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In order to deepen your knowledge of AdS/CFT, we recommend that you work on at
least one exercise for each topic. Note that the exercises for each topic are presented
in order of increasing difficulty.

The exercises of this examples sheet are about

Exercise Topic

I - III Properties of Anti-de Sitter spacetime
IV - VI Properties of conformal transformations
VII, VIII Near-horizon limit of D- and M-branes
IX - XII Field – Operator matching

Properties of Anti-de Sitter spacetimes

I. Various coordinate systems for AdSd+1.

Lorentzian AdSd+1 can be defined by the locus

−L2 = ηabX
aXb = −

(

Xd+1
)2

−
(

X0
)2

+

d
∑

i=1

(

Xi
)2
, (1)

where X ∈ R2,d and ds2 = ηabdX
adXb with η = diag(−1, 1, 1, . . . , 1,−1). In the

following we parametrize the locus (1) in different ways.

a) Draw a picture of AdS2 embedded in R2,1!

b) The global coordinates (ρ, τ,Ωi) are defined by

Xd+1 = L cosh ρ sin τ ,

X0 = L cosh ρ cos τ ,

Xi = L sinh ρΩi ,

with i = 1, ..., d and
d
∑

i=1
Ω2

i = 1. Using this parametrization calculate the induced metric

ds2 = gµνdx
µdxν (where xµ ∈ {ρ, τ,Ωi}) for AdSd+1 in global coordinates.



c) Replace ρ by r ≡ L sinh ρ and show that the metric can be written in the form

ds2 = −H(r) dt2 +H(r)−1 dr2 + r2 dΩ2
d−1,

where dΩ2
d−1 =

d
∑

i=1
dΩi dΩi is the metric of the unit (d− 1)–sphere, Sd−1.

d) The Poincaré patch coordinates (xµ, u) with µ = 0, ..., d − 1 are defined by

Xd+1 +Xd = u ,

−Xd+1 +Xd = v ,

Xµ =
u

L
xµ .

Use the defining equation (1) to eliminate v in terms of u and xµ and show that the
induced metric for (u, xµ) with µ = 0, ..., d − 1 takes the form

ds2 = L2du
2

u2
+
u2

L2
dxµdxµ .

Finally introduce z = L2

u and show that the metric is given by

ds2 =
L2

z2

(

dz2 + dxµdxµ

)

.

Which part of the AdS spacetime is not covered by these coordinates? (Hint: z takes
only positive values (Why?))

II. Geodesics in global AdS

We consider global AdS given by the coordinates (ρ, τ,Ωi) and the metric

ds2 = gµνdx
µdxν = L2

(

− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2
i

)

.

a) What is the condition satisfied by ds2 for a radially-directed light-ray? Using this
and starting from ρ = ρ0 with proper time τ(ρ0) = 0, find the trajectory τ(ρ) for such
a light-ray. What is the coordinate time for a geodesic to go from ρ0 to the boundary
and come back? What is the proper time measured by a stationary observer’s clock at
ρ0 for this trajectory? Comment on this!

b) What is the behaviour of a massive geodesic in the radial direction of AdS? Show
that a massive geodesic never reaches the conformal boundary of AdS.

Hints for exercise b)

(i) The norm of the velocity uµ = dxµ

dT is always −1, where T is the proper time along
the worldline.

(ii) We know that cosh2 ρ dτ
dT = C = const. (Why?)

III. Poincaré patch of AdS

Calculate the inverse metric gµν , the Christoffel symbols Γµ
ρσ as well as the Riemann

tensor Rµ
νρσ in the Poincaré patch of AdSd+1. Confirm that this patch is a solution of

Einstein’s field equations

Gµν − Λgµν ≡ Rµν − 1

2
Rgµν − Λgµν = 0
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and determine the value of the cosmological constant Λ.

Hints: The Christoffel symbols Γµ
ρσ and the Riemann tensor Rµ

νρσ are given by

Γµ
ρσ =

1

2
gµν (∂ρgσν + ∂σgρν − ∂νgρσ) ,

Rµ
νρσ = ∂ρΓ

µ
νσ + Γµ

ρλΓλ
νσ − (ρ↔ σ) .

The Ricci tensor and Ricci scalar are determined by Rνσ = Rµ
νµσ and R = Rν

ν .

Properties of conformal transformations

IV. Conformal Symmetry

a) Show that a special conformal transformation may be written as a combination of
an inversion, a translation and another inversion.

b) Consider a curved space with a metric of Euclidean signature. An infinitesimal Weyl
transformation of the metric is given by

δgµν(x) = 2σ(x)gµν (x) ,

with a scalar function σ(x). Show that the conformal Killing equation may be obtained
by combining an infinitesimal diffeomorphism with an infinitesimal Weyl transforma-
tion, and subsequently reducing to flat space.

c) Show that the two-point function of the scalar field O with conformal dimension ∆
on a flat Euclidean d-dimensional space,

〈O(x)O(y)〉 =
C

(x− y)2∆

is covariant under conformal transformations.

V. Conformal Algebra

Show that the conformal algebra of the spacetime Rq,p, given by the generators Mµν ,
Pµ, Kµ and D, is isomorphic to SO(q+1, p+1).

The commutators read:

[Mµν ,Mρσ ] = i (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ) ,

[Kρ,Mµν ] = i (ηρµKν − ηρνKµ) ,

[Pρ,Mµν ] = i (ηρµPν − ηρνPµ) ,

[D,Pµ] = iPµ, [D,Kµ] = −iKµ,

[Kµ, Pν ] = 2i (ηµνD −Mµν) ,

where ηµν are the entries of a diagonal matrix with q times −1 and p times 1 on the
diagonal. Conclude that the conformal algebra of R1,p is the isometry group of AdSp+2.
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VI. Infinitesimal conformal transformations

Show that the generator of an infinitesimal version of the conformal transformations in
more than two spacetime dimensions is at most second order in the spacetime coordi-
nates.

