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Goal of Lectures:

Present a new perspective on Quantum Mechanics,
solving some of the main conundrums that have
pervaded this theory.

—

“Eine neue wissenschaftliche Wahrheit pflegt sich nicht in der
Weise durchzusetzen, dass ihre Gegner überzeugt werden und
sich als belehrt erklären, sondern vielmehr dadurch, dass die
Gegner allmählich aussterben und dass die heranwachsende
Generation von vornherein mit der Wahrheit vetraut ist.”
(Max Planck)

—

“We have to ask what it means.” (Ken Wilson)
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2.3. Atomism as Quantization – kB as a
deformation parameter

I show how the atomistic structure of matter arises as a

consequence of quantization. – For example, the Hamiltonian

mechanics of point particles can be understood as the

“quantization” of Vlasov theory, and bosonic many-body theory

turns out to be the quantization of Hartree theory; etc.

—

I also show how continuum theories of matter can be

understood as “classical” or “mean-field” limits of atomistic

theories of matter. This will be the consequence of a

Egorov-type theorem.





























































































































































































































































































































































�In all my films, I have been faithful 
to these suspension points in the 
conclusions. Besides, I have never  
written the word �END� on the 
screen.�  
(Federico Fellini) 

“Everyone)wants)to)understand)art)(physics).)
Why)don’t)we)try)to)understand)the)song)of)a)
bird?)Why)do)we)love)the)night,)the)flowers,))
everything)around)us,)without)trying)to)
understand)them?)But)in)the)case)of)a)
pain@ng)(result.in.physics),)people)think)they)
have)to)understand.”)(Pablo)Picasso))
)))))))))))Thank.you.for.listening!)

6..Conclusions......





































































































4. Some properties and puzzling features of
Quantum Mechanics

Contents of Chapter 4

4.1 Inadequacy of the Schrödinger equation as an evolution equation

for states
4.2 Lindblad dynamics and measurements in quantum mechanics

4.3 State vector collapse – Bassi, Dürr & Hinrichs

Interlude: Quantum Mechanics for the “Kindergarden”

4.4 Wigner’s friend paradoxon

4.5 Bell-type measurements cannot be described by a Schrödinger

equation

4.6 Is “quantum probability theory” different from classical probabil-

ity theory?

4.7 Lucien Hardy’s Gedankenexperiment

4.8 Quantum teleportation

Back to serious stuff

4.9 Entanglement – Klyachko’s theorem
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5. Theory of Indirect Measurements in Quantum
Mechanics

Introduction

5.1 The Haroche-Raimond experiment

5.2 Solid-state experiment, Mott tracks, etc.

5.3 Indirect non-demolition measurements: Basic assumptions and general

results

5.4 Weak measurements of time-dependent quantities

5.5 A remark on the appearance of particle tracks in detectors

5.6 The “ETH reinterpretation” of an Haroche-Raimond type experiment

Conclusions
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Outline
After a short introduction to some of the conundrums a✏icting
Quantum Mechanics we study the e↵ective quantum dynamics
of systems interacting with a long chain of independent probes,
which, afterwards, are subject to direct (projective) measurements
and are then lost.
This first leads us to develop a theory of indirect measurements of
time-independent quantities (non-demolition measurements).
Subsequently, the theory of indirect weak measurements of time-
dependent quantities is outlined, with emphasis on the description of
Markov processes whose state spaces are spectra of quantities to be
measured.

The Founding Fathers of Quantum Mechanics (QM):















































A metaphor for the theory of Indirect Measurements

Plato’s Allegory of the Cave – ‘Politeia’, in: Plato’s ‘Republic’

As Plato was anticipating, more than 350 years BC, all we “prisoners of
our senses” are able to perceive of the world are “shadows of reality” –
in the form of long streams of crude, uninteresting, directly perceptible
signals (“projective observations”) – from which the facts that give rise
to the shadows can be reconstructed.

According to Socrates, Philosophers (mathematicians & physicists) are

“liberated prisoners” who are able to infer the fabric of reality from the

shadows it creates on the wall of the cave. (% Theory of perception!)





5.2 Solid state experiment, Mott tracks, etc.
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Mott’s Problem of Particle Tracks
In this example, one performs an indirect measurement of the
number of electrons (charge) bound to the “quantum dot” P .

III. Appearance of tracks traced out by qm particles traversing
laser light, or a bubble chamber, or a photographic plate; etc. –
Symmetry breaking by repeated projective measurements!



Some details concerning the solid-state experiment

Isolated (open) system: S = E _ P , where P = quantum dot,
E = “environment/equipment” consisting of:

(1) Probes: Independent electrons emitted by e�-gun, all prepared in
the same initial state.
In the time interval [(m � 1)⌧,m⌧), the mth electron, e�, travels
from the e�-gun through the T -shaped wire to either the detector
DL, or the detector DR ; and: ⌧ = duration of a measurement cycle.

(2) Two electron detectors, DL,DR , serving to perform projective
observations of final position of probes/electrons.

***
Explanation of how the solid-state experiment works:
• Physical quantities referring to the quantum dot P :

OP := {functions of e�-number/charge operator N}
• Physical quantities referring to the environment E :

OE = {1P ⌦ 1
e
�
1

⌦ · · ·⌦ X
e
�
m
⌦ 1

e
�
m+1

⌦ . . . }m=1,2,3,...,



Description of solid-state experiment

where the operator X
e
�
m

acts on the one-particle Hilbert space of

the mth probe (electron) traveling through the T� shaped wires
towards DL,DR , resp. It is given by

X
e
�
m
=

✓
1 0
0 �1

◆
,

with infinitely degenerate eigenvalues ⇠ = ±1:

⇠ = +1 $ e�m hits DL, ⇠ = �1 $ e�m hits DR .

The eigenprojection of X
e
�
m

corresp. to the eigenvalue ⇠ is denoted
by ⇡m

⇠ ; Xe
�
m

observed around time m⌧ .

State of S : Density Matrix ⌦.

Our aim is to determine the probability of the events that, for
m = 1, 2, ..., k , the mth electron hits the detector D⇠m ; k = 1, 2, ...



The LSW formula

For (strictly) independent electrons 3, this probability is given by a
formula proposed by Lüders, Schwinger and Wigner (LSW):

µ!
�
⇠1, ⇠2, . . . , ⇠k

�
= tr

�
⇡k

⇠k · · ·⇡
1

⇠1 ⌦⇡1

⇠1 · · ·⇡
k

⇠k

�
(1)

Since ⇡k

1
+ ⇡k

�1
= 1, 8k , and because of the cyclicity of the trace,

X

⇠k

µ!(⇠1, ⇠2, . . . , ⇠k�1, ⇠k) = µ!(⇠1, ⇠2, . . . , ⇠k�1).

Thus, by a lemma due to Kolmogorov, µ! extends to a measure on the
space, ⌅, of “histories” (= 1 long measurement protocols ⇠ =

�
⇠j
�1
j=1

;

⌅ is equipped with the �-algebra, ⌃, gen. by cylinder sets).

First, we consider the situation where the passage of e�’s from the
electron gun through the T� shaped wire to one of the detectors
D⇠, ⇠ = ±1, does not a↵ect the charge, ⌫, of the quantum dot P , which
is a conserved quantity ! “non-demolition measurements”.

3
the property of strict indep. of e�’s is an instance of “decoherence”



Exchangeable probability measures

One can argue that the measure µ! is exchangeable, i.e.:

µ!
�
⇠�(1), . . . , ⇠�(k)

�
= µ!

�
⇠1, . . . , ⇠k

�
, (2)

for all permutations, �, of {1, . . . , k}, for arbitrary k < 1. It then
follows from De Finetti’s Theorem that

µ!(⇠1, . . . , ⇠k) =

Z

⌅1

dP!(⌫)
kY

m=1

p(⇠m|⌫) (3)

Here ⌅1 is the spectrum of the algebra generated by tail events
(bounded functions on ⌅ measurable at 14); i.e., it is the “space
of facts” (“Dinge an sich”) constituting the true reality Plato has
been talking about; whereas the measurement protocols
⇠
k
:= (⇠m)km=1

, k < 1, are the shadows on the wall of the cave
that we prisoners are able to perceive – as we shall now explain!

4
equiv. classes (w.r. to a measure class determined by normal states of S)

of functions on ⌅ not dep. on any finite number of measurement outcomes



Interpretation of ⌅1 in the solid-state experiment
Suppose every electron traveling from the e�-gun to one of the detectors
D±1 is prepared in the same one-particle state �0. Assuming that the
charge operator, N , of the quantum dot P is a conservation law, the
time evolution of the state �0 until the e� hits a detector is given by

U⌫�0,
where U⌫ is a unitary operator on the one-electron Hilbert space dep. on
the charge ⌫  N of P : The charge (/ nb. of e�) bound by P creates a
“Coulomb blockade” in the right arm of the T� shaped wire. Thus, the
larger ⌫, the more likely it is that an electron in the wire will be scattered
onto the detector D1 ⌘ DL.
The orthogonal projection onto the subspace of one-electron wave
functions that vanish identically near D�⇠ is denoted by ⇡⇠. The
probability, p(⇠|⌫), that an e� hits D⇠ is given by Born’s Rule

p(⇠|⌫) = h�0,U
⇤
⌫⇡⇠U⌫ �0i, (4)

and the “space of facts”, ⌅1, is given by

⌅1 = spec(N ) = {0, 1, 2, . . . ,N},N < 1, N = charge operator of P .





















3. Indirect Non-Demolition Measurements: Basic
Assumptions and General Results

Thinking of the solid-state experiment, we will henceforth assume:5

(i) The measures µ! are exchangeable (non-demolition measure-
ments using independent e�!), so that

µ(⇠
k
|⌫) =

kY

m=1

p(⇠m|⌫), ⇠m 2 XS := �(X̂ ), 8m, ⌫ 2 ⌅1.

(ii) The “space of facts” is a finite set of points (“charge values”):

⌅1 = {0, 1, 2, . . . ,N}, for some N < 1. (6)

(iii) We also assume that p(⇠| ·) separates points of ⌅1: There
exists  > 0 such that

min⌫1 6=⌫2 |p(⇠|⌫1)� p(⇠|⌫2)| �  > 0, for some ⇠ 2 XS . (7)

5
these assumptions can and have been generalized



Summary of main results

Equivalence classes of functions on the space ⌅ of histories measurable at
1 form an abelian algebra: the algebra of “observables at 1” =
{functions on the “space of facts” ⌅1} isomorphic to Diag

(N+1)
.

An example of an “observable at infinity” is the “asymptotic frequency”
of an event ⇠ 2 XS : We define the frequencies

f (l,l+k)

⇠ (⇠) :=
1

k

 
l+kX

m=l+1

�⇠,⇠m

!
, with

X

⇠

f (l,l+k)

⇠ (⇠) = 1. (8)

Main results, given Assumptions (i), (ii), (iii)):

(I) Law of Large Numbers for exchangeable measures: For every ⇠ 2 ⌅,
the asymptotic frequency satisfies

limk!1f (l,l+k)

⇠ (⇠) =: p(⇠|⌫), (9)

for some “fact” ⌫ 2 ⌅1.



“q-hypothesis testing”/parameter estimation

With each ⌫ 2 ⌅1 we associate a subset

⌅⌫(l , k ; ") := {⇠| |f (l,l+k)

⇠ (⇠)� p(⇠|⌫)| < ✏k} (10)

(see blackboard!) where

✏k ! 0,
p
k ✏k ! 1, as k ! 1

(II) Distinguishability: It follows from Hyp. (7) and definition (8) that,
for k so large that ✏k < /2,

⌅⌫1
(l , k ; ") \ ⌅⌫2

(l , k ; ") = ;, ⌫1 6= ⌫2.

(III) Central Limit Theorem: ) Under suitable hypotheses
on the states !, (see (i) through (iii)),

µ!

 
[

⌫

⌅⌫(l , k ; ")

!
! 1, as k ! 1.



hypothesis testing – ctd.
Thus, for large enough k , every protocol ⇠

k
= (⇠m)km=1

determines,
with an error that tends to 0, as k ! 1 , a unique point ⌫ 2 ⌅1.
Moreover, Born’s Rule holds:

µ!

�
⌅⌫(l , k ; ")

�
!

k!1
!(�N ,⌫) = P!(⌫).

(IV) Theorem of Boltzmann-Sanov ) If the measures µ! are
exchangeable one has that

µ
�
⌅⌫1

(l , k ; ")|⌫2
�
 C e�k�(⌫1k⌫2),

where � is the relative entropy of the distribution p(·|⌫1) given
p(·|⌫2).

(V) Theorem of Maassen-Kümmerer & Bauer-Bernard (see (III), (IV)!)

The state of S , restricted to B(HP), approaches an eigenstate, !⌫ ,
of the operator N corresponding to some eigenvalue ⌫ (i.e., to a
fixed charge ⌫ of the quantum dot P), as the number k of
projective probe measurements tends to 1: “Purification”!



Beyond non-demolition measurements

It should be mentioned that, under natural assumptions, the “extremal”
measures µ(·|⌫), ⌫ 2 ⌅1, come from normal states, !⌫ , on E via the
LSW formula! Theory can be extended to operators N with continuous
spectrum.

***

The theory of indirect measurements outlined so far only
concerns measurements of time-independent “facts”, which
correspond to points in ⌅1: non-demolition measurements!

The outcomes of such measurements only depend on the tails
of histories (at arbitrarily late times). However, most inter-
esting facts depend on time, i.e., are “events” appearing and
disappearing, and ⌅1 = ; ! Thus, we must ask how one can
infer or reconstruct information concerning events and their
time evolution from finitely long recordings of projective
observations of quantities associated with probes represented
by operators that act on the Hilbert spaces of the probes.



4. Weak Measurements of Time-Dependent Quantities –
Markov Jump Processes on the Spectra of Observables & Mott Tracks

A more realistic version of the solid-state experiment:

The system S is the composition of the quantum dot P and the
equipment E (consisting of the electron gun, the detectors DL and DR ,
and the “dumps” where the electrons get lost).
Monitor the electric charge bound to P , but without assuming that it is
constant in time. In other words, we admit that P may exchange electric
charge with its environment (P 0), assuming that the total charge of P
varies slowly in time as compared to the rate by which electrons travel
through the T -shaped wire.



The formalism
As in part 2, we assume that every electron released by the e� gun and
traveling through the T -shaped wire is prepared in the same inital state,
�0, and that the same “observable”, X̂ , is measured for each electron,
namely whether it reaches the dump on the left $ eigenvalue ⇠ = +1, or
the dump on the right $ eigenvalue ⇠ = �1 of X̂ .
It is assumed that during the passage of one electron through the
T -shaped wire the charge of P is very nearly constant, and that the
probability of an electron to reach the dump labelled by ⇠ is given by

p(⇠|⌫) = hU⌫�0,⇡⇠U⌫�0i,

where ⌫ 2 {0, 1, . . . ,N} is the charge of P , i.e., the eigenvalue of the
charge operator N , U⌫ is a unitary “scattering operator” depending on ⌫,
and ⇡⇠ is the spectral projection of X̂ corresponding to the eigenvalue ⇠.
We still require assumption (iii) on p(⇠|⌫), namely:

There exists  > 0 such that

min⌫1 6=⌫2
|p(⇠|⌫1)� p(⇠|⌫2)| �  > 0, for some ⇠ 2 XS (= {�1,+1})



Formalism – ctd.
However, we do not assume that the charge operator N commutes
with the time evolution of S . Instead, we assume that

HP = "hP , with k[hP ,N ]k  1, (" > 0), (11)

where HP is the Hamiltonian of the dot P when it is decoupled
from the equipment E , i.e., during periods when there isn’t any
electron traveling through the T -shaped wire.
The system S is not autonomous: Electrons are released by the
e� gun at random times; the j th electron travels through the T -
shaped wire at time tj , with tj < tj+1 and

tj+1 � tj is Poisson-distributed with rate 1 , j = 1, 2, . . .

Let ⌦(t) denote the state of the system S at a time t 2 (tj , tj+1),
for some j . Then the density matrix, ⌦P(t), describing the state of
the quantum dot P at time t is given by the partial trace

⌦P(t) = trE
�
⌦(t)

�



A recursion formula for the state of S
We assume that the dynamics of P during a period of time when there
isn’t any electron traveling through the T -shaped wire is generated by
the Hamiltonian HP , and that, at time tj , P only interacts with the j th

electron released by the e� gun.

Suppose the state, ⌦P (t
0
), of P is known at a time t

0 2 (tj�1, tj ). Then we are able to calculate the state

⌦P (t) of P at time t 2 (tj , tj+1). Here is a formula for ⌦P (t), given ⌦P (t
0
):

⌦P (t) = z⇠j
· ei(t�tj )HP V⇠j

e
i(tj�t

0
)H

P ⌦P (t
0
)e

i(t
0�tj )HP

)
V⇠j

e
i(tj�t)H

P ,

where z⇠j
is a normalization factor, and V⇠�N ,⌫ =

p
p(⇠|⌫).

The state, ⌦P(t), of P can be determined recursively from an initial state
prepared at a time t 0 < t1, for arbitrary time t! It is a random variable
depending on " (where ", see (11), measures the rapidity of the
time-evolution of the charge of P), on the random times t1, . . . , tj , with

tj < t < tj+1, and on the measurement protocols (⇠m)
j

m=1
.

We define probabilities, !t,"(⌫), on the spectrum of the charge operator
N as the diagonal elements of the density matrix ⌦P(t), and we denote
by !t,"(⌫) the average of !t,"(⌫) over all choices of random times and
measurement protocols ⇠.



Main result

Consider the limiting regime given by t = "�2⌧, where ⌧ 2 R is a
rescaled time variable to be kept at an arbitrary, but fixed value.
We are interested in the limiting regime

" & 0.

Let Q(⌫, ⌫0) be the “Markov kernel” given by

Q(⌫, ⌫0) = � |h⌫|hP |⌫0i|2P
⇠2XS

V⇠(⌫)V⇠(⌫0)� 1
+ cc , ⌫ 6= ⌫0,

with Q(⌫, ⌫) = · · · � 0, 8⌫.
Then

�
exp(�⌧Q)

�
⌧>0

is the transition function of a Markov jump
process on the spectrum, {0, 1, . . . ,N}, of the charge operator N , and

lim
"&0

!"�2⌧, "(⌫) =
NX

⌫0=0

exp(�⌧Q)(⌫, ⌫0)!t=0(⌫
0). (12)



A numerical simulation of the behavior of !t,"(⌫)
We consider an example where N = 1, with a quantum dot P
whose state space is two-dimensional. The Hamiltonian HP = "hP
describes exchange of electric charge between P and a charge
reservoir tuning the average value of the electric charge of P to
some fixed value 0 < ⌫ < 1. The plot shows the behavior of
!t,"(⌫ = 0), (the probability of populating the neutral state of P
corresponding to ⌫ = 0), for small values of ": Quantum jumps!
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Demystifying Quantum Mechanics - the ETH

Approach

“I leave to several futures (not to all) my garden of forking paths”

J. L. Borges

Leysin, June 27, 20191

1
Jürg Fröhlich, ETH Zurich



Contents and credits

Contents:

1. What this lecture is about

2. What prevents theories from being (fully) predictive?

3. “Non-locality” of QM versus “Einstein causality”

4. The “ETH Approach” to Quantum Theory

5. Events and their detection

6. Local Relativistic Quantum Theory

7. Summary and conclusions
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I am indebted to my last PhD student Baptiste Schubnel for enjoyable
collaboration, to Ph. Blanchard and some others for cooperation, and to
many colleagues, including some of the “Bohmians”, several colleagues
at ETH Zurich, and D. Buchholz for useful discussions on QM.



1. What this lecture is about

This is about Foundations of Quantum Mechanics: I will explain the

“ETH - Approach to Quantum Mechanics”

where “E” stands for Events, “T” for Trees, and “H” for Histories.

This approach enables us to introduce a precise notion of “events” into

Quantum Mechanics (as advocated by the late R. Haag), explain what it

means to observe an event by recording the value of an appropriate

physical quantity, and to exhibit the stochastic dynamics of states of

isolated open systems featuring events.

I will then focus on explaining how quantum theory might be reconciled

with relativity theory, and what it may tell us about the fabric of

space-time and its causal structure.

The “ETH - Approach to QM” results in a “Quantum Theory without

observers”. It does not provide any “extensions of Quantum Mechanics”,

all of which have remained unacceptably vague.

My goal – in my work on QM and for this lecture – is to help to remove

the enormous confusion befuddling many people who claim to work on

various aspects of QM and its applications.



Specific topics to be addressed; basic convictions

I Why are physical theories never fully predictive?
Why is quantum theory intrinsically probabilistic?
What are “events” in quantum theory & how do we record them?
How do states of physical systems evolve according to QM?

I What is the role of (Space-)Time in quantum theory, and why and
how does quantum theory distinguish between past and future?

I What is the fundamental significance of “locality” and Einstein

causality in quantum theory?
Could it be that a consistent “Quantum Theory of Events” must
necessarily be relativistic ; could it be that it explains why
space-time is even-dimensional and why it is curved ?

Etc. ...

1. Against “interpretations” of physical theories – in favor of solid
“foundations”; (the example of electro-magnetism before STR).

2. . . . – in favor of clear concepts and fundamental principles!

3. Against denigration of precise mathematical tools.



2. What prevents theories from being (fully) predictive?

Space-time with an event horizon. (Observer sits at “Present”; is unaware
of dangers lurking from outside his past light-cone; he might get killed at
†. Events 1 & 2 are space-like separated; event 3 is in the future of 2)

| {z }
t0: time right after inflation! event horizon) initial conditions not fully accessible!

Past = History of Events (Facts) / Future = Ensemble of Potentialities

This fundamental dichotomy should be retained in Quantum Mechanics!



Quantum theory cannot be fully predictive, because ...

A Gedanken-Experiment (% Faupin-F-Schubnel):

Two particles (electrons), P and P
0, prepared in a spin-singlet initial

state,  L/R ,
2 with orbital wave functions chosen such that P propagates

into the cone opening to the right, while P
0 propagates into the cone

opening to the left and ending in the spin filter, (except for very tiny tails
leaking beyond those cones).

Time evolution of P essentially independent of the one of Q, which
includes P 0 and spin filter – consequence of cluster props. of propagator!

Alice Bob

| {z }
Q:={spin filter_ particleP0} cone opening to R:= ess. supp of orbital wave function of P

2
nowadays called a Bell pair of Qbits



... Quantum theory is fundamentally probabilistic –

in spite of the deterministic nature of the Schrödinger Eq.! –
Temporary assumptions (leading to a contradiction):

I. P and P
0: Spin- 12 particles prepared in a spin-singlet initial state;

spin filter prepared in a poorly known initial state not (necessarily)
entangled with initial state of P 0 and P .

II. Dynamics of state of total system fully determined by Schrödinger

equation. In particular, initial state of spin filter determines whether
P

0 will pass through it or not, (given that the initial state of P 0 _ P

is a spin-singlet state, with P
0 and P moving into opposite cones).

III. Correlations between outcomes of spin measurements of P
0
and of

P are as predicted by standard quantum mechanics, (relying on the
“Copenhagen interpretation”) – “non-locality” of QM.

