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Neural networks and uncertainties

Neural networks
- nothing but numerically evaluated functions
regression x — f(x)
classification x — p(x) € [0, 1]
generation x — px(x) with sampled x ~ N
- constructed through minimization of loss function
- Error bars making us scientists x — f(x) &= Af(x)?
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Uncertainties

Kinds of uncertainties
- statistical uncertainties [Poisson, Gauss, vanishing for large stats]
- systematic uncertainties  [uisance parameter]

reference measurement elsewhere [Gauss, transferred statistical uncertainty]
detector efficiency [distribution from simulations]
unknown stuff [distribution unknown]

- theory: nuisance parameter

no frequentist interpretation
no transformation invariance, range (o — 1/0 — log ol

- reduction of exclusive likelihood

Bayesian: integrate out nuisance parameter
likelihood/frequentist: profile over nuisance parameter




Uncertainties

Kinds of uncertainties
- statistical uncertainties [Poisson, Gauss, vanishing for large stats]
- systematic uncertainties  [uisance parameter]

reference measurement elsewhere [Gauss, transferred statistical uncertainty]
detector efficiency [distribution from simulations]
unknown stuff [distribution unknown]

- theory: nuisance parameter

no frequentist interpretation
no transformation invariance, range (o — 1/0 — log ol

NN with uncertainties

- regression: pr of jet from constituents, error bar?
classification: probability of Higgs event, error bar?
generation: phase space density for large pr, error bar?

- standard LHC approach

train black box on Monte Carlo
calibrate with reference data

— Try to do better...




A tale of four theses for Adaptive Models

David MacKay (1991)
. Bayesian methods [posterior=likelihood*prior/evidence]
P(DIM)P(M)

P(D In Partial Fulfilment of the Requirements
(D) for the Degree of
Doctor of Philosophy

Thesis by

David J.C. MacKay

P(M|D) =

Bayesian networks for inference
data modelling through parameters w
P(D|w, M)P(w|M)
P(DIM)
Occam factor for model evidence [posterior/prior volume]
- technically: Gaussian weight distributions?

P(w|D, M) =

California Institute of Technology
ena, California

©1992
(Submitted December 10, 1991)

Since the 1960’s, the Bayesian minority has been steadily growing, especially in the fields
of economics [89] and pattern processing [20]. At this time, the state of the art for the
problem of spe cognition is a Bayesian technique (Hidden Markov Models), and the best
image reconstruction algorithms are also based on Bayesian probability theory (Maximum
Entropy), but Bayesian methods are still viewed with mistrust by the orthodox statistics
community; the framework for model comparison is especially poorly known, even to most
people who call themselves Bayesians. This thesis therefore takes some time to thoroughly
review the flavour of Bayesianism that I am using. To some, the word Bayesian denotes
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Chapter 3 (Submitted December 10, 1991)

A Practical Bayesian Framework
for Backpropagation Networks

Abstract

A quantitative and practical Bayesian framework is described for learning of map-
pings in feedforward networks. The framework makes possible: (1) objective compar-
isons between solutions using alternative network architectures; (2) objective stopping
rules for network pruning or growing procedures; (3) objective choice of magnitude

and type of weight decay terms or additive regularisers (for penalising large weights,
etc.); (4) a measure of the effective number of well-determined parameters in a model;
(5) quantified estimates of the error bars on network parameters and on network out-
put; (6) objective comparisons with alternative learning and interpolation models such
as splines and radial basis functions. The Bayesian ‘evidence’ automatically embod-
ies ‘Occam’s razor’, penalising over-flexible and over-complex models. The Bayesian
approach helps detect poor underlying assumptions in learning models. For learning
models well matched to a problem, a good correlation between generalisation ability
and the Bayesian evidence is obtained.




A tale of four theses

David MacKay (1991)

. Bayesian methods [posterior=likelihood*prior/evidence]
P(Dl M)P(M) BAYESIAN LEARNING FOR NEURAL NETWORKS

P(D)
- Bayesian networks for inference ”
data modelling through parameters w
P(D|w, M)P(w|M) Radford M. Neal
P(D|M)
- technically: Gaussian weight distributions?

