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Abstract

The study of symmetries in physics has revolutionized our understanding of the world. Inspired by this, the 

development of methods to incorporate internal (Gauge) and external (space-time) symmetries into machine 

learning models is a very active field of research. We will discuss general methods for incorporating symmetries 

in ML, and our work on invariant generative models. We will then present its applications to quantum field 

theory on the lattice (LQFT) and molecular dynamics (MD) simulations. In the MD front, we'll talk about how we 

constructed permutation and translation-invariant normalizing flows on a torus for free-energy estimation. In 

the LQFT front, we'll present our work that introduced the first U(N) and SU(N) Gauge-equivariant normalizing 

flows for pure Gauge simulations and its extension to incorporate "pseudo-fermions", leading to the first proof 

of principle of a full QCD simulation with normalizing flows in 2D.
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1 Tools



The problem

coordinates

energy

normalizing 
constant

inverse 
temperature

Image credit: 
Wikipedia

https://en.wikipedia.org/wiki/Ludwig_Boltzmann


The problem

Goals

1)   Draw samples   

2)  Expectations under Material properties

3) Estimate Free energy

coordinates

energy

normalizing 
constant

inverse 
temperature



Problem summary

We are given an energy function with 

known invariances...

... that defines a Boltzmann distribution ... 

... under which we want to compute 

expectations and free energies. 



Normalizing flows



Why normalizing flows?

● Scientific applications require high-accuracy predictions with reliable 

error estimation

● Model de-biasing methods (e.g. IS, MCMC) require fast exact model 

likelihoods and sampling

● This excludes certain families of generative models such as GANs, 

energy-based and diffusion models 

● Auto-regressive, latent variable and flow models are compatible with the 

desiderata of MCMC corrections



Change of variable formula

Our goal is to define a density             over a D-dimensional vector       . 

We can achieve this by transforming samples from a base distribution                           
,                                                 

where          is an invertible transformation and                           .   



Basic concept of NFs

Goal:   Use ML to transform a simple base density into a complex density.

Rezende and Mohamed, Variational inference with normalizing flows, ICML (2015)
Papamakarios et al., Normalizing flows for probabilistic modeling and inference, JMLR (2021)
Kobyzev, Prince and Brubaker, Normalizing Flows: An Introduction and Review of Current Methods, IEEE PAM (2021)

We assume the transformation to be a diffeomorphism with tractable Jacobian 
determinant.

http://proceedings.mlr.press/v37/rezende15.html
https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf
https://dx.doi.org/10.1109/TPAMI.2020.2992934


NFs are composable

is also a flow



Composing multiple layers

Papamakarios et al., Normalizing flows for probabilistic modeling and inference, JMLR (2021)

https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf


Composing multiple layers

Papamakarios et al., Normalizing flows for probabilistic modeling and inference, JMLR (2021)

https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf


Density evaluation and sampling

Arbitrary density
Inverse & Jacobian 
determinant

Forward & Jacobian 
determinant

Density of samples

Sampling

Slide credit: George Papamakarios



What should models 
optimize for?



Training objective

● Our goal is to fit a model          to an (unnormalised) target distribution         .   
        

● How to quantify the difference between the distributions below?



Divergence

● We need a loss function        that quantifies the divergence or discrepancy 
between the two distributions         and        .

● We can then update the  parameters       based on the gradient 
(e.g. with Adam).

Kingma and Ba, Adam: A method for stochastic optimization, ICLR (2015)



Kullback–Leibler divergences

The Kullback–Leibler (KL) divergences are popular choices for training flows:

○ forward-KL:

○ reverse-KL: 

                                    with equality if and only if the two distributions are equal.