Fact: Assuming short-range interactions, Schrödinger evolution of state
of system factorizes into free evolution of P tensored with complicated
evolution of Q := {P 0 _ spin filter}, up to tiny errors. This follows from
our choice of initial conditions & cluster properties of time evolution!
Hence spin of P is ess. conserved before measurement! )



Time evolution of “observables” and of states in QM

If assumptions I. and II. held then:
Expectation value of spin of P ⇡ 0, 8 times! ) State of spin of P 0 after
interaction of P 0 with spin filter does not bias state of spin of P when
measured, (e.g., in a Stern-Gerlach exp.)!

This consequence of the first two assumptions contradicts the third

(last) assumption stated above!

Thus, if the usual correlations between two “independent” measurements
(here of z-comp. of spins of P 0 and of P), predicted on the basis of the
projection postulate of “Copenhagen”, are observed3 then it follows that
the Schrödinger equation cannot describe the evolution of states of
systems, and hence that qm dynamics is fundamentally stochastic.

It turns out that one may safely assume the validity of the Heisenberg-

picture evolution of “observables” for isolated systems (define!), which is
perfectly deterministic. But, in Quantum Mechanics, the evolution of

states is stochastic . ) Equivalence of the Heisenberg picture and the
Schrödinger picture is an erroneous claim!

3
as suggested by the experiments of Aspect, Gisin, and others



3. “Non-locality” of QM versus “Einstein causality”

It is possible that the measurements of (components of) the spin of P
and of the spin of P 0 are made in space-like separated regions of
space-time, so that the localization regions of the corresp. projection
operators ⇧P0

�0,~ez
and ⇧P

�,~n, with � = ±,�0 = ±, are space-like separated.
The order in which these two measurements occur then depends on the
rest frame of the observer who records the data of both measurements.
This implies that the operators ⇧P0

�0,~ez
· ⇧P

�,~n and ⇧P
�,~n · ⇧P0

�0,~ez
must have

the same e↵ect when applied on the state of the system. . . . The most
general way in which this can be guaranteed is to require that

⇧P0

�0,~ez · ⇧
P
�,~n = ⇧P

�,~n · ⇧P0

�0,~ez (1)

This is locality (in the sense of RQFT) or “Einstein causality” !

—

[Remark: It might su�ce to require a weaker form of locality by only
requiring Eq. (1) to hold on all those states that actually admit
measurements of the spins of P 0 and P in the prescribed local regions of
space-time; (“weak locality” – compare to Jost’s proof of the CPT
theorem!).]



4. The “ETH Approach” to Quantum Theory

Next, we address the question of what is meant by “events” featured by
isolated systems, and of how they can be recorded (in direct/projective

measurements/observations). I sketch what I call the “ETH Approach”
to QM. I first consider non-relativistic QM:
Let S be an isolated physical system. Pure states of S are given by unit
rays in a separable Hilbert space HS ; general states by density operators,
!, acting on HS , with !(A) := Tr(! · A), for any bd. operator A on HS .

Time is a fundamental quantity in n.r. physics. The time axis is given
by R. Let’s suppose the present time is t0, and let I be an arbitrary
interval of future times, i.e., I ⇢ [t0,1). (Use Heisenberg picture!)

Definition: Let S be an isolated physical system. “Potential future
events” in S – “potentialities” – are described by certain orthogonal

projections acting on HS associated with time intervals. The ⇤algebra
generated by all “potential future events” assoc. with a future interval,
I , of times is denoted by EI , and we define

E�t :=
_

I⇢[t,1)

EI , and E :=
_

t2R
E�t

k·k
, (2)



“Principle of Diminishing Potentialities”

where the algebras E�t , t 2 R, are assumed to be weakly closed!4

By definition,

EI ◆ EI 0 if I ◆ I
0 , E�t ◆ E�t0 if t

0 > t .

An isolated open system S can now be defined in terms of a filtration
{E�t |t 2 R} of algebras of potential future events (potentialities). The
“Principle of Diminishing Potentialities” (PDP) is the statement that

E�t �
6=
E�t0 , whenever t

0>t � t0 (3)

This principle can be proven to hold in simple models (with a Hamiltonian
incorporating a “time operator”). Given a state ! of S , we set

!t := !|E�t
, i.e., !t(A) = !(A) , 8A 2 E�t . (4)

4
Passing to von Neumann algebras is convenient, because the spectral

projections of any element of the algebra will then also belong to the algebra!



Events

Note that ! might be a pure state on E . But, since E�t ⇢
6=
E , 8t < 1,

!t will generally be a mixed state on E�t ; (entanglement!). This
observation opens the door towards a clear notion of what might be
meant by “events” and to a theory of direct/projective measurements
and observations (of “events”).

To render the Definition (of pot. future events) more precise, we say that
a “potential future event” is given by a family, {⇡⇠|⇠ 2 X}, of disjoint
orthogonal projections contained in an algebra E�t , for some t � t0,
(t0 = time of “present”), with

P
⇠2X ⇡⇠ = 1.

In accordance with the “Copenhagen interpretation” of QM, it appears
natural to say that a potential future event {⇡⇠|⇠ 2 X} ⇢ E�t actually

happens in the interval [t,1) of times i↵

!t(A) =
X

⇠2X
!(⇡⇠ A⇡⇠), 8A 2 E�t , (5)

i.e., no o↵-diagonal elements appear on the R.S. of (5)!



The centralizer of a state and its center

Next, we render the meaning of Eq. (5) more precise.

Let M be a von Neumann algebra, and let ! be a state on M.
Given an operator X 2 M, we set

adX (!)(A) := !([A,X ]) , 8A 2 M .

We define the centralizer of a state ! on M by

C!(M) := {X 2 M|adX (!) = 0}

Note that ! is a normalized trace on C!(M) ... ! The center,
Z!(M), of C!(M) is defined by

Z!(M) := {X 2 C!(M)| [X ,A] = 0, 8A 2 C!(M)} . (6)

We are now prepared to introduce the notion of (actual) “events”.



Events happening at time � t

Let S be an isolated physical system. We set M := E�t , ! := !t .

Definition: Given that !t is the state of S on the algebra E�t , an
“event” is happening at time t i↵ Z!t (E�t) contains at least two
non-zero orothogonal projections, ⇡(1),⇡(2), which are disjoint, i.e.,
⇡(1) · ⇡(2) = 0, and have non-vanishing “Born probabilities”, i.e.,

0 < !t(⇡
(i)) < 1 , for i = 1, 2 .

Let us suppose for simplicity that Z!t (E�t) is generated by a family of
orthogonal projections {⇡⇠|⇠ 2 X!t}, where X!t = spec[Z!t (E�t)] is a
countable set.

“Axiom”: If an event happens at time t, (i.e., card(X!t ) � 2, and
!t(⇡⇠) 6= 0, for at least two di↵erent ⇠ 2 X!t ), then the state !t must be
replaced by one of the states !t,⇠ := !t(⇡⇠)�1 · !t(⇡⇠(·)⇡⇠) , for some
⇠ 2 X!t with !t(⇡⇠) 6= 0. The probability, probt(⇠), for the state !t,⇠ to
be selected as the state of S right after time t is given by

probt(⇠) = !t(⇡⇠) � Born
0
sRule (7)



A metaphoric picture of the time evolution of states in

QM – according to “ETH”

Apparently, the time-evolution of states of a phys. system S is described
by a stochastic branching process, with branching rules as determined by
the above “Axiom”. (This is mathematically precise if time is discrete.)
llustration:

E : “Events”, T : “Trees” of possible states, H: “Histories” of states.

This is di↵erent from and supercedes the “decoherence mumbo-jumbo”!



5. Events and their detection

We have characterised an isolated open system S in terms of a filtration
of algebras

{E�t}t2R ,

with
E�t �

6=
E�t0 , whenever t

0 > t (8)

The flow of time in S , (i.e., the time evolution of S in the Heisenberg
picture) is encoded in the proper embeddings (8), which, in an auto-

nomous system S , are completely determined by its Hamiltonian.

However, the characterisation of S given in (8) is incomplete! To retrieve
physical information from (8) and from our definition of events, we must
specify operators that represent “physical quantities” characteristic of S
and – when observed/measured – may signal the occurrence of events.
Let

OS := {X̂◆|◆ 2 IS} (9)

be a list/set of abstract linear operators representing physical quantities
characteristic of S ; (usually, OS is not a linear space, let alone an alg.).



Measurements of physical quantities

For any operator Ŷ 2 OS and any time t, we specify a concrete self-
adjoint operator Y (t) 2 E�t representing Ŷ at time t; (i.e., 9 a repr. of
OS by operators on HS , 8t 2 R). For an autonomous system S , the
operators Y (t) and Y (t 0) are conjugated to one another by the
propagator of S .

Suppose that, at some time t, an event happens; i.e., 9 a partition of
unity, {⇡⇠|⇠ 2 X!t} ✓ Z!t ⇢ E�t , by disjoint (commuting) orthogonal
projections, as above, containing � 2 elements with strictly positive Born
probabilities representing possible events (one of which actually happens).
Let Ŷ 2 OS , and let Y (t) =

P
⌘2spec(X̂ ) ⌘⇧⌘(t) (spectral dec. of Y(t))

be the operator epresenting Ŷ at time t. If the “distance”5

dist
�
⇧⌘(t), h⇡⇠|⇠ 2 X⇢t i

�
is “very small” , 8⌘ 2 spec(Ŷ ) , (10)

then we say that the physical quantity Ŷ 2 OS is observed/measured

after time t, because the state of S just after time t is then an approxi-
mate eigenstate of Y (t). The measurement of Ŷ is a signal of an event

happening at time t. ...

5
defined in terms of conditional expectations



6. Local Relativistic Quantum Theory

I temporarily assume that space-time is Minkowski space, M4, and,
immodestly, that my own proper time is the time of the Universe.

Worldline of JF "



A Theorem of Buchholz

Theorem

In an RQFT in dim. 2n, n � 2 with massless particles, such as photons

and/or gravitons, the algebra, E�Pt , of all events potentially happening in

the future of the space-time point Pt is “1-dimensional” and does not

admit any pure states; and the relative commutant E 0

�Pt
\ E�Pt0

is

“1-dimensional”, too, for arbitrary times t0 < t.

This result is a consequence of “Huygens’ Principle” (in the jargon of
Buchholz): Photons from the region O will asymptotically escape along
lightcones in the future, V+

Pt0
, of Pt0 but below V

+
Pt
. We cannot catch up

with them, anymore, if we have missed them just after they have been
emitted. Thus, the “Principle of Diminishing Potentialities” (PDP) holds
in the form proposed in Eq. (3) of the last Section:

E�Pt0
�
6=
E�Pt , for t > t0 , (11)

and we could now follow the arguments outlined in Sect. 5. However, I
don’t like to be in the center of the Universe; so, let’s take JF out of the
picture! Before knowing better I propose a formulation of relativistic
local Quantum Theory with roughly the following features:



A tentative formulation of relativistic local quantum theory

Let M be some (Hausdor↵) topological space. We consider a fibre

bundle, qmF , with base space given by M and fibre above a point
P 2 M given by an “1-dimensional” von Neumann algebra E�P . All the
algebras {E�P}P2M are assumed to be isomorphic to a “universal”
algebra N ,6 (and one has to impose certain “compatibility conditions”).

Definition:

We say that a point P0 2 M is in the past of a point P 2 M, written as
P0 � P , i↵ E�P0 ◆ E�P , and

�
E�P

�0

\ E�P0

is an inifinite-dimensional (non-commutative) algebra.

The relation � introduces a partial order on M. If P0 6 �P and P 6 �P0

then we say that P0 and P are space-like separated, written as P0 X P .
The relations “�” and “X” determine a “causal structure” on M.

6
This framework could be generalized by first considering C⇤

-algebras,

rather than von Neumann algebras, and introducing sheaves of algebras



What are “events”?

Let !⌃ be a state defined on all the algebras E�P0 , 8P 0 2 ⌃, where
⌃ 2 M is a (region in a) space-like hypersurface containing a point
P 2 M.

Definition: We say that an “event” happens in P i↵ the center
Z!⌃(E�P) ⌘ ZP

!⌃
of the centralizer, C!⌃(E�P), is non-trivial and contains

at least two projections, ⇧P
1 and ⇧P

2 with strictly positive “Born probs.”

0 < !⌃(⇧
P
i ) < 1, for 1 = 1, 2 .

Let X P
!⌃

denote the spectrum of ZP
!⌃
.

“Axiom” (compatibility – locality): If two points, P and P
00, of M are

space-like separated, and “events”, ⇧P
⇠ and ⇧P00

⌘ , actually happen in P

and P
00 then

[⇧P
⇠ ,⇧

P00

⌘ ] = 0, 8 ⇠ 2 X P
!⌃

and all ⌘ 2 X P00

!⌃
. (12)



Causal structure on M
! introduces “causal (geometrical) structure” on M!

Graphical illustration of the axiom

However, projections describing events happening in P
0 and P do not

commute in general, since P
0 is in the past of P .

Next, we describe histories of events. We choose a (region in a) space-
like surface ⌃ 2 M with the property that some compact region in ⌃ lies
in the past of a point P 2 M, as shown in the following figure:



Histories of events

We suppose that a state !⌃ associated with a space-like surface ⌃ is
prescribed; (choice of “initial conditions”). Our task is to find out
whether all events in the past of P but in the future of ⌃ (so-called
“histories”), together with the state !⌃, uniquely determine a state, !P ,
on the algebra E�P and, given !P , to find out whether an event happens
at P .



Probabilities of histories of events

Inductive hypothesis: Let P1,P2, ..., be all points in the past of P
but not in the past of any point on ⌃ with the property that, given
initial conditions corresponding to !⌃, an event has happened at
Pi , i = 1, 2, .... With any of these points we can then associate an
orthogonal projection ⇧Pi

⇠i
, ⇠i 2 XPi

!Pi
= spec

�
ZPi
!Pi

�
. We define

“history operators”

H(P |!⌃) :=
�!Y

i=1,2,...

⇧Pi
⇠i
, (10)

where Pi is either in the past of Pi+1, or Pi and Pi+1 are
space-like, 8i = 1, 2, ... Thanks to the compatibility-locality axiom

the operator H(P |!⌃) is well-defined! We then set

!P(A) := prob
�
H(P |!⌃)

��1
!⌃(H(P |!⌃)AH(P |!⌃)

⇤) , (11)

8A 2 E�P , where



Events and the fabric of space-time

prob
�
H(P |!⌃)

�
:= !⌃

�
H(P |!⌃) · H(P |!⌃)

⇤�

Generalized Born Rule

Induction step: We are now able to answer the question whether
an event happens in the space-time point P :
An event happens in P i↵ the center Z!P (E�P) of the centraliser

of !P is non-trivial and contains � 2 disjoint orthogonal

projections with strictly positive Born probabilities in !P .

Note: The compatibility-locality axiom is expected to yield
non-trivial constraints on the geometry of space-time in the vicinity
of two space-like separated points, P and P

00, if it is known that 9
events in P and P

00 localised in explicitly known regions in the
future of P and of P 00, respectively, which are represented by
projections commuting with one another; ... But these matters
remain to be investigated more thoroughly in the future.



7. Summary and conclusions

I The “ETH-Approach” to Quantum Mechanics provides a logically
coherent theory of events, of their recordings, and of measurements.
It has resemblences to “Many Worlds”, “GRW”, ... ; yet, it super-
sedes these imprecise formalisms; and it describes but one World!

I As in the genesis of Special Relativity, massless modes (the e.m.
field, gravity) – and (possibly) the even-dimensionality of space-time
– play key roles in the genesis of a Quantum Theory solving the
“measurement problem”. Has not been properly appreciated, so far!

I The non-commutative nature of Quantum Theory and the
“compatibility-locality axiom” governing relations between events
determine a “causal structure” on space-time. Events weave the

fabric of space-time! (% “Emergent gravity”)

I Thanks to the “Principle of Diminishing Potentialities” (PDP) and
the natural presence of an “arrow of time” in the “ETH-Approach
to Quantum Theory”, the “Information Paradox” and the “Unitarity

Paradox” appear to dissolve. ... (% “Passive States”)

I thank you for your attention !
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Abstract

To begin with, some of the conundrums concerning Quantum Me-
chanics and its interpretation(s) are recalled. Subsequently, a sketch of
the “ETH-Approach to Quantum Mechanics” is presented. This ap-
proach yields a logically coherent quantum theory of “events” featured
by physical systems and of direct or projective measurements of physi-
cal quantities, without the need to invoke “observers”. It enables one to
determine the stochastic time evolution of states of physical systems.
We also briefly comment on the quantum theory of indirect or weak
measurements, which is much easier to understand and more highly
developed than the theory of direct (projective) measurements. A rel-
ativistic form of the ETH-Approach will be presented in a separate
paper.
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1 Introduction – comments on the foundations of
Quantum Mechanics, and purpose of paper

Let me start with a few general remarks: I consider it to be an intellectual
scandal that, nearly one hundred years after the discovery of matrix me-
chanics by Heisenberg, Born, Jordan and Dirac, many or most professional
physicists – experimentalists and theorists alike – admit to be confused about

1



the deeper meaning of Quantum Mechaincs (QM), or are trying to evade
taking a clear standpoint by resorting to agnosticism or to overly abstract
formulations of QM that often only add to the confusion. Attempts to re-
place QM by some alternative deterministic theory, one that does not have
a “measurement problem”, yet reproduces important predictions of QM , do
not appear to have been very successful, so far. Unfortunately, most physi-
cists have prejudices preventing them from taking a fresh, unbiased look at
the subject, and discussions of the foundations of QM tend to be surprisingly
emotional. I feel it is time to change this situation!

My own interests in the foundations of Quantum Mechanics were aroused
in courses on QM taught by Klaus Hepp and Markus Fierz in the late sixties
of the past century, which I took as an undergraduate student. I suppose
that most serious students of Physics develop such interests during their first
courses on QM . But I felt that the subject had better remain a hobby until
later in my career. Not least because of the appearance of partly contra-
dictory novel “interpretations of QM ”, all of which left me unsatisfied, (see,
e.g., [1, 2], and [3] for a brief survey), my views of the foundations of QM ac-
tually remained quite confused until a little more than ten years ago; (which
did not prevent me from giving talks about the subject – some with modest
impact – in numerous places). But when I was approaching mandatory re-
tirement I felt an urge to clarify my understanding of some of the subjects I
had had to teach to my students for thirty years – thermodynamics, effective
dynamics (in particular Brownian motion), and, foremost, the foundations
of QM ; see [4, 5, 6, 7] and references given there, the last two papers having
some relevance for the foundations of QM .1 At the beginning of 2012, my
interests in this subject became more serious, and I pursued them in joint
efforts with my last PhD student, Baptiste Schubnel. Later, some further
colleagues got interested in our efforts, including M. Ballesteros, Ph. Blan-
chard, N. Crawford, J. Faupin and M. Fraas, who collaborated with us in
changing configurations. At this point, I wish to thank my collaborators for
their support in this endeavor, as well as quite a few colleagues – too many
to mention all of them – who were willing to listen to me and discuss ideas
on basic questions concerning the foundations of QM with me. D. Dürr and
S. Goldstein deserve my thanks for the encouragement and understanding
they have provided.

In this paper, I present a sketch of the “ETH-Approach to Quantum
Mechanics” [8, 9, 10]. The ETH-Approach is supposed to lay the founda-
tions of a logically coherent quantum theory of “events” [14] and of direct or
projective measurements of physical quantities (serving to record “events”)
that does not require invoking any “deos ex machina”, such as “observers”;

1I think it is more appropriate to speak of the “foundations of QM ”, rather than
“interpretations of QM ”. We have to understand what QM tells us about Nature, what
it means - once this is accomplished, the correct interpretation of the theory will come
almost automatically.

2



(see also [2]). I have given quite a few talks about this new approach. Tech-
nical details have been presented in a short course taught at Les Diablerets,
in January of 2017 [11], and in [12, 13]. Our work has profited from ideas
proposed by the late Rudolf Haag [14], from a paper of D. Buchholz and the
late J. E. Roberts [15], and from discussions with Buchholz. A form of the
ETH-Approach apparently compatible with Einstein causality and Relativ-
ity Theory is described in [16]. But a comprehensive review of our work has
not been released, yet.

Wide-spread recent interest in foundational problems surrounding QM

has been triggered by problems in quantum information theory and by the
2012 Nobel Prize in Physics awarded to S. Haroche [17] and D. Wineland.
Their discoveries, as well as results described in [18, 19], and references
given there, have influenced some of our own work on the theory of indi-
rect measurements in QM , which has appeared in [20, 21, 22] and is briefly
sketched at the end of this paper. The theory of indirect (“non-demolition-”
and “weak-”) measurements is quite well developed and clear, assuming one
understands what “events” and “direct measurements and observations” are,
specifically direct observations of “probes” used to indirectly retrieve informa-
tion on physical systems. The theory of “events” and of “direct (projective)
measurements” actually constitutes the deep and controversial part of the
foundations of QM , and it is a novel approach to this theory that I intend
to outline in this paper.

2 Standard formulation of Quantum Mechanics and
its shortcomings

In our courses on Quantum Mechanics, physical systems, S, are often de-
scribed as pairs, (H, U), of a Hilbert space, H, of pure state vectors and
a propagator, U , consisting of unitary operators

�
U(t, t0)

�
t,t02R, acting on

H seemingly describing the time-evolution of state vectors in H from time
t
0 to time t. The state space H of physically realistic systems tends to be

infinite-dimensional (but separable). Alas, all infinite-dimensional separable
Hilbert spaces are isomorphic, and the data invariantly encoded in the pair
(H, U) do not tell us anything interesting about the physics of S, beyond
spectral properties of the operators U(t, t0), (i.e., “energy levels”); and they
lead one to the mistaken impression that QM might be a linear and deter-
ministic theory – alas, one that is entirely inadequate to describe events and
the outcome of observations and measurements.

We must therefore clarify what should be added to the formalism of QM

in order to capture its fundamentally probabilistic nature and to arrive at
a mathematical structure that enables one to describe physical phenom-

ena (“events”) in isolated open systems S, without a need to appeal to the
intervention of “observers” with “free will” – as is done in the conventional

3



“Copenhagen Interpretation of QM” – or to assume that other “ghosts” not
intrinsic to the theory come to our rescue.

Incidentally, an isolated system S is one that, for all practical purposes,
does not have any interactions with its complement, i.e., with the rest of the
Universe; meaning that, for long periods of time, interactions between the
degrees of freedom of S and those of its complement can be neglected in the
description of the Heisenberg-picture time evolution of operators. This does,
however, not exclude that the state of S is entangled with the state of its
complement. The special role played by isolated systems in discussions of
the foundations of QM stems from the fact that, only for an isolated system,
S, the time evolution in the Heisenberg picture of arbitrary operators
acting on H is given by conjugation with its unitary propagator, U , which
is determined by the Hamiltonian of S.

Physical quantities characteristic of a system S are described by certain
self-adjoint linear operators, X = X

⇤, acting on H. This feature is common
to all physical theories used at present.2 The Copenhagen Interpretation
of Quantum Mechanics then stipulates that there are “observers” with “free
will” who can decide to measure such physical quantities arbitrarily quickly,
at arbitrary times, and at an arbitrary rate. It is argued that the time evo-
lution of physcial states of S is determined by its unitary propagator U ,
which solves a (deterministic) Schrödinger equation, except when a measure-
ment of a physical quantity represented by an operator X = X

⇤ is made:
Immediately after the measurement of X the state of S, according to the
Copenhagen Interpretation, is in an eigenstate of X corresponding to the
measured value of X. If this value is not recorded, one is advised to use a
density matrix describing an incoherent superposition of eigenstates of X,
chosen in accordance with Born’s Rule, to describe the future evolution of
S.

