Finiteness, Complexity, and the Swampland
(1) Motivation
dream: existence of unifying principle underlying the (valid) swampland conjectures
maybe: "generalized finiteness principle"
entropy?, amplidudes? I information/ co-plexif?
\Rightarrow very vague
Input from String theory? (standard apprraak) arising effective theories are not generic but tied to geometry (even in Od sue F-theor)

Can we turn this into a principle?

Example: Flux conpactifications $(\rightarrow$ Graña)

$$
V(z, \bar{z})=\frac{1}{\bar{\gamma}}\left(\int F_{3} \wedge * F_{3}+\ldots .\right)
$$

very complicated function of zee, but can be given geometrically
\Rightarrow integrals over form on manifolds "periods"
What could happen?

- min.
valley:

infinite spirals: Y distance ca feature

But: this never happens!
Goals: (1) Implement fundamentally that effectio Resins are geometric at core (without using)
(2) and impose that each quantity has finite amount of information/. complexity
finiteness of geometric complexity

How to make this precise?
Tool: "Swampland program" of mathenatirs: Classification of mathem. theories/models arithmetic
"Swanplad":
e.g. Gödel's theorems $\left(\mathbb{Z}_{1}, 1+\right)$
\Longrightarrow his undecidable statements (e.g. Solutions to certain Diophantine equations)
\Rightarrow divide theory space by properties
Model theory (mathematical logic) "geography of (tame) mathematics" (Hrushouski)
$\binom{$ developed in lust century }{ starting with Tarski }
\Rightarrow Map of the model feoretic universe (google)

Here:
pick models that are

- O-minimal \Rightarrow \square 0 -minimal
structures
van den Dries
\Rightarrow answer to Grothencliek's dream of a topology for geometers
"tame topology"
basics: book by van den Dries
"Tame topology and o-minimal structures"
- notion of complexity and information
\Rightarrow Sharply 0 -minimal structures \#o-minimal Bingamini, Novikov
(2) O-minirality as a finiteness prinaple

Definition: o-minimal structure collection of subsets of $\mathbb{R}^{n} \quad(n \geqslant 0)$
"definable sets", "tame sets"
a) closed under

- finite unions, intersections, products, complements
- projections $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$
b) contains zero-sets of all real polynonaids a) $+b) \Rightarrow$ "structure"
c) O-minimal: only definable subsets of \mathbb{R} are finite unions of points and intervals

$$
\text { (" } \leq " \text { definable) }
$$

- Jane (definable) function: graph is tame set
\Rightarrow tame geometry: finite atlas of tame sets, tare coord. chages

Not 0 -minimal:

- integers , $\sin (x), x \in \mathbb{R}, \quad \sin \left(\frac{1}{x}\right) \quad x \in(0,1)$
((0) infinte spivals, …
- certain non-oscillaty fots.

What is orminial?
collecting $\left\{P_{i}\left(x_{1} \ldots x_{n}\right)=0, \quad \widetilde{P}_{j}\left(x_{1} \ldots x_{n}\right)>0\right\}$
$\Rightarrow \mathbb{R}_{\text {alg }}$ "real aly. geom.

- specify which fots, are fine $\bar{F}=\left\{f_{1}, f_{2}, \ldots\right\}$
gen. sets $\left\{p_{i}\left(x_{1}, \ldots x_{n}, f(x) \ldots f(x)\right)=0\right\}$
- $\mathbb{R e x p}_{\exp }, \mathbb{R}_{\hat{\uparrow}}$, , $\mathbb{R}_{\text {an, }} \exp$个icted
$\begin{array}{c}\text { restrictytic } \\ \text { anall }\end{array}$ e.g. $\left.\left.\sin (x)\right|_{[0,1]}\right]$
- Pafafion structure: $P(S)$ first ordes J