Papamakarios et al., Normalizing flows for probabilistic modeling and inference, JMLR (2021)

https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf


Forward KL

The forward KL can be rewritten as

Papamakarios et al., Normalizing flows for probabilistic modeling and inference, JMLR (2021)

=   Maximum likelihood 
     estimation

https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf


Forward KL

Given samples                        from          we can use the MC approximation

Papamakarios et al., Normalizing flows for probabilistic modeling and inference, JMLR (2021)

We can evaluate this for a batch 
of samples to approximate 

Independent of the parameters.

https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf


Reverse KL

The reverse KL can be rewritten as

Papamakarios et al., Normalizing flows for probabilistic modeling and inference, JMLR (2021)

energy

reparametrization

https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf


Reverse KL

Given samples                      from the base               we can approximate this KL as

Papamakarios et al., Normalizing flows for probabilistic modeling and inference, JMLR (2021)

We can evaluate this for a batch 
of samples to approximate 

https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf


KL Comparison

Forward KL

● “Training by sample”
● requires samples from the target
● “mode covering”

Papamakarios et al., Normalizing flows for probabilistic modeling and inference, JMLR (2021)
Noé et al., Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning, Science (2019)
Wirnsberger et al., Targeted free energy estimation via normalizing flows, JCP (2020)

Reverse KL

● “Training by energy”
● requires an energy function
● “mode seeking”

Training objectives can be combined

https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf
https://www.science.org/doi/epdf/10.1126/science.aaw1147
https://aip.scitation.org/doi/10.1063/5.0018903


Correcting models: 
reliable predictions with 
(some) guarantees



Goal: 

Guarantees of correctness (controlled 
systematic errors)

Model inaccurate

Model accurate

Results correct but slow
Results correct and fast



Debiasing expectations

The goal is to compute expectations w.r.t. the target: 

Averages under the model are, in general, biased:   

Common strategies:   Metropolis–Hastings MCMC and Importance Sampling



Metropolis–Hastings MCMC

Generate a new trial move using the flow:
(independent proposal distribution)

Accept                     with probability:

Using the collected samples

estimate expectations as:

Albergo, Kanwar and Shanahan, Flow-based generative models for Markov chain Monte Carlo in lattice field theory,  PRD (2019).
Nicoli et al., Asymptotically Unbiased Estimation of Physical Observables with Neural Samplers, PRE (2020).
Gabrié, Rotskoff and Vanden-Eijnden, Adaptive Monte Carlo augmented with normalizing flows, PNAS (2022).

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.034515
https://arxiv.org/abs/1910.13496
https://www.pnas.org/doi/epdf/10.1073/pnas.2109420119


Importance Sampling (IS)

The model is the proposal distribution:

Draw N samples from the model:

Compute importance weights:

Estimate expectations as:  



IS estimate:                                                                                   with 

MC estimate:                                                                 with

Effective sample size for IS

Assume we want to estimate:   

Martino et al. Effective Sample Size for Importance Sampling based on discrepancy measures, Signal Processing (2017).

https://www.sciencedirect.com/journal/signal-processing


Effective sample size for IS

The effective sample size (ESS) is defined as:

Martino et al. Effective Sample Size for Importance Sampling based on discrepancy measures, Signal Processing (2017).

It can be estimated as:

https://www.sciencedirect.com/journal/signal-processing


Sampling with flows: simple accept/reject bias correction

Albergo, M.S., Kanwar, G. and Shanahan, P.E., 2019. Flow-based generative models for Markov chain Monte Carlo in lattice field 
theory. Physical Review D, 100(3), p.034515.



Continual Repeated 
Annealed Flow Transport
Monte Carlo
(CRAFT)



Continual Repeated Annealed Flow Transport Monte Carlo (CRAFT)

Michael Arbel

INRIA 

Univ. Grenoble Alpes

Arnaud Doucet

DeepMind
Danilo J. Rezende

DeepMind

Alex Matthews

DeepMind

github.com/deepmind/annealed_flow_transport

Slide credit: Alex Matthews



Continual Repeated Annealed Flow Transport Monte Carlo (CRAFT)

Matthews, A.G., Arbel, M., J. Rezende, D. and Doucet, A., 2022. Continual Repeated Annealed Flow Transport Monte Carlo

Image credit: Alex Matthews



CRAFT flow training objective

Zero if flow
transport
perfect.

Estimate objective and gradients 
using current importance 
sampling estimate.

Gradients local to transitions so 
no need to backprop through 
discrete steps.

Further analysis in paper.
Sum over 
transitions 
between 
temperatures.