For a variety of reasons, this is not a satisfactory recipe for how to
apply QM to describe physical phenomena! One might want to view the
evolution of states in the presence of measurements, as described in the
Copenhagen Interpretation of QM , as some kind of stochastic process. But
the problem is that one is dealing with a stochastic process that does not
have a classical state space, and that it is transition amplitudes, rather
than transition probabilities, that are given by matrix elements of an op-
erator (the propagator U) satisfying a group composition law, i.e., a kind
of Chapman-Kolomogorov equation.3 According to the Copenhagen Inter-

2In classical theories, these operators generate an abelian (C⇤-) algebra, and time evo-
lution is given by a ⇤-automorphism group of this algebra generated by a vector field on its
spectrum; while, in QM , the algebra generated by operators representing physical quan-
tities (and events) is non-commutative, and time evolution is given by a ⇤-automorphism
group of such an algebra only if the system is isolated.

3It is advocated by certain groups of people that the problem arising from this fact
can be remedied by invoking the phenomenon of “decoherence” and appealing to the
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pretation, predicting/determining the transition probabilities describing the
stochastic time-evolution of states of S in the presence of repeated measure-
ments would apparently require knowing what kind of physical quantities
are measured by the intervention of “observers”, and at what times these
measurements are made. For, any intermediate intervention of an “observer”
destroys “interference effects”; and hence it seemingly affects the value of the
transition probability between an initial state of S in the past and a target
state in the future, even if a sum over all possible outcomes of the intermedi-
ate intervention is taken.4 Without complete information on all intermediate
measurements performed on S, which, in the Copenhagen Interpretation, is
not provided by the theory, reliable predictions of future states of the system
and of future expectation values of physical quantities become impossible.
As a result, the Copenhagen Interpretation renders QM nearly “unpredic-
tive” – even though, by experience, it is a heuristic framework supplementing
QM that works well for many or most “practical purposes”, because, much
of the time (in particular when using a scattering matrix), one is interested
in predicting the outcome of only a single measurement. The situation is
hardly improved in a definitive way by resorting to concepts such as “deco-
herence” and interpretations such as “consistent histories” [1], “many worlds”,
etc.. (See [23, 2] for further information.)

Before proceeding to describe the “ETH-Approach”, I recall an argu-
ment, presented in detail in [12], that shows that the Schrödinger equation
does not describe the time evolution of states of systems in the presence of
“events” or “measurements”, assuming that the usual correlations between
the outcomes of Bell-type measurements, claimed to be confirmed in many
experiments, hold.

We consider the following Gedanken-Experiment [12], which, ultimately,
will show that time evolution of states in QM is intrinsically stochastic, in
spite of the deterministic nature of the Schrödinger equation.

" "
Q = sub-system “confined” to ⌦ Particle P propagating into shaded cone

Figure 1

“consistency” of histories of events [1]. But I find the arguments supporting this point of
view unconvincing.

4This is the case unless perfect “decoherence” holds.
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We prepare the system Q _ P in a state (choosing an appropriate orbital
wave function for P ) with the property that particle P propagates into the
shaded cone opening to the right, except for tiny tails leaking beyond this
region, while the degrees of freedom of Q remain confined to a vicinity of
the region ⌦ in the complement of the shaded cone, except for tiny tails.
Thanks to cluster properties, expectation values of the Heisenberg-picture
time evolution of physical quantities, such as spin, momentum, etc. referring
to P in this state then turn out to be essentially independent of the time
evolution of the degrees of freedom of Q. In other words, interaction terms
in the Hamiltonian of the system coupling P to Q can be neglected. This is
discussed in much detail in [12].

More concretely, we study the following system:

| {z }
Q:={spin filter_ particleP 0} cone opening to right := ess. supp of orbital wave function of P ;

(P will undergo a Stern-Gerlach spin measurement)

Figure 2

Temporary assumptions (leading to a contradiction):

• P and P
0: Two spin-12 particles prepared in a spin-singlet initial state

localized, initially, in the central region shown in Figure 2; the orbital
wave function of P is chosen such that P propagates into the cone
opening to the right (except for very tiny tails), while the orbital wave
function of P 0, an electron, is chosen such that this particle propagates
into the cone opening to the left, with only very tiny tails leaking
beyond this cone into the half-space to the right of the spin filter.
(One may assume, for simplicity, that there are no terms in the total
Hamiltonian of the system describing direct interations between P and
P

0.) The spin filter (e.g., a spontaneously magnetized metallic film) is
prepared in a poorly known initial state.

• The dynamics of the state of the total system is assumed to be fully
determined by a Schrödinger equation given by a concrete self-adjoint
Hamiltonian containing only short-range interaction terms. In partic-
ular, the initial state of the total system (consisting of the spin filter,
the two particles and possibly some Stern-Gerlach equipment serving to
measure a component of the spin of particle P ) is assumed to determine
whether particle P

0 will pass through the spin filter, or not, (given that
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the initial state of P 0_P is a spin-singlet state, with P
0 and P moving

into opposite cones). Since it is assumed that a Schrödinger equa-
tion determines the evolution of states of this system, the Schrödinger
picture and the Heisenberg picture are equivalent.

• Correlations between the outcomes of spin measurements of P 0 and of
P are assumed to be those predicted by standard quantum mechanics,
(relying on the “Copenhagen interpretation” and apparently confirmed
in many experiments): We first note that if P

0 passes through the
spin filter then its spin is “up”, (i.e., aligned with the majority spin of
electrons in the spin filter), if it does not pass through the filter, (i.e.,
if it hops into a vacant state localised inside the spin filter), its spin is
“down”. The second assumption stated above then says that, whether
P

0 passes through the filter, or not, is determined by the inital state of
the total system and by solving a deterministic Schrödinger equation.
In addition to the two assumptions already stated, we also assume that
if the spin of P 0 is measured to be “up” the spin of P is measured to
be “down” (for example, in a Stern-Gerlach experiment involving a
magnetic field parallel to the majority spin of the spin filter), and if
the spin of P 0 is “down” then the spin of P is “up”.

Next, we recall the
Fact: Expectation values of observables (such as spin, momemntum, etc.)
referring to particle P in the state of the system described above are inde-
pendent of the degrees of freedom of Q := {P 0 _ spin filter}, for arbitrarily
long times, up to very tiny corrections. Thus, to a very good approximation,
their evolution can be assumed to be given by free-particle dynamics. This
is a consequence of our choice of an initial state (propagation properties of
the orbital wave functions of P and P

0) and of cluster properties of the time
evolution – as shown in [12].
It follows that, to a very good approximation, the spin of P is conserved
before it is measured )

Expectation value of spin of P ⇡ 0, 8 times before measurement time,
independently of the evolution of Q = {P 0 _ spin filter}!

But this contradicts the third (last) assumption stated above: The first
two assumptions imply that the values of the z-component of the spin of P 0

measured with the help of the spin filter do apparently not introduce any
bias in the outcomes of measurements of the z-component of the spin of P .
In other words, the second assumption stated above is incompatible with
the Bell-type “non-locality” of Quantum Mechanics, as expressed in the third
assumption stated above.
This argument is robust, in the sense that it suffices to assume that cor-
relations between measurements of a component of the spin of P

0 and a
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component of the spin of P are fairly close to those predicted by the Bell-
type non-locality described in the third assumption.

Conclusion: If the third assumption holds true then the quantum-mechanical
time evolution of states of physical systems in the presence of measurements
(or “events”) is not given by a deterministic Schrödinger equation, and the
equivalence of the Heisenberg picture and the Schrödinger picture appar-
ently fails. Quantum Mechanics appears to be intrinsically probabilistic (and
“non-local”, in the sense of Bell-type correlations – which does, however, not
invalidate locality in the sense of “Einstein causality”)! These conclusions
agree with ones reached by studying gedankenexperiments such as “Wigner’s
friend” and other related ones, e.g., one recently proposed in [24].

Our task is thus to find out what one has to add to a minimal formu-
lation of Quantum Mechanics in order to be able to describe the stochastic
dynamics of states of physical systems in the presence of “events” and their
recordings (in projective measurements), in such a way that correlations be-
tween the outcomes of measurements agree with the Bell-type “non-locality”
of Quantum Mechanics – without the need to assume that “observers” in-
tervene. The results reviewed in the next section are intended to represent
some progress in this direction.

3 Summary of the “ETH -Approach”

In this section I briefly describe the so-called “ETH-Approach to Quantum
Mechanics” [8, 9, 10, 11, 12, 13], which is designed to retain attractive fea-
tures of the Copenhagen Interpretation but eliminates its fatal weaknesses;
and I note that “E” stands for “Events”, “T ” for “Trees”, and “H” for “His-
tories”. In the following, I attempt to explain what these terms mean, and
why the concepts underlying the “ETH-Approach” are important for an un-
derstanding of the foundations of Quantum Mechanics (QM). The basic
premises and contentions of this approach are as follows:

I. Potential Events. In the ETH-Approach to QM , Time, denoted by
t, is taken as an irreducible concept. It is described by the real line,
R, with its usual order relation.5 But in order to make the following
discussion mathematically watertight it is advisable to sometimes as-
sume that time is discretized, t 2 Z. An important idea underlying
the ETH-Approach is that time is not merely a parameter, but that it
can be monitored by recording “events” happening in an isolated open
system. (The precise meaning of this idea will become clearer later

5The role of space-time in a relativistic version of the “ETH-Approach” is discussed in
[16]
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on.)
Let t0 2 R be the time of the present. We consider an isolated physical
system S and we denote by H the Hilbert space of pure state vectors
of S. Our first task is to clarify what is meant by “potential events”
in S that may happen at some future time t > t0, or later: Potential
events are described by families, {⇡⇠, ⇠ 2 X} of orthogonal projections
acting on H, with the properties that

⇡⇠ · ⇡⌘ = �⇠⌘ ⇡⇠, 8⇠, ⌘ in X , (disjointeness)
X

⇠2X
⇡⇠ = 1, (partition of unity). (1)

For simplicity we henceforth assume that the sets X labelling the pro-
jections that represent potential events are countable, discrete sets.
(This merely serves to avoid technical complications in our exposition;
of course, continuous spectra occur, too.) The concrete projection
operators acting on the Hilbert space H of S representing a specific
potential event, e.g., the click of a detector belonging to S when it is
hit by a particle in S, depend on the future time at which the event
might happen. In an autonomous system, the projection operators rep-
resenting such a specific event potentially happening either at a time
t > t0 or at another time t

0
> t0 are conjugated to one another by

the propagator U(t, t0) of the system; (Heisenberg-picture evolution of
operators). All potential events that may happen at a time t > t0,
or later, generate a ⇤-algebra denoted by E�t. It immediately follows
from the definition that

E�t0 ✓ E�t, if t
0
> t.

For simplicity we assume that all physically relevant states of S can be
described by density matrices acting on H, and that the algebras E�t

are closed in the weak topology of the algebra, B(H), of all bounded
operators acting on H. Typically, all the algebras E�t are then isomor-
phic to one universal (von Neumann) algebra6 N , i.e.,

E�t ' N , 8t 2 R. (2)

The algebra, E , of all potential events that may happen in the course
of history is defined by

B(H) ◆ E :=
_

t2R
E�t , (3)

(where the closure is taken in the operator norm of B(H)).

6In local relativistic quantum theories with massless particles, the algebra N tends to
be a von Neumann algebra of type III; see [15]
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II. The Principle of Diminishing Potentialities. In the quantum theory
of (autonomous) systems with finitely many degrees of freedom – as
treated in our introductory courses on QM – the algebras E�t turn out
to be independent of time t; and usually E�t = B(H). For such sys-
tems, one cannot develop a sensible quantum theory of events, and it is
impossible to come up with a logically coherent, intrinsically quantum-
mechanical description of the retrieval of information on such systems,
i.e., of measurements, without adding further quantum systems with
infinitely many degrees of freedom that serve to “measure” the former
systems; (or without resorting to something like “Copenhagen”). In
this respect, quantum systems with finitely many degrees of freedom
are as “interesting” as the causal outside of a black hole: no information
leaks out! In order to encounter non-trivial dependence of the algebras
E�t on time t, we must consider isolated (open) systems with infinitely
many degrees of freedom and with the property that the propagator
U of S is generated by a Hamiltonian whose spectrum is absolutely
continuous and (if time is continuous) unbounded above and below or
is semi-bounded, but without any spectral gaps; i.e., we must assume
that there exist massless modes.
Our contention is that a basic property of a quantum theory of isolated
open systems, S, enabling one to describe events and their recording
in projective measurements of physical quantities is captured in the
following “Principle of Diminishing Potentialities” (PDP ):

E�t0 $ E�t $ E , whenever t
0
> t. (4)

To be more precise, one expects that if time is continuous the relative
commutant �

E�t0
�0 \ E�t, with t

0
> t,

is an infinite-dimensional, non-commutative algebra. (If time is dis-
crete this relative commutant can, however, be a finite-dimensional
algebra.) Examples of non-relativistic and relativistic systems satisfy-
ing property (4) will be discussed elsewhere, (see also [11]).7 Here I just
mention that (PDP ), in the sense of a relativistic variant of Eq. (4),
is a theorem in local relativistic quantum field theories with massless
particles in four space-time dimensions.8 This follows from important
results in [15] and is used in [16].
Definition 1. Isolated open systems S (featuring events) are hence-
forth defined in terms of a filtration, {E�t}t2R (or, for the sake of

7I sometimes fear that unrealistically simple examples advanced with the intention
to clarify aspects of the foundations of QM have had the opposite effect: They have
contributed to clouding our views.

8and the algebras E�t, t 2 R, are von Neumann algebras of type III.
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simplicity and precision, {E�t}t2Z), of (von Neumann) algebras satis-
fying the “Principle of Diminishing Potentialities” (4), all represented
on a common Hilbert space H, whose projections describe potential
events. ⇤

If ⌦ denotes the density matrix on H representing the actual state of
a system S we use the notation

!(X) := tr(⌦X), 8X 2 B(H),

to denote the expectation value of the operator X in the state ! de-
termined by ⌦. We define

!t(X) := !(X), 8X 2 E�t, (5)

i.e., !t is the restriction of the state ! to the algebra E�t.
Note that, as a cconsequence of (PDP ) and of entanglement, the re-
striction, !t, of a state ! on the algebra E to a subalgebra E�t ⇢ E will
usually be mixed even if ! is a pure state on E .

III. Actual Events. Henceforth we only study isolated open systems S for
which (PDP ), in the form of Eq. (4), holds. Let {⇡⇠, ⇠ 2 X} ⇢ E�t

be a potential event that might start to happen at some time t, with
{⇡⇠, ⇠ 2 X} not contained in E�t0 , for t

0
> t. Tentatively, we say that

this potential event actually starts to happen at time t iff

!t(X) =
X

⇠2X
!t

�
⇡⇠ X ⇡⇠

�
, 8X 2 E�t, (6)

meaning that !t is an incoherent superposition of states labelled by the
points ⇠ 2 X ; in other words, off-diagonal expectations, !t

�
⇡⇠ X ⇡⌘

�
, ⇠ 6=

⌘, do not contribute to the right side of (6). Equation (6) is equaiva-
lent to saying that the projections ⇡⇠, ⇠ 2 X , belong to the centralizer
of the state !t.
Given a ⇤-algebra M and a state ! on M, the centralizer, C!(M),
of the state ! is defined to be the subalgebra of M spanned by all
operators, Y , in M with the property that

!([Y,X]) = 0, 8X 2 M.

The center of the centralizer, denoted by Z!(M), is the abelian subal-
gebra of the centralizer consisting of all operators in C!(M) commuting
with all other operators in C!(M).
We note that the center, Z(M), of the algebra M is contained in
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Z!(M), for all states !.

Definition 2. A potential event {⇡⇠, ⇠ 2 X} ⇢ E�t, with {⇡⇠, ⇠ 2 X}
not contained in E�t0 , for t

0
> t, actually starts to happen at time t iff

Z!t(E�t) is non-trivial,

{⇡⇠, ⇠ 2 X} generates Z!t

�
E�t

�
, (7)

and
!t(⇡⇠j ) is strictly positive, ⇠j 2 X , j = 1, 2, . . . , n , (8)

for some n � 2. ⇤

IV. The fundamental Axiom. We are now in a position to describe the
evolution of states in the ETH-Approach to QM. Let !t be the state
of an isolated system S right before time t. Let us suppose that an
event {⇡⇠, ⇠ 2 X} generating Z!t(E�t) starts to happen at time t, in
the sense of Definition 2.

Axiom. The actual state of the system S right after time t when the
event {⇡⇠, ⇠ 2 X} has started to happen is given by one of the states

!t,⇠⇤(·) := [!t(⇡⇠⇤)]
�1

!t

�
⇡⇠⇤(·)⇡⇠⇤

�
, (9)

for some ⇠⇤ 2 X with !t(⇡⇠⇤) > 0, (“state-collapse postulate”9). The
probability for the system S to be found in the state !t,⇠⇤ right after
time t when the event {⇡⇠, ⇠ 2 X} has started to happen is given by
Born’s Rule, i.e., by

prob{⇠⇤, t} = !t(⇡⇠⇤). ⇤ (10)

Remarks:
(1) The projection ⇡⇠⇤ selecting the actual state !t,⇠⇤ of S (and some-
times also the point ⇠⇤ 2 X ) is called the “actual event” happening at
time t.
(2) The contents and meaning of this Axiom are clear and mathemat-
ically watertight as long as time is discrete. (If time is continuous
further precision ought to be provided.)

This Axiom, Eqs. (9) and (10), conveys the following picture of quantum
dynamics: In Quantum Mechanics, the evolution of states of an isolated open
system S featuring events, in the sense of Definitions 1 and 2 proposed above,
is given by a (rather unusual novel type of) stochastic branching process,

9a rather unfortunate name!
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whose state space is what I call the “non-commutative spectrum”, ZS , of S.
Assuming that Eq. (2) holds, the non-commutative spectrum of S is defined
by

ZS :=
[

!

Z!(N ) , with XS :=
[

!

spec
⇣
Z!(N )

⌘
, (11)

where the union over ! is a disjoint union, and ! ranges over all physical
states of S.10 Eq. (7) and Born’s Rule, Eq. (10), specify the branching
probabilities of the process.
This picture of the stochastic time evolution of states of an isolated open
system S is illustrated, metaphorically (for discrete time), in Figure 3, below.
It differs substantially from and supercedes the “decoherence mumbo-jumbo”.

Let us suppose, for the sake of simplicity and mathematical precision,
that time is discrete, (t 2 Z). It is important to note that, in general, the
events (described by orthogonal projections in E�t0) predicted to happen at
a later time t

0
> t on the basis of the states !t,⇠, ⇠ 2 X , where {⇡⇠, ⇠ 2 X}

generates Z!t(E�t), are different from the events one would predict to happen
at time t

0 on the basis of the state !t|E�t0 , used when the actual event

Time evolution of a state of S with initial condition ! := ⇢

E: “Events”, T : “Tree” of possible future states, H: “History” of actual
events/states.

Figure 3
10The set XS can also be defined in terms of a certain “flag manifold” associated with

the Hilbert space H
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happening at time t is not known (i.e., has not been recorded); and the pro-
jections representing these different sets of events usually do not commute
with one another. Furthermore, for t

0
> t, the operators in Z!t,⇠(E�t0) and

in Z!t,⌘(E�t0), ⇠, ⌘ 2 X , (with !t(⇡⇠), !t(⇡⌘) strictly positive), but ⇠ 6= ⌘,
do not in general commute with each other. This is a fundamental differ-
ence between the “non-commutative branching processes”, described here,
and classical stochastic branching processes.
The discussion above is mathematically sound if time is discrete, but requires
more precision if time is taken to be continuous.
To be on the safe side, we temporarily choose time to be discrete (t 2 Z).
Let H be the Hamiltonian of an isolated open system, and suppose that

keiH � 1k ⌧ 1 . (12)

Let us suppose that {⇡t,⇠, ⇠ 2 Xt} is an event that starts to happen at time t,
provided the state of S at time t is given by !t; (i.e., {⇡t,⇠, ⇠ 2 Xt} generates
Z!t(E�t)). Let ⇠⇤ be the element of Xt with the property that, in accordance
with the Axiom stated in IV., above, the state of S right after time t is given
by

!t,⇠⇤(·) := [!t(⇡t,⇠⇤)]
�1

!t

�
⇡t,⇠⇤(·)⇡t,⇠⇤

�
,

with !t

�
⇡t,⇠⇤

�
> 0. Let t0 = t+1 be the time following t, and let {⇡t0,⇠, ⇠ 2 Xt0}

be the event happening at time t
0, provided that the state of S at time t

0 is
given by !t,⇠⇤ . Then assumption (12) suggests that there exists an element
⇠\ 2 Xt0 with the property that

!t,⇠⇤

�
⇡t0,⇠\

�
⇡ 1, but

!t,⇠⇤

�
⇡t0,⇠

�
⌧ 1, 8 ⇠ 6= ⇠\ , ⇠ 2 Xt0 . (13)

According to the Axiom in IV., in particular Born’s Rule, the actual state
of S right after time t

0 is then very likely given by

!t,⇠⇤,t0,⇠\(·) := [!t,⇠⇤(⇡t0,⇠\)]
�1

!t,⇠⇤

�
⇡t0,⇠\(·)⇡t0,⇠\

�
⇡ !t,⇠⇤(·) .

The state !t,⇠⇤,t0,⇠\ is close to the one that would commonly be used in
quantum mechanics in the absence of any “measurements” (invoking the
equivalence of the Schrödinger- and the Heisenberg picture), namely the
state !t,⇠⇤(·).

However, for purely statistical (entropic !) reasons, every once in a while,
i.e., at rare times t0, an event ⇡t0,⇠ is realised that has a very small Born prob-
ability, !t0(⇡t0,⇠) ⌧ 1, ⇠ 2 Xt0 .

14



Digression on “Missing Information” associated with an event:11 Given
the event {⇡t,⇠, ⇠ 2 Xt} happening at time t, assuming that !t is the actual
state of S right before time t, we define the “missing information” (or “entropy
production” ), �(!t,Xt), associated with this event by

�(!t,Xt) := �
X

⇠2Xt

!t(⇡t,⇠) · `n
�
!t(⇡t,⇠)

�
(14)

Assuming that (12) holds, the “missing information” associated with most
events that ever happen is very small. If the “missing information” associated
with all events were tiny then taking the state of S in the Heisenberg picture
to be constant in time would be a good approximation to its stochastic
evolution. However, every once in a while, events corresponding to a large
“missing information” (entropy production) may be encountered, and these
are the events that will most likely be noticed and recorded, because they
trigger a substantial change of the state of S. (Some people will want to call
them “measurements”.)

Let t0 be the time at which the system S has been prepared in a state
!, (as discussed in [13]), and tj := t0+ j 2 Z; further, let ⇡tj ,⇠j be the actual
event happening at time tj , given the initial state ! of S and earlier actual
events ⇡t`,⇠` , ` < j, j = 1, 2, . . . , n; (see Definition 2 and Axiom). We define

µ!

�
⇠1, ⇠2, . . . , ⇠n|X

�
:= !

