Black Holes as Lumps of Fluid

Oscar Dias
DAMTP ‘ g:
University of Cambridge WARIE CURIE ACTIONS

Based on:

Marco Caldarelli, OD, Roberto Emparan, Dietmar Klemm, 0811.2381
Marco Caldarelli, OD, Dietmar Klemm, 0812.0801
Vitor Cardoso, OD, 0902.3560

Workshop on the Fluid-Gravity Correspondence
Arnold Sommerfeld Center, September 2009



== Plan of the talk

e |l. Motivation:

* Gravity / Gauge theory duality

« For high energy density, QFT has - ‘ Gravity / Hydrodynamics duality

a hydrodynamic description

e |l. Gravity / Hydrodynamics duality ...
o000 So What ?
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Fluid dynamics from gravity

( Battacharrya, Hubeny, Minwalla, Rangamani, 0712.2456 )
( “previous”, Mandal, Morita, Reall, 0803.2526 )

Start with (planar, k=0) black brane solution of Einstein-AdS (EF coord.):

ds? = —2dv dr — r?f(br)dv® + r?dz'dz’ 1
T— 1 flry=1-5
Boost the black brane : ,6?’ b

v o 1 T _ 5i
Ve YT e et Lo

ds® = —2u,dzt dr — r° f(br)uyu, dotdz” + r* P, dotds”

VoA

Allow boost and temperature to vary slowly with prJ (bdry coords):

b = b(zH) g" = p*(at)




Question:
Can we have BHs that tubewise approximate black branes in AdS ?

Patches—

b = b(.’ﬁp’) ﬁi — 5i($ﬂ’)
® Generically, such a metric, g(0), is not a solution to Einstein-AdS equations.
® Nevertheless, for slowly varying functions b(.‘_{r”‘) , .,J:"f‘}i; (;.1’.'”)
it is a good approximation to a true solution provided the functions b(r#) 3; (")

obey a set of egs which turn out to be the equations of boundary fluid dynamics.



Solve perturbatively Einstein-AdS’s eqgs order by order in a boundary derivative expansion:

g = q(())(ﬁ’ia b) T q(l)(ﬁia b) + 62 9(2)(5’6'7 b) + 0 (83)
ﬂl_ﬂ +8ﬁ +0(e%),  b=b" 4+ 0()

Given the solution at order n, use AdS/CFT dictionary to construct the boundary stress tensor:
compute extrinsic curvature tensor of surface at fixed r, and use def.:

THes —2 lim r (KE — o)

r—00

Perturbative solutions to the gravitational egs exist only when my
the velocity and temperature fields obey certain equations of motion: T 'l(n) —_

T = () (" + uta’) =2(xTPa + O(0%u) +

— — - Sy Policastro,
L Y v . oy — A Son,
Perfect fluid: T(O) T(l) Shear viscosity: | Tl T Starinets

== Finstein-AdS gravity is dual to Fluid dynamics !



SCherk—SChwarZ (SS) AdS/ SS QFT zmlt:i:vlizsvs;)mmeos 2007)

* Non-Conformal

==p AdS/CFT (1B ST on AdSs x S° / 4d N=4 SYM ) i QCD 1 * Non-SUSY

* Has Confinement

‘ Would like to have: Strlng Theory / QCD duahty

=) T, approach QcD: Non-AdS / Non-Conformal gauge theory duality

® Start with N D4-branes.
Gauge theory on it: 5d max SUSY SU(N) SYM theory (gluons + scalars + fermions)

® To get 4d theory, compactify along y-direction w/ antiperiodic BC (SS) for fermions:

* breaks SUSY

* Non-Conformal —/_—> Key Features of QCD

* Confined & Deconfined phases
Confinement/Deconfinement phase transition

@® Gravity solution dual to gauge theory on D4-branes ?

Start with near-extremal D4-branes
and take appropriate decoupling (low-energy ) limit.



@® Black hole (from decoupling limit of D4-branes):

3/2 ;9
2_13/2_ 2 2 92 E dr
i ()" (g acy v a) + (£) 42

. {t, 117(3),3;} span worldvolume of the D4-branes = gauge theory coords: 1) ~ 1 L

 Hawking temperature T (identify w/ gauge theory 7): 1 — itE
32 2

2 32 2 2 9 R i S a1
dsp = () (et + dafy + do®) + (? 7
7
Regularityat 7 = 77, /_

compactify Ty on Sé w/length 3=1/1" "~

® Trivial observation: Relabelling tE <= 1 we still have solution (Euclidean) gravity,

3/2 R\3/2 gp2 .k Sh St
ds? = (%) (a2 + )+ fay?) + (?) % L '

But now it’s Si that shrinks to zerosizeat 1 = T

Lorentzian sector:

o 3/2 5 2
AdS SOIiton dssgoliton — (i) (_—dt2 —|_ d‘r?g) —|_ fdyg) —|_ ( ) dr
i 7 3) T r f
(Horowitz-Myers)

| =



e Consequences ?
Two candidates for the geometry dual to gauge theory on D-branes.