P(M|D) =

P(w|D, M) =

Radford Neal (1995)

- deep Bayesian networks  [regression, classification]

- beyond Gaussian approximation

- hybrid Monte Carlo sampling

- technically: avoid overtraining for large BNNs
— Deep BNNs for inference

A thesis submitted in conformity with the requirements

© Copyright 1995 by Radford M. Neal




A tale of four theses CAMBRIDGE
Yarin Gal (201 6) Uncertainty in Deep Learning
deep learning and uncertainties
active learning/reinforcement learning
technically: variational inference
technically: stochastic regularization
— BNNSs for uncertainty

Yarin Gal

Department of Enginecring
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Gonville and Caius College September 2016
Otbher situations that can lead to uncertainty include

« noisy data (our observed labels might be noisy, for example as a result of measure-

ment imprecision, leading to aleatoric uncertainty),

uncertainty in model parameters that best explain the observed data (a large
number of possible models might be able to explain a given dataset, in which case
we might be uncertain which model parameters to choose to predict with),

« and structure uncertainty (what model structure should we use? how do we specify
our model to extrapolate / interpolate well?).

The latter two uncertainties can be grouped under model uncertainty (also referred to
as epistemic uncertainty). Aleatoric uncertainty and epistemic uncertainty can then be
used to induce predictive uncertainty, the confidence we have in a prediction.
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A tale of four theses CAMBRIDGE

Yarin Gal (201 6) Uncertainty in Deep Learning
deep learning and uncertainties
active learning/reinforcement learning
technically: variational inference
technically: stochastic regularization

Yarin Gal
— BNNSs for uncertainty Department of Bagincering

University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy
But fitting the posterior over the weights of a Bayesian NN with a unimodal
approximating distribution does not mean the predictive distribution would be
dal! imagine for simplicity that the i liate feature output from the first
Gonville and Caius College September 2016

layer is a unimodal distribution (a uniform for example) and let’s say, for the sake
of argument, that the layers following that are modelled with delta distributions (or
Gaussians with very small variances). Given enough follow-up layers we can capture

any function to arbitrary precision—including the inverse cumulative distribution
function (CDF) of any multimodal distribution. Passing our uniform output from
the first layer through the rest of the layers—in effect transforming the uniform
with this inverse CDF—would give a multimodal predictive distribution.




A tale of four theses

Yarin Gal (2016)
- deep learning and uncertainties
- active learning/reinforcement learning
- technically: variational inference
- technically: stochastic regularization
— BNNSs for uncertainty

Manuel HauBmann (2021)
- many proper derivations
- active learning, reinforcement learning
- stochastic differential equations
- technically: BNN variational inference
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Jet regression

Jet properties with uncertainties

- train many networks

different architectures/hyperparameters

different trainings
different initalizations
different data sets

- histogram network output f(x), use f(x) £ Af(x)
- remember NN function £, (x) described by weights w
— Bayesian network  Af,(x) from Aw;

Energy measurement for jet j

- expectation value from probability distribution

= /dEEp(E)

- Bayesian network
sample weight distributions p(w|T)

P(E) = [ dw plEI) ple] T)

Ensemble of networks

BNN PNoise, 101,
. W
4 ~M——
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Output
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Likelihood loss

Replacing the MSE
- start from variational approximation (inink g(w) as Gaussian with mean and width]
PE) = [ dw plElw) pleT) ~ [ du p(ELw) a(w)
. similarity thl’OUgh minimal KL-divergence [Bayes’ theorem to remove unknown posterior]

KL[g(w), p(w|T)] = / dew q(w) log ?(T))

ot o _GR(T)
= [ aw ate) tog [T

= KLIq(w). p(w)] = [ dw q(w) logp(TIw) + logp(T) [ d q(e)

= KL[q(w). p(w)] = [ dw a(w) tog p(T|w) + log p(T)
- well-defined evidence lower bound (ELBO)
log p(T) = KL[q(w), p(w|T)] — KL[g(w), p(w)] +/dw q(w) logp(T|w)
> [ dw a(w) tog p(TI) ~ KLg(w), p(w)]
— loss with likelihood p(T|w) and prior p(w)