⇣ nY

j=1

⇡tj ,⇠j ·X ·X⇤ · (
nY

j=1

⇡tj ,⇠j )
⇤
⌘
, (15)

where X is an arbitrary non-zero operator in E�t, for some t > tn, with
!
�
X · X⇤�

> 0. Then µ!(. . . |X) is a positive measure on the Cartesian
product⇥n

j=1Xtj . Note that the space Xtk+1 depends on the choice of ! and
on all the actual events ⇡t1,⇠1 , . . . ,⇡tk,⇠k that happened at times t1 < · · · < tk,
before tk+1; with k = 1, 2, . . . , n� 1. For any m, with 0 < m < n, we set

X(⇠(m,n)) :=
nY

j=m+1

⇡tj ,⇠j ·X ,

and X(⇠(n,n)) := X. Then

µ!

�
⇠1, . . . , ⇠n|X

�
= µ!

�
⇠1, . . . , ⇠m|X(⇠(m,n))

�
.

The measure µ!

�
. . . |X

�
has the (possibly somewhat perplexing) property

that

11This digression can be omitted at first reading, and the reader is invited to proceed
to point V., below.
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P
⇠k+1,...,⇠m

µ!

�
⇠1, . . . , ⇠k, ⇠k+1, . . . , ⇠m|X(⇠(m,n))

�
=

= µ!(⇠1, . . . , ⇠k|X(⇠(m,n))
�
, (16)

for arbitrary k, with 1  k  m  n, as one easily verifies. (Identity (16)
may look familiar to the reader from a similar one satisfied by the “Lüders-
Schwinger-Wigner formula” [25] for the probability of a sequence of outcomes
of measurements, assuming perfect decoherence. However, it actually has
quite a different origin!) It is sometimes convenient to define µ!

�
. . . |X

�
as

a measure on the space
Xn :=

�
XS

�⇥n
,

where XS has been defined in Eq. (11), with the convention that

⇡tk,⇠ = 0, unless ⇠ 2 Xtk ⇢ XS .

For X = 1, µ!(. . . |1) is a probability measure on Xn. If arbitrarily long
sequences of events are considered it is useful to introduce the “path space”

X1 := lim�!
n!1

Xn .

Thanks to property (16), the measures µ!(. . . |1) determine a unique prob-
ability measure on X1. This follows from a well known lemma due to Kol-
mogorov.
Next, we define the “missing information per event” of a sequence of events,
as follows:

�n(µ!) := � 1

n

X

⇠1,...,⇠n

µ!(⇠1, . . . , ⇠n|1) · `n
�
µ!(⇠1, . . . , ⇠n|1)

�
,

and
�(µ!) := limsupn!1�n(µ!) (17)

If events happening at times t1, . . . , tn are not recorded then �n(µ!) is a
measure of how much the state of the system at time t > tn deviates from
the (initial) state ! used in the Heisenberg picture of standard QM . Of
particular interest is the so-called relative entropy

Sn

�
µ!kµopp

!

�
:=

X

⇠1,...,⇠n

µ!(⇠1, . . . , ⇠n|1)⇥

⇥
⇣
`nµ!(⇠1, . . . , ⇠n|1)� `nµ

opp

! (⇠1, . . . , ⇠n|1)
⌘
, (18)

where

µ
opp

! (⇠1, . . . , ⇠n|1) := !

⇣
(

nY

j=1

⇡tj ,⇠j )
⇤ ·

nY

j=1

⇡tj ,⇠j

⌘
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is the measure obtained when the order of the events is (time-)reversed. The
relative entropy Sn

�
µ!kµopp

!

�
is non-negative, and its growth in n, as n ! 1,

is a measure of the irreversibility of histories of events featured by the system
and reflects the “arrow of time”.

End of Digression.

V. Recording events by “projective measurements” of physical quantities.
We consider an isolated open system S described in terms of a filtra-
tion {E�t}t2R of algebras represented on its Hilbert space H of pure
state vectors, as described in Defnition 1, (paragraph I.). We propose
to clarify how events happening in S can be recorded by projectively
(directly) measuring “physical quantities” characteristic of S. (Time
may be taken to be continuous; but, for the sake of simplicity and
mathematical precison, the reader is invited to continue to assume
that t 2 Z.)

Definition 3. A “physical quantitiy” characteristic of S is an abelian
(C⇤-) algebra, Q, with the property that, for each time t, there exists a
representation, �Q

t
, of Q on H as a subalgebra of E�t. ⇤

For autonomous systems, the representations �
Q
t

and �
Q
t0 are unitarily

equivalent, with

�
Q
t
(A) = U(t0, t)�Q

t0 (A)U(t, t0), 8A 2 Q ,

where U(t0, t) = exp
�
i(t� t

0)H
�

is the propagator of S, with t, t
0 arbi-

trary times; (Heisenberg-picture dynamics).
For simplicity, we assume that the physical quantities Q available to
identify properties of S or record events all have discrete spectrum;
i.e.,

Q = h⇧Q
⌘ |⌘ 2 YQ =: spec(Q)i, (19)

where YQ is a discrete set, which we view as a subset of the real
line, and the operators ⇧Q

⌘ are disjoint orthogonal projections. (Of
course, continuous spectra also arise. But in order to avoid technical
complications, we ignore them here.) We can then describe Q as the
algebra given by all functions of a single self-adjoint operator, bY , with
discrete spectrum, spec(bY ) ' YQ, and spectral projections ⇧Q

⌘ . For
every time t, there exists a self-adjoint operator, Y (t) = �

Q
t
(bY ), acting

on H that represents bY at time t.
It is interesting to ask whether physical quantities can serve to detect
or record events happening in S. For a restricted set

OS = {Qj}j2J
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of physical quantities characteristic of S, it is arbitrarily unlikely that
one of the algebras �

Qj
t
(Qj), j 2 J, has a non-trivial intersection with

(e.g., contains or is contained in) an algebra Z!t(E�t) describing the
event happening at time t, for some state !t. To cope with this prob-
lem, we have to understand how well Z!t(E�t) can be approximated
by the algebra generated by a family, {Q↵(t)}N↵=0, of disjoint orthogo-
nal projections contained in (or equal to) an algebra �

Q
t
(Q), for some

Q 2 OS .
There are different ways of quantifying how well the algebra generated
by {Q↵(t)}N↵=0 approximates the event described by Z!t(E�t). To keep
our discussion brief, it is convenient to introduce “conditional expecta-
tions” of algebras:

Definition 4.
Let N be a (von Neumann) subalgebra of a (von Neumann) algebra
M. A linear map

✏! : M !
onto

N (20)

is a conditional expectation from M onto N with respect to a normal
state ! on M iff

(i) k✏!(X)k  kXk, 8X 2 M
(ii) ✏!(X) = X, 8X 2 N
(iii) ! � ✏! = ! ⇤

Conditional expectations have the following properties:

(iv) ✏!(X⇤
X) � 0, 8X 2 M

(v) ✏!(AXB) = A✏!(X)B, 8A,B,2 N , 8X 2 M
(vi) ✏! : M ! N is completey positive, and ✏!(1M) = 1N

See, e.g., [26] for an exposition of the theoy of conditional expectations.
Under very general assumptions, there exist conditional expectations

✏! t : E�t ! Z! t

�
E�t

�
, (21)

for arbitrary times t.
Let !t be the state of a system S right before an event {⇡⇠, ⇠ 2 Xt}
generating Z! t(E�t) starts to happen. I propose to clarify in which
way a physical quantity Q 2 OS can be used to record this event,
and how precisely the value of this quantity identifies the actual event,
⇠⇤ 2 Xt, happening at time t.
We assume that there exists a physical quantity Q and a family of dis-
joint orthogonal projections { bQ↵}N↵=0 ⇢ Q, N � 2, with the following
properties:
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(a)
P

N

↵=0Q↵(t) = 1, where Q↵(t) = �
Q
t
( bQ↵), ↵ = 1, . . . , N, 8t;

(b) there exists a positive number � ⌧ 1 such that

! t

⇣ NX

↵=1

Q↵(t)
⌘
� 1� � , ! t

�
Q0(t)

�
 � ;

(c) Given an operator X 2 E�t, we define

dist
�
X,Z! t(E�t)

�
:= kX � ✏! t(X)k.

We assume that

dist
�
Q↵(t),Z! t(E�t)

�
< � , for ↵ = 1, . . . , N . (22)

In the following, we use the notation O(") to denote any real number
whose absolute value is bounded above by const. ", where const. is
a uniformly bounded positive constant. Properties (a) through (c) of
{ bQ↵}N↵=0 can be used to derive the following equations:
For an arbitrary operator X 2 E�t,

!t(X) =
NX

↵=1

!t

�
Q↵(t)X

�
+O(�kXk)

=
NX

↵=1

!t

�
Q↵(t)[Q↵(t)X]

�
+O(�kXk)

=
NX

↵=1

!t

�
✏!t(Q↵(t))[Q↵(t)X]

�
+O(�NkXk)

=
NX

↵=1

!t

�
Q↵(t)X ✏!t(Q↵(t))

�
+O(�NkXk)

=
NX

↵=1

!t

�
Q↵(t)X Q↵(t)

�
+O(�NkXk). (23)

Apparently, if �N ⌧ 1 then, to a good approximation, the state !t

is an incoherent superposition of eigenstates of the disjoint projections
Q↵(t), ↵ = 1, . . . , N . We then say that, at approximately time t, “a
projective (direct) measurement of Q takes place”.

Definition 5. (Resolution of Q in recording an event)
Assuming that Xt is a countable set, then, for any � 2 (0, 1), there
exists a subset X (M)

t
✓ Xt whose cardinality is given by a finite integer

M such that
!t

⇣ X

⇠2X (M)
t

⇡t,⇠

⌘
� 1� � .
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Then, for an arbitrary operator X 2 E�t,

!t(X) =
X

⇠2X (M)
t

!t

�
⇡t,⇠ X ⇡t,⇠

�
+O(� kXk) .

The “resolution” of {Q↵(t)}N↵=0 ⇢ Q in recording the event {⇡t,⇠, ⇠ 2 Xt}
starting to happen at time t is defined by

R :=
N

M
· (1� �) , for 2  N  M , (R = 0, for N = 1) . ⇤

(24)
It turns out that property (c), Eq. (22), above, implies that, given
an orthogonal projection Q↵(t) 2 �

Q
t
(Q), there exists an orthogonal

projection P↵ 2 Z! t

�
E�t

�
such that

kQ↵(t)� P↵k < O(�) . (25)

A proof of this simple lemma can be found in the appendix of [3].
Since the projections ⇡t,⇠, ⇠ 2 Xt generate the abelian algebra Z! t

�
E�t

�
,

we have that

⇡t,⇠ · P = ⇡t,⇠, or ⇡t,⇠ · P = 0, 8⇠ 2 Xt , (26)

for any orthogonal projection P 2 Z! t

�
E�t

�
. Equations (25) and (26)

then imply the

Result. For any ↵ = 1, . . . , N , and for all ⇠ 2 Xt,

k⇡t,⇠ Q↵(t)� ⇡t,⇠k < O(�) , or k⇡t,⇠Q↵(t)k < O(�) .

Thus, if the physical quantity Q is measured to have a value corre-
sponding to an eigenstate of the projection Q↵(t) right after the event
at time t has started to happen, then we know that the state of S right
after time t is given by

[!t(⇡t,⇠ [
)]�1

!t

�
⇡t,⇠ [

(·)⇡t,⇠ [

�
,

for some ⇠ [ 2 Xt for which

k⇡t,⇠ [
Q↵(t)� ⇡t,⇠ [

k < O(�) . (27)

Furthermore:
The higher the resolution, R, of Q in recording the event {⇡t,⇠, ⇠ 2 Xt},
the more precise the information provided by a measurement of Q is; if
N = M and � is sufficiently small then every bQ↵ determines a unique
point ⇠[ 2 Xt with the property that kQ↵(t) � ⇡t,⇠[k < O(�). (In the
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limit where � ! 0 the information on the event that starts to happen
at time t becomes totally accurate.)
Remarks:
(1) The main results of this paragraph are Eq. (23), the Result stated
above, and Eq. (27).
(2) The concepts presented in paragraph V. and results cloosely re-
lated to the ones described above can be obtained without ever using
the theory of conditional expectations. However, their use appears to
render the presentation more elegant.

This completes our review of the “ETH-Approach to Quantum Mechanics”
in a non-relativistic setting. Some idealized models fitting into this frame-
work are discussed elsewhere, [11]. A relativistic form of this approach can
be found in [16]. The material in [16] leads one to speculate that a logically
coherent quantum theory of events, measurements and observations in real-
istic autonomous isolated (open) systems – not involving the intervention of
“observers” – can only be developed in the realm of local relativistic quantum
theories with massless particles, and for even-dimensional space-times.

4 Scattered remarks about indirect measurements,
conclusions

I start this section with a few comments on “indirect measurements” (see
[27, 19] for important early results) and then sketch some conclusions.

Let S be an isolated open system, as discussed in Sections 2 and 3.
I assume that the system has been prepared in such a way that there is
a specific physical quantity, Q, characteristic of S that repeatedly records
events featured by S (i.e., is “measured projectively”), at times t1 < t2 <

. . . tn, n 2 N, as discussed in paragraph V. of Section 4, Eqs. (23) and (27).
Let us assume that the spectrum of Q is a finite set YQ = {0, 1, . . . , k}, so
that Q is generated by a single operator, bY , with eigenvalues 0, 1, 2, . . . , k.
Let

⌘
(n) := {⌘1, ⌘2, . . . , ⌘n}, ⌘j 2 YQ

, j = 1, 2, . . . , n , (28)

be the sequence of values of bY measured at times t1, t2, . . . , tn, as explained
in paragraph V. of Section 4. This means that the state of S right after time
tj is in an approximate eigenstate corresponding to the eigenvalue ⌘j of the
operator Y (tj) representing bY at time tj , for j = 1, 2, . . . , n, as expressed in
Eq. (23). The sequence ⌘

(n) is called a “measurement protocol” of length
n. As an example, bY may describe the functioning of k different detectors
that click when a certain type of particle (e.g., a photon or an atom), called
a “probe”, belonging to S impacts them, with the following meaning of its
eigenvalues:

21



⌘ = 0 $ none of the detectors clicks , ⌘ = ` $ detector ` has clicked ,

` = 1, . . . , k.

Given a measurement protocol ⌘(n) of length n, we define the frequency (of
occurrence) of the value ⌘ 2 YQ by

f⌘

�
⌘
(n)

�
:=

1

n

⇣ nX

j=1

�⌘ ⌘j

⌘
. (29)

Note that

f⌘

�
⌘
(n)

�
� 0, and

kX

⌘=1

f⌘

�
⌘
(n)

�
= 1 .

Of particular interest is the asymptotics of f⌘

�
⌘
(n)

�
, as n ! 1. Let us

temporarily suppose that, 8⌘ = 1, . . . , k, the limit of f⌘
�
⌘
(n)

�
, as n ! 1,

exists whenever a copy of S prepared in a fixed state is subjected to very
many repeated measurements of bY , with

lim
n!1

f⌘

�
⌘
(n)

�
2 {p(⌘|↵)}N↵=1 , (30)

for some N < 1; (this is a “Law of Large Numbers”, see [20]). In (30),

p(⌘|↵) � 0, and
kX

⌘=1

p(⌘|↵) = 1 , (31)

for all ↵ = 1, . . . , N , for some N < 1. Apparently, the probability mea-
sures p(·|↵),↵ = 1, . . . , N, describe all possible limiting values the frequen-
cies f(·)(⌘

(n)) may converge to. We propose to interpret the parameter ↵ as
follows: ↵ characterizes a time-independent property of S, i.e., it is an eigen-
value of a self-adjoint operator, A, on H representing a physical quantity of
S that commutes with the operators Y (tj), j = 1, 2, . . . , and is a conserva-
tion law, meaning that A is time-independent (under the Heisenberg time
evolution of operators on H). Such an indirect measurement of A is called
a “non-demolition measurement”. One expects that conservation laws are
elements of

E1 :=
^

t2R
E�t ,

where E1 is an algebra in the center of the algebra E defined in (3), (“asymp-
totic abelianness” in time). Under suitable hypotheses this expectation can
actually be proven.
Thus, if the frequencies f⌘

�
⌘
(n)

�
are seen to converge to the value p(⌘|↵⇤), as

n ! 1, ⌘ 2 YQ, for some ↵⇤ 2 spec(A), and if the measures p(·|↵) separate
points in the spectrum, spec(A), of A, then we know that, asymptotically,
as t ! 1, the value of the conservation law A approaches ↵⇤. (The fact
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that the measures p(·|↵) may depend on ↵ in a non-trivial way, at all, is a
consequence of “entanglement”; see [19, 18, 20].)
Evidently, one would like to prove (30) and to predict the probability of indi-
rectly measuring a value ↵⇤ for A, assuming one knows the initial state of S.
However, this can only be done if the events encoded by the values ⌘1, ⌘2, . . . ,
of the physical quantity Ŷ , which is measured at times t1, t2, . . . , are the only
events happening in S. For a limited class of systems (see [18, 20]), one can
prove that if this is the case then (30) holds, the state of S approaches an
eigenstate of A corresponding to some eigenvalue ↵⇤ 2 spec(A), as time
t ! 1, (“purification”), and the probability of measuring the value ↵⇤ is
given by Born’s Rule applied to the initial state of S and the operator A,
see [20].

Usually, operators on H representing physical quantities of S are not
time-independent. If the rate of change in time of a physical quantity, A, of
S that one attempts to measure indirectly, as described above, is very small,
as compared to the rate of repeated projective measurements of the physical
quantity Ŷ used to determine the value of A,12 then it turns out that, to
good accuracy, the dynamics of the state of the system S is described by
a Markov jump process on the set of eigenspaces of the operator (A). The
sample paths of this process describe “quantum jumps” of (the state of)
S from one approximate eigenstates of A to another one. This picture has
been given a precise meaning in [20, 22], in the framework of some simple
models.

Concluding Remarks:

(1) The ETH-Approach to QM sketched in this paper is a “Quantum
Mechanics without observers”. It introduces a precise notion of “events”
into the quantum formalism; and it furnishes quantum theory with a
clear “ontology”.

(2) The ETH-Approach establishes a precise formalism to describe the
stochastic time evolution of states of isolated (open) systems featuring
events. As I have tried to explain, while, for an isolated system, the
Heisenberg-picture time evolution of operators, in particular of physical
quantities characteristic of such a system, determined by the unitary
propagator of the system is perfectly adequate, the time evolution of its
states is described by a novel kind of stochastic branching process with
a “non-commutative state space”. This is described in some detail in
paragraph IV. of Section 3. The analysis presented there shows that it
is simply not true – in any naive sense – that the “Heisenberg picture”
and the “Schrödinger picture” are equivalent.

12One speaks of a “weak measurement” of A
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(3) It is explained in paragraph V. of Section 3 what a “physical quantity”
characteristic of an isolated open system is, what it means to measure
such a quantity “projectively”, and how “projective measurements” of
physical quantities can be used to record events. This also lays a basis
for a precise theory of indirect measurements.

(4) It is important to note that, in the ETH-Approach to QM , the ex-
pected value of a conservation law represented by a self-adjoint oper-
ator A in the actual state of an isolated open system featuring events
is not constant in time, (as it would be if states evolved according to
the Schrödinger equation).

(5) A “passive state” of an isolated open system S prepared at some time
t0 is a state ! for which Z! t(E�t) = {C1} , for all times t > t0.
We expect that it often happens that states of S approach “passive
states” asymptotically, as t ! 1, (with �(µ!) = 0, see (17)). Thermal
equilibrium states are “passive states”.

(6) Clearly, the ETH-Approach to QM is so general that, for the time
being, it is very hard to use it to carry out explicit calculations for re-
alistic model systems and to show in which way its predictions differ –
usually (hopefully) only ever so slightly – from those made on the basis
of, for example, the Copenhagen Interpretation of QM , or Bohmian
Mechanics. I emphasize, however, that differences in the predictions of
the ETH-Approach and other versions of QM – however small they
may be – really exist!
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1. Introduction –  walking out of the quantum maze

1.1. Introductory remarks

Recent years have seen enormous progress in setting up beautiful experiments that success-
fully test fundamental features of quantum mechanics. Furthermore, there have been substantial 
new developments in the areas of quantum information theory and its practical uses and of 
quantum computing. These advances have made renewed studies of the foundations of quan-
tum theory commendable and, perhaps, even somewhat fashionable – after a long period during 
which such studies were facing suspicion.

Unfortunately, the success of recent efforts to clarify the message and interpretation of quan-
tum mechanics and to formulate this theory in a logically coherent way is rather limited. Much 
confusion and disorientation still surround its foundations, even among professional physicists 
– so much so that many mathematicians do not want to think about it. There are many wrong 
or misleading prejudices. To mention one example, we tend to teach to our students that, in the 
Schrödinger picture, the quantum-mechanical time evolution of states of physical systems is de-
scribed by the Schrödinger equation for a wave function (or the Liouville equation for a density 
matrix), and that the Schrödinger picture and the Heisenberg picture are equivalent. Well, when 
stated in this generality and in case we wish to describe the time evolution of systems featuring 
events (amenable to observation), nothing could be farther from the truth; see subsect. 2.4!

Given that quantum mechanics was discovered ninety years ago, the present rather low level of 
understanding of its deeper meaning may be seen to represent some kind of intellectual scandal. 
We would like to help, in modest ways, to alleviate some of the confusion blurring this most 
important theory.

Fairly shortly before his death, our unforgettable mentor and friend Raymond Stora developed 
a lively interest in questions concerning the foundations of quantum mechanics. We feel that it is 
fitting to dedicate a paper on this subject to his memory.

1.2. Some fundamental questions and problems

In our courses on quantum mechanics, we tend to describe physical systems, S, as pairs of a 
Hilbert space, H, of pure state vectors, and a unitary propagator, (U(t, s))t,s∈R, describing the 
time evolution of states (from time s to time t ). Unfortunately, these data encode hardly any 
interesting invariant data about S, besides spectral properties of the unitary operators U(t, s), 
which would enable one to draw conclusions about physical properties of S. Moreover, they give 
the erroneous impression that quantum mechanics might be a deterministic theory, because the 
Schrödinger equation is a deterministic evolution equation. These observations give rise to the 
following

Fundamental questions and problems:

• What does one have to add to the data described above to arrive at a mathematical structure 
that – through interpretation – can be given physical meaning without the intervention of 
“observers” or addition of ad-hoc postulates concerning “measurements” to the theory?

• What is the origin of the intrinsic randomness in quantum theory, given the deterministic 
character of the Schrödinger equation? In which way does quantum randomness differ from 
classical randomness?



P. Blanchard et al. / Nuclear Physics B 912 (2016) 463–484 465

• How are “states”, “observables” and “events” defined in quantum mechanics; what is the 
meaning of these notions? Do we understand the time-evolution of “states” and of “observ-
ables” of physical systems in quantum mechanics, and what does it have to do with solving 
the Schrödinger equation?

• What is meant by an “isolated system” in quantum mechanics, and why is this an important 
notion? (Answer: Because only for isolated systems we understand, in a general way, how to 
describe the time evolution of “observables”.) Is it understood, in quantum mechanics, how 
to prepare a system S in a prescribed initial state? Etc.

Answers to these important questions, except to the last one, are sketched in the following sec-
tions. (A fairly detailed discussion of the last question can be found in [1,2].)

1.3. Purpose of analysis

Besides addressing the questions raised in the last subsection, the main purpose of this paper 
is to sketch or review arguments in favor of some of the following basic claims.