Compute Free Energy to find which one dominates the partition function.

T Gravity Gauge Theory
T.=1/L
Deconfined phase:
gluon plasma

Black Hole phase

(minimizes Free Energy)

Confinement/Deconfinement

Tc ____________________________ u . »”
AdS-soliton phase Confined phase: (" Hawking P:’:l.ge )
phase transition

(minimizes Free Energy) | Q-0

|
® At (& invicinityof) 1. = 1;”}5 T\

the two phases can co-exist

53 St

o



® At (&invicinityof) 7, = 1/[,- the two phases can co-exist separated by domain wall

u 1
L) = 1- [+ ner] dsg o = 1* (62 [—Ts(u)dt® + do* + dw]] + () du2>

dsqy = 1 <e2“[—dt2 + Tor(w)dh? + dw?] + quﬁ)

\ T27—r (U)

AdS Soliton DW BH horizon pw AdS Soliton

Boundary : - |

X

1
(x;=w,;)

On the AdS Boundary.

' .
Domain Wall

( Aharony, Minwalla, Wiseman )

( Lahiri, Minwalla)



* SS AdS / gauge theory duality

* BUT, for high energy density, {,,;, < 1, L 2 SS Ads / dhycll.rodynamlc
expect QFT to have an uality

effective hydrodynamic description ] (previously, we have shown this is
Key Step indeed the case for AdS/CFT)

=» Hydrodynamic description of SS QFT

4, Domain Wall with surface tension

( Aharony, Minwalla, Wiseman )

HENE!
Ball

Vacuum
Confined phase ( Lahiri, Minwalla )

* For large plasma lumps (neglect thickness of wall), & neglecting Dissipation, Diffusion:

'T’u'u _ .T,U.-Uf _|_ ,T,u.u

per bdry °

Lo = (p+ P)urv” + Pg|O(-f), T4, = —ch|0f

o(f)



= |I. Gravity / Hydrodynamics duality ...
... So what ?

Henceforth,
we do hydrodynamics with a fluid whose equation of state describes
the d-dim (non-conformal) SS plasma that the gauge theory is “made of”

.... to get information on Black holes !

SS reduced AdS (d+2) gravity «<—— (d +1)-dim SS gauge theory

N2/

d-dim Hydrodynamics
with (non-conformal) plasma



Hydrodynamic description of deconfined plasma [umps

mmp Navier-Stokes, Continuity and Young-Laplace eqgs

® For large plasma lumps (neglect thickness of wall), & neglecting Dissipation, Diffusion:

'T’u'u — LV _|_ ,T,u.u

perf bdry *

Lo = (p+ P)urv” + Pg|O(-f), T4, = —ch|0f

o(f)
@® Egs describing dynamics of the fluid follow from the conservation of stress tensor :

VI =0

Volume i Continuity eq.: -u.”'vﬂ_p + (10 + p)vﬂuﬁ- _

contribution

_Navier-Stokes eq.: (p + P)u"V u” = —(¢" + u'v”)V ,P

Boundary Young-Laplace eq.:
contribution

Boundary
condition:

P.—P. =0k, K =h,V,n" utn, =0




Hydrodynamic description of deconfined plasma [umps

mmp Stationary Plasma Configurations

( V ¢ v oV 7
T = —CoP" — 2ot + ¢'u” + ut'q
Bulk visc. Shear visc. Heat diffusion
=0
® Statlonarlty —— NO Dissipation — Local fluid
Onuy = 0 ) temperature
Local entropy
* Plugin vorticity def.: \//,V PV — ufa? density \ \
Differentiate
* Eulerrelation: p + P="7Ts > Gibbs-Duhem: dI° = sd7
+ 1st law
Euler Corrections @
* Mechanical equilibrium — 'u.‘“’VJU,P =0 Cardoso, Dall’Agata, Grasso

L a, = —(er P)_lvﬂ_P — —Vﬂ_ In7
Navier-Stokes \

— Heat fluxvanishes: ¢"' = —r(g"" + u"u”")(V, T +a,T) =0

Conc: Stationary plasmas are both at hydrodynamical & thermal equilibrium

WV, T =0 =u'a, =0




Plug a, = —(p+ P)"'V,P=-V,InT

' ' ' Viulau,y) = au,, V) In(al)
L/ 1/ L/ (# : (P! : )

in vorticity eq: Vi = w" — ula

If v = % = V(u [r_l-u.,_,,}] = () -1

ot solves Killing eqgs = Must be linear combination of background Killing vectors:

T

-
F
/

T ;
u= 7 (&= Lxr) w=-1= T=

! v

stationary fluid must be T is the equilibrium plasma temperature
in rigid roto-translational

. Redshift factor relating LAB and comoving observers
motion

® Eulerrelation + Young-Laplace: T oK + P

h}r': IE;

* Plasma T is dual tothe Hawking temperature of the horizon.
T is not proportional to the surface tension or to the mean curvature, but grows with both.

* For a static fluid K is constant over the surface,
but in a stationary fluid K adjusts to variations of fluid velocity near boundary.



Variational principles for equilibrium plasma configurations

mm) 1. Maximization of the entropy at constant energy and momenta

) * Given any Killing vector -'L-"f'?”' ,
Stationary background: — C |
S t define associated conserved charges ( E, J ):

Jot
f Q ["fﬁ"] — / dv T,u- 9 ekl
S 5, .

* Conserved charge associated w/ ij = su!
S|P|] = — / (k- u)sdv
P
Action: Maximization of the entropy at constant energy and momenta
I[Pl = S|P|— BE|P] + wrJr|P]
Euler-Lagrange eqgs with Lagrange multipliers, _,:'i‘_f — l/T . {.:Jj' — _ﬁQj

Young-Laplace eq.: P{ — P} = oK

Derivation assumes:
* only stationarity of the background geometry and fluid; independent of fluid equation of state.
* does not assume any condition on the shape of bdry: it covers non-axisymmetric cases



mmp 2. Minimization of potential energy for fixed volume

Action : Minimization of potential energy for fixed volume
o 1[P) = Us[P] + UslP] =V [P
L surface tension + centrifugal contribution

Euler-Lagrange with Lagrange multiplier, 7] — P}

Young-Laplace eq.: P{ - P} = ol
Static case : fluids pick configurations that minimize area for fixed volume (well known result

® Actions for the two extremization problems are the same up to a negative constant :

Use e Definition conserved charges o~
* Euler relation I{P} — —_,:'r_‘fI[P]

* Expression for Lagrange multipliers

. Maximizing entropy <:> Minimizing potential energy
for fixed conserved charges for fixed volume

* Fluid area minimization <——> BH area maximization, because in the duality: ’

the BH horizon is not mapped to the fluid boundary,
but to the entire fluid bulk.




Static equilibrium Plasmas (with a compact BDRY direction )

@ Young-Laplace: + Equation of state: (d-dim SS plasma)
P.—P.=0K p= P _nta_
n+3 " )
pr = (n+3)aT""
S— -~
n . _
L» = (L) K (1422 =0

e Uniform * Non-Uniform Plasma Tubes » Merging Configuration
Plasma Tubes

. Plasma Ball :

(See also:
Maeda-Miyamoto, 2008)

e Gravitational dual:
Possible topologies of static BHs




Static plasmas in the phase diagram:
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Static plasmas in the phase diagram:

108
1.06
1.04
102}
100
0.98

096

Stable

Compare with

Gravitational phase diagram:

Gubser,
s/s Gorbonos, Kol, Piran,
1.9- u Kudoh, Wiseman
| - Black Harmark, Niarchos, Obers,
1151 Hole
i Headrick, Kitchen,
. Wiseman, 0905.1822
1-055 Uniform
NOTE: Black String
* These are available results for Vacuum BHs p
e g - _ : ’
* Predictions for SS AdS BHs ] Non-Uniform Kol’s
0'95: Black String merger
O.S_ 1 ] ] ] ] ] ] ] 1 1 1 1 ] ] ] ] ] 1 ] L] L] 1 1 L] 1 /
0.5 1 1.5 2 2.5 H HGL



Static equilibrium Plasmas
mmp Critical dimension in phase diagram

Critical dimension of spacetime where
transition between UT and NUT phases changes from 15t to 2"¢ order.

s
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Static equilibrium Plasmas
mmp Critical dimension in phase diagram

Critical dimension of spacetime where

transition between UT and NUT phases changes from 15t to 2"¢ order.