Previous distribution 
passed through a flow T

Current distribution

Slide credit: Alex Matthews



CRAFT for Phi4 Lattice-QFT

Matthews, A.G., Arbel, M., J. Rezende, D. and Doucet, A., 2022. Continual Repeated Annealed Flow Transport Monte Carlo



2 Manifold 
Constraints



General principles

● Most existing ML techniques and tools assume data leaves 

in R^n and cannot be adapted in a straightforward way to 

manifolds

● There are very few tools that can be broadly applied to 

manifold data

● Solutions need to be custom-made for each problem in 

general



Continuous-time flows on Riemannian manifolds

Grathwohl, W., Chen, R.T., Bettencourt, J., Sutskever, I. and Duvenaud, D., 2018. Ffjord: Free-form continuous dynamics for scalable 
reversible generative models. arXiv preprint arXiv:1810.01367.
Mathieu, E. and Nickel, M., 2020. Riemannian continuous normalizing flows. arXiv preprint arXiv:2006.10605.

Metric 
matrix on 
local chart



Cost-Concave Potential Flows on Riemannian manifolds

\phi is 
cost-concave

Diffeomorphism

Villani, C., 2009. Optimal transport: old and new (Vol. 338, p. 23). Berlin: Springer.

Intrinsic distance



Convnets on manifolds 
and fiber bundles: A 
general solution, 
formulation



Convnets on manifolds and fiber bundles

Convnets 
in R^n



Convnets on manifolds and fiber bundles

Image credit: Disentangling by Subspace Diffusion, Pfau et al, arxiv 2020 

We can't trivially extend convnets to fiber bundles:
Linear combinations of elements belonging to different 

fibers are neither invariant nor equivariant 



Convnets on manifolds and fiber bundles

General solution: Elements of different fibers need to be 
"parallel transported" to a "common fiber" before taking 

linear combinations

Image credit: Disentangling by Subspace Diffusion, Pfau et al, arxiv 2020 



3 Symmetry 
Constraints



General principles

Given a group… 

… and  a map 

... with group action

Invariance

Equivariance

Pitts, Nominal sets: Names and symmetry in computer science, Cambridge Univ. Press  (2013).



Why respect symmetries?

Many real-world problems have known symmetries.

● Physics

○ time reversal,
○ identical particles,
○ wave functions, or
○ gauge invariance, …

Can have dramatic effects on training!

● Point-cloud modelling (e.g. 3D objects)

● Image detection (e.g. rotations)



Examples of common symmetries

● Permutations

○ symmetric

○ antisymmetric

● Translations and/or rotations

○ SE(3)

○ Octahedral symmetries

● Gauge invariance

○ U(n)

○ SU(n)



General mechanisms to 
incorporate symmetry 
and equivariance in ML



Building Invariance: Group convolutions

Example: 
group convolution nnets

Invariant map

Equivariant map



Building Invariance: Group convolutions

Example: 
group convolution nnets

Invariant map

Equivariant map

Not scalable with dimension of G!



Building Invariance: Direct use of known group invariants

Example: Pairwise interactions for translational invariance 
(e.g. graphnets, transformers)



Building Invariance: Direct use of group invariants

Example from Physics: Wilson 
loops 

Example: Trace-networks for matrix conjugation invariance



Building Invariance: Canonicalization maps

Canonicalize -> Flow on cell -> Uncanonicalize



Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S. and Lakshminarayanan, B., 2019. Normalizing flows for probabilistic 
modeling and inference. arXiv preprint arXiv:1912.02762.

Building Equivariance: Equivariance from Invariance

Example: Permutation equivariant gradient maps



Convnets on manifolds and fiber bundles: Gauge symmetries

Image credit: Gauge Theories and Fiber Bundles: Definitions, Pictures, and Results, Adam Marsh



Convnets on manifolds and fiber bundles: Gauge symmetries, 
a concrete example.
Matrix-conjugation equivariant convnets

Favoni, M., Ipp, A., Müller, D.I. and Schuh, D., 2022. Lattice gauge equivariant convolutional neural networks. Physical Review Letters, 
128(3), p.032003.
Gerken, J.E., Aronsson, J., Carlsson, O., Linander, H., Ohlsson, F., Petersson, C. and Persson, D., 2021. Geometric deep learning and 
equivariant neural networks. arXiv preprint arXiv:2105.13926.