• In quantum mechanics, the “state” of a system – as conventionally defined – does not
describe “what is” or “will be”; it does not have an ontological status. Rather it is a mathe-
matical device enabling us to make bets about the most likely events seen to happen in the 
future. (The “ontology” lies in time-ordered sequences of events, sometimes called “histo-
ries”, not in “states”.)

• The success of a quantum theory of “events” (that can be detected through observations or 
measurements) hinges on our ability to update the state of a system in time in accordance 
with events observed in the past, i.e., on a description of the time evolution of states in the 
presence of events, which observers can, in principle, record with the purpose to optimize 
their predictions of future events.

• Our description of the time evolution of states of systems exhibiting events exploits a fun-
damental mechanism of “loss of access to information” (for short, “information loss”) and 
of entanglement with degrees of freedom carrying away “inaccessible (lost) information”. 
This mechanism allows for the evolution of pure states into mixtures.

• There is no reason to expect that there are “information- or unitarity paradoxes” in quantum 
mechanics. In fact, the quantum-mechanical time evolution of states of physical systems 
exhibiting information loss and featuring events that can be recorded is never unitary; (see 
subsect. 2.4).

• Somewhat advanced mathematical concepts, such as functional analysis, in particular opera-
tor algebras (including type III1 – von Neumann algebras), functional integration, stochastic 
processes, elements of statistics, etc. have been invented to be used in the study of Quantum 
Theory – they do not represent a superfluous luxury.

In the following sections, we sketch arguments in favor of some of these claims; (for a more 
detailed presentation we refer to [3–5]). In particular, we outline a novel theory of events, obser-
vations and measurements in quantum mechanics based on two basic concepts:

1. Fundamental “loss of access to information” and entanglement with degrees of freedom that 
are no longer observable, i.e., carry away lost information.
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2. Specification of a list of physical quantities characterizing possible events that can, in prin-
ciple, happen, (depending on the state the system has been prepared in) and be recorded 
directly.

2. Information loss and events in quantum mechanics

We start this section with a somewhat pedestrian definition of physical systems in quantum 
mechanics, (subsect. 2.1). Afterwards, we introduce the concept of “loss of access to informa-
tion”, (subsect. 2.2). This will guide us towards a novel quantum-mechanical theory of events 
amenable to observation, (subsect. 2.3). Finally, in subsect. 2.4, we describe the time evolution 
of states in physical systems featuring events that can be recorded.

It should be emphasized that what we are trying to understand in this paper is Quantum Me-
chanics – pure and simple; we are not trying to extend or generalize this theory.

2.1. Definition of physical systems

Definition N-R: In non-relativistic quantum mechanics, an isolated system, S, is characterized 
by the following data, (items 1 through 3):

• 1. A pair,

(H, {U(t, s)}t,s∈R), (1)

of a Hilbert space H of pure state vectors and a unitary propagator U with the usual proper-
ties: U(t, s) is a unitary operator on H, for all pairs of times (t, s), and

U(t, t) = 1, U(t, s) · U(s, r) = U(t, r), ∀t, s, r in R.

• 2. A list,

OS = {X̂i}i∈IS , (2)

of bounded self-adjoint operators X̂i representing physical quantities of S that could be 
recorded directly. We assume that OS contains an identity element, 1, and that if f is an 
arbitrary real-valued, bounded, continuous function on R and X̂ is an arbitrary operator in 
OS then f (X̂) also belongs to OS .

Remarks. (i) In this paper, “physical quantities of a system S” are always represented by 
self-adjoint (bounded) linear operators.2 If during a certain interval, I , of time it is possible to 
unambiguously assign an objective value to a physical quantity of S represented by an operator 
X̂ ∈ OS we say that, during the time interval I , an “event” is happening; namely the event 
that X̂ has an objective value that could, in principle, be observed directly. What this means 
mathematically will be explained below.

(ii) Note that, in general, OS is not an algebra; it is not even a linear space! Typically, OS may 
be generated by just a few (possibly only finitely many) operators. Let AS denote the algebra 
generated by OS (closed in a C∗-norm). In simple examples of physical systems (see Eq. (8) and 
Sect. 3 for a concrete model system), the operators in OS all commute among themselves. We 

2 This is actually a feature common to all physical theories known to us – quantum and classical.
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can then identify AS with OS ; and it is a well known theorem due to I.M. Gel’fand that, under 
this assumption,

OS ≃ {continuous functions on a compact Hausdorff space XS} =: C(XS) (3)

The topological space XS is called the spectrum of OS .
Given an algebra A of operators, a maximal abelian subalgebra of A is a commutative sub-

algebra, M ⊆ A, with the property that the subalgebra of operators in A that commute with all
operators in M is equal to M. In order to keep this paper reasonably short and easy to read, we 
introduce the following

Simplifying Assumption:
Every maximal abelian algebra, M, contained in AS is generated by a finite family of commut-
ing orthogonal projections, {!ξ1, . . . , !ξN }. Then M = C(X ), where X = {ξ1, . . . , ξN } is the 
spectrum of M. It is assumed that there is at least one maximal abelian subalgebra, MS , in 
AS with the property that all self-adjoint elements of MS belong to OS . However, there may 
be several such maximal abelian algebras, {M(i)

S }i∈IS , not commuting with each other.3 The or-
thogonal projections contained in an algebra M(i)

S , i ∈ IS , are called “possible events”; any real 
linear combination of the orthogonal projections generating M(i)

S is then a physical quantity, X̂i , 
belonging to OS .4

(iii) The occurrence of events in a system S does not depend on the presence of “observers”; 
i.e., our formulation of quantum mechanics does not invoke “observers” who decide to measure 
some quantity (and may then disagree on exactly which quantity they would like to measure 
and when). But, of course, any useful physical theory must talk about objects and phenomena 
that intelligent beings can observe if they choose to do so, and it should help them to cope with 
the challenges of a changing world by enabling them to agree among themselves whether some 
events have happened and to make useful and plausible predictions about future events. – That 
much about “physical quantities” (“observables”), “(possible) events”, and philosophy!

• 3. At every time t , there exists a representation

AS ∋ X̂ '→ X(t)

of the algebra AS by operators, X(t), acting on the Hilbert space H with the property that 
X̂∗ is represented by the operator X(t)∗; in particular, if X̂ is self-adjoint then X(t) is a 
self-adjoint operator on H. The operators X(t) and X(s) are unitarily conjugated to each 
other by the propagator of S, i.e.,

X(t) = U(s, t)X(s)U(t, s), for times s, t ∈ R, X̂ ∈ AS.

By AS(t) we denote the algebra {X(t)|X̂ ∈ AS} ⊆ B(H), where, as usual, B(H) denotes the 
algebra of all bounded operators on the Hilbert space H.

3 Example: M(1)
S = {all bounded continuous functions of the position of a particle, P }, and M(2)

S = {all bounded
continuousf unctionsof themomentumof P }.

4 A more general analysis of the role of maximal abelian subalgebras of AS in our formulation of quantum theory, not
assuming that they are generated by finitely many projections, will be presented elsewhere.
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Possible events observable at times ≥ t generate an algebra E≥t :

E≥t := {linear combinations of
∏

i

Xi(ti)|X̂i ∈ OS, ti ≥ t}−, (4)

with E := E>−∞. For concreteness, we assume that the closure is taken in the weak operator 
topology on B(H).5

With a view towards an extension of our formalism to relativistic quantum (field) theory, we 
briefly outline a somewhat more general notion of physical systems.

Definition R: In quantum theory, a general isolated physical system S is characterized by the 
following data:

• 1. A list,

OS = {X̂i}i∈IS ,

of bounded self-adjoint operators X̂i representing physical quantities of S. As before, we 
let AS denote the C∗-algebra generated by OS , and we continue to impose the simplifying 
assumption formulated in Remark (ii) after item 2, above, etc.

• 2. A net (EI)I⊂R of (von Neumann) algebras, EI , indexed by time intervals I , with the 
interpretation that EI is generated by possible events localized in the time interval I . This 
net is assumed to have the property that if I ⊂I ′ then EI ⊂EI ′ . We define

E≥t :=
∨

I⊆[t,∞)

EI , E := E>−∞. (5)

In (5), the closure is taken in the weak operator topology on B(H).
• 3. For every time t ∈ R there is a ∗representation

AS ∋ X̂ '→ X(t) ∈ E≥t (6)

of the algebra AS by operators in E≥t . The representations of AS corresponding to different 
times are unitarily equivalent.
It is assumed, furthermore, that, for every X̂ ∈ OS and every ε > 0, there exist a finite dura-
tion τ = τ (X̂, ε) < ∞ and an operator Xε(t) ∈ E[t,t+τ ] such that

∥X(t) − Xε(t)∥ < ε.

Remark: In Definition R, “time” refers to the proper time of an observer, and the net {EI}I⊂R
depends on the worldline of that observer; see Fig. 1, below. This does not mean that the the-
ory becomes “observer-dependent”. But it does mean that one has to find out how one and the 
same sequence of events is seen by different observers, i.e., how to map the data concerning a 
sequence of events recorded by one observer to the data recorded by another observer. Luckily, 
for the purposes of the analysis presented here we do not need to address this problem, which 
lies somewhat beyond the scope of this paper.

The analysis presented in the following sections is based on Definition R; (but no attempt is 
made to present an analysis that takes into account the laws of relativity theory).

5 A sequence, or net, (Ai)i∈I of bounded operators on H is said to converge weakly iff (⟨ψ, Aiϕ⟩)i∈I converges, for 
arbitrary vectors ψ and ϕ in H. The algebras E≥t and E are von Neumann algebras, because they are closed under weak 
convergence. In the following, it is convenient to work with von Neumann algebras. But the reader is kindly asked not to 
worry about this technicality.
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Fig. 1. An illustration of Property (∗).

2.2. Information loss

The idea of “information loss” or, more precisely, “loss of access to information” is encapsu-
lated in the following general assumption concerning the algebras E≥t , t ∈ R:

B(H) ⊇ E ⊇ E≥t ⊅= E≥s ⊇ AS(s), s > t. (7)

Information Loss!

A precise formulation of “Information Loss” is to assume that if s > t then

E ′
≥s ∩ E≥t ≠ ∅, (∗)

where, for an algebra A of bounded operators acting on H, A′ is the algebra of all bounded oper-
ators on H commuting with all operators in A. In fact, one expects that E ′

≥s ∩ E≥t is typically an 
infinite-dimensional algebra (at least for some s > t), an expectation extracted from the analysis 
of examples; see [6,7].

Property (∗) is far from obvious and appears to only hold in theories of systems with infinitely 
many degrees of freedom including massless ones, such as photons or phonons. D. Buchholz and 
the late J.E. Roberts have presented a deep analysis of Property (∗) in quantum electrodynam-
ics, formulated in the framework of algebraic quantum field theory; see [6]. In their work, the 
analogue of the algebra E≥t is played by an algebra of bounded functions of the electromagnetic 
field smeared out with test functions with support in the forward light cone V +

Pt
erected over a 

space-time point Pt at proper time t that belongs to the worldline of an observer. They show that 
Property (∗) follows from Huyghens’ Principle for the electromagnetic field and the existence of 
asymptotic electromagnetic field operators; see Fig. 1.

Fig. 1 indicates that E≥t0 properly contains E≥t , for t > t0, and that, asymptotically, flashes of 
light emitted from region O belong to E ′

≥t ∩ E≥t0 .
Information Loss, in the sense of Eq. (7) (with Property (∗) valid for some s > t), holds 

in many models of non-autonomous systems describing a small system (e.g., an n-level atom) 
alternatingly coupled to various mutually independent dispersive media (e.g., the quantized elec-
tromagnetic field, or the phonons of a dynamical crystal lattice) during finite intervals of time; 
see [7]. Here we briefly sketch the example of a mesoscopic system consisting of a T-shaped 
conducting wire ending in three reservoirs denoted by DL, DR and “e− gun”; see Fig. 2.
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Fig. 2. A mesoscopic system.

The reservoir “e− gun” has a higher chemical potential than the reservoirs DL and DR . Hence 
“e− gun” emits electrons at a certain rate that move through the T-shaped wire until they dive 
into one of the reservoirs DL or DR where they disappear for ever. Before they disappear they 
trigger detectors that emit a signal (flash of light or sound wave) whenever an electron has arrived 
at DL or DR , respectively. In this example, the system S is the composition of the equipment 
E with a quantum dot P ∨ P ′ in a semi-conductor matrix. The electric charge localized inside 
the component P of the quantum dot, which can fluctuate by electron exchange between the 
components P and P ′, determines the a-priori probability by which an electron traveling through 
the T-shaped wire will dive into DR . The equipment E consists of the three reservoirs, “e− gun”, 
DL and DR , the T-shaped wire, and the detectors at the entrance gates to DL and DR . The 
only physical quantity of S that can be observed directly is the flash of light or sound emitted 
by the detector on the left or the right whenever an electron dives into DL or DR , respectively. 
Mathematically, this quantity can be represented by the operator

X̂ = 1P∨P ′ ⊗
(

1 0
0 −1

)
, (8)

which has the (infinitely degenerate) eigenvalues ξ = ± 1, with

ξ = +1 ↔ DL clicks, ξ = −1 ↔ DR clicks.

The family OS of operators consists of all bounded functions of the operator X̂; its spectrum, XS , 
consists of two points, {−1, +1}. Access to the “information” represented by an electron that 
travels through the T-shaped wire is lost, as soon as that electron has dived into one of the reser-
voirs DL or DR . (To make this precise one must assume that the detectors have infinitely many 
degrees of freedom.)

This example is discussed in much detail in [5]. It illustrates how properties of a physical 
system S – in the example, the charge of the dot P – can be determined indirectly through a long 
sequence of repeated observations of physical quantities represented by operators in OS . Results 
from [5] concerning this example are summarized in section 3. (Our efforts have been stimulated 
by the experiments described in [8]; see also [9].)

2.3. Direct detection of events – projective recordings of physical quantities

Let {M(i)
S }i∈IS denote those maximal abelian subalgebras of AS that belong to OS . In this 

subsection, we clarify what it means that a physical quantity of a system S represented by an 
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operator X̂ ∈ M(i)
S , for some i ∈ IS , is recorded or measured directly (or “projectively”) around 

some time t , i.e., that X̂ has an objective value at or around time t . We will explain the roles 
played by “information loss”, in the sense of Eq. (7), and of entanglement of observable degrees 
of freedom of S with inaccessible (“lost”) degrees of freedom.

Let ξ1 < · · · < ξN denote the eigenvalues of the operator X̂, and let !ξ1, . . . , !ξN be the 
corresponding spectral projections, with !ξj ∈ M(i)

S , ∀j = 1, . . . , N . These projections have 
the interpretation of “possible events”; (!ξi corresponds to the possible event that the physical 
quantity represented by the operator X̂ is observed, at some time t , to have the value ξj ). For the 
mesoscopic system considered in subsection 2.2 (see Fig. 2), OS ≡MS is generated by a single 
operator, X̂, with only two eigenvalues ξ = ± 1.

Let X(t) ∈ E≥t be the operator on H representing X̂. Then

X(t) =
N∑

j=1

ξj!ξj (t), (9)

where !ξj (t) is the spectral projection of X(t) corresponding to the eigenvalue ξj ; (the eigen-
value ξj is independent of time t , while the projections !ξj (t) representing the projection 
!ξj ∈ M(i)

S depend on t , but are all unitarily conjugate to one another, for every j = 1, . . . , N ).
It is compatible with the “Copenhagen interpretation” of quantum mechanics (whatever this 

interpretation may be, in more precise terms) to say that if the physical quantity corresponding 
to the operator X̂ ∈ M(i)

S has an objective value around some time t , then the state of S,

ρ(·) = T rH(P ·), where P is a density matrix on B(H), (10)

when restricted to the algebra E≥t , is indistinguishable from an incoherent superposition of 
eigenstates of the operator X(t), in the following precise sense: Let

ρt := ρ|E≥t
,

then

ρt (A) =
N∑

j=1

ρt (!ξj (t)A!ξj (t)) + O(δ∥A∥), ∀A ∈ E≥t , (11)

for some constant δ, with

δ ≪ min
1≤i<j≤N

|ρt

(
!ξi (t) − !ξj (t)

)
|.

Eq. (7) and entanglement with inaccessible degrees of freedom imply that the state ρt is, in 
general, a mixed state on E≥t , even if the state ρ may be a pure state on B(H), so that Eq. (11) is 
by no means inconsistent.

Given a state ϕ on a von Neumann algebra M, we define the centralizer (or stabilizer), Cϕ , of 
ϕ to be the subalgebra of M defined by

Cϕ := {A ∈ M|adA(ϕ) = 0}, (12)

where

adA(ϕ)(B) := ϕ([A,B]), for arbitrary B ∈ M;
see the Appendix for further details. For M = E≥t and ϕ = ρt , the centralizer is henceforth 
denoted by Cρt .
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Let us assume that either the algebra M is isomorphic to a direct sum 
⊕

i B(Hi ), where Hi , 
i = 1, 2, . . . , are Hilbert spaces, (i.e., that M is of type I ), or that ϕ is a separating state on M
(meaning that ϕ(A∗A) = 0, for some A ∈ M, implies that A = 0).6 Then there exists a linear map 
Eϕ : M → Cϕ , called a conditional expectation from M to Cϕ , with the following properties:

Eϕ(XAY) = XEϕ(A)Y, ∀X,Y ∈ Cϕ,∀A ∈ M,

0 ≤ Eϕ(A)∗Eϕ(A) ≤ Eϕ(A∗A), ∀A ∈ M.

Let Zϕ denote the center of Cϕ , (i.e., the algebra of all operators in Cϕ commuting with all 
operators in Cϕ). Under the same assumptions, there also exists a conditional expectation eϕ from 
M to Zϕ with the same properties as those of Eϕ . (The general theory of conditional expectations 
in von Neumann algebras is developed in [10,11,13]; applications to the centralizer of a von 
Neumann algebra can be found in [14,15] and in references quoted therein.) The conditional 
expectations from E≥t to Cρt and from E≥t to Zρt , the center of Cρt , are denoted by Eρt and eρt , 
respectively.

Let X(t), ξj and !ξj (t), j = 1, . . . , N , be as in Eq. (9). It is not hard to show that

Eq. (11) ⇐ ∥Eρt (!ξj (t)) − !ξj (t)∥ ≤ δ′, ∀j = 1, . . . ,N, (13)

for some δ′ = O(δ/N). This and the next claim are proven in the Appendix.
Obviously, Eq. (11) also holds if

∥eρt (!ξj (t)) − !ξj (t)∥ ≤ δ′, ∀j = 1, . . . ,N. (14)

We are now prepared to formulate the

Fundamental axiom of events in quantum mechanics:

Let P := {!ξ1 , . . . , !ξN } be a partition of unity in AS , (i.e., 
∑N

j=1 !ξj = 1|AS
) consisting 

of commuting orthogonal projections that are contained in some maximal abelian subalgebra 
M(i)

S ⊆ OS, i ∈ IS . These projections have the physical interpretation of “possible events”, and 
any real linear combination of them is an operator, X̂ ∈ OS , representing a physical quantity of S. 
Given a state ρ (on the algebra E ) which the system S has been prepared in, we propose to define 
what it means that one out of these N possible events actually happens (or materializes) around 
some later time t .

We fix a “threshold, )t , for detection (of an event) at time t” satisfying

0 < )t ≪ min
i≠j=1,...,N

|ρt (!ξi (t) − !ξj (t))|, (15)

where ρt = ρ|E≥t
, and !ξj (t) ∈ AS(t) is the orthogonal projection on the Hilbert space H repre-

senting the projection !ξj ∈ P . Let P(t) := {!ξ1(t), . . . , !ξN (t)}.
The fundamental axiom has two parts:

• 1. Occurrence of Events in Quantum Mechanics:
One of the (possible) events !ξ1, . . . , !ξN happens (materializes) around time t – put differ-
ently, the physical quantity X̂ = ∑

j ξj!ξj has an objective value around time t – iff

6 If the state ϕ is separating on the von Neumann algebra M then Cϕ is seen to be the subalgebra of operators in 
M invariant under the modular automorphism group, (σϕ

t )t∈R, corresponding to (M, ϕ) [12]; see, e.g., [11,3] and 
references given there.
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dist(P(t),Zρt ) := max
j=1,...,N

∥eρt (!ξj (t)) − !ξj (t)∥ ≤ )t /N. (16)

Remarks. (i) Time of occurrence of events: Obviously, Eq. (16) implies Eq. (11). The earliest 
time when a possible event in P can materialize is the smallest time t = tmin at which inequality 
(16) holds, after the preparation of S in state ρ. Let Itmin be the largest interval of time containing 
tmin such that inequality (16) holds for all t ∈ Itmin . Then one of the possible events {!ξj }Nj=1 hap-
pens in Itmin . Most likely it happens around the time, t∗, minimizing the function dist(P(t), Zρt )

defined in Eq. (16).
(ii) Duration of events: Let τ = τ (P(t∗)) be such that there are self-adjoint operators

{!j (t∗, τ )}Nj=1 ⊂E[t∗,t∗+τ ], with ∥!ξj (t∗) − !j (t∗, τ )∥ ≤ )t∗/N,

see item 3 of Definition R, subsect. 2.1. Then the duration of the event happening around time t∗
is given by τ .

(iii) A simple special case: If the algebra E≥t is of type I (which, alas, it usually won’t be!) 
then the state ρt can be represented by a density matrix, Pt ∈ E≥t . Let

Pt =
N∑

j=1

pj (t)πj (t),

be the spectral decomposition of Pt , where the operators πj (t) are the spectral projections of Pt , 
pj (t) > 0, ∀j , and

N∑

j=1

pj (t) dim (πj (t)) = 1.

Then one of the possible events !ξ1, . . . , !ξN happens around time t iff

max
j=1,...,N

∥!ξj (t) − πj (t)∥ ≤ )t /N, with )t < min
j=2,...,N

(
pj (t) − pj−1(t)

)
.

• 2. Randomness in Quantum Mechanics:
Under the condition that (16) holds at some time t = t∗ ∈ Itmin , the probability that the 
possible event !ξ ≡!ξj ∈ P actually materializes at time t∗ is given by

pξ (t∗) = ρ(!ξ (t∗)) (17)

Born’s Rule

If the event corresponding to the projection !ξ ∈ P is detected to have happened at time t∗
then the state

ρξ,t∗(·) := pξ (t∗)−1ρt∗
(
!ξ (t∗) · !ξ (t∗)

)
(18)

must be used for improved predictions of future events at times > t∗; i.e., the state of S on 
the algebra, E≥t∗ , of possible events after time t∗, conditioned on the event corresponding to 
!ξ to have materialized at time t∗, is given by ρξ,t∗ .

“Projection-, or Collapse Postulate”
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Remarks, ctd.: (iv) Apparently, if it is known that an isolated system S was prepared in a state 
ρ before the earliest event has happened, then the quantum theory of S predicts at or around what 
time t∗ the first event will occur, for what duration, τ , the event will last, and to which family, 
P , of possible events that event belongs to. (We recall that P is contained in a maximal abelian 
subalgebra M(i)

S ⊆ OS of AS .) But which event from the family P materializes at time t∗ cannot 
be predicted with certainty – Quantum Mechanics only enables us to calculate the “frequency” 
or probability by which a specific element !ξ ∈ P corresponds to the event materializing around 
time t∗, and this probability is given by Born’s Rule. In colloquial language, one may say that if 
one knows the state in which an isolated physical system S was prepared before the first event 
occurs then one can predict (using quantum mechanics) “which pointer (of an instrument) will 
start to turn first, at approximately what time it will start to turn, and for how long it will turn 
before it will come to rest; but its final position cannot be predicted.”