S
. S ~
108 N B d g 10 1.0025¢ d - 11
: N * nd it
106 [ 5 15t order transition 1 OD,,O% 2" order transition
104 AN 4 O g d T B
i ,SNI_,T'l‘ < ;SU'L 1.0015 [ ‘"SNUl - ‘“SUl
1o2[ Fh
i 1.0010F
1.00 BB H—HH £l 5
IO ut 1.0005 | A NUT
o e - TRaa uT
0.96 [ i M 100008 e R R =!
T S TR SR T T o5 o o5 o020
D <12 D =13

® Compare with

Gravitational

phase diagram:

15t order transition

Snups < Suns

-

2nd order transition

Snups > Suns

® In the AdS context, d-dim fluids are related to D - d + 2-dim BHs :
relation between the two critical dimensions is truly startling



Rotating equilibrium Plasmas

Rotating Non-Uniform /
Plasma Tubes " t

:
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Rotating
Plasma N Y
I =
Balls “I
)
N E 0.15}; /

. 0.1% m U.IGE— Lahiri,
Rotating . - ) = | | ‘. Minwalla
Plasma Rings L I : I

—oal t
E —D.]D-E_
—0.2[ 015 'E

o Gravitational dual:
 BHs, ultra-spinning BHs, (Non-) Uniform Black strings, Black Rings &

!

* Predictions for new BH phases in SS AdS and even in asymptotically flat BHs o



Uniform plasma tubes are unstable (Rayleigh-Plateau)

Plateau, 1849

Perturb

r(2)

= R, + eRycos(kz) + e’ Ry

ation:

" Tube length = (possible) instability A: [, — )\ — 271—/,%
Volume to 2" order: .
(n41)/2 Fix Volume:
T T 1
V= )\ g — Rn 1 |:R2 + nt ( RQ ~|—2ROR2) 62] Ry = _ER_%
_ ( 2 ) 2 2 . 4R,
Difference between the perturbed and unperturbed surface tension potential energy:
) 2,_(714—1)/2 5 9 5 9
AU, = 7T (?H-l) (k*R; —n) Rye
Unstable modes decrease the potential energy for fixed volume (or increase S for fixed E):
AU, < 0 tor fixed volume
* Marginal unstable mode signals _
Bifurcation point in phase diagram -




Rayleigh-Plateau instability on a plasma tube
(Previous work on analogue model: Cardoso, OD, 2006)

* Boundary Perturbation:

r=R(t,2.0),  R(t,2,0) =R, +ee ™M e < R,
* Fluid Perturbations:
ult = “‘ﬁ)) + ou'" | P = Pg +oP, p = poy +0p

0Q(t,r, 2. ¢) = 6Q(r)e ™M — §Q = {du", 6P, dp}

* Perturbed Continuity & Navier-Stokes

* BCs: Perturbed Young-Laplace & "ii-’u"?'?.-ﬂ_ =0

~—

__
Dispersion Relation : J

s, n+3 o pROI%(pRO)

w? = n— kR — W R
n+4 p RS Tui(pRo) b ’ 2




wRO n=d-3

0.0010 | S—
0.0008 | — \
0.0006 | \\

0.0004 | |
0.0002 | U T R I

* Instability strength
increases with the dimension.

* Threshold (marginal) wavenumber also:

kR, < /n



wRO

Compare with Gravitational
n=d-3 . . :
Gregory-Laflamme dispersion relation:
0.0010 | -
0.0008 | ~ \ >0
: \ 0.08 {
0.0006 | - \ 67\
: AR wROos 1
0.0004 ¢ - 1N T T
: \ \ II', II| I', | 0.04 1 ,
0.0002 ¢ n=1| I | | W«
- '| | 002 14
......... R || |..|| ‘kRO | | . |
0.5 10 L5 20 25 02 04 06 08 10 1.2
kRO
* Instability strength
increases with the dimension.

* Threshold (marginal) wavenumber also:

kR, < /n

Rayleigh-Plateau instability

on a plasma tube

Again, NOTE:

* Predictions for SS AdS BHs

e Threshold wavenumber :

k.R, ~ VD (large D)

Kol, Sorkin, 2004

* These are available results for Vacuum BHs

H Gregory-Laflamme instability

on a black string



« Addition of rotation increases the RP instability strength:

wWRO

0.0004 \'-’n =10~ Moreover,
0.0003 | = \D = 507, Non-axisymmetric modes with 772 7& 0

f / vo =0\ ‘*-.5 can now be also unstable (not only s-wave)
0.0002 f,.e/ x R(f > ) R 1 ¢ €wt tkz+imao
0.0001 F / |

[ |

------------------------------ kRO

0.2 04 06 08 1.0 1.2 14

Competition: Inertia + Surface Tension + Rotation

2
Feentrit ~ @°T

A=2mw/k

@ Gravitational dual:

Addition of rotation increases the GL instability strength

and threshold k
(Kleihaus, Kunz, Radu 2007) (Monteiro, Perry, Santos, 2009)