=- /dw q(w) log p(T|w) + KL[g(w), p(w)]




Link to standard networks

Regularization and dropout
- Gaussian prior
o — ob + (ng — o)’
KL[Gu,o (w); Pp,o (w)] = % + log e
0'p 0'q
- deterministic network g(w) — §(w — wp)

RY:
L~ —logp(T|wo) + M
203

-+ const
standard network with fixed L2-regularization
— deterministic counterpart
- Monte-Carlo dropout

meant to reduce overfitting
remove random weights during training

loss with Bernoulli distribution  [weight xoy = 0, w

L=— [ adx [p*(1=p)'* log p(T|Xwo) ~ —p log p(T|wo)
x=0,1

— ftrivial version of variational training




Weight sampling

Weight space
- expectation value using trained network g(w)

(E) = /dEdw E p(E|w) q(w)
= /dw qw)E(w)  with  E(w) = /dEEp(E\w)
- output variance
oty = [ dEd (E ~ (E)? p(EL) a(w)
— [ du qw) [Eow) - 2(E)E () + (£)7)
— [ o ate) [E) ~ B + (B@) — ()] = oBoen + o
Two uncertainties
- contribution vanishing for g(w) — §(w — wo)
Ohe = [ o qle) [Elw) — (B)]°

- contribution in weight space

s1och = o'model = / dw q(w) [EZ(W) /dw q(w) Ustoch(w)



Implementation

Approximations and implementation
- network output in weight and phase space
BNN : X, w — ( E(w) )

Tstoch (w)

- Gaussian weights & likelihood

L= [dwauate) 3

jets j

|E,‘(w) _ E}ruth 2

20'sloch,j("-’)2

+ log Usloch,j(w)
2 2 2
oq — 0p + (g — Kp) Ip
e e—— log —
20p oq

- heterostedastic loss, deterministic network

L=y

jetsj

— 2
’E,‘(Wo) _ E}ruth

20t00h,j(wo)? + 198 gsoenj(100)
stoch,j

- supervised uncertainties

training statistics
stochastic training data
systematics from data
label augmentations
model limitations




Jet measurements with error bars

Measure pr ; of hadronically decaying top  (Kasieczka, Luchmann, Otterpohl, TP]

- BNN regression pr ;
pr of (fat) jet decent estimate for piruin
- non-Gaussian truth label

symmetric in ISR-jet ‘QCD heat bath’
without ISR jets need for correction
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Jet measurements with error bars

Measure pr ; of hadronically decaying top  [Kasieczka, Luchmann, Otterpohl, TP]

- BNN regression pr ;
pr of (fat) jet decent estimate for p‘}‘,‘}“

- non-Gaussian truth label

symmetric in ISR-jet ‘QCD heat bath’
without ISR jets need for correction

- training sample size

separate ogioch > Opred

statistics not the problem  (LHC theme]
noisy label inherent limitation
checked with deterministic networks

60

BNN pr,j = 600...620 GeV
o —
-=- MSE
¥ Otot
7 Ostoch
\\_x_apri
10° 10°

Training size

pr,j = 600...620 GeV

Frequentist
Dropout

-=- MSE
¥ Otot
7 Ostoch

7 Opred

\—\"_—‘\.

104 10°
Training size




Jet measurements with error bars

Measure pr ; of hadronically decaying top  (Kasieczka, Luchmann, Otterpohl, TP]
- BNN regression pr ;
pr of (fat) jet decent estimate for piruin
- non-Gaussian truth label

symmetric in ISR-jet ‘QCD heat bath’
without ISR jets need for correction

- training sample size

separate osioch 3> Tpred Pr.;=600...620 Gev
statistics not the problem  (LHc theme] 0.015 | ”Ut:, .
noisy label inherent limitaton | j 7 predicte
checked with deterministic networks % o.010
- non-Gaussian network output g
. o
remember pt}‘,‘}h non-Gaussian 25005
model p(T|w) as Gaussian mixture
weight distribution g(w) still Gaussian 0,000 [ R
7500 600 700 800 900

pr, [GeV]




Data augmentation

Calibration means error propagation

- calibration means label measured elsewhere

- training on smeared data?
training with smeared labels!

