts. 1) Compact case, prove that it must
be the sphere quotient.
2) Rule out the noncompact, non-flat, type I ancient solutions
on surfaces.
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Classification results-II

I We first consider the compact case. Can we classify all
compact ancient solutions?

I Note that ancient solutions on close surfaces can only resides
on the sphere unless it is flat.

I Theorem (Daskalopoulos, Hamilton and Sesum)

On a compact surfaces, there are only two ancient solutions: the
round sphere and a sausage.



Classification results-II

I We first consider the compact case. Can we classify all
compact ancient solutions?

I Note that ancient solutions on close surfaces can only resides
on the sphere unless it is flat.

I Theorem (Daskalopoulos, Hamilton and Sesum)

On a compact surfaces, there are only two ancient solutions: the
round sphere and a sausage.



Classification results-II

I We first consider the compact case. Can we classify all
compact ancient solutions?

I Note that ancient solutions on close surfaces can only resides
on the sphere unless it is flat.

I Theorem (Daskalopoulos, Hamilton and Sesum)

On a compact surfaces, there are only two ancient solutions: the
round sphere and a sausage.



Classification results-II

I We first consider the compact case. Can we classify all
compact ancient solutions?

I Note that ancient solutions on close surfaces can only resides
on the sphere unless it is flat.

I Theorem (Daskalopoulos, Hamilton and Sesum)

On a compact surfaces, there are only two ancient solutions: the
round sphere and a sausage.



Classification results-II

I We first consider the compact case. Can we classify all
compact ancient solutions?

I Note that ancient solutions on close surfaces can only resides
on the sphere unless it is flat.

I Theorem (Daskalopoulos, Hamilton and Sesum)

On a compact surfaces, there are only two ancient solutions: the
round sphere and a sausage.



Sausage: Fateev-Onofri-Zamolodchikov, Rosenau and King
solution and Perelman’s 3-dim example

I Fateev-Onofri-Zamolodchikov, Rosenau and King solution: On
R × S1(2) define h = dx2 + dθ2. Then the solution g(t) is

g(t) = u(t)h, u =
sinh(−t)

cosh x + cosh t
.

It can be extended to S2, the two-point compactification of
R × S1.

I Perelman showed the existence of a 3-dimensional example of
ancient solution. Moreover the example is κ-noncollapsed
with positive curvature.

I The example is obtained by taking the limit of a sequence of
solutions on (−ti , 0).
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A remark

I Hamilton-Ivey estimate: If g(t) exists on (0,T ) with
0 ≤ t ≤ T and λ1(Rm) < 0, then (without assuming anything
on the initial condition)

S ≥ |λ1(Rm)|(log |λ1(Rm)|+ log(t)− 3).

I This implies that any compact ancient solution of dimension 3
must have non-negative curvature (operator).

I Concerning ancient solutions of Ricci flow, there also exist
motivations from physics, as they describe trajectories of the
renormalization group equations of certain asymptotically free
local quantum field theories in the ultra-violet regime.
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Classification results-III

I Theorem (N, 2008)

Assume that (M, g(t)) is a closed type I, κ-non-collapsed (for
some κ > 0) ancient solution to the Ricci flow with positive
curvature operator. Then (M, g(t)) must be the quotients Sn.

I This provide a high dimension analogue of Hamilton’s surface
result, at least for the compact case. The positivity can be
replaced by 2-positivity of curvature operator (if we use the
full result of Böhm-Wilking), or complex sectional curvature if
we use Brendle-Schoen’s result.

I Question: Is there any other ancient solutions on spheres
besides Perelman’s example and round metric?

I Brendle-Huisken-Sinestrari (2011): If one assumes a pointwise
pinching condition on the curvature the round metric is the
only possibility.
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full result of Böhm-Wilking), or complex sectional curvature if
we use Brendle-Schoen’s result.

I Question: Is there any other ancient solutions on spheres
besides Perelman’s example and round metric?

I Brendle-Huisken-Sinestrari (2011): If one assumes a pointwise
pinching condition on the curvature the round metric is the
only possibility.



Classification results-III

I Theorem (N, 2008)

Assume that (M, g(t)) is a closed type I, κ-non-collapsed (for
some κ > 0) ancient solution to the Ricci flow with positive
curvature operator. Then (M, g(t)) must be the quotients Sn.