Plasma peanut instability of rotating plasma balls
V. Cardoso, OD, 0902.3560 V. Cardoso, OD, J. Rocha, (ongoing)

Rotating plasma balls are unstable against m-lobed perturbations for high rotation

L} signals a bifurcation to a new branch of non-axisymmetric stationary solutions:

— plasma peanuts
Peanut”ﬁ

For experiments on rotating

S o i Ring ] (non-relativistic) drops and
| “peanut” configurations see:
15_— FatRing \ . C:_"'_'L Hill and Eaves, PRL (2008)
10+ o
| —_—
i __
% 2 4 e 80 10 Decays through emission
J of Gravitational Waves
Gravitational dual : /’

BHs are unstable and possibly decay to a non-axisymmetric long-lived SS AdS BH

This instability bounds dynamically the rotation of SS AdS BHs



Regime of validity of hydrodynamic description

* Thermodynamic quantities must vary slowly over the mean free path of the fluid,
which is of the order of the deconfinement temperature:

- a
LAT > mep ~ TLC —> A>T b %

Rayleigh-Plateau unstable frequencies and wavenumbers satisfy:

{WR,.kR,} >

_ L0 Ro
* Fluid surface, has a finite thickness of the order l/TG :

We want the curvature of the surface to be small with respect to I/TC ;

Rbdry >> ARde-y g TLC —_— {RD > RirRD _ Rl} > %

* We have neglected the dependence of the surface tension on the temperature.

Demand that on the boundary the temperature of the plasma remains close to T‘,

a :
@ Inshort: R <1 ——> Large plasma balls



Fluid dynamics : a guide for unknown dynamics of vacuum BHs ?

e Cannot take [4g5 — OO because fluid description of AdS BHs requires ﬁ’rhza > ]

* We have to find “large” vacuum BHs.... But whatis large in vacuum?

* Vacuum GR is scale invariant: all properties of a black hole scale uniformly with mass
(all Schw. BHs are equal; all Kerr BHs with same .J/(G\/? are equal,...)

* In the fluid, NO scale invariance: O sets a scale that distinguishes lumps of different size.
(a fluid ball with radius 2R can break up more easily than a ball with radius R).

* Fluid: relative entropy cost of breaking into two pieces becomes _
arbitrarily small as the radius R of the ball gets arbitrarily large (S < 0, supressed):

AS
S

—

25, - S,

: (X
.\S{ )

duia ~ PoLt

Huid

* Black hole, in contrast, it remains constant independently of the black hole size:

o .
@

1
— Q_D—E - J_
bh

AS
S

2#8?1 - .LS?[]
bh S 0




Fluid dynamics : a guide for unknown dynamics of vacuum BHs ?

. So, whatis large BH in vacuum?

* Important difference between fluids and BHs:
two disconnected lumps of fluid do not attract each other

e Limit in which vacuum black holes behave as fluids must be a limit
in which gravitational attraction is suppressed

 Gravitational attraction gets suppressed as number of dimensions D grows
( Grav. potential becomes steeper & + localized near source, and flatter & weaker at large distances)

* Our proposal:

* a BH is large or small depending on the number of spacetime dimensions it lives in.

* alarge BH (ie living in high D) should have a fluid description
o 1
* identify the “new vacuum GR scale” with the fluid scale: —

poR D

* In large D limit:

* No entropy cost in splitting a BH: A,S";’:ST — 0 (as for fluids )

» Gregory-Laflamme wave equation and threshold mode reduce to the fluid form:

)+ () = () =0 kiR, ~ D



Rayleigh-Plateau Time evolution on a plasma tube

( Tjahjadi, Stone, Ottino, 1992 )



Rayleigh-Plateau Time Evolution Gregory-Laflamme Time evolution

Time Evolutiom

Choptuik, Lehner, Olabarrieta, Petryk,
Pretorius, Villegas, gr-qc/0304085



Rayleigh-Plateau Time Evolution Gregory-Laflamme Time evolution

Time Evolutiom

Choptuik, Lehner, Olabarrieta, Petryk,
Pretorius, Villegas, gr-qc/0304085




Rayleigh-Plateau Time evolution on a rotating tube

Kubitschek & Weidman (2007) ’[Q\aﬂk



Rayleigh-Plateau Time evolution on a rotating tube

Kubitschek & Weidman (2007) T“aﬂ



Rayleigh-Plateau Time evolution on a rotating tube

Kubitschek & Weidman (2007)



Rayleigh-Plateau Time evolution on a rotating tube
@) (b) B @

Kubitschek & Weidman (2007)