Parallel transport of W

Examples of non-linearities that preserve equivariance



Building Invariant Densities: General principle

Simple Invariant Density 
(e.g Haar measure or Uniform)

Equivariant 
Transformation

Complex Invariant 
Density

Rezende et al., Equivariant Hamiltonian Flows, arXiv (2019)
Köhler, Klein and Noe, Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities ICML (2020)
Papamakarios et al., Normalizing flows for probabilistic modeling and inference, JMLR (2021)

https://arxiv.org/abs/1909.13739
http://proceedings.mlr.press/v119/kohler20a.html
https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf


4 Special 
Manifolds: 
U(N), SU(N)



Lattice Quantum Chromodynamics 



Motivation: Gauge Equivariance



Motivation: Gauge Equivariance
Let h be an invertible map such that

Then the map f,

where

is equivariant to Gauge transformations



Boyda, D., Kanwar, G., Racanière, S., Rezende, D.J., Albergo, M.S., Cranmer, K., Hackett, D.C. and Shanahan, P.E., 2020. Sampling 
using $ SU (N) $ gauge equivariant flows. arXiv preprint arXiv:2008.05456.

Building Equivariance: Matrix Conjugation Equivariance

T is the maximal torus of G



Boyda, D., Kanwar, G., Racanière, S., Rezende, D.J., Albergo, M.S., Cranmer, K., Hackett, D.C. and Shanahan, P.E., 2020. Sampling 
using SU(N) gauge equivariant flows. arXiv preprint arXiv:2008.05456.

Building Equivariance: Matrix Conjugation Equivariance

Matrix Conjugation Equivariance ⇔ Permutation Equivariance 
of eigenvalues



Matrix-conjugation diffeomorphisms on SU(N) are generated by 
permutation-equivariant  diffeomorphisms on eigenvalues

If g is a permutation-equivariant flow that preserves 
unitarity ( \prod g(w) = 1  )

Building Equivariance: Matrix Conjugation Equivariance



Haar measure on the maximal torus of SU(N)



Alternative constructions 
for SU(N) 
Gauge-equivariant maps



Alternative Gauge-equivariant map: Exp-product map

Projects to the Lie 
algebra

A collection of staples

Invertibility requires 
bounded coefficients



Alternative Gauge-equivariant map: SU(N) ODE flow, trivializing flows

Lie algebra generators

Gauge-invariant scalar

Invertibility requires 
bounded step-size

Right-invariant derivative

Trivializing maps, the Wilson flow and the HMC algorithm, Martin Luscher



5 Applications



5.1 Application: 
Free energy of 
solids



Collaborators

Danilo 
Rezende

George 
Papamakarios

Sébastien 
Racanière

Peter  
Wirnsberger

Andy Ballard

Stuart 
Abercrombie

Alexander 
Pritzel

Charles 
Blundell

Borja Ibarz

Wirnsberger, Ballard et al., Targeted free energy estimation via learned mappings, JCP (2020).

Wirnsberger, Papamakarios, Ibarz et al., Normalizing flows for atomic solids, MLST (2022).

https://aip.scitation.org/doi/10.1063/5.0018903
https://iopscience.iop.org/article/10.1088/2632-2153/ac6b16


Free energy

Related to:

● Phase transitions

● Molecular stability

● Drug binding and solubility

● ...
Image credit: Morissette et al., PNAS 100

Image credit: 
Auer and Frenkel, 

Nature (2001) 

Image credit: Mey et al., Living J Comput Mol Sci. (2021) 

https://www.pnas.org/content/pnas/100/5/2180.full.pdf
https://www.nature.com/articles/35059035
https://livecomsjournal.org/index.php/livecoms/article/view/v2i1e18378


Problem definition

Estimate free energy changes between two states. 

state A or B



Estimators

Many specialised estimation techniques have been developed:

○ Thermodynamic integration

○ Free energy perturbation (FEP)

○ Bennetts acceptance ratio (BAR)

○ Jarzynski method / Annealed Importance Sampling

○ Weighted histogram analysis method (WHAM)

○ Multistate BAR (MBAR)

○ Metadynamics…

Frenkel and Smit (2002), Understanding Molecular Simulation, 2nd edn (San Diego), 2002.

Can we use ML to 
improve them?