$$
\frac{\partial f}{\partial x^{i}}=g_{i}(x, f) \quad g_{i} \text { in } S
$$

- "exotic" structures: '22 soructre defin-

$$
\left.\Gamma(x)_{(, \infty)} S(x)\right|_{(1, \infty)}
$$

Basic theorem: $f: \mathbb{R} \rightarrow \mathbb{R}$ tame function

- domain splits into finite number of open intervals on which f is $\bar{\lambda}$ continious + monotonic constant
\Longrightarrow max. finitely many jumps (discontinuities)
\Rightarrow finitely many minima, maxima
+ tame tail to infinity
consequences:
- $f: \mathbb{C} \rightarrow \mathbb{C}$ holomorphic tame \Rightarrow polynomial
- I : $\Delta_{4}^{*} \rightarrow \mathbb{C}$ holomorphic + tame $\Rightarrow 0$ is not essential sing. punctured puncture
disk
- tameness can replace co-pactuess (definable Ghoul) "definable Chow" (Peterzil, Starchenko '08)
more advanced: "tameness revolution"
proofs of longstanding mathematical
conjectwes: André-Oort
Ax-Schanuel (for Hodge Structures)
Andre-Graken dick
nee proof: Cadtani-Deligne-Kaplan
famous theorem about "Hodge loci" egg. $(2,2)$ fluxes on Cy_{4}

BKT'20: period map / period integrals are tone functions in \mathbb{R} an, \exp
egg.:

$$
\begin{aligned}
W(z) & =\sqrt{F_{3}} \wedge \Omega=\int_{\gamma} \Omega \\
& =\# t^{3}+\# t^{2}+\ldots \sum a_{n} e^{i n t}
\end{aligned}
$$

large complex sobuchere (but always
true)
$W(z)$ is tame (definable in $\mathbb{R}_{\text {an, exp) }}$
(3) Application to the flux lanscape use general theorem of BGST' ' 21 :
\Rightarrow shous that $\#$ of seff-dual flux vacua with tudpole bound is finite "vacum landscape is tare set" * $G_{3}=i G_{3}$ ad $\int_{y_{3}} F_{3}+H_{3}$ or: $* G_{4}=G_{4}$ and $\int_{y_{4}}^{y_{3}} G_{4} \wedge G_{4}=K$

Fimiteness statemert follows fro Swaplad co-jectures:

- Donglas, Acharga 103 : hep-th/0303194
- "findeness of effertive Reories valid below fixed cut-off" HMVV '21 2111.00015

$$
10^{500} \mathrm{flux} \text { vacna? } \Rightarrow \text { need } \Rightarrow \text { nubers } \Rightarrow \text { later }
$$

Exploring the Landscape:
Hodge theory is tame:
(online lectures by Klingler, Tsimerman)
flux co-pactificishirs \Rightarrow proofs of statements pour possible tadpole ca jecture? ,...

- $\partial_{z^{i}} U=0$ ad $U=0$ has wore eq. Ran unknous: "unlikely intersection"
\Rightarrow locus always comes with symmetry: $C y$ is special $\underbrace{\text { integer world meets } \underbrace{\text { transedetel world }}_{\text {periods: } \int \Omega} \text {, }}_{\text {fluxes }}$
- evidence for distance conj. form Cy_{3} \Rightarrow first results, but luge ty mexplored

BPS stales on CY, BH, \Rightarrow m explored

- Feynman amplitudes are tame (DGS'22) but none of the none of the recent math breakthroughs use in this context
(4) Tameness conjecture: TG'21, DGS '23
(a) space of effective theories (coupling fads. field spaces, parameter spaces) that are valid below a fixed energy scale is tame
(b) physical observables are tame in parameters (compute on Euclidean + tame spacetime)
evidence:
- in plies previous finiteness conjectures
(egg. HMVV'21)
- QFI: finte-loop amplitudes in (renorm.) QFT are definable in Ran, exp (DGS 122)
tare QFT with cut-off $\Lambda \quad$ finite vara $\longrightarrow A^{\prime}<\Lambda$ base QFT first rama
- all String theory effective actions that I know are tame
- relation to other swampland conjectures
- no discrete infinite-order symmetries (as required for "no global symmetries in QG")
- no potential with infinite spirals as min. (as required for distance conjecture)
- finitly many sectors near infinite distance points \Rightarrow finitely many towers to satisfy distance conjecture

(not along every pate a new towers)
but: not extremely strong "no Mp" of information
(5) Complexity and tameness
recap: introduced 0 -mirimal stonatwes

$$
\Rightarrow \text { tane sets + functions }
$$

next: measure for "information contert" in these sets + fats.
exaple: polynomial $a_{1} x_{1}^{3} x_{2}^{1}+a_{1} x_{1}^{2} x_{2}^{2}+\ldots=0$
nuther of free coeff. \approx degree D \# variabes F