Hint: Use the definition ∂µǫν + ∂νǫµ = 2
dηµν∂ρǫ

ρ and show that the third derivatives of
ǫ have to vanish.

Near-horizon limit of D- and M-branes

VII. Near-horizon limit of D3-branes

The near-horizon limit of the metric of D3-branes was already discussed in the lecture.
Determine in this exercise the near-horizon limit of the Ramond-Ramond five-form field
strength tensor F(5), which is given by

F(5) = dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dH−1 + . . . ,

where the terms denoted by dots are choosen such that F(5) is self-dual. The function
H(r) is given by

H(r) = 1 +
L4

r4
.

VIII. Near-horizon limit of M2-branes

The supergravity solution of N coincident M2–branes reads

ds2 = H(r)−2/3
(

−dt2 + dx2 + dy2
)

+H(r)1/3
(

dr2 + r2dΩ7

)

,

F(4) = dt ∧ dx ∧ dy ∧ dH−1 ,

where H(r) is given by

H(r) = 1 +
L6

r6
, where L6 = 32π2Nl6p.

a) Take the near-horizon limit r → 0 and calculate the metric and the four-form F(4)
in this limit.

b) Use the coordinate transformation z = L3

2r2 and compute the metric as well as the
four-form F(4) in the coordinates (z, t, x, y,Ω7). Which is the spacetime you obtain in
this way?

Field – Operator matching

IX. Massive scalar fields in AdS

Let us consider a massive scalar field in Euclidean AdS in the Poincaré patch.

a) Derive the equations of motion for a scalar field with mass m in Euclidean AdSd+1.

b) Use the ansatz φ(z) = z∆ near the boundary z → 0 and determine the two possible
values of ∆±, where ∆+ > ∆−.
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c) What is the scaling dimension of the corresponding scalar operator O on the field
theory side?

X. Bulk Gauge Fields in AdS/CFT

Let us consider massive gauge fields in AdSd+1 by the Proca action

S =

∫

AdS

dd+1x
√
g

(

1

4
FµνF

µν +
m2

2
AµA

µ

)

.

a) Derive the equations of motion for Aµ in the Poincaré patch of Euclidean AdSd+1!

b) Determine the index ∆ by plugging the ansatz Aµ(z) = z∆ into the equations of
motions!

c) What is the scaling dimension of the corresponding current on the field theory side,
which is dual to the bulk gauge field? The coupling of the current to the bulk field is
given by

∫

∂AdSd+1

ddx
√
γAµJ

µ ,

where γµν is the induced metric on the conformal boundary of AdSd+1.

XI. Saturation of unitarity bound

Consider a free scalar field with mass m in the Poincaré patch of Euclidean AdSd+1.

a) Show that the usual bulk action

S1 = −1

2

∫

ddx dz
√
g

(

gµν∂µφ∂νφ+m2φ2
)

,

evaluated for solutions of the form φ(x, z) ∼ z∆eikx near z = 0, is finite if ∆ > d/2,
i.e. the solution with ∆ = ∆+ (∆+ being the larger root of ∆(∆ − d) = m2L2) are
normalizable with respect to the action S1.

b) Consider the bulk action

S2 = −1

2

∫

ddx dz
√
gφ

(

−�g +m2
)

φ .

Show that S2 can be obtained by adding a boundary term to the action S1 (hint: partial
integration) and that the equations of motion are the same as for the action S1.

c) Show, that the action S2 evaluated for solutions of the form φ(x, z) ∼ z∆eikx near
z = 0 is finite if ∆ > (d− 2)/2. Conclude that for

−d
2

4
< m2L2 < −d

2

4
+ 1 ,

both solutions, i.e. ∆ = ∆+ and ∆ = ∆− are normalizable with respect to the action
S2.
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XII. Propagators

Let us consider a massive scalar field in Euclidean AdS in the Poincaré patch (see
exercise IX).

The bulk-to-boundary propagator K(x, z;x′) is the solution of the equations of motion
which is regular in the interior and diverges like

lim
z→ǫ

K(z, x;x′) = ǫ∆−δ(x − x′)

near the boundary, i.e. for ǫ≪ 1. The bulk-to-bulk propagator is given by the solution
of the equation of motion with a pointlike source term,

(

�x,z −m2
)

G(z, x; z′, x′) =
1√
g
δ(x− x′)δ(z − z′) ,

where �x,z is the scalar Laplacian in Euclidean AdSd+1 acting only on x and z. More-
over the bulk-to-bulk propagator is regular in the interior.

Show that the bulk-to-boundary propagator K(x, z;x′) can be calculated from the
bulk-to-bulk propagator G(z, x; z′, x′) by

K(z, x;x′) = lim
z′→ǫ

∆+ − ∆−

ǫ∆+
G(z, x; z′, x′).

Hint: Do not use the explicit solution for G(z, x; z′, x′), but Green’s second identity in
the following way

∫

M
ddxdz

√
g

[

φ(�x,z −m2)ψ − ψ(�x,z −m2)φ
]

=

∫

∂M
ddx

√
γ(φ∂nψ − ψ∂nφ) ,

where γ is the determinant of the induced metric on ∂M and ∂n is the derivative normal
to the boundary, i.e. in our case ∂n = ∂z.
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