I This provide a high dimension analogue of Hamilton’s surface
result, at least for the compact case. The positivity can be
replaced by 2-positivity of curvature operator (if we use the
full result of Böhm-Wilking), or complex sectional curvature if
we use Brendle-Schoen’s result.

I Question: Is there any other ancient solutions on spheres
besides Perelman’s example and round metric?

I Brendle-Huisken-Sinestrari (2011): If one assumes a pointwise
pinching condition on the curvature the round metric is the
only possibility.



Speculations on high dimensional ancient solutions

I There exists a speculation: Compact type-II ancient solution
at dimension there must be Perelman’s example or its
quotient.

I Ancient solutions on sphere with positive curvature (maybe
assume additionally that it is non-collapsed?) should be
rotationally symmetric since there exists enough time to make
the solution become symmetric.

I One may be able to remove the non-collapsed assumption in
the previous high dimensional classification result.
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Fateev’s three dimensional sausages

I Anastz:

ds2
ν,k(τ) =

1

w(τ, θ)

(
u(τ)ds2

stan + 2d(τ)(φ2
1 + φ2

2) + 4c(τ)φ1φ2

)
,

where w(τ, θ) = a2(τ)− b2(τ)(x2
1 + x2

2 − x2
3 − x2

4 )2 =
a2(τ)− b2(τ) cos2 2θ and a, b, c , d , u are functions of τ ,
φ1 + x1dx2 − x2dx1, φ2 + x3dx4 − x4dx3.

I

a(τ) = λ

√
cosh2 ξ − k2 sinh2 ξ + 1

sinh ξ
,

b(τ) = λ

√
cosh2 ξ − k2 sinh2 ξ − 1

sinh ξ
,

c(τ) = −λk tanh ξ, (0.1)

d(τ) = λ

√
1− k2 tanh2 ξ − cosh ξ

sinh ξ
,

u(τ) = 2λ coth ξ,
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Formulae

I where λ = ν
2(1−k2)

> 0 and ν and k are two parameters with

ν > 0 and k2 < 1. The new variable ξ is related to τ via the
equation:

ντ = ξ − k

2
log

(
1 + k tanh ξ

1− k tanh ξ

)
. (0.2)

I Obtained by solving ODE:

d u

dτ
= −(u + 2d)2,

d(u c)

dτ
= 0,

d(a b)

dτ
= 0 (0.3)

I under integrability conditions:

(u + d)2 = a2 + c2, d2 = b2 + c2 (0.4)

I The reduction is computational, but it is remarkable that the
anastz works. The example is neither homogeneous nor
rotationally symmetric.
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Special cases-I

I k = 0:

ds2
ν (τ) =

1

w(τ, θ)

(
(a(τ) + b(τ))ds2

stan − 2b(τ)(φ2
1 + φ2

2)
)
.

I

da

dτ
= −a(a− b), (0.5)

db

dτ
= b(a− b) (0.6)

I Note that this system has a simple first integral
a b = constant. It is worthwhile to mention that this solution
has pinched sectional curvature with pinching constant tends
to zero as τ →∞. Since its curvature operator has three
different eigenvalues, it can not be rotationally symmetric.
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Special cases-II

I A tricky limit: let k → 1 and ν → 0, but in the manner that

2ν

1− k2
= Ω

I

ds2
Ω(τ) =

sinh 2ξ

Ω

(
dθ2 + cos2 θ(1− tanh2 ξ cos2 θ)dχ2

1

+ sin2 θ(1− tanh2 ξ sin2 θ)dχ2
2

−2 sin2 θ cos2 θ tanh2 ξdχ1dχ2

)
=

sinh 2ξ

Ω

(
ds2

stan − tanh2 ξ(φ2
1 + φ2

2 + 2φ1φ2)
)
.

Here Ωτ = ξ + 2 sinh 2ξ
2 .

I This is a type-I solution. The curvature operator has three
distinct eigenvalues at a generic point.
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Type-I example

I Now introduce the following change of variables:

Θ = 2θ, Φ =
χ1 + χ2

2
, Ψ =

χ1 − χ2

2
.

Introduce the 1-forms

ψ1 = sin ΦdΘ− sin Θ cos ΦdΨ,

ψ2 = − cos ΦdΘ− sin Θ sin ΦdΨ,

ψ3 = −dΦ− cos ΘdΨ.