(v) Note that many or most quantum-mechanical models of isolated systems that we discuss in 
our courses and books, such as models of systems of finitely many oscillators or of atoms treated 
according to Schrödinger’s wave mechanics and not coupled to the quantized radiation field, do 
not describe any events (in the sense this notion has been given above)! The reason is that they 
give rise to algebras E≥t that are independent of t ; i.e., that they do not exhibit any “loss of access 
to information”, in the sense of Eq. (7). Before one incorporates equipment (with infinitely many 
degrees of freedom), such as detectors, etc., which the degrees of freedom of interest (e.g., the 
ones describing an atom) interact with, into the quantum-mechanical description it is impossible
to formulate a logically coherent theory of events and observations.

Furthermore, one must expect that most systems have states, called “passive states”, with the 
property that there won’t be any events happening even if there is “loss of access to information”, 
in the sense of Eq. (7). The reason is that the centers Zρt of the centralizers Cρt of the algebras 
E≥t may turn out to be trivial, for all times t , (or be independent of t ), for certain states ρ (called 
“passive”). One may even expect that, generically, a state is passive, and that equilibrium states 
at positive temperature are passive states.

(vi) It is conceivable that, in a more elaborate formulation of quantum mechanics, there is no 
need to specify the list OS of physical quantities of an isolated physical system S that can, in 
principle, be detected directly. Rather, one can imagine that the algebras

{Zρt |t ∈ R,ρ an arbitrary state on E of physical interest}
will determine OS .

2.4. The effective time evolution of states of systems featuring events

Equations (17) and (18) clarify the nature of the time evolution of states of systems featuring 
events. It is illustrated in the following Fig. 3, where:

E stands for “event” (meaning that an event corresponding to a projection !ξ from some family 
P belonging to a maximal abelian subalgebra M(i)

S ∈ OS , i ∈ IS , materializes)
T stands for “tree” (of states of S corresponding to possible events, according to Eq. (18)); and
H stands for “history” (of observed events)

We thus speak of the “ETH approach” to the interpretation of quantum mechanics (describing 
the effective quantum-mechanical time evolution of states of systems that feature events).

Let us summarize some basic elements of the “ETH approach”.
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Fig. 3. “ETH approach” to quantum mechanics. (For interpretation of the colors in this figure, the reader is referred to 
the web version of this article.)

1. “Observables at infinity”: Under rather general hypotheses, one can show that the algebra

E∞ :=
⋂

t∈R
E≥t

is abelian, and that it is in the center of all the algebras E≥t , t ∈ R. Hence E∞ is contained 
in the centers Zρt of the centralizers of all states ρt = ρ|E≥t

, for an arbitrary state ρ on E
and all times t . Thus, the states ρt can be decomposed over the spectrum, X∞, of the al-
gebra E∞. Points in X∞ are called “facts”, because they correspond to objective values of 
time-independent physical properties represented by operators in E∞; see also [4].

2. In [16] and [17] the notion of “consistent histories” has been introduced and discussed, 
which, in conjunction with some understanding of the phenomenon of “decoherence” (see 
Sect. 4), is supposed to lead to a logically coherent interpretation of quantum mechanics. 
The problems with the approach in [16,17] are: (1) that there tend to exist many “consistent 
histories” that are incompatible with each other, hence mutually exclude one another; and 
(2) that, in the understanding of the theory presented in these papers, the propagator of a 
system and the choice of an initial state do not determine which physical quantities that give 
rise to consistent histories will actually be observed in the course of time. Given the time 
evolution of a system and its initial state, the choice of a sequence of physical quantities 
giving rise to consistent histories thus remains quite arbitrary, i.e., lies – like beauty – “in the 
eye of the beholder”.
This problem is avoided in the “ETH approach”, as we now briefly explain. Suppose that, 
at some time t0, a physical system S is prepared in a state ρ = ρ0 (on the algebra E≥t0 ). 
Our formalism then enables us to predict a time, t1, around which the first event after the 
preparation of S in state ρ0 materializes and a family, P1 ⊂OS , of possible events, !1

ξ ∈ P1, 
to which the event that materializes at time t1 belongs; see Eqs. (11) and (16). Suppose now 
that the event happening at time t1 corresponds to the projection !1

ξ1
∈ P1. The “fundamental 

axiom” (see item 2, (18)) then instructs us that, in order to improve our predictions of the 
future after time t1, we should use the state

ρ1(·) := ρ0(!1
ξ1

(t1))
−1ρ0(!1

ξ1
(t1)(·)!1

ξ1
(t1)),
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on the algebra E≥t1 , where !1
ξ1

(t1), (with !ξ1 ∈ P1), is the orthogonal projection on H de-
scribing the event happening at time t1. Given the state ρ1, one can now predict a time t2 and 
a family P2 ⊂OS of orthogonal projections with the property that an event corresponding 
to some element of P2 happens around time t2; etc.
Suppose that the state of the system after the kth event has happened around time tk is 
given by ρk , which is a state on the algebra E≥tk , k = 1, 2, 3, . . . . This state determines a 
time tk+1 > tk and a family, Pk+1, of orthogonal projections describing possible events that 
might materialize at time tk+1. (It can happen that ρk is a “passive state”, in which case 
tk+1 = ∞.) Suppose that the event happening at time tk+1 is detected to be given by the 
operator !k+1

ξk+1
(tk+1) representing the projection !k+1

ξk+1
∈ Pk+1. According to Eq. (18), the 

state on the algebra E≥tk+1 to be used to predict the future at times > tk+1 is then given by

ρk+1(·) := ρk(!k+1
ξk+1

(tk+1))
−1ρk(!k+1

ξk+1
(tk+1)(·)!ξk+1(tk+1)). (19)

If, however, the event happening at time tk+1 (representing some element of Pk+1) is not
recorded then the state on E≥tk+1 to be used to predict the future after time tk+1 is given by

ρk+1(·) := ρk(·)|E≥tk+1
≃

∑

!k+1
ξ ∈Pk+1

ρk(!k+1
ξ (tk+1)(·)!k+1

ξ (tk+1)). (20)

Recall that the distance between Pk+1(tk+1) and Zρk
tk+1

(⊂E≥tk+1) is tiny!

In the “ETH approach”, a history consists of a sequence, 
(
tk, !k

ξk
(tk)

)
k=1,2,3,...

, where t1 <

t2 < t3 < . . . are times, !k
ξk

(tk) (with !k
ξk

∈ Pk ⊆ OS ) is the orthogonal projection on H
describing the event happening at approximately time tk, with tk and Pk determined by the 
state ρk−1 corresponding to the event that happened at time tk−1, according to Eq. (18).
Such a history is denoted for short by

{(ξk, tk)|k = 1,2,3, . . .} (21)

Events that have materialized at some time, but have not been recorded can be omitted from 
the list (21) – as follows from Eq. (20).
Quantum mechanics, as understood in the “ETH approach”, predicts the probabilities of 
histories. In fact, these probabilities are given by a well-known formula, which we call 
“LSW-formula” (for “Lüders–Schwinger–Wigner”, see [18–20]). It is the unique general-
ization of Born’s Rule (k = 1) to all values of k. Here it is:

Prob{((ξk, tk)|k = 1,2,3, . . .} := ρ0
( ∏

k=1,2,3,...

!k
ξk

(tk) · (
∏

k=1,2,3,...

!k
ξk

(tk))
∗
)

(22)

Some applications of this formula will be sketched in Sect. 3.
3. It should be emphasized that a physical quantity represented by an operator X̂ ∈ OS that, for 

a suitably chosen initial state, has an objective value around some time t – meaning that the 
spectral projections of X(t) belong to a family P(t) of possible events happening at time t
– will usually not have an objective value at an earlier or later time, because the quantity in 
question evolves in time; i.e., the operators X(t) representing that quantity depend on time t . 
In fact, for typical choices of an element X̂ ∈ OS , the operators X(t) do not commute with 
operators describing “conserved quantities”, such as energy, momentum or angular momen-
tum, etc. (They do however commute with operators representing “Super-Selection Rules”. 
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But energy and momentum are, of course, not Super-Selection Rules.) It then follows that 
the detection of the value of the physical quantity represented by an operator X̂ ∈ OS , with 
the property that X(t) depends on t , violates energy- (and possibly angular momentum- . . . ) 
conservation, in the sense that the distribution of energies (and angular momentum, i.e., the 
energy- and angular-momentum fluctuations) in the states before and after the observation 
of the value of X̂, see Eq. (18), are different from each other.
The relation between the duration of the event corresponding to the recording of the value 
of a physical quantity and the amount of energy fluctuation accompanying this event is given 
by the usual time-energy uncertainty relations; see, e.g., [21].

3. Indirect observation/reconstruction of properties of physical systems

In this section, we present a brief outline of the theory of indirect non-demolition mea-
surements, as originally developed in [22]; see also [23,9,5] and references given there. Our 
discussion is limited to the analysis of a simple example, which is inspired, in part, by the beau-
tiful experiments described in [8].

3.1. The example of a mesoscopic system

A property, P , of a physical system S is the value of a time-independent physical quantity. 
Examples of properties of S that can be recorded directly are “observables at infinity”, as de-
scribed in item 1 of subsect. 2.4. Our purpose, in this section, is to present a sketchy outline of 
how properties of a system S can be determined indirectly from recordings of long sequences 
of events, (i.e., from recordings of the values of physical quantities represented by operators be-
longing to OS ), as discussed in the last section. Such an indirect observation of a property P
of S is sometimes called a “non-demolition measurement”. A presentation of the general theory 
of non-demolition measurements is beyond the scope of this paper; but see [22,23,9,5]. In the 
following, we therefore focus our attention on the concrete example of a mesoscopic system S
sketched at the end of subsection 2.2. In this example, the list OS of physical quantities whose 
values can be recorded directly consists of all bounded functions of a single operator, namely the 
operator X̂ defined in Eq. (8) of subsect. 2.2, which has only two eigenvalues ± 1 corresponding 
to projections !± 1.

We imagine that a history, (ξk, tk)k=1,2,3,..., of events corresponding to values ξk = ± 1 of the 
physical quantity represented by the operator X̂ has been recorded. In our example, the recording 
of the value ξk = 1 at time tk means that the detector near DL has clicked around time tk , (i.e., 
an electron traveling through the T-channel has entered the reservoir at the end of the left arm of 
the T-channel), while the recording of ξk = −1 at time tk means that the detector near DR has 
clicked around time tk .

For the following discussion, the values of the times t1 < t2 < t3 < . . . at which events (i.e., 
clicks of a detector) are happening are unimportant. We therefore omit reference to these times 
in our notations, denoting histories by ξ = (ξk)k=1,2,3,..., with ξk = ± 1, ∀k = 1, 2, 3, . . . . By ,
we denote the space of all arbitrarily long histories. A sequence, ξn := (ξk)

n
k=1, of n recorded 

detector clicks belonging to a history ξ is called a “measurement protocol” of length n.
Given an initial state ρ of S, the “LSW formula”, Eq. (22) of subsect. 2.4, determines a prob-

ability measure µρ on the space ,: The probability of a measurement protocol ξn = (ξ1, . . . , ξn)

of length n is given by
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µρ(ξ1, . . . , ξn) := ρ
(
!ξ1(t1) · · ·!ξn(tn) · · ·!ξ1(t1)

)
, (23)

see (22). We note that
∑

ξn

µρ(ξ1, . . . , ξn−1, ξn) = µρ(ξ1, . . . , ξn−1), and
∑

ξn

µρ(ξn) = 1.

By a lemma due to Kolmogorov, these properties imply that µρ , as defined by (23), extends 
to a probability measure on the space , of histories.

We suppose that the chemical potential of the reservoir “e− gun” is only very slightly higher 
than the chemical potentials of the reservoirs DL and DR , so that the rate, τ , at which “e− gun” 
releases an electron into the T-channel is so slow that, at any given moment, there is typically only 
at most one electron traveling through the T-channel, and that, after an electron has entered Dℓ, 
the state of this reservoir and of the detector near it relaxes to the original state in a time much 
shorter than τ , for ℓ = L, R. These assumptions can be interpreted as saying that the electrons 
traveling through the T-channel – to get lost in one of the reservoirs, DL or DR , at the end of the 
horizontal arms of the T-channel – and their successive detections are all independent of each 
other. This implies that the measures µρ are “exchangeable”, i.e.,

µρ(ξ1, . . . , ξn) = µρ(ξσ (1), . . . , ξσ (n)), ∀ permutations σ of {1, . . . , n}, (24)

for all n = 1, 2, 3, . . . and all states ρ of the system whose restriction to the three reservoirs have 
the desired properties, (in particular, the prescribed chemical potentials).

By de Finetti’s theorem, Eq. (24) implies that µρ is a convex combination of product mea-
sures. For simplicity, we suppose that it is a finite convex combination of product measures:

µρ(ξ1, . . . , ξn) =
N∑

ν=0

πρ(ν)

n∏

i=1

p(ξi |ν), (25)

where

p(ξ |ν) ≥ 0, ∀ξ,ν, and
∑

ξ=± 1

p(ξ |ν) = 1, ∀ν = 0,1, . . . ,N,

and

0 ≤ πρ(ν) < 1, ∀ν, with
N∑

ν=0

πρ(ν) = 1.

The physical interpretation of these quantities is as follows:

• ν is the number of electrons bound by the quantum dot P . Because of possible electron 
exchange between P and P ′, the state ρ of S is, in general, not an eigenstate of the electron 
number operator of P ; i.e., ν does usually not have a sharp value in the state ρ. It is assumed, 
however, that ν is a static quantity, i.e., that the electron number operator of P commutes 
with the Hamiltonian of the system.

• p(ξ |ν) is the a-priori probability that an electron traveling through the T-channel reaches the 
detector near DL (↔ ξ = 1) or the one near DR (↔ ξ = −1), respectively. This probability 
clearly depends on the number ν of electrons bound to the dot P , because these electrons 
create a “Coulomb blockade” in the arm of the T-channel above P and extending to the right, 
towards DR .
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• πρ(ν) is the Born probability (in the state ρ) for the number of electrons bound to the dot P
to be equal to ν, with ν = 0, . . . , N .

3.2. Summary of results on indirect measurements

In this last subsection, we summarize some recent results on the system described above. We 
omit the proofs, which the reader may find in [5].

We define the frequency, f (n)
ξ , of the value ξ in a measurement protocol ξn of length n (with 

ξ = 1 ↔ electron reaches DL, ξ = −1 ↔ electron reaches DR) as follows:

f
(n)
ξ (ξ) := 1

n

( n∑

k=1

δξξk

)
, with

∑

ξ=± 1

f
(n)
ξ (ξ) = 1, ∀n. (26)

The following results have been established in [5].

1. Law of Large Numbers

For every history ξ ,

lim
n→∞f

(n)
ξ (ξ) = p(ξ |ν), (27)

for some ν = 0, 1, . . . , N . ✷
For simplicity, we assume that

min
ν1≠ν2

|p(1|ν1) − p(1|ν2)| ≥ κ > 0. (28)

With each ν = 0, 1, . . . , N we associate a subset, ,ν , of , defined by

,ν(n, ε) := {ξ ∈ ,||f (n)
ξ (ξ) − p(ξ |ν)| < εn}, (29)

where

εn → 0,
√

nεn → ∞, as n → ∞.

2. Disjointness

It follows from assumption (28) and definition (29) that, for n so large that εn < κ
2 ,

,ν1(n, ε) ∩ ,ν2(n, ε) = ∅, ν1 ≠ ν2. ✷ (30)

3. Born’s Rule and Central limit Theorem

Under appropriate hypotheses on the state ρ (see [9,5]),

lim
n→∞µρ(,ν(n, ε)) = πρ(ν) (31)

Born’s Rule
Furthermore,

µρ

(⋃

ν

,ν(n, ε)
)

→ 1, as n → ∞. ✷ (32)

4. Theorem of Boltzmann–Sanov

Defining the relative entropy σ (ν1∥ν2) by
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σ (ν1∥ν2) :=
∑

ξ=± 1

p(ξ |ν1)
(
log2p(ξ |ν1) − log2p(ξ |ν2)

)
,

one has that

µ
(
,ν1(n, ε)|ν2

)
≤ Ce−nσ (ν1∥ν2), (33)

where µ(·|ν) is the product measure determined by p(ξ |ν).

Remark: Results 1 through 3 hold in much greater generality; see [5]. Concerning Eq. (25)
and Result 4, we remark that there is a general theory of how to decompose measures µρ into 
“extremal measures”, µ(·|ν), ν ∈ ,∞, where ,∞ is the spectrum of the algebra of functions on 
, measurable at ∞. (Functions on , measurable at ∞ take the same values on any two histories 
ξ and η with ξk = ηk , except for finitely many k.) One can show that, under suitable assumptions, 
extremal measures are determined again by states of the system via the “LSW formula”.

We pause to interpret Results 1 through 4. It follows from (32) that if n is very large then the 
set 

⋃
ν ,ν(n, ε) has apparently nearly full measure with respect to µρ . By (30), it then follows 

that, for very large n, essentially every history ξ belongs to exactly one of the sets ,ν(n, ε), and 
hence a measurement protocol ξn of length n determines the number ν of electrons bound to 
the dot P nearly unambiguously, with an error margin that tends to 0, as n tends to ∞. In the 
limit n → ∞, measurement protocols determine the number ν of electrons in the dot P precisely, 
which implies that this number becomes sharp (i.e., does not exhibit any fluctuations, anymore), 
as n tends to ∞. This is the phenomenon of “purification” first studied in [23]. Furthermore, the 
empirical probability of a history ξ ∈ ,ν(n, ε) tends to π(ν), as n tends to ∞, which establishes 
Born’s Rule for non-demolition measurements.

Finally, by Result 4 (Boltzmann–Sanov), the time, T , it takes to indirectly determine the num-
ber ν of electrons bound to the dot P is given, approximately, by

T = τ/σ, (34)

where τ is the rate at which “e− gun” shoots electrons into the T-channel (i.e., the time elapsing 
between two consecutive electrons traveling through the T-channel, or two consecutive clicks of 
detectors), and

σ := min
ν1≠ν2

σ (ν1∥ν2).

It should be emphasized that most indirect measurements are not non-demolition measure-
ments. In the example of the mesoscopic system studied above, it is an idealization to assume 
that the number of electrons in the dot P is static (i.e., that the electron number operator count-
ing the number of electrons bound to P commutes with the Hamiltonian of the system). It is 
therefore important to generalize the theory of indirect measurements sketched here to situations 
where properties of a system S change in time, albeit much more slowly than the rate at which 
direct observations of physical quantities in OS are made. A beginning of such a theory has been 
described in [5].

4. Some hints to the literature, conclusions

There are many precursors of some of the ideas described in this paper, and it is quite im-
possible to do justice to all authors who have contributed (more and less) important pieces to 
the mosaic. The puzzling features of quantum mechanics and the problems surrounding its inter-
pretations have been discussed by many people, including Schrödinger [24] and, later on, Bell; 
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see [25]. A general reference where many of the (older) interpretations of quantum mechanics 
are described is [26].7 By no means are we attempting to distribute credit to various schools of 
thought, and we offer our apologies to all those colleagues who feel that their work should be 
cited here, but isn’t. However, in all modesty, we feel that we have developed a novel approach 
to a “quantum theory of events and experiments”, and we hope that the reader may have prof-
ited from reading this summary of some of the key ideas underlying our approach. (More details 
concerning the approach summarized in this paper can be found in [1,3].)

One might say that “loss of access to information”, in the sense of Eq. (7), is a special form 
of what is called “decoherence”. The concept of decoherence was introduced and discussed in 
[30–32] and, in a very clear way, in [33] and further developed in [34,35], and references given 
there. There cannot be any doubt that “decoherence” is a basic building block in a quantum 
theory of events and experiments. Attempts to arrive at a logically coherent theory of observations 
and measurements based on the concepts of “consistent histories” and “decoherence” have been 
presented in [16,17,36].8 The crucial concept of an “event” was introduced and discussed, and 
its importance in understanding the deeper meaning of quantum mechanics emphasized, in [37]. 
This thread of thoughts has been taken up in [38,39], where a formulation of an “event-enhanced 
quantum theory” inspired by [37] and [40] has been proposed.

In our approach, the concept of an “event” is given a clear meaning, and it plays a fundamental 
role; see subsects. 2.3 and 2.4. Our formulation of the quantum theory of systems exhibiting “loss 
of access to information”, in the sense of Eq. (7), subsect. 2.2, and “events”, as defined in the 
“fundamental axiom” of subsect. 2.3, introduces a clear distinction between the past and the 
future: the past is factual – it consists of events that have materialized –, while the future consists 
of potentialities, namely of “possible events” that might happen, but need not happen.

When analyzing a problem such as the deeper meaning of Quantum Mechanics one must fear 
that not all readers will find one’s approach to the problem entirely convincing. Most certainly, 
our analysis is no exception. Moreover, we realize that various rather interesting and important 
technical issues concerning our approach remain open; (although there is no reason why one 
should not be able to settle them). We therefore conclude our report with a famous quote:

“Wir stehen selbst enttäuscht und sehn betroffen
den Vorhang zu und alle Fragen offen. . . .

Verehrtes Publikum, los, such dir selbst den Schluss!
Es muss ein guter da sein, muss, muss, muss!”

(Bertolt Brecht, in: “Der gute Mensch von Sezuan”)

This paper is a token of our deep gratitude for the wisdom Raymond Stora has shared with us 
and the friendship he has bestowed upon us.

7 The Bohmian point of view, which is of definite interest, but is not relevant for the material in this paper, is presented 
in detail in [27], and references given there. For the many-worlds interpretation of quantum mechanics, see [28,29].

8 We refrain from discussing the merits and success of various attempts to interpret quantum mechanics – which does 
not mean that we do not have opinions about them.
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Appendix. Proofs of Eqs. (13) and (14)

We first briefly explain the notion of a “centralizer”, Cϕ , of a state, ϕ, on a von Neumann 
algebra, M. We recall that

Cϕ := {X ∈ M|adX(ϕ)(·) := ϕ([X, ·]) = 0}.
It follows from this definition that Cϕ is a subalgebra of M: If X and Y are elements of Cϕ then, 
obviously, any linear combination of X and Y belongs to Cϕ , too. Furthermore, for arbitrary 
A ∈ M,

ϕ
(
XYA

)
= ϕ

(
(YA)X

)
= ϕ

(
Y(AX)

)
= ϕ

(
(AX)Y

)
= ϕ

(
AXY

)
,

i.e., XY belongs to Cϕ , too.
Next, let X = X∗ belong to Cϕ , with

X =
N∑

j=1

ξj!ξj

the spectral decomposition of X, where ξ1 < · · · < ξN are the eigenvalues of X and !ξ1, . . . , !ξN

its spectral projections. Since any polynomial in X belongs to Cϕ , too, it follows that !ξj ∈ Cϕ , 
for any j = 1, . . . , N . Thus, for an arbitrary operator A ∈ M,

ϕ(A) =
∑

i,j=1,...,N

ϕ
(
!ξi A!ξj

)

=
∑

i,j=1,...,N

ϕ
(
A!ξj δij

)

=
N∑

i=1

ϕ
(
!ξi A!ξi

)
. (35)

Conversely, if Eq. (35) holds for arbitrary A ∈ M then it obviously follows that X belongs to Cϕ . 
It is obvious that Eq. (35) also holds if X belongs to the center, Zϕ , of Cϕ .