Traditional approaches

● Molecular Dynamics (MD)

 

● Markov Chain Monte Carlo (MCMC)

○ Hamiltonian Monte Carlo

○ Langevin dynamics

Image credit: Lupi et al., Nature 501

Animations credit: Šarić Lab, andelasaric.com

https://www.nature.com/articles/nature24279
https://andelasaric.com/


Traditional approaches

Sampling & expectations

1. Burn-in period

2. Collecting samples

3. MC estimate

Samples directly from 

target distribution

No unbiasing required



The “overlap problem”

regions of 
high probability

no overlap



Multistate methods

Introduce intermediate distributions:

● Thermodynamic integration

● Multistep FEP

● WHAM

● MBAR, …

Works well but is expensive.

Many simulations

Image credit: Wirnsberger, Ballard, et al.,  JCP (2020).

How to define good 
intermediate 
distributions?

https://aip.scitation.org/doi/10.1063/5.0018903


Learned estimators

Image credit: Wirnsberger, Ballard et al., J. Chem. Phys. (2020).

Free energy estimation as a learning problem:

Setting 1 

Train on 
datasets

Setting 2 

Sample from a 
tractable base

ML

https://aip.scitation.org/doi/10.1063/5.0018903


Solids:   Problem setup

Wirnsberger, Papamakarios, Ibarz et al., Normalizing flows for atomic solids, MLST  (2022).

  

Requires two experiments.

https://iopscience.iop.org/article/10.1088/2632-2153/ac6b16


+ noise
+ permutation

lattice input output

Model

Invariant Density 
(permutation)

Equivariant 
Transformation

Complex 
Invariant 
Density

Atomic solids: permutation equivariance

Wirnsberger, Papamakarios, Ibarz et al., Normalizing flows for atomic solids, MLST  (2022).

https://iopscience.iop.org/article/10.1088/2632-2153/ac6b16


Permutation-equivariant coupling layer

Split across particle coordinates:

Coupling layer is 
permutation-equivariant if C is.

Image credit: Wirnsberger et al., Targeted free energy estimation via normalizing flows, JCP (2020).

https://aip.scitation.org/doi/10.1063/5.0018903


Permutation-equivariant conditioner

Transformer architecture

(without positional embeddings)

Image credit: Vaswani et al., Attention is all you need, NeurIPS (2017).

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Coupling flow on tori:   Periodic boundary conditions

Slide credit: George Papamakarios
Rezende, Papamakarios, Racanière et al., Normalizing flows on tori and spheres, ICML (2020).



Coupling flow on tori:   Circular embedding

+  integer multiples

Slide credit: George Papamakarios
Image credit: Wirnsberger et al., Targeted free energy estimation via normalizing flows, JCP (2020).

https://aip.scitation.org/doi/10.1063/5.0018903


Global translation symmetry

● Choose a particle as reference

● Place it randomly

● Flow generates N-1 other particles relative to reference

Slide credit: George Papamakarios



Results



Results:   Radial distribution function

Wirnsberger, Papamakarios, Ibarz et al., Normalizing flows for atomic solids, MLST  (2022).

● 512 particles

● Cubic ice

● No unbiasing.

https://iopscience.iop.org/article/10.1088/2632-2153/ac6b16


Solids:   Energy histogram

Wirnsberger, Papamakarios, Ibarz et al., Normalizing flows for atomic solids, MLST  (2022).

Energies computed from 

the base and the model 

differ significantly.

No appreciable difference 

between model and MD. 

https://iopscience.iop.org/article/10.1088/2632-2153/ac6b16


Solids:   Histogram of work values

Wirnsberger, Papamakarios, Ibarz et al., Normalizing flows for atomic solids, MLST  (2022).

The distribution of work values 

exhibits a sharp peak. 

https://iopscience.iop.org/article/10.1088/2632-2153/ac6b16


Solids:   Free energies

Wirnsberger, Papamakarios, Ibarz et al., Normalizing flows for atomic solids, MLST  (2022).

no MD data
Model + MD data 
(from target)

100-200 MD runs
(multistate)

https://iopscience.iop.org/article/10.1088/2632-2153/ac6b16


Application: 
Lattice quantum 
chromodynamics

5.2
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What is Lattice QCD?

● Lattice quantum chromodynamics (LQCD) is a subfield of computational physics 

which aims to simulate elementary particle fields involved in the "strong 

interaction" called quarks and gluons.

