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Nonequilibrium Transport in Quantum Impurity Models: The Bethe Ansatz for Open Systems
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We develop an exact nonperturbative framework to compute steady-state properties of quantum
impurities subject to a finite bias. We show that the steady-state physics of these systems is captured
by nonequilibrium scattering eigenstates which satisfy an appropriate Lippman-Schwinger equation.
Introducing a generalization of the equilibrium Bethe ansatz—the nonequilibrium Bethe ansatz—we
explicitly construct the scattering eigenstates for the interacting resonance level model and derive exact,
nonperturbative results for the steady-state properties of the system.
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The recent spectacular progress in nanotechnology has
made it possible to study quantum impurities out of equi-
librium [1]. The impurity is typically realized experimen-
tally as a quantum dot, a tiny island of electron liquid
attached via tunnel junctions to two leads (baths or reser-
voirs) held at different chemical potentials. As a result of
the potential difference, an electric current flows from one
lead to another across the quantum impurity. The descrip-
tion of such an out-of-equilibrium situation in a strongly
correlated system is a long-standing problem and has not
been given even in the simplest case of when the system is
in a steady state.

In a steady state, the system properties do not change
with time even when out of equilibrium. Such a state is
reached only under special conditions: Each lead needs to
be a good thermal bath and infinite in size (equivalently,
the bath level spacing tends to zero). It then follows that
particles transferred from one lead to another dissipate
their extra energy in the lead and equilibrate [2].

There are two equivalent ways, time-dependent and
time-independent, to describe the establishment of a steady
state in the system. In the time-dependent picture, the
quantum impurity is coupled to the two baths in the far
past #, and is allowed to evolve adiabatically under the
conditions described above. After a sufficiently long time,
at t = 0, say, a steady state is reached. Two elements are
required to fully determine the system: a Hamiltonian to
describe the time evolution and an initial condition p
describing the system in the far past. The Hamiltonian is
chosen to be of the form H(¢f) = Hy + ¢"H;, where H,,
describes the two free leads (thermal baths), H; is the
interaction term between the leads and the quantum impu-
rity, and 7 is an infinitesimal parameter, small enough to
ensure adiabaticity, yet large compared to the level spacing
in the leads. The initial condition is typically given by

efﬁ(HO*Z,- HiNy)
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with u; and N, the chemical potential and number operator
for particles in lead i, respectively. Subsequently, at times
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t = fy, the system is described by a density matrix p(f) =

T{e' I dﬂH(ﬂ)}pOT{eﬂ I dt/H(t/)}, and the properties of the
system are calculated in the usual manner, (O(r)) =
Tr{p(r)O}. The establishment of a steady state follows, in
this language, from the existence of the limit 7, — —o0
with the expectation value becoming time-independent,
(0) = Tr{p,0}, where p, = p(0).

At T = 0, the description simplifies. The initial condi-
tion is typically given by a particular eigenstate of H,
| D)parhs» describing the baths, each with its own chemical
potential u;. The steady state is then obtained by evolving

the initial state in time, |¥), = T{e' JodtH OV DYy i
The expectation values in the steady state are computed
from
&) — (Yo,
(W),
An equivalent way to describe a nonequilibrium steady
state is by means of a time-independent scattering formal-
ism. The state | W), is obtained as an eigenstate of the full
Hamiltonian H = H, + H,, satisfying the Lippman-
Schwinger equation,

|\I}>s = |q)>baths

2

1
+E_H0+”7Hl|\l,>s’ (3)
with |®),,ns—the incoming state. The scattering eigen-
state | W), can be viewed as consisting of incoming parti-
cles (the two free Fermi seas) described by |, and
reflected outgoing particles given by the second term in the
above equation. Once again, two elements are required to
fully determine the system: a Hamiltonian and a boundary
condition |®)y,., which describes the scattering state far
from the impurity. Note that, previously, in the time-
dependent picture, D), played the role of an initial
condition rather than a boundary condition.