I Direct calculation shows that

ds2
Ω =

sinh 2ξ

Ω

(
ψ2

1 + ψ2
2

)
+

2 tanh ξ

Ω
ψ2

3.

I All these examples are included in two papers by Fateev (1995
and 1996). The last type I example was later also found by X.
Cao and Sallof-Coste independently.
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Solutions on principle bundles

I Viewing S3 as the total space of the Hopf fibration over CP1,
it is easy to check that

ψ2
1 + ψ2

2 = dΘ2 + sin2 ΘdΨ2

corresponds to the metric on the base manifold CP1.

I Hence, {ψ1, ψ2} form a moving frame of the base manifold
CP1.

I Also dψ3 = −ψ1 ∧ ψ2, which is the −1 multiple of the Kähler
form. Hence ψ3 can be viewed as a connection 1-form on the
total space;
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High dimensional new examples via Hopf fibrations

I Theorem
Besides the rotationally symmetric type-II ancient solution
constructed by Perelman, on S15, there are at least five nontrivial
(non-Einstein) type-I ancient solutions to Ricci flow. The first one
is collapsed with positive curvature operator, which converges to
the round metric as the time approaches to the singularity. The
second and the third ones are non-collapsed, with positive sectional
curvature, each ‘connecting’ one of the two known nonstandard
Einstein metrics (at t = −∞) to the round metric as the time
approaches to the singularity. The fourth one ‘starts’ with (at
t = −∞) a nonstandard Einstein metric and collapses the fiber
sphere S3 in the generalized Hopf fibration S3 → S15 → HP3 as
the time approaches to the singularity. The fifth ancient solution
‘starts’ with another nonstandard Einstein metric and collapses the
fiber sphere S7 in the generalized Hopf fibration S7 → S15 → S8 as
the time approaches to the singularity.
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Einstein metrics

I It is joint work with Ioannis Bakas and S.-L. Kong. Also works
on general odd dimensional spheres and CP2m+1.

I J.-P. Bourguignon and H. Karcher, G. R. Jensen and W. Ziller
have constructions on the nonstandard Einstein metrics on the
generalized Hopf fibrations. Further constructions were done
by M. Wang-Ziller, etc.

I The Einstein metrics amount to solving an
algebraic/quadratic equation. Our result is a dynamic version
of the earlier results for Einstein metrics.

I Our dynamic version requires solving a nonlinear ODE system
with Einstein metrics as its equilibrium. The key is to find the
first integral which links with the previous Einstein metric
construction.
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Stability conseqeunces

I It was initiated by Cao-Hamilton-Ilmanen to investigate the
stability of Einstein metrics and solitons (via the entropy
functional). Our examples show that the non-canonical
Einstein metrics are unstable fixed point of Ricci flow. This
particularly applies to non-standard Einstein metrics on odd
dimensional spheres and complex projective spaces.
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Constructions-I

I The previous result is a combination of the special cases of
three general theorems.

I The first one is on U(1)-bundles over a Kähler-Einstein
manifold

I Theorem
Let (M, g) be a Kähler-Einstein manifold with positive Chern class
and let P be a U(1) principle bundle over M with a connection
1-form θ such that its curvature is a non-zero multiple of the
Kähler form. There exist positive functions aΛ(τ) and bΛ(τ) on
(0,∞) (depending on a parameter Λ) such that
g̃a,b = a 〈·, ·〉g + b π∗g is an ancient solution to Ricci flow on the
total space Pn (n = 2m + 1). Moreover, the solution is of type-I
and collapsed. It has positive curvature operator when (M, g) is
(CPm, c gFS), where gFS is the Fubini-Study metric and c > 0 is a
constant.
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Construction II

I The second case is on the principle SU(2) bundles on
quaternion-Kähler manifolds. Again, using the variation of the
connection metrics. Let y = a/b, the slope. First if
p > 2

√
(2m + 3)q2, where p is Einstein constant (for the

Einstein metric on M) and q is below, there are Einstein
metrics g̃e1 and g̃e2 on the total space.