Application: Proofs of Eqs. (13) and (14)

Let X(t) = ∑N
j=1 ξj!ξj (t) be as in (9), and let A be an arbitrary operator in E≥t . We rewrite 

ρt (A) as follows:
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ρt (A) =
N∑

i,j=1

{[ρt

(
!ξi (t)A!ξj (t)

)
− ρt

(
Eρt (!ξi (t))A!ξj (t)

)
]

+ [ρt

(
A!ξj (t)Eρt (!ξi (t))

)
− ρt

(
A!ξj (t)!ξi (t))

)
]}

+
N∑

i=1

{ρt

(
A!ξi (t)

2) − ρt

(
A!ξi (t)Eρt (!ξi (t))

)
]

+ [ρt

(
Eρt (!ξi (t))A!ξi (t)

)
− ρt

(
!ξi (t)A!ξi (t)

)
]}

+
N∑

i=1

ρt

(
!ξi A!ξi (t)

)
. (36)

In the second and in the fourth line we have used Eq. (12), which is legitimate, because 
Eρt (!ξi (t)) belongs to the centralizer Cρt of ρt . Since we are assuming that ∥Eρt (!ξj (t)) −
!ξj (t)∥ ≤ δ′, ∀j = 1, . . . , N , it follows that the absolute values of the four terms on the right 
side of line 1 and on lines 2, 3 and 4, respectively, are bounded above by Nδ′ ∥A∥. This implies 
(11), and hence (13) is proven.

To prove (14), all we have to do is to repeat the above argument with Eρt (!ξi (t)) replaced by 
eρt (!ξi (t)), which belongs to Zρt ⊆ Cρt .
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Abstract

The purpose of this paper is to sketch an approach towards a rec-
onciliation of quantum theory with relativity theory. It will actually
be argued that these two theories ultimately rely on one another. A
general operator-algebraic framework for relativistic quantum theory
is outlined. Some concepts of space-time structure are translated into
algebra. Following deep results of Buchholz et al., the key role of
massless modes, photons and gravitons, and of Huygens’ Principle in a
relativistic quantum theory well suited to describe “events” and “mea-
surements” is highlighted. In summary, a relativistic version of the
“ETHApproach” to quantum mechanics is described.

“I leave to several futures (not to all) my garden of forking paths”
(J. L. Borges)

Contents

1 Topics to be addressed 2

2 Why are we not able to predict the future by using our
physical theories, and why is quantum theory intrinsically
probabilistic? 4

3 The meaning of “locality” or “Einstein causality” in relativis-
tic quantum theory 7

4 Relativistic quantum theory, and the notion of “events” 9

5 Monitoring events by measuring physical quantities 17

6 Conclusions and outlook 20
⇤
Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland/

juerg@phys.ethz.ch

1



1 Topics to be addressed

Anybody who attempts to work on the foundations – or “interpretation” –
of quantum theory realizes quickly that this field is in a state of utmost con-
fusion. Whether authorities in this matter or not, Richard Feynman once
said: “If someone tells you they understand quantum mechanics then all
you’ve learned is that you’ve met a liar”; and Sean Carroll, of the Califor-
nia Institute of Technology, in a popular article that appeared in the ‘New
York Times’ [1], writes: “... quantum mechanics has a reputation for being
especially mysterious. What’s surprising is that physicists seem to be O.K.
with not understanding the most important theory they have. ... Physicists
don’t understand their own theory any better than a typical smartphone
user understands what’s going on inside the device. ... The whole thing is
preposterous. Why are observations special? What counts as an “observa-
tion”, anyway? When exactly does it happen? Does it need to be performed
by a person? Is consciousness somehow involved in the basic rules of real-
ity? Together these questions are known as the “measurement problem” of
quantum theory. ... ” – Well, obviously a text like this leaves the reader
in a state of bewilderment and/or anger! In the same article Caroll also
writes: “You would naturally think, then, that understanding quantum me-
chanics would be the absolute highest priority among physicists worldwide.
... Physicists, you might imagine, would stop at nothing until they truly
understood quantum mechanics.”

Quite some time (perhaps thirty years) ago, I arrived at a conclusion
similar to the one Caroll reached in the last two sentences quoted above. In
2012, when I retired from my position at ETH and did not have to make a
career, anymore, I started to consider it to be one of my obligations to help
removing some of the confusion surrounding the foundations of quantum me-
chanics. I do not have any illusions about the chances of success in pursuing
this goal,1 not because it is impossible to understand quantum mechanics –
I actually think it is possible – but chiefly because people have so many
prejudices about it.

Here is my credo in this endeavor:

• Talking of the “interpretation” of a physical theory presupposes im-
plicitly that the theory has reached its final form, but that it is not
completely clear, yet, what it tells us about natural phenomena. Oth-
erwise, we had better speak of the “foundations” of the theory. Quan-
tum Mechanics has apparently not reached its final form, yet. Thus,

1
A recent paper of mine on the foundations of quantum mechanics triggered the follow-

ing comment from a “colleague”: “Hi, again and again. How many time will you recycle

your papers? Cannot see (you?) that no one is interested in your obscure thinking. Adding

‘ETH’ will not help. You are old and essentially useless. Go fishing. Best, A.”

2



it is not really just a matter of interpreting it, but of completing its
foundations.

• The only form of “interpretion” of a physical theory that I find legit-
imate and useful is to delineate approximately the ensemble of nat-
ural phenomena the theory is supposed to describe and to construct
something resembling a “structure-preserving map” from a subset of
mathematical symbols used in the theory that are supposed to repre-
sent physical quantities to concrete physical objects and phenomena
(or events) to be described by the theory. Once these items are clar-
ified the theory is supposed to provide its own “interpretation”. (A
good example is Maxwell’s electrodynamics, augmented by the special
theory of relativity.)

• The ontology a physical theory is supposed to capture lies in sequences
of events, sometimes called “histories”, which form the objects of series
of observations extending over possibly long stretches of time and which
the theory is supposed to describe.

• In discussing a physical theory and mathematical challenges it raises
it is useful to introduce clear concepts and basic principles to start
from and then use precise and – if necessary – quite sophisticated
mathematical tools to formulate the theory and to cope with those
challenges.

• To emphasize this last point very explicitly, I am against denigrating
mathematical precision and ignoring or neglecting precise mathemati-
cal tools in the search for physical theories and in attempts to under-
stand them, derive consequences from them and apply them to solve
concrete problems.

In this paper I will sketch some ideas about a formulation of local rela-
tivistic quantum theory designed to describe “events” and, ultimately, to
solve the “measurement problem” alluded to above. (In doing this I try to
follow the credo formulated above.) I will specifically address the following
topics:

1. Why is it fundamentally impossible to use a physical theory to predict
the future? – Sect. 2.

2. Why is quantum theory intrinsically probabilistic? – Sect. 2.

3. How are “locality” and “Einstein causality” expressed in relativistic
quantum theory; what is their meaning? – Sect. 3.

4. What are “events” in quantum theory – Sect. 4 – and how does one
describe their recording? What is meant by “measuring a physical
quantity”? – Sect. 5.
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5. How do states of physical systems evolve in (space-)time, according
to quantum theory? What is the probabilistic law governing their
evolution? – Sect. 4.

6. How does quantum theory distinguish between past and future; how
does it talk about space-time? Could it be that a consistent “Quantum
Theory of Events” must necessarily be relativistic and involve massless
modes? Could it be that such a quantum theory could explain why
space-time is even-dimensional and that it might incorporate gravita-
tion as an “emergent phenomenon”? – Sect. 6.

Acknowledgements: I am very much indebted to my collaborators on mat-
ters related to the results sketched in this paper; among them to Philippe
Blanchard, Jérémy Faupin, Martin Fraas, and especially to Baptiste Schub-
nel. I also thank Detlev Buchholz, Gian Michele Graf, Klaus Hepp, Sandu
Popescu, Renato Renner, but primarily Detlef Dürr and Shelly Goldstein for
many helpful and enjoyable discussions and for serving as patient “sounding
boards”.

I wish to mention that various ideas related to ones elaborated on in [2, 3]
and in this paper have been described in [4, 5]. In particular, many years
ago, the late Rudolf Haag has emphasized the importance of introducing a
clear notion of “events” in quantum theory and to elucidate their role.

This paper is dedicated to the memory of Gian Carlo Ghirardi. My ap-
proach to the foundations of quantum mechanics (dubbed “ETH Approach”)
shares some general features with GRW [6]; in particular, an important role
is played by “state collapse”. I wish to thank Detlef Dürr for having invited
me to present my ideas in this book.

2 Why are we not able to predict the future by
using our physical theories, and why is quantum
theory intrinsically probabilistic?

Imagine that the space-time of our Universe has an event horizon that hides
what may happen in causally disconnected regions of space-time. Figure 1,
below, illustrates the claim that, for fundamental reasons, observers are then
unable to use relativistic theories to fully predict their future; for, never do
they have access to complete knowledge of the initial conditions of the Uni-
verse that would be necessary (but not necessarily sufficient) to predict the
future.2 This argument applies to both, classical and quantum theories. But
quantum theories have an additional feature that makes it impossible to use
them to predict the future precisely: They are fundamentally probabilistic.

2
The same is true if there exist waves propagating at the speed of light along surfaces

of light-cones
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Figure 1 is supposed to illustrate, furthermore, that the “Past” consists
of a “History of Events” or “Facts”, while the “Future” consists of an ensem-
ble of “Potentialities”. In a proper formulation of Quantum Mechanics this
dichotomy should be retained! In this paper we will try to find out how to
implement it in relativistic quantum theory.

Fig. 1

Caption: The “observer” sits at “Present” and is unaware of the dangers lurking
from outside his past light-cone (denoted “Past”). He might get killed at †, a space-
time point in his future light-cone (denoted “Future”). Events are numbered in the
figure; events 1 and 2 are space-like separated, event 3 is in the future of event 2.

Let S be an “isolated physical system” to be described by a model of
relativistic quantum theory. – Note: An isolated system has the property
that, over some period of time, its evolution does not depend on anything
happening in its complement, i.e., in the rest of the Universe, in the sense
that, during a certain period of time, the Heisenberg-picture dynamics of
physical quantities characteristic of S is, for all practical purposes, inde-
pendent of the degrees of freedom in the complement of S, (a consequence
of cluster properties). It should be noted, however, that the state of S can
be entangled with the state of its complement!. –

The concept of an isolated physical system is important in quantum me-
chanics, because, only for such systems, we know how to describe the time
evolution of operators representing physical quantities in the Heisenberg pic-
ture (in terms of conjugation of those operators with the unitary propagator
of the system). In order to describe the quantum dynamics of an isolated
physical system S, we will allways start from the Heisenberg-picture dy-
namics of “observables” (i.e., of self-adjoint operators representing physical
quantities) referring to S. The dynamics of states of S is considerably more
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subtle to understand and is, in a sense, at the core of our considerations in
this paper – as it has been in the work of Ghirardi, Rimini and Weber.

In this paper we use (for simplicity) the following pedestrian formulation
of the quantum mechanics of an isolated physical system S in the Heisenberg
picture: States of S are given by density matrices, ⌦, acting on a separable
Hilbert space, H, of “pure state vectors” of S. Let X̂ be a physical quantity of
S, and let X(t) = X(t)⇤ be the self-adjoint linear operator on H representing
X̂ at time t. Then the operators X(t) and X(t0) representing X̂ at two
different times t and t

0, respectively, are unitarily conjugated to one another:

X(t) = U(t0, t)X(t0)U(t, t0) , (1)

where, for each pair of times t, t
0, U(t, t0) is the propagator (from t

0 to t) of
the system S, which is a unitary operator acting on H, and

�
U(t, t0)

 
t,t02R

satisfy

U(t, t0) · U(t0, t00) = U(t, t00), 8 pairs t, t
0
, U(t, t) = 1 , 8 t .

It is often said that, in the Heisenberg picture, states of S are indepen-
dent of time; and that the Heisenberg picture is equivalent to the Schrödinger
picture, where physical quantities are time-independent, but states evolve ac-
cording to the propagator U(t, t0), solving a deterministic Schrödinger equa-
tion. Even if quantum mechanics were put under the auspices of the so-called
“Copenhagen interpretation”, this is, of course, nonsense, as has been amply
demonstrated on many examples; (see [10, 11, 8], and refs. given there)!
For, whenever a “measurement” is made, at some time t, say – we will later
speak, more accurately, of an “event” happening at approximately time t –
the deterministic unitary evolution of the state of S in the Schrödinger
picture is interrupted at this time, and the state “jumps”, or “collapses”
into an eigenspace of the “observable” that is measured – more accurately:
the state jumps into the image of an orthogonal projection representing the
“event” that actually happens at time t, with jumping probabilities as given
by Born’s Rule; (see also [4, 3]). Expressed in the Heisenberg picture, one
can say that, while operators representing physical quantities referring to an
isolated physical system S evolve in time according to Eq. (1), the state of
S changes randomly whenever an “event” happens; it thus exhibits a non-
trivial, stochastic evolution in time, a kind of stochastic branching process
described in [12, 2, 3, 13] and in Sect. 4 of this paper. In order to avoid
paradoxes [7, 8, 9], it is crucial to assume that the occurrence of an event
(for example, the successful completion of a measurement) has an objec-
tive meaning independent of the “observer” – and independent of whether
an “observer” is actually present or not.

One should think that, by now, these things are exceedingly well-known
and appreciated, and hence I won’t dwell on them any further. – It might be
added, however, that, in Bohmian mechanics, randomness enters in a way

6



that differs from the one in other formulations of quantum mechanics: Ran-
domness is due, in Bohmian mechanics, to incomplete knowledge of initial
conditions; see [14].3

3 The meaning of “locality” or “Einstein causality”
in relativistic quantum theory

In this section, I sketch remarks on “locality” or “Einstein causality”. For,
there appears to exist a certain amount of confusion concerning the question
in which sense quantum mechanics is “non-local” and in which sense it is
perfectly “local”. Let us consider an isolated system, S, consisting of two
spin-12 particles, p and p

0, and of equipment serving to measure components
of their spins along two directions given by unit vectors ~n and ~n

0, respectively.
We imagine that, after preparation of the initial state, ⌦, of S, particle p

propagates into a cone, C, opening in the direction of the negative x-axis,
while p0 propagates into a cone, C 0, opening in the direction of the positive x-
axis, with only tiny probabilities for sojourn outside C and C

0, respectively.
Let us assume that the measurement of the spin of p takes place inside a
region B ⇢ C in an interval [t1, t2] of times, while the measurement of the
spin of p0 takes place in a region B

0 ⇢ C
0 within a time-interval [t01, t02], and

let us imagine that the space-time regions B ⇥ [t1, t2] and B
0 ⇥ [t01, t

0
2] are

space-like separated. The results of the two measurements are described by
two orthogonal projection operators, ⇧p

~n,�, � = ±, and ⇧p0

~n0,�0 , �
0 = ±, where

“� = +” means that the spin of p is aligned with ~n after the measurement
has been completed, while “� = �” means that the spin of p is anti-parallel
to ~n after its measurement, and similarly for p0. The operators ⇧p

~n,�,� = ±,

have the following properties:

⇧p
~n,+ ·⇧p

~n,� = 0, ⇧p
~n,+ +⇧p

~n,� = 1 , (2)

and similarly for the operators ⇧p0

~n0,�0 ,�
0 = ±. Moreover, the operators ⇧p

~n,�

and ⇧p0

~n0,�0 are localized in space-like separated regions, B ⇥ [t1, t2] and B
0 ⇥

[t01, t
0
2], respectively, of space-time, for all choices of � and of �0. We would

like to make an educated guess of the state used by a localized observer, O, to
predict his future if O has the property that the past light-cones of all points
inside O contain both regions, B ⇥ [t1, t2] and B

0 ⇥ [t01, t
0
2]. The answer to

the question which of the two spin measurements was initiated or completed
first then obviously depends on the past “world-tube” of the observer O.
This is because B ⇥ [t1, t2] and B

0 ⇥ [t01, t
0
2] are space-like separated. Let

us suppose that, for an observer O, the spin of p was measured first, that
the state of S before any of these measurements were carried out was given

3
The Bohmian point of view cannot be discussed any further in this paper
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by a density matirx ⌦, and that between the preparation of the state ⌦
of S and further observations by O only the measurements of the spins of
p and of p

0 happened. According to the standard “projection postulate”
(of the Copenhagen interpretation), the state used by O to predict future
measurement outcomes is then given by

⌦O = [N(~n,�),(~n0,�0)]
�1⇧p0

~n0,�0 ·⇧p
~n,� ⌦ ⇧p

~n,� ·⇧p0

~n0,�0 , (3)

where N(~n,�),(~n0,�0) := tr
⇣
⇧p0

~n0,�0 ·⇧p
~n,� ⌦ ⇧p

~n,�·⇧
p0

~n0,�0

⌘
is a normalization factor.

Imagine now that O0 is an observer localized in the same space-time region
as O, but for whom the spin of p

0 is measured before the spin of p. He
then proposes to use the state ⌦O0 given by a formula arising form (3) by
exchanging the order of ⇧p

~n,� and ⇧p0

~n0,�0 . We want to impose the requirement
that the predictions made by O and O0 concerning future measurements (i.e.,
ones localized in their common future light-cone) must be compatible. This
implies that the two states ⌦O and ⌦O0 must agree on the algebra of all
“observables” potentially measureable in the future of O = future of O0.
This would be guaranteed if (but does not imply that)

⇧p0

~n0,�0 ·⇧p
~n,� = ⇧p

~n,� ·⇧p0

~n0,�0 , (4)

for arbitrary choices of (~n,�) and (~n0
,�

0), assuming, as stated above, that
the localization regions B ⇥ [t1, t2] and B

0 ⇥ [t01, t
0
2] are space-like separated.

Equation (4) is what is called “locality” or “Einstein causality” in relativis-
tic quantum field theory. This is a sufficient (but not necessary) condition
to eliminate ambiguities in the predictions of possible future measurement
outcomes made by different observers that are due to the impossibility of
unambiguously ordering measurements according to the times at which they
are initiated (or completed). But Eq. (4) does not imply that quantum
mechanics is “local” in the following sense: Consider the state

⌦(~n,�) := [N(~n,�)]
�1⇧p

~n,� ⌦ ⇧p
~n,�,

where N(~n,�) is a normalization factor chosen such that tr(⌦(~n,�)) = 1. Let
A be an “observable” localized in a space-time region space-like separated
from B ⇥ [t1, t2]; (for example A = ⇧p0

~n0,�0). One might expect that

tr
�
⌦A

�
= tr

�
⌦(~n,�)A

�
,

for any operator A with these properties. But, of course, this equality does
not hold! This fact is what people call the “non-locality” of quantum theory.
In quantum field theory, this kind of “non-locality” is neatly reflected in the
Reeh-Schlieder theorem [15]. It results from entanglement.

One major purpose of this paper is to render the “projection postulate”
(or “collapse postulate” – see Eq. (3)) more precise, to explain its origin and
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to find out under what conditions it is applicable. In contrast to the ideas
described in [6], we will not invoke any mechanism extraneous to quantum
mechanics that produces “state collapse”.

4 Relativistic quantum theory, and the notion of
“events”

In this section we propose an algebraic definition of local relativistic quan-
tum theory and then introduce a precise notion of “events”. We require some
rudimentary knowledge of the theory of operator algebras. In particular,
the reader might profit from knowing what a C

⇤- and what a von Neumann
algebra is and what, for example, the Gel’fand-Naimark-Segal (GNS) con-
struction is. What will be used from the theory of operator algebras, in this
paper, can be learned in a few hours! A useful reference may be [16].

For the time being, we will consider space-time, M, to be given; but we
do not equip M with a Lorentzian metric. Later, we will try to clarify how
properties of algebras of operators representing localized potentialities equip
M with a causal structure. But to start with, we assume M to be given by
Minkowski space, Md, with d = 4.

In relativistic quantum theory, all operators representing physical quanti-
ties characteristic of an isolated physical system S are localized in space-time
regions. Given a region O ⇢ M, we denote by A(O) the algebra generated
by all bounded operators localized in O that represent physical quantities.
The family

�
A(O)

 
O⇢M

is called a “net of local algebras”. For an introduc-
tion to these concepts and to algebraic quantum field theory the reader is
advised to consult [17]. In the following considerations, the regions O are
usually taken to be forward or backward light-cones with apex in an arbi-
trary space-time point P 2 M.

A general formulation of local relativistic quantum theory:

We consider an isolated physical system S to be described with the help
of a model of local relativistic quantum theory.

Definition 1: By FP we denote the ⇤algebra generated by all operators
representing physical quantities referring to S (such as potential events) lo-
calized in the “future” of the space-time point P , while PP denotes the alge-
bra generated by all operators representing physical quantities localized in
the “past” of P . ⇤

We assume that all the algebras FP are contained in a C
⇤-algebra E , and

E =
_

P2M

FP , (5)
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where the closure on the right side is taken in the operator norm of E . We as-
sume that all these algebras are represented on a common separable Hilbert
space H and that all “states of physical interest” of S can be identified with
density matrices (non-negative trace-class operators normalized to have trace
= 1) acting on H.4 In our notation, we will not distinguish between an ab-
stract element of the algebra E and the linear operator on H representing it.

Definition 2: We define EP to be the von Neumann algebra obtained by
closure of the algebra FP in the weak operator topology of the algebra, B(H),
of all bounded operators on H. ⇤

If S is a physical system in a state of finite energy describing only exci-
tations of strictly positive rest mass then

EP ' B(H) , for any point P 2 M . (6)

It is expected that this equality always holds in a space-time of odd di-
mension, even if massless particles are present. This is because Huygens’
Principle does not hold in space-times of odd dimension. (It also does not
hold in certain even-dimensional space-times with non-vanishing curvature.
But that’s another story, which, for reasons that I will not explain in any
detail, is not expected to invalidate the following considerations.) The prop-
erty expressed in Eq. (6) is one most people sub-consciously consider to be
always valid. But this is actually not the case! (If it were we would probably
be unable to introduce a reasonable notion of “events” in quantum theory,
and we would never solve the “measurement problem”.)

If there exist massless particles, in particular photons and/or gravitons
and Dark-Energy modes, and if Huygens’ Principle holds in an appropriate
sense (M even-dimensional, specifically M = M4),5 the algebra EP tends
to have an infinite-dimensional commutant, E 0

P . (The commutant, M0, of an
algebra M contained in B(H) is the algebra of all bounded operators on H
commuting with all operators in M.) More specifically, within an algebraic
framework of local relativisitic quantum field theory over four-dimensional
Minkowski space-time, Detlev Buchholz has shown [18] that, in the presence
of massless particles, E 0

Pt
\ EPt0

is an infinite-dimensional, non-commutative
algebra, whenever Pt0 is a space-time point in the past of the space-time
point Pt, as indicated in Figure 2.