The construction of such eigenstates is a formidable
task, in general. We shall show, however, that it can be
carried out for a class of integrable impurity models that
includes the interacting resonance level model (IRLM) and
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the Kondo model. The Bethe-ansatz solution of these
integrable models in equilibrium has led to a full under-
standing of their thermodynamic properties. It is based on
solving the Hamiltonian of a closed system, typically with
periodic boundary conditions. We shall present in this
Letter a significant generalization of the Bethe-ansatz ap-
proach to open systems with boundary conditions imposed
by the leads. This approach, the nonequilibrium Bethe
ansatz, allows us to construct the fully interacting multi-
particle scattering eigenestates and compute nonequilib-
rium transport properties, extending Landauer’s original
approach [3]. We remark here that our approach differs
significantly from the recent interesting work by Konik
et al. [4], who also used integrability to compute transport.
In contrast to their work, we model the leads as free Fermi
seas rather than coupling the chemical potentials to dressed
excitations.

We focus on the IRLM and defer treatment of

other models to later publications. The IRLM
Hyy = Zizl,z,éfk'»”;r,;‘//ﬂ? + eqdtd + ﬁZizl,z}(‘/f%d +

H.c.) + ZUZi:I,Z,E,IE’ z/fl%wﬂyd*d describes a resonant level

€,d1d coupled to two baths of spinless electrons via tun-
neling junctions with strength ¢. There is also a Coulomb
interaction U between the level and the baths. The model is
closely related to the anisotropic Kondo model [5], with the
charge states n;, = 0, 1 playing the role of spin states and
€, playing the role of a local magnetic field.

Performing some standard manipulations for impurity
models, expanding in angular modes around the impurity,
keeping only the s modes, unfolding the model, and lin-
earizing around the two Fermi points, we have

Hygy, = —i Z fdx%f(x)a‘ﬁi(x) + eqdd

i=12

t
+ﬁ[ > zp;f(O)d+H.c.:|

i=12
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The model thus obtained is a renormalizable field theory
which requires introduction of a cutoff procedure to render
it finite. The values of the bare parameters U, €4, t will be
renormalized as the cutoff is removed to yield a physical
theory. The renormalized theory captures the universal
physics—where voltages and temperatures are small com-
pared to the cutoff (bandwidth D). The chemical potentials
for the leads are not included in the Hamiltonian. Instead,
they enter as nonequilibrium boundary conditions specify-
ing the scattering state far from the impurity.

We wish to calculate the expectation values in the steady
state of the dot occupation 7i; = dfd and the current
operator [ = Iy 12— 1)/t/\/§[¢;r (0)d — H.c.], the latter
deduced from [ = L[(N, — N,), H].

To construct the scattering states, we use a new Bethe-
ansatz technique, which, unlike the traditional approach
based on closed systems and periodic boundary conditions,

allows the determination of a state by boundary conditions
imposed asymptotically. The many-body scattering state is
built using single-particle scattering states that incorporate
the boundary conditions. Introducing a symmetric/anti-
symmetric basis defined by ¢,/,(x) = %[«pl(x) + i (x)],
the Hamiltonian separates into even and odd parts: H, =
=i [ dxpl(Wag.(x) + UpLO0.0)dtd + qyl0)d +
Hel + eudfd  and  H, = —i [dxpd(x0)ay,(x) +
Uyl (0)y,(0)dtd. The boundary conditions, however, are
imposed in the physical basis ¢, /,, requiring appropriate
combinations of both the even and odd sectors. The single-
particle eigenstates of the model are

] dx{Alg, (vl () + e,d"] + Byl H0),  (5)

with |0) the empty vacuum and A and B arbitrary constants
chosen to satisfy the nonequilibrium boundary conditions.
We are interested in two solutions, labeled *, to the
Schrodinger equation for these eigenstates,

Zeipx

gp(x) = m[@(—x) +e?0(x)],  [g,(0)=1],
. zeipx
h; ()C) = 1-{-761'3,)’ X 0, (6)

hy (0) = *(p — €,)(e,/D)e?* = *g ,(0)e'’*, x=0,
with e, = 1g,(0)/(p — €,) and §, = 2arctan[r*/2(p —
€,4)]. Note that we take /,(x) to be discontinuous at zero.
This unorthodox choice of solution is allowed by the linear
derivative. Theories with linear derivatives are implicitly
many-body theories, and to calculate their physical observ-
ables one must first fill the Fermi sea from a lower cutoff
(—D) to the Fermi energy, as we do below.