I Theorem
Assume that (M, g) is a quaternion-Kähler manifold with Einstein
constant p > 0. Let P be the associated SU(2)-principle bundle
with connection A satisfying a compatibility condition
(FA = q(w1i + w2j + w3k)). Then, there exists a type-I ancient
solution g̃a,b to Ricci flow on the total space P with
r2 < y(τ) < r1, which flows (after re-normalization) the Einstein
metric g̃e2 into the Einstein metric g̃e1 as t increases from −∞ to
some t0. There also exists a type-I ancient solution g̃ã,b̃ to Ricci
flow on the total space P with r2 > y(τ) > 0 which flows the
Einstein metric g̃e2 from t = −∞ into a singularity, at time t0

when it collapses the SU(2) fiber.
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flow on the total space P with r2 > y(τ) > 0 which flows the
Einstein metric g̃e2 from t = −∞ into a singularity, at time t0

when it collapses the SU(2) fiber.



Construction II

I The second case is on the principle SU(2) bundles on
quaternion-Kähler manifolds. Again, using the variation of the
connection metrics. Let y = a/b, the slope. First if
p > 2

√
(2m + 3)q2, where p is Einstein constant (for the

Einstein metric on M) and q is below, there are Einstein
metrics g̃e1 and g̃e2 on the total space.

I Theorem
Assume that (M, g) is a quaternion-Kähler manifold with Einstein
constant p > 0. Let P be the associated SU(2)-principle bundle
with connection A satisfying a compatibility condition
(FA = q(w1i + w2j + w3k)). Then, there exists a type-I ancient
solution g̃a,b to Ricci flow on the total space P with
r2 < y(τ) < r1, which flows (after re-normalization) the Einstein
metric g̃e2 into the Einstein metric g̃e1 as t increases from −∞ to
some t0. There also exists a type-I ancient solution g̃ã,b̃ to Ricci
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Construction III

I The third formulation is via the Riemannian submersion
structure:

I Proposition

Let π : (M, g)→ (B, ǧ) be a Riemannian submersion with totally
geodesic fiber. Let g = ĝ + ǧ be the metric decomposition.
Suppose that the metrics on M, B and on the fiber are all Einstein
with

Ric(ĝ) = λ̂ĝ , Ric(ǧ) = λ̌ǧ , Ric(g) = λg . (0.7)

Let g̃a,b(τ) = a(τ)ĝ + b(τ)ǧ . Then, g̃a,b solving the Ricci flow
equation is equivalent to

da

dτ
= 2λ̂+ 2(λ− λ̂)

a2

b2
, (0.8)

db

dτ
= 2λ̌− 2(λ̌− λ)

a

b
. (0.9)
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Let π : (M, g)→ (B, ǧ) be a Riemannian submersion with totally
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The ancient solutions on the total space

I Theorem
Assume that Λ1 + λ̂

λ̌−λ̂
6= 1 and λ̂ > 0. There exists an ancient

solution ds2(τ) to Ricci flow on the total space P with the slope y
between Λ1 and 1. If Λ1 < 1, it flows (after re-normalization) the
Einstein metric ds2

e2
( 1

2Λ1
) into the Einstein metric ds2

e1
( 1

2λ) as t

increases from −∞ to some t0. If Λ1 > 1, it flows ds2
e1

( 1
2λ) into

ds2
e2

( 1
2Λ1

) as t increases from −∞ to some t ′0. Both solutions are
of type-I.

I This is complementary to the case of U(1) bundle over
Kähler-Einstein manifolds since λ̂ = 0 there.

I Λ1 = 1 is a degenerate case in the sense that there exist only
one Einstein metric in the family.

I The key to the proof of the existence is the monotonicity of
the slope y = a

b is monotone non-increasing in τ .
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An first integral

I Another key to the proof is that there exists a first integral to
the ODE system.

I ∣∣∣1− a

b

∣∣∣ λ
λ̌−2λ̂

∣∣∣∣∣ λ̂

λ̌− λ̂
− a

b

∣∣∣∣∣
− λ̌2−2λ̂λ̌+λ̂λ

(λ̌−2λ̂)(λ̌−λ̂)

b−1 = Λ, (0.10)

where Λ ≥ 0 is a constant.
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Another solution which collapse the fiber

I Corollary

Assume that λ̂ > 0. If Λ1 < 1, there exists an ancient solution
ds2(τ) to Ricci flow on the total space P, such that it exists for
t ∈ (−∞, t0) and with y(τ) < Λ1. Moreover, it is of type-I and as
t → t0, ds2(τ) collapses into b ǧ .

I The proof again rely on the monotonicity of the slope y
together with the first integral. But now it is non-decreasing
in τ .

I This shows that S3 × R4n and S7 × R8 can be the singularity
models of Ricci flow on spheres.
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