In his proof, Huygens’ Principle is exploited in the form that asymptotic
out-fields creating on-shell massless particles escaping to infinity do not prop-
agate into the interior of forward light-cones contained in the future of the
space-time region (denoted by O in Figure 2) where they are localized, but

4
It is sometimes advantageous to formulate this assumption in a more abstract, alge-

braic way involving, among other ingredients, the GNS-construction; see, e.g., [17].
5
or in the presence of blackholes in space-time
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propagate along the surface of forward light-cones with apices in O. Such
asymptotic out-fields are then shown to commute with all operators in the
algebra EPt .

Fig. 2

Caption: The black line is the world-line of an “observer” who, at time t, is localized
near Pt. Operators representing physical quantities potentially observable by the
“observer” in the future of Pt are localized inside the forward light-cone V

+
Pt

. They
generate the algebra EPt . Asymptotic out-field operators describing the emission
of (on-shell) photons or gravitons in the region O propagate along the light-cones
contained in V

+
Pt0

but not contained in V
+
Pt

.

One expects that, if space-time is even-dimensional and in the presence
of massless particles, the algebras EP have the property that all non-zero
orthogonal projections belonging to EP have an infinite-dimensional range.
This implies that there do not exist any normal pure states on these algebras.
Furthermore, they are expected to be isomorphic to a certain “universal” von
Neumann algebra,6 N, i.e., EP ' N, 8P 2 M.

We now use these insights to extract a general algebraic formula-
tion of local relativistic quantum theory compatible with the appearence of
“events” and promising a solution of the “measurement problem”. We assume
that space-time M is a topological space with the property that, with every
point P 2 M, one can associate a von Neumann algebras, EP , the “algebra
of potential events that might possibly happen in the future of P ”, with the
property that EP is contained in a C

⇤-algebra E , for all P 2 M.
The family of algebras

�
EP

 
P2M

equips space-time M with the following
causal structure:

6
a von Neumann algebra of type III1
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Definition 3: A space-time point P 0 is in the future of a space-time point
P , written as P

0 � P , (or, equivalently, P is in the past of P 0, written as
P � P

0 ) iff

EP 0 $ EP , E 0

P 0 \ EP is an 1� dim. non-commutative algebra (7)

⇤
Equation (7) expresses what I call the

“Principle of Diminishing Potentialities” (PDP)

This principle is a theorem in an axiomatic formulation of quantum electro-
dynamics over four-dimensional Minkowski space proposed by D. Buchholz
and the late J. Roberts [20].

Henceforth, the Principle of Diminishing Potentialities will always be
assumed to hold ; and, within our formulation of relativistic quantum theo-
ries, (a model of ) an isolated physical system S is defined by specifying the
following data:

S =
�
M, E ,H,

�
EP

 
P2M

satisfying PDP
 
, (8)

where M is a model of space-time, E is a C
⇤-algebra represented on a Hilbert

space H, and
�
EP

 
P2M

is a family of von Neumann algebras satisfying the
“Principle of Diminishing Potentialities” introduced in Eq. (7).

Definition 4: If a space-time point P
0 is neither in the future of a space-

time point P nor in the past of P we say that P and P
0 are space-like

separated, written as P ⇥ P
0. ⇤

Let ⌃ be a space-like subset of M. If M = M4 we imagine that ⌃ is
a subset of a space-like hypersurface of co-dimension 1 in M. Since all the
algebras EP , p 2 M, are assumed to be contained in the C

⇤-algebra E , the
following definition is meaningful:

E⌃ :=
_

P2⌃

EP , (9)

where the closure is taken in the weak topology of B(H). A state, !⌃, on
the algebra E⌃ is a normalized, positive linear functional on E⌃.

Remark: At this point we should comment on the question of what the
operational meaning of a “state” of an isolated system S is, and how one
can prepare S in a specific state. Obviously these are important questions,
which, however, cannot be discussed here; but see [21].
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Definition 5: Let M be a von Neumann algebra, and let ! be a normal
state on M. For an operator X 2 M, we define adX(!) to be the linear
functional on M defined by

adX(!)(Y ) := !([Y,X]), 8Y 2 M.

We define the centralizer, C!(M), of the state ! by

C!(M) :=
�
X |X 2 M, adX(!) = 0

 
. (10)

It is easy to verify that C!(M) is a (von Neumann) subalgebra of M, and that
! is a normalized trace on C!(M). (This property implies that centralizers
are completely classified!)
Given an algebra N, the center, Z(N), is the abelian subalgebra of N con-
sisting of all operators in N commuting with all other operators in N. We
set

Z!(M) := Z(C!(M)) (11)

⇤
Motivation underlying the following notions and definitions is provided

in [2, 3, 13].

Definition 6: Given a point P 2 M, a potential event in the future of
P is a family,

�
⇡⇠| ⇠ 2 X

 
, (X a countable set of indices7), of orthogonal

projections belonging to EP with the properties

⇡⇠ · ⇡⌘ = �⇠⌘⇡⇠, 8 ⇠, ⌘ 2 X,
X

⇠2X

⇡⇠ = 1 . (12)

It is expected that events usually have a finite duration. This would imply
that operators

�
⇡⇠|⇠ 2 X

 
representing a potential event in the future of the

point P would be localized in a compact region of space-time contained in
the future of P (the future light-cone with apex in P ). ⇤

Definition 7: Given a state !P on the algebra EP , we say that an event
happens in the future of the space-time point P iff the algebra

Z!P := Z
�
C!P (EP )

�

is generated by the projections
�
⇡⇠| ⇠ 2 X

 
⇢ Z!P ⇢ EP of a potential event

in the future of P with the properties that the cardinality of X is at least 2
and that there exist projections ⇡⇠1 , ...,⇡⇠n , n � 2, such that

!(⇡⇠j ) > 0, 8j = 1, ..., n, n � 2 . (13)
7
Here it is assumed that potential events can be identified with the spectral projections

of self-adjoint operators with discrete spectrum (' X); more generally, one could identify

potential events with spectral projections of families (abelian algebras) of commuting self-

adjoint operators that may have continuous spectrum
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(The quantity !(⇡⇠) will turn out to be the Born probability for ⇡⇠ to occur
in the future of P .) ⇤

Let !P be the state of S on the algebra EP . It is easy to see that if an
event described by the family

�
⇡⇠| ⇠ 2 X

 
⇢ Z!P of projections happens in

the future of the point P then

!P (X) =
X

⇠2X

!
�
⇡⇠ X ⇡⇠

�
, 8X 2 EP , (14)

i.e., the state !P on the algebra EP is a mixture of the states

!P,⇠ :=
⇥
!P (⇡⇠)

⇤�1
!
�
⇡⇠(·)⇡⇠

�
(15)

labelled by the points ⇠ 2 X.

The following is a crucial axiom.

Axiom 1 (“State-collapse” postulate): If an event happens in the future
of a point P 2 M, in the sense of Definition 7, then the state to be used
to make predictions of further events possibly happening in the future of P
is given by !P,⇠⇤ , for some ⇠⇤ 2 X with !P (⇡⇠⇤) > 0, where !P,⇠⇤ , ⇠⇤ 2 X, is
defined in Eq. (15).

The probability that !P,⇠⇤ is selected among the states
�
!P,⇠| ⇠ 2 X

 
is

given by Born’s Rule, namely it is given by !P (⇡⇠⇤). The projection ⇡⇠⇤ is
called the “actual event” happening in the future of P . ⇤

Next, we consider two points, P and P
0, in a subset ⌃ of M, with P⇥P

0,
(i.e., P and P

0 are space-like separated), We assume that the state !⌃ de-
fined in Eq. (9) is given, so that the states !P = !⌃|EP and !P 0 = !⌃|E 0

P

are known, too. We suppose that, given !⌃, events happen in the future of
P and of P 0. Let Z!P denote the center of the centralizer of the state !P

on the algebra EP , which describes the event
�
⇡
P
⇠ |⇠ 2 XP

 
happening in the

future of P , and let Z!P 0 be the algebra describing the event happening in
the future of the point P

0. We require the following axiom.

Axiom 2 (Events in the future of space-like separated points commute):
Let P⇥P

0. Then all operators in Z!P commute with all operators in Z!P 0 .
In particular,

⇥
⇡
P
⇠ ,⇡

P 0
⌘

⇤
= 0, 8 ⇠ 2 XP and all ⌘ 2 XP 0

. ⇤

This axiom may be one reflection of what people sometimes interpret
as the fundamental non-locality of quantum theory: Projection operators
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representing events in the future of two space-like separated points P and P
0

in space-time are constrained to commute with each other! Actually, this
implies what in quantum field theory is understood to express locality or
Einstein causality.

Next, we assume that some slice, F, in space-time M is foliated by space-
like hypersurfaces, ⌃⌧ : F :=

�
⌃⌧ |⌧ 2 [0, 1]

 
, where ⌧ is a time coordinate

in the space-time region filled by F. Let P be an arbitrary space-time point
in the leaf ⌃1, and let the “recent past” of P , V �

P (F), consist of all points
in

S
⌧<1⌃⌧ that are in the past of P , in the sense specified in Definition 3,

above. The task we propose to tackle is the following one: We suppose that
we know the state !⌃0 on the algebra E⌃0 , (see Eq. (9)). Assuming that
Axioms 1 and 2 hold, we propose to determine the state !P on EP , for the
given point P 2 ⌃1. Let

�
P◆|◆ 2 I(F)

 
denote the subset of points in V

�

P (F)
in whose future events happen (see Definition 7), and let

�
⇡
P◆
⇠◆
|◆ 2 I(F)

 
⇢ E⌃0

be the actual events (see Axiom 1) that happen in the future of the points
P◆ , ◆ 2 I(F); (here I(F) is a set of indices labelling the points in V

�

P (F) in
whose future events happen; it is here assumed to be countable). We define
a so-called “History Operator”

H
�
V

�

P (F)
�
:= ~⇧◆2I(F) ⇡

P◆
⇠◆

, (16)

where the ordering in the product ~⇧ is such that a factor ⇡P
⇠

corresponding
to a point P stands to the right of a factor ⇡P◆

⇠◆
corresponding to a point P◆

iff P � P◆, (i.e., if P is in the past of P◆). But if P◆⇥P, i.e., if P◆ and P

are space-like separated the order of the two factors is irrelevant – thanks to
Axiom 2!

The state on the algebra EP relevant to make predictions about events
happening in the future of P , in the sense of Definition 7, is then given by

!P (X) ⌘ !
F
P

�
X
�
=
⇥
N FP

⇤�1
!⌃0

�
H(V �

P (F))⇤XH(V �

P (F))
�
, X 2 EP , (17)

where the normalization factor N FP is given by

N FP = !⌃0

�
H(V �

P (F))⇤ ·H(V �

P (F))
�
. (18)

We recall that, according to Definition 7, an event happens in the future
of a point P 2 ⌃1 iff the center, Z!P , of the centralizer of the state !P

on the algebra EP , defined in (17), contains at least two disjoint orthogonal
projections of strictly positive probability, as given by Born’s Rule; (see
Axiom 1).
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The quantities N FP can be used to equip the tree-like space (the so-called
“non-commutative spectrum” of S) of all possible histories of events in the
future of points belonging to the foliation F with a probability measure; see
[3].

The ideas and results discussed here are illustrated in Figure 3, below.

Fig. 3

Caption: It is tacitly assumed here that all events that happened in the past of the
point P have a strictly finite duration. They are marked by small “diamonds” and
are numbered from 1 to n. Notice that 1⇥2 and 2 � n.

To conclude this discussion, in the approach to relativistic quantum the-
ory presented in this paper (called “ETHApproach”), the evolution (along
the foliation F) of the state of an isolated physical system S, given the initial
state !⌃0 on the algebra E⌃0 defined in Eq.(9),8 can be viewed as a general-
ized stochastic branching process, whose state space is what I have called the
“non-commutative spectrum” of the system S, (see [3], and Eq. (27), Sect. 6,
for a definition), and with branching rules derived from Definition 7, Axioms
1 and 2 and Eqs. (16) - (18).9

Mathematical details can be made precise if space-time is discretized.
Additional information can be found in [3, 23, 24].

8
and assuming the axiom of choice

9
This picture has reminded my former student P.-F. Rodriguez of the sentence from the

short story “The Garden of Forking Paths”, by Jorge Luis Borges, that I have appended

to the abstract of this paper
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5 Monitoring events by measuring physical quanti-
ties

Let S =
�
M, E ,H,

�
EP

 
P2M

satisfying PDP
 

be the data defining an
isolated physical system, with the properties specified in Sect. 4, Eq. (8), and
assumed to satisfy Axioms 1 and 2. In Sect. 4, we have introduced a precise
notion of “events” featured by S. In this section, we propose to explain how
events can be recorded/monitored by measuring physical quantities referring
to S.

For the purposes of the present exposition it is convenient to define a
“physical quantity” to be an abstract self-adjoint linear operator X̂ with the
property that, for every point P 2 M, there exists a concrete self-adjoint
linear operator X(P ) 2 EP acting on the Hilbert space H of S and repre-
senting the quantity X̂; (see [3] for a somewhat more general and abstract
notion of physical quantities).

Remark: If space-time M is given by Minkowski space M4 the operator
X(P ) is conjugated to the operator X(P 0) by a unitary operator on the
Hilbert space H representing the space-time translation from P to P

0. But
on general space-times there isn’t any simple relation between X(P ) and
X(P 0).

We define
OS :=

n
X̂◆ = X̂

⇤

◆ | ◆ 2 I(S)
o

(19)

to be a list of all physical quantities available, at present, to characterize
properties of S for which there exists a prescription of how they can be
measured.10 The list OS is not intrinsic to the theoretical description of the
system S; rather it specifies those physical quantities referring to S that,
during a given era, can be expected to be measurable in real experiments. In
quantum theory, this list is not an algebra (unless all operators belonging to
OS commute with one another), and it is usually not even a real linear vector
space. The question to be addressed in the following is what we mean by
saying that some quantity X̂ 2 OS is measured in the future of a space-time
point P , and how such a measurement can be used to record an event that
happens in the future of P .

Suppose that, for some point P 2 M, the center Z!P (of the centralizer
C!P (EP ) ⇢ EP of the state !P on the algebra EP ) is non-trivial and is gen-
erated by a family

�
⇡⇠| ⇠ 2 X

 
of disjoint orthogonal projections describing

an event happening in the future of P . Let " be a positive number; (it will
turn out to be a measure of the “resolution” of the recording of this event in
a measurement of a physical quantity X̂ 2 OS). We let

�
⇡1, . . . ,⇡N

 
be a

finite number of disjoint orthogonal projections contained in Z!P with the
10

For simlicity, we assume that all operators in OS have discrete spectrum
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property that

!(⇡j) � ", 8 j = 1, ..., N, !(1�
NX

i=1

⇡i) < " . (20)

The projections
�
⇡1, . . . ,⇡N

 
form the basis of an N -dimensional vector

space, V(")
!P , equipped with a (positive-definite) scalar product, h·, ·i, given

by
h⇡i,⇡ji := !(⇡i · ⇡j) = !(⇡i) �ij � " �ij , for i, j = 1, ..., N . (21)

Every vector Z 2 V(")
!P can be represented as a linear combination,

Z =
NX

j=1

zj⇡j 2 Z!P , for complex numbers z1, ..., zN . (22)

We can thus identify V(")
!P with an N -dimensional subspace, actually an N -

dimensional subalgebra of Z!P .
Let H!P be the Hilbert space and ⌦P the cyclic vector in H!P obtained

by applying the Gel’fand-Naimark-Segal construction to the pair
�
EP ,!P

�
;

(see. e.g., [16]). There is a bijection between the vector space V(")
!P and the

subspace W(")
!P ⇢ H!P spanned by the vectors

�
Z ⌦P |Z 2 V(")

!P

 
.

By Q
(") we denote the orthogonal projection onto W(")

!P .
Let X̂ 2 OS be a physical quantitiy characteristic of S, and let X(P ) 2 EP

denote the self-adjoint operator representing X̂. We consider the spectral
decomposition of X(P ):

X(P ) =
MX

k=1

xj ⇧j(P ) , (23)

where the operators ⇧k(P ) 2 EP , k = 1, ...,M  1, are the spectral projec-
tions of X(P ), with

⇧k(P ) = ⇧k(P )⇤ , ⇧j(P ) ·⇧k(P ) = �jk ⇧j(P ), 8j, k ,
MX

k=1

⇧k(P ) = 1,

and x1, ..., xM are the eigenvalues of X(P ) (= eigenvalues of X̂), ordered in
such a way that the sequence

�
!P (⇧k(P ))

�M
k=1

is decreasing. Let L  M be
such that

!P (1�
LX

k=1

⇧k) < " .
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Given an operator A 2 EP , we denote by ✏!P (A) the unique operator in the
algebra V(")

!P ⇢ Z!P given by

Q
(")

A⌦P =: ✏!P (A)⌦P , ✏!P (A) 2 V(")
!P

. (24)

The map
✏!P : EP ! V(")

!P

is called a “conditional expectation”; (see [25] for a systematic theory). Claim-
ing that a measurement of the physical quantity X̂ can be expected to be
possible and to record the event

�
⇡⇠| ⇠ 2 X

 
generating Z!P with a resolu-

tion of order " relies on the validity of the following

Basic Assumption:

k⇧k(P )� ✏!P

�
⇧k(P )

�
k < ", 8 k = 1, ..., L . (25)

It is not hard to verify (but see [3], Eqs. (22), (23), for a proof) that this
Assumption implies that

!P (A) =
LX

k=1

!
�
⇧k(P )A⇧k(P )

�
+O

�
L " kAk

�
, 8A 2 EP , (26)

i.e., the state !P is an incoherent superposition of eigenstates of the oper-
ator X(P ), up to an error of order ". In this very precise sense, one can say
that Assumption (25) implies that there is an approximate measurement of
the physical quantity X̂ in the future of the point P .

Using a simple lemma (see [22], Lemma 8 and Appendix C), one can
show that if " is sufficiently small Assumption (25) implies that there are
orthogonal projections ⇡k(X̂) 2 Z!P with the property that

k⇧k(P )� ⇡k(X̂)k < O("),

and

!P (A) =
LX

k=1

!
�
⇡k(X̂)A⇡k(X̂)

�
+O

�
L " kAk

�
, 8A 2 EP .

In this precise sense, if L � 2 a measurement of the quantity X̂ in the
future of P yields non-trivial information about the event described by Z!P

happening in the future of P . If L = N the projections
�
⇡k(X̂)|k = 1, ..., L

 

must coincide with the projections
�
⇡j |j = 1, ..., N

 
introduced right before

(20), provided " ⌧ 1 is sufficiently small. In this case, a measurement of
X̂ yields very precise information about the event happening in the future
of P .

For further discussion of these matters see [3], (Sect. 3, V.).
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6 Conclusions and outlook

In this last section, some scattered remarks and speculations that grow out
of the results sketched in Sections 4 and 5 are presented.

1. In our attempt to cast local relativistic quantum theory in a form com-
patible with the manifestation of what we have defined to be “events”
and with a solution of the “measurement problem”, the “Principle of
Diminishing Potentialities” (PDP), (see Definition 3, Sect. 4, Eq. (7),
and [3]), plays a fundamental role. We have seen that if space-time is
even-dimensional (e.g., M = M4) and if there exist massless particles –
photons, gravitons and, possibly, Dark-Energy modes – satisfying some
form of Huygens’ Prinicple, (see [18]), then (PDP ) holds. One may ar-
gue that (PDP ) also holds in space-times containing blackholes. From
a very general point of view, it appears that a quantum theory sat-
isfying (PDP ) is necessarily “relativistic”, and the dimension of its
space-time must be even.

2. In Definitions 3 and 4 of Sect. 4, we have seen that there is a purely
algebraic way to equip space-time M with a causal structure: A space-
time point P is in the past of a space-time point P 0 (written as P � P

0)
iff

EP 0 $ EP ,

and the relative commutant, E 0

P 0\EP , of the algebra EP 0 in EP is a non-
commutative algebra. Two points P and P

0 are space-like separated
(written as P⇥P

0) iff P is not in the past of P 0 and P
0 is not in the

past of P . It would be desirable to further elucidate the relationship
of the algebras EP and EP 0 in case the points P and P

0 are space-like
separated.
Ultimately, we would like to reconstruct space-time from purely al-
gebraic data concerning a family (or families) of operator algebras
equipped with certain relations, in particular inclusions and statements
about relative commutants, given a state on these algebras. A (pre-
sumably not entirely successful) attempt in this direction has been
made in [26].

3. In the formalism described in Sect.4, “events” are localized in the
future of certain space-time points, P ; in the sense that they are de-
scribed in terms of the abelian algebras Z!P ⇢ EP , where, for a given
point P , Z!P is the center of the centralizer of the state !P on the al-
gebra EP , with EP describing all potentialities in the future of P . The
actual event happening in the future of some point P is an orthogonal
projection, ⇡

P
⇠ , belonging to Z!P , for some point ⇠ in an index set

XP , and having a strictly positive probability as predicted by Born’s
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Rule. In view of Axiom 2, Sect. 4, it would be important to have a
more precise idea about the space-time regions where the operators
⇡
P
⇠ , ⇠ 2 XP , are localized. This might actually yield information about

the geometry of space-time and, ultimately, support the view that
gravitation is an “emergent” (or “derived”) phenomenon.
To render these remarks a little more precise, we recall that one expects
that all the algebras EP are isomorphic to a “universal” von Neumann
algebra N. One would like to know more about properties of states, !,
on N for which the centers, Z!(N), of the centralizers C!(N) of ! are
non-trivial, in the sense of Definition 7, Sect. 4. In [3],

ZS :=
[

!

Z!(N), (27)

where ! ranges over all “states of physical interest”, has been dubbed
the “non-commutative spectrum” of the system S. It is the “state space”
of the stochastic branching process defined by Eqs. (16), (17) and (18)
of Sect. 4, which describes the stochastic evolution of states of S. Un-
fortunately, we have very little insight into the structure of the non-
commutative spectrum ZS .
It would be important to equip the algebra N (and hence EP , for
P 2 M) with a local structure, (in the sense that N is generated by
a net of local sub-algebras), and to attempt to show that events, i.e.,
elements of one of the algebras Z!(N), with ! a “state of physical in-
terest”, are typically contained in sub-algebras of N corresponding to
what can be considered a “bounded region” of space-time. This would
help to introduce a more precise version of Axiom 2. But this topic,
too, remains to be clarified.

4. One would expect that, for initial conditions given by states, !⌃0 ,
of S of “physical interest”, (see Eq. (9), Sect. 4), the ensemble of
events happening in the future of the points belonging to a foliation�
⌃⌧ |⌧ 2 [0, 1]

 
of some slab of space-time (see Sect. 4, after Axiom 2)

is countable, and that these events are localizable in bounded regions
of space-time. One would expect, moreover, that the metric extension
of a space-time region within which an event can be localized is con-
strained by space-time uncertainty relations of a kind discussed, e.g.,
in [27]. This ought to be a consequence of time-energy uncertainty
relations and of the possibility that blackholes form in the aftermath
of energetic events, which, afterwards, would evaporate.
Alas, I don’t know how to even start to derive these expectations from
a more precise formalism of local relativistic quantum theory. Yet,
the results reviewed in this paper and in [24] suggest that, once we
truly understand what is meant by a local relativistic quantum theory
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of events, we will view events as the basic building blocks weaving
the fabric of space-time and the relations between events as determining
the geometry of space-time.

To conclude, I want to express the hope that the results, problems and
speculations reviewed in this paper might challenge colleagues with more
technical knowledge and strength than I am able to muster to go further
towards the goal of truly understanding the miracles of quantum theory.
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