We construct two kinds of single-particle scattering
states, namely, those with incoming particles from lead 1,
|1p), and those with incoming particles from lead 2, |2p),
with p the momentum of the incoming particle. Choosing
A = B in Eq. (5), the amplitude for an incoming particle
from lead 2 vanishes, and we get

[1p) = fdxeipx[l

+ (e — DOy} + ﬁe,,dw(x)}l(».

{[26(—x) + (' + 1)O(x) !

+ el

Conversely, choosing A = —B, the amplitude for an in-
coming particle from lead 1 vanishes and we get the state
|2p), given by the above expression with ] (x) and ] (x)
interchanged. It is convenient to introduce the operators
af () = g,(Dd (¥) £ by (D) (x) + €, 8(x)dt, i
terms of which the scattering states are |1/2p) =

f dxeipxair/zp

states are depicted in Fig. 1.

(x)]0). The single-particle scattering eigen-
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FIG. 1 (color online). There are two types of single-particle
scattering states. In a type 1 scattering state, an incoming
electron in lead 1 is scattered by the impurity and can hop
onto either lead 1 or lead 2.

The two-particle eigenfunction is of the form
[ st xoyud Gt x2) + Chsy ) ) o)

+ B0, x)pd (x)d (v2) + Ae(@)yd (x)d?t
+ Bf(0)yg (x)d"]|0),
where
28(x1, x3) = g,(x)gk(x2)Z(x) — xp) — (1 < 2),
2h(xy, x2) = hp(x)h(x2)Z(x) — x3) — (1 < 2),
J(x1, x3) = g, (xR (x2) Z(x) — x7)
+ (=) g (x)hb(x2) Z(xy — xy),

with a, b = *+, g,(x) and h?,/ ®(x) being the single-particle
eignefunctions Eq. (6), and Z(x; — x,) = e!¢(pRsenlxi—x)
with:  e2¢P0 = (i + {(U/2)[(p — k)/(k + p = 2€)]D)/
G —{WU/2(p —k)/(k+ p—2€,)]}). The constants A,
B, and C are determined by the nonequilibrium boundary
conditions. In this solution, we made use of freedom
afforded by the linear dispersion to choose the two-particle
S matrix between all electrons to be the same. This allows
us to easily generalize the construction to N particle wave
functions yielding the fully interacting scattering state

N,
), = f dxW(x, - xy) [ [ el ()
u=1

N|+N,

X l_[ a;rpv (x,)]0), ®)

v=N;+1

(7

Cxy) = € 2Pl D $Ppsen( —x)

\Ps(-xl te

Recall that, for |¥), to describe a nonequilibrium steady
state, the incoming particles in the region {x;} = 0 must be
described by |®)p.me. In the conventional Fock basis
| DY is given by [ThL; e2lete [N e 20Pv%, with
the Fock momenta {p,} satisfying —D = p, = u, and
—D = p, = u,. Notice, however, that in W (x; - - - xy)
there is a two-particle S matrix, § = ¢*¢(»%_ between
incoming particles in each lead though the particles are
free electrons. The presence of this nontrivial S matrix
forces a choice of a different, ‘“Bethe-ansatz,” basis of
eigenstates for the free Fermi seas in the leads, inherited
from the interacting model when the coupling to the im-
purity is turned off. In order to impose the boundary
condition in the Bethe-ansatz basis, the incoming particles

Bethe-ansatz momenta {p,} in [ ¥),, thus far undetermined,
must be appropriately chosen. This is done below by solv-
ing “free-field” Bethe-ansatz equations.

The steady-state current and dot occupation in the non-
equilibrium steady state is computed from Eq. (2) with O
the appropriate operator and | W), given by Eq. (8). When
computing this expectation value, one must first take the
system size L to infinity (recall that no steady state can be
reached otherwise). In this limit, scattering states of types 1
and 2 are orthogonal and we find (denoting A = 12/2)

N{+N, AQ
D= ——w —
Z(pu_6)2+A2 v= Nl+1(pv_€d)2+A2

N{+N, A
(na)s = . S —
d Z (pu - Gd)z + A2 V=N, +1 (pv - ed)2 + A?