● These simulations involve discretising space-time using a lattice and simulating 

quantum fluctuations of the particle fields; typically using HMC.



Private & ConfidentialThe problem space: The Standard Model of Particle 
Physics in a box

Three axes of model complexity:

● dimension of space-time: 2D, 3D and 4D;
● lattice size (discretisation of space-time): Eg from L=8 to L=32;
● features of the theory:

○ Gauge fields: photons, gluons
■ no force (𝝓4)
■ electromagnetism with U(1)
■ weak nuclear force with ~SU(2)
■ strong nuclear force with SU(3)

○ Fermion fields: electrons, quarks



Private & ConfidentialScale Enables Impact: Larger lattices allow for ab-initio 
study of a larger number of problems

L >= 16

● Baryon 
spectroscopy 
(i.e. derive 
bound state 
energies / 
masses)

L >= 32

● Study nuclear 
fusion 

● Big Bang 
nucleosynthesis

L > 96
(exascale compute)

● muon magnetic 
moment

● Study dark 
matter

● Study the 
interior of 
neutron stars

Lattice size = L
Volume = L^4

Beta >= 6



Flows for Scalar 
Fields



Modelling scalar fields with flows



Modelling scalar fields with flows



Stack of masked flows

input

PBConv3 / LeakyReLU

PBConv3  / LeakyReLU

PBConv3  / LeakyReLU

64 channels

Scale and offset convnets



The learned model replicates HMC two-point functions



The Yukawa model: 
scalar fields + 
fermions



Modelling scalar and fermion fields with flows



Yukawa model



Discussion: Yukawa model

When Nf = 2 and m1 = m2

Christof  Gattringer  and  Christian  B.  
Lang.Quan-tum chromodynamics on 
the lattice.Lect. Notes 
Phys.,788:1–343, 2010.



Pseudo-fermions

Christof  Gattringer  and  Christian  B.  
Lang.Quan-tum chromodynamics on 
the lattice.Lect. Notes 
Phys.,788:1–343, 2010.



Considered many combinations of target density



Various MCMC schemes



The Convex Potential Yukawa Flow



Key challenge: scalable gradient estimation



Key challenge: scalable gradient estimation

Scalar flow grad LDJ

Fermion flow grad LDJ



Main Results: MCMC Acceptance rates



Main Results: Bias analysis



Summary

● Masked normalizing flows are a good family of models for 2D scalar fields

● They can incorporate translational symmetry and boundary conditions

● Introducing fermions add substantial complexity:

○ Requires working with scalar-pseudo-fermion effective action

○ Requires inversion and gradients of the operator DD*  (expensive, can 

have large condition number)



U(N) and SU(N) 
equivariant flows: 
Sampling gauge and 
fermion fields at 
criticality



Lattice Quantum Chromodynamics 



Abelian Gauge: U(1)



Modelling Gauge fields with flows



SU(N) Yang-Mills Theory



Modelling Gauge fields with flows



Continuous symmetries: Gauge transformations 



General architecture: Pure-Gauge equivariant flow

Simple Gauge 
Invariant Density 

(e.g. Haar measure 
on  SU(3))

Gauge Equivariant 
Diffeo

Complex Gauge 
Invariant Density



Haar measure on SU(3) 



Gauge Equivariant Flow



Gauge Equivariant Flow
Let h be an invertible map such that

Then the map f,

where

is equivariant to Gauge transformations



Gauge Equivariant Flow

This reduces the problem to finding a flow h such that

This is a flow equivariant to matrix conjugation transformations



Matrix-conjugation equivariant flows on SU(N) and U(N)

This flow is equivariant to matrix-conjugation transformations

If g is a permutation-equivariant flow that preserves 
unitarity ( \prod g(w) = 1  )



Private & ConfidentialOur approach: an onion flow

Conjugation equivariant 
flow on U(N), SU(N).
Low dimensional group of 
symmetries.

Flow on a torus with a 
finite symmetry group Flow on a simplex Flow on a box



Building Equivariant flows: Permutation Equivariant Flows on 
maximal toruses

Boyda, D., Kanwar, G., Racanière, S., Rezende, D.J., Albergo, M.S., Cranmer, K., Hackett, D.C. and Shanahan, P.E., 2020. Sampling 
using SU(N) gauge equivariant flows. arXiv preprint arXiv:2008.05456.