- Gaussian noise over label
- added to the stochastic uncertainty

2 2 2
Tiot = Tstoch + Upred

2 2 2
= Ostoch,0 + Ocq + O pred

— error extracted correctly

Ocal [GeV]

pr.j = 600...620 GeV

20 40 60 80 100 120
Osmear [GeV]




Data augmentation

Calibration means error propagation

- calibration means label measured elsewhere

- training on smeared data?
training with smeared labels!

- Gaussian noise over label
- added to the stochastic uncertainty

2 2 2
Tiot = Tstoch + Upred

2 2 2
= Ostoch,0 T Tcal T Tpred

— error extracted correctly

Jet regression bottom lines
- BNN regressionion working
- statistical uncertainty controlled
- stochastic uncertainty sizeable
- non-Gaussian output working
- training-data augmentation
- calibration straighforward

Ocal [GeV]
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pr.j = 600...620 GeV
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Precision amplitudes

Loop amplitudes gg — vvg(g) (Badger, Butter, Luchmann, Pitz, TP]
- amplitudes A over phase space points x; — simple regression

- weight-dependent pull _
ght-dependent p ) — A

Umodel,j(w)

- training data exact in x and A
- improvement — interpolation by weighting oy puli or o]

_ 2

|A]’(UJ) — A

Lz/dw o(w E nx | —————— +logo i(w
Gu,o (w) ) 20model ()2 g Tmodel,j (@)

points j

99-vv9
N (u=0.18,

o=0.90)
N (u=—0.01,
o=0.90)

#pulls normalized
#pulls normalized

process-boosted

. training

— -2 -1 -0 1 2 3 -75 =50 =25 -0.0 25
(Ann-A) / Omodel (Ann-A) / Omodel

5.0 7.5




Precision amplitudes

LOOp amplitudes ag — 'yvg(g) [Badger, Butter, Luchmann, Pitz, TP]

- amplitudes A over phase space points x; — simple regression
- weight-dependent pull

Aj(w) _ A}rulh

O'model,j(w)
- training data exact in x and A
- improvement — interpolation by weighting oy pult or o]
— 2
’Aj(w) _ A}ruth

Lz/dw Qu,o (w) Z n; x

S 108 Tmodel j(w)
poins j 20mogel,j(w)?

Precision regression
- quality of network amplitudes

train/test Targest 100% o
Ay — A" argest 100% Awy Targest 100% Ay
i 120 o 120 5
Altrainitest) _ (A)j 7y 99-vvg largest 1% A 99=vv9 largest 1% Ay
J A}'a'”/‘es‘ 100 Process boosted largest 0.1% Ay, | 100 PRoCEss boosted largest 0.1% Au
g 80 80
— Beyond fit-like regression 2w "
2
40 40
20 20

-0.04 —0.02 000 0.02 004 -0.04 -0.02 0.00  0.02 0.04
A" 4 overflow bin A" + overflow bin




Precision amplitudes

LOOp amplitudes ag — 'yvg(g) [Badger, Butter, Luchmann, Pitz, TP]
- amplitudes A over phase space points x; — simple regression

- weight-dependent pull _
9 p P Aj(w) _ A}rulh

G'model,j(w)
- training data exact in x and A
- improvement — interpolation by weighting oy pult or o]
7 truth | 2
L /dw Qu,o (w) Z n; x ’Aj(W) A +logo (w)
= - : r—-: ' 1 Y
o ! 20 model,j(w)? model./

points j

Precision regression
- quality of network amplitudes

ting gg - yvg

. __ Atrain/test
Alrain/test) _ <A>/ Ai gE
J - Atrain/test 3 E P (R
J © g —— BNNiest

—— BNNiain

— Beyond fit-like regression
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Classification problem

Post. Physics

The Machine Learning Landscape of Top Taggers
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Abstract

Based on the established task of identifying boosted, ha(lrum:ally decaying top
quarks, we compare a wide range of modern machine learning approaches. Unlike
Tont. establiched methods they rely an low-lovel input, for fmstance calorimetor
output. While their network architectures are vastly different, their performance
is comparatively similar. In general, we find that these new approaches are ex-
tremely powerful and great fun.