The apparent simplicity of these expressions may be mis-
leading. The Bethe-ansatz structure of the wave functions
transfers the complexity of the impurity interaction into the
choice of Bethe-ansatz momenta {p} for the incoming
electrons, imposed by the nonequilibrium boundary con-
ditions and the interactions. In the thermodynamic limit,
this amounts to the determination of the Bethe-ansatz
momenta distribution in each lead p;(p) (i = 1, 2) through
the solution of Bethe-ansatz equations arising from the
presence of the nontrivial S matrix in (8). For T = 0, the
distributions satisfy

pip) =50k = p = 3 [ K g wa,

j=12

pap) = =0 = p) = 3 [ K g Wa,

j=12

with ki, i = 1,2, upper bounds on the distributions of k,
set by the chemical potentials u; (we choose k) >k2),
Kp, k) =2k = e)/Ap + k — 260> + [(U2/4) %
(p — k)*1}. The equations need be solved in the presence
of a cutoff D, —D = k. Notice that the chemical potentials
ki come both in the limits of the integrals and in the driving
terms 6(k!, — p). For T > 0, one needs to solve the corre-
sponding finite temperature thermodynamic Bethe-ansatz
(TBA) equations.
In terms of the distributions, the expressions for the
current and the dot occupation become
A
(s = f dplpi(p) — pz(p)]m,
A )
(na)s = fdP[Pl(P) + Pz(P)]m-

For the noninteracting case, U = 0 implies K(p, k) = 0
and, hence, p;(p) = 5-6(ki, — p)—the product of the den-
sity of states » = 1/27 and the Fermi-Dirac function at
T = 0. Thus, (9) reverts to the standard U = 0 RL results
[6]. In the U = oo limit, these equations can be solved
by a standard, if tedious, Wiener-Hopf method, yielding
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FIG. 2 (color online). Here we show the current as a function
of voltage for various U with u,,, = €, * V/2 for fixed band-
width D and A. Note that the current is not monotonic in U. We
also show the distribution in lead 1 as a function of momentum
for various voltages, where, without loss of generality, we take
kL =o0.

the results: (1), =2 (T,/A){tan "[() — €,)/T;]—
tan~'[(ua—€)/Ti ]} and  (ng), =5 + 5= (T;/A) X
{tan™'[(u) — €,)/T;] + tan™'[(u, — €,)/T, ]}, where
T, = DA?™/7 ¢ with W) = (1 - [P +2iD)/(1 +
[Y]%). Ty is a new low energy scale in the problem, related
to the Kondo temperature in the anisotropic Kondo model.
It is held fixed as the cutoff and U are sent to infinity.

More generally, these equations must be solved numeri-
cally with the bandwidth D much larger than all parameters
in the problem to ensure we are in a universal regime. In
Fig. 2, we plot our results for the current as a function of
voltage for various values of U. Notice that the current is
nonmonotonic in U with a duality between small and large
U. This duality holds for all A. We also plot the distribution
function in lead 1, p;, as a function of momentum for
various voltages. The nontrivial dependence on momentum
and on voltage of these distributions is a hallmark of
strongly correlated nonequilibrium physics.

As a stringent check on our approach, we examine the
system for w; = w,. The system reverts to equilibrium and
our “open system’’ Bethe-ansatz construction can be con-
fronted with the traditional ““closed system” construction
based on periodic boundary conditions. The dot occupation
can be obtained in the latter approach from the impurity
energy, given at zero temperature by E;,, = [dpp(p)d,,
with p(p) determined by the standard TBA equation.
Hence, ignoring d.,p(p), which is suppressed by N/L,
we have (n); = d.,E, = [dpp(p)d.,6,  Since
9,6, =2A/[(p — €,)* + A?], it coincides with Eq. (9)
when p;(p) = p2(p) = p(p).

In conclusion, we have presented an exact solution of a

strongly correlated impurity model out of equilibrium. The
solution is given in terms of the scattering states that
characterize the nonequilibrium steady state. The general-
ization to finite temperature or to more than two leads is
straightforward. The latter allows the computation of the
nonequilibrium density of states [7] which is of experi-
mental interest. We believe the framework we introduced is
very general and can be applied to most integrable models.
Thus far, we have constructed current carrying scattering
states for the Anderson and Kondo models, though we
do not know a general criterion for the framework’s
applicability.
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