Bender, C., O'Connor, K., Li, Y., Garcia, J.J., Zaheer, M. and Oliva, J., 2019. Exchangeable Generative Models with Flow Scans. arXiv 
preprint arXiv:1902.01967.

Canonicalize -> Flow on cell -> Uncanonicalize



Building Equivariant flows: Permutation Equivariant Flows

Boyda, D., Kanwar, G., Racanière, S., Rezende, D.J., Albergo, M.S., Cranmer, K., Hackett, D.C. and Shanahan, P.E., 2020. Sampling 
using SU (N) gauge equivariant flows. arXiv preprint arXiv:2008.05456.

For special unitary groups permutation/Weyl equivariant 
flows reduces to a flow on a N-simplex 



SU(3) Gauge equivariant flow

Boyda, D., Kanwar, G., Racanière, S., Rezende, D.J., Albergo, M.S., Cranmer, K., Hackett, D.C. and Shanahan, P.E., 2020. Sampling 
using $ SU (N) $ gauge equivariant flows. arXiv preprint arXiv:2008.05456.



Private & ConfidentialTL;DR Gauge equivariant Flows

Matrix conjugation equivariant map

Matrix product



High-level pure Gauge flow



Building Gauge Equivariant flows: SU(N>3) Gauge equivariant 
flows: Simulating pure Gauge QCD

Boyda, D., Kanwar, G., Racanière, S., Rezende, D.J., Albergo, M.S., Cranmer, K., Hackett, D.C. and Shanahan, P.E., 2020. Sampling 
using SU(N) gauge equivariant flows. arXiv preprint arXiv:2008.05456.

SU(3) SU(9)



Private & ConfidentialCritical slowdown regime in 2D for U(1): Evidence of faster 
mixing rates with flow-based MCMC



The Schwinger model: 
U(1) Gauge + fermions in 
2D



Modelling Gauge & fermion fields with flows



Schwinger model at criticality



Private & ConfidentialSchwinger model at critical mass: Evidence of faster mixing 
rates with flow-based MCMC



2D QCD: SU(3) Gauge + 
Quarks



Modelling Gauge & fermion fields with flows



Fermions?

Grassmann 
fields

Commuting 
vector field



Incorporating Quarks



Continuous symmetries: Gauge transformations



Parallel-transported fields



Performance results (L=16, U(1) / SU(3) + fermions)
U(1) SU(3)



Towards 4D QCD: SU(3) 
Gauge + Quarks



Modelling Gauge & fermion fields with flows



Private & ConfidentialFull QCD experiments (4D, L=4)



Towards physical 
calculations: 
Hadron Spectroscopy



Private & ConfidentialTowards real calculations: Hadron Spectroscopy



Private & ConfidentialSpectroscopy: From correlators to particle mass 

Average over model samples

Particle energy at momentum p



Private & Confidential

Pion correlator 
(p=0) Pion mass vs model training

HMC

Spectroscopy: From correlators to particle mass 



Private & ConfidentialHow hard is to reach physically meaningful settings?

L

beta

1

6

0
8 16 32

3

2D, VI

3D, VI

4D, VI

4D, VI

easy
Non-trivial, but not 

realistic

hard

We want 
to be here 

with 4D 
models



Summary

● We can construct flows with U(N) and SU(N) Gauge symmetry

● In 2D results are quite promising

● They can also be extended to include pseudo-fermion transformations

● Based on Yukawa and Schwinger models, introducing fermions adds substantial 

complexity:

○ Require working with pseudo-fermion effective action

○ Require inversion of the operator DD* (expensive, can have very large condition 

number)

○ Increased combinatorics: 

■ Much larger space of Gauge-invariant quantities to consider



Discussion



Summary

● Remarkable progress in the development of NFs for sampling and free energy 
estimation (from LQCD to molecular systems). 

● NFs allow us to address old problems in completely new ways by leveraging the 
flexibility of neural networks.

● Challenges and limitations:

○ Training and evaluating models without ground-truth samples

○ Scaling up to larger and more complex systems

○ Need more general and robust mechanisms to correct for model bias and 

bound error of expectations