QH: $\quad H=\frac{1}{2} p^{2}+\frac{1}{2} g^{2} x^{2}$

$$
\begin{aligned}
& H=\frac{1}{2} p+i g \lambda \\
& \Rightarrow \quad\langle 0| x\left(t_{2}\right) \times\left(t_{1}\right)|0\rangle=\frac{2}{g} e^{-g\left(t_{2}-t_{1}\right)}
\end{aligned}
$$

\Rightarrow need complexity of exponentia foct.
Idea: (Khovanskii, Gabrielou, Vorobjou)
(a) ded. Ppaftian chain: Pr... Pr

$$
\frac{\partial \rho_{i}}{\partial x_{j}}=P_{i j}\left(x_{1} \ldots, x_{n}, \rho_{1}, \ldots \rho_{i}\right)
$$

\Longrightarrow triangular!
(b) Pfaffian fat. $f(x)=P\left(x_{1}, \ldots, x_{n}, P, \ldots, P_{r}\right)$

Key point: $P_{i j}, P$ are polynomials

$$
\begin{aligned}
& D=\sum_{i, j} \operatorname{degr}\left(P_{i j}\right)+\operatorname{degr}(P) \\
& F=n+r
\end{aligned}
$$

(T, D) "Pfaffian complexity"
What is meaning of (F, D) ?
topological : solutions to $f(x)=0$

$$
\leqslant \operatorname{Poly}(D)^{\theta(F)}
$$

computational:

$$
\operatorname{Comp} \leqslant \operatorname{Poly}(D)^{\theta(F)^{\theta(F)}} \equiv P_{F}(D)
$$

(running time of algorithm to check statement)
very rougly in effective theory:
F - number of fields and nontrivial facts.
D - how complicated are the functions

Examples:

$$
f(x)=e^{a x} \quad \frac{\partial \rho}{\partial x}=a \zeta \quad(F, D)=(2,2)
$$

\approx simple rule to def. exp.

$$
\begin{aligned}
& \text {. } f(x)=\frac{1}{x} \Rightarrow(F, D)=(2,3) \\
& \text {. } f(x)=a x^{2 d}+b x^{d} \Rightarrow(F, D)=(1,2 d)
\end{aligned}
$$

but: "simpler" presentation?

$$
\begin{array}{lrl}
\rho_{1}=1 / x, \rho_{2}=x^{d} & \frac{\partial \rho_{2}}{\partial x}=d \rho_{1} \rho_{2} \\
\Rightarrow(F, D)=(3,6) & & p_{1} \sim 2 f\left(x^{1}\right) \sim 2
\end{array}
$$

up-shot: complexity depends
on representation of f
define: \# complexity $=\left\{(F, D)_{\text {min. repr. }}\right.$.

can always repro. function in more complex way

$$
\begin{aligned}
& f(x)=\cos (x) \quad \text { on }[-\bar{\pi}, \bar{x}] \\
& \rho_{1}=\tan (x / 2) \quad \rho_{2}=\cos ^{2}(x / 2) \quad \Rightarrow(F, D)=(3,5),
\end{aligned}
$$

but :

$$
\begin{aligned}
& f_{m}(x)=\cos (n x) \quad \propto \quad[-\pi, \pi] \\
& \Rightarrow \quad(F, D)=(3,4+m)
\end{aligned}
$$

Fouries expansion:
simple

$$
\begin{aligned}
& \sum_{x^{2}}^{x^{2}}=\sum_{n=0}^{\infty} a_{n} \cos (n x) \approx \sum_{n=0}^{N} a_{n} \cos (n x) \\
& \begin{array}{l}
\text { increasi-g } l^{2} \\
\text { comple plex }
\end{array}
\end{aligned}
$$

strict $N \rightarrow \infty$ limid reduces coplexity

Pecadly ('21,22)

- Extation of constocction to all sets of \mathbb{R} pefff
$\mathbb{R}_{\text {Pgaff }} \sim$ structure generated by all plagfian chains
Note: challenge is to incorporate complement of set
- explicit constr. for restr. Pfaffian fod.

Major advace:

- notia of sharply o-mimimal structures: (\#o-minimal) (see Binyamin, Norikou, Zadk)

Every set/statement has (F, D) (finitely, min.)

Tameness axiom:
polynom., positive corf. $\forall F \in N \Rightarrow \exists$ conpuabale $P_{F}(D)$ st. $A \subseteq \mathbb{R}$ has less the $P_{F}(D)$ connected cop

Note: gen analytic fit. in Ram

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \text { infinitely many } \begin{aligned}
& \text { free parameters }
\end{aligned} \quad \begin{aligned}
& \text { never } \\
& \text { sharply } \\
& 0 \text {-minimal }
\end{aligned}
$$

Simple applications
a)

$$
\begin{aligned}
& \frac{\text { O-dinQFT: }}{\infty} \quad S=\frac{m^{2}}{2} \phi^{2}+\frac{\pi}{4!} \phi^{4} \Rightarrow \begin{array}{l}
\text { cage } \\
\phi \rightarrow \sqrt{\frac{3}{2 \lambda}} m \phi
\end{array} \\
& I_{n}=\int_{-\infty}^{\infty} d \phi \phi^{n} e^{-S} \\
& g=\frac{3 m 4}{4 \lambda} \\
& Z(g)=I_{0}(g)=\sqrt{2} e^{g} K_{1 / 4}(g) \Rightarrow \frac{\text { note: not analytic }}{\text { at } Z}=0 \Rightarrow \text { transseries } \\
& \text { mod. Bessel fou. of } \\
& \text { second Kind } \\
& \left\{\begin{array}{l}
\text { not in } \mathbb{R} \text { an, exp } \\
\text { resurgence }
\end{array}\right.
\end{aligned}
$$

trick: trasform secod-order diff. eg. for Io to first order egs. using

$$
\begin{aligned}
& h(g)=-\frac{1}{I_{0}} \frac{\partial I_{0}}{\partial g} \\
& \Rightarrow \quad(F, D)(Z)=(4,3) \quad \text { ceiling flt. } \\
& \begin{array}{l}
(F, D)(Z)=(4,3) \\
\left.(F, D)\left(I_{n}\right)=\left(4,3+\left[\frac{n}{4}\right]\right) \quad \Rightarrow \begin{array}{c}
\text { complexity } \\
\text { gross with } \\
\end{array}\right]
\end{array} \\
& \text { \# of insestio } \\
& \text { but } F \text { coss. due } \\
& \text { to alg. relations }
\end{aligned}
$$

b) 1-dim. QFT: qua tum mechanics (Euclidean time)
harmonic oscillator: $H=\frac{1}{2} p^{2}+\frac{1}{2} g^{2} x^{2}$

$$
\begin{gathered}
\langle 0| x\left(t_{2}\right) \times\left(t_{1}\right)|0\rangle=\frac{2}{g} e^{-g\left(t_{2}-t_{1}\right)} \\
(\mp, D)=(3,5)
\end{gathered}
$$

wave function?
Solve (time-indep.) Schrodinger eq.

$$
\begin{aligned}
& \text { Solve (time-indep.) ochio anne } \\
& \mathcal{Y}_{n}(x)=\frac{1}{\sqrt{2^{n} n!}}\left(\frac{n_{0}}{\pi}\right)^{4} e^{-\frac{m \omega x^{2}}{2}} H_{n}(\sqrt{n \omega} x)
\end{aligned}
$$

in variable $x:(f, D)=(2,3+n)$
for $E_{n}=\left(n+\frac{1}{2}\right)^{\omega}$
involved applications
Math conjecture: Binyamini, Novikov ${ }^{1} 22$ period integrals are \$0-minimal
perturbative amplitudes in (renorm.) QTs \Rightarrow use conjecture $\Rightarrow\left(F_{1} D\right)($ ampl $)$?

- SU(N) seikerg-witlen then (Ld $N=2$

$$
(T, D)\left(\frac{1}{g_{\operatorname{su}}(N)}\right) ?
$$

Youg-rills Aery)
algebraic independence of periods
$\Rightarrow F \sim$ grows with N

Open problems:
number of flux vacua $1 D^{500}-10^{20000} ?$

- Compare with other notions of complexity
- Assign (F,D)EFT to effective theory \Rightarrow compute for string theory examples
- What is behavior/bound on (F, D) EFT?

References:

$$
\begin{array}{cl}
\text { BGST '21: } & 2112.06995 \\
\text { TG } & 21: 2112.08383 \\
\text { GLL }{ }^{\prime} 22: 2206.00697 \\
\text { DGS '22: } 2210.10057 \\
\text { DGS } 123: 2302.04275 \\
\text { GSV }{ }^{\prime} 23: 2310.01484
\end{array}
$$

many math refs. Cited in these works