‘Hello world’ of LHC-ML

Content
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4 Comparison 4
5 Conclusion s
References 119
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Classification problem

TOp tagging with uncertainties  [Boliweg, HausBmann, Kasiecka, Luchmann, TP, Thompson]

- (60+77)% top vs gluon probability
- Bayesian classification network

p(©) = [ dw plol) plelT)
~ [ do ploe) q(e)

- advantage: parton content not stochastic
complication: output in closed interval [0, 1]

Sigmoid(x) = % < Sigmoid~'(x) = Iog
- Gaussian to classification output

s = [ o Sigmoid(w) Gy ()

1 X X
:/0 o iy G <Iog1ix) € [0,1]

— correlation opred VS Hpred

~ 1 Gauss
Opred ~ Mpred ( - Mpred) Tpred

Normalized

U=0 u=1 u=2

1 2
Network output

@

Normalized
IS

N

Hpred
Opred

0.0

0.2 0.4 0.6 0.8 1.0
Network output



Jet classification with error bars

BNN Top tagging

- data: QCD and top jets (py = 550 ... 600 GeV] 10° ——
jetimage  [peepTop/CNN] \ an
ordered constituents [LoLa) 10 — E;LLQLa

— a

- performance BNN vs deterministic 10°

= 102
10!
10°

0.0 0.2 0.4 0.6 0.8
£t




Jet classification with error bars

BNN Top tagging

- data: QCD and top jets (py =550 ... 600 GeV]
jetimage  [peepTop/CNN]
ordered constituents [LoLa)

- performance BNN vs deterministic
. prior independence [LHC means frequentist]

Tprior | 1072 101 1 10 100

1000

AUC 0.5 0.9561 0.9658 0.9668 0.9669
error — +0.0002 40.0002 +0.0002 40.0002

0.9670
+0.0002




Jet classification with error bars

BNN Top tagging

- data: QCD and top jets (py =550 ... 600 GeV]
jetimage  [peepTop/CNN]
ordered constituents [LoLa)

- performance BNN vs deterministic
. prior independence [LHC means frequentist]

Tprior | 1072 101 1 10 100 1000

AUC 0.5 0.9561 0.9658 0.9668 0.9669 0.9670
error — +0.0002 40.0002 +0.0002 40.0002 +0.0002

- p — o parabola correlation o1

training size
0.16 1 100k
200k

600k
900k

0.10

Opred

0.0 0.2 0.4 0.6 0.8 1.0
Hpred



Jet classification with error bars

BNN Top tagging

- data: QCD and top jets (py =550 ... 600 GeV]
jetimage  [peepTop/CNN]
ordered constituents [LoLa)

- performance BNN vs deterministic
. prior independence [LHC means frequentist]

Tprior | 1072 101 1 10 100 1000

AUC 0.5 0.9561 0.9658 0.9668 0.9669 0.9670
error — +0.0002 40.0002 +0.0002 40.0002 +0.0002

- p — o parabola correlation

- training statistics Hored ©[0.45,0.55]

0.15 *

Opred

0.13

1

200 400 600 800
Training size/1000

1000

1200



Data augmentation

Shifted energy scale

14  Hpres | omn;onstr)
- teston augmented data [specific systematics] e

shift leading pixed by —10% ... +10% 512
effect ON Tpred only after sigmoid E o
adversarial attack [hierarchical subjets = top] s

2

@

2038

Top jet

—0.10 —0.05 0.00 0.05 0.10

iR

* Mpred | Opred

0.92 Top jet

—0.10 —0.05 0.00 0.05 0.10
Shift

o o
© o
o ©

4
o
&

Network output




Data augmentation

Shifted energy scale

- teston augmented data [specific systematics]

shift leading pixed by —10% ... + 10%
effect on opreq ONly after sigmoid
adversarial attack [hierarchical subjets = top]

. Top jets es=0.

- test on noisy data 25 e 0.0110)
20-40% noise on constituents . S e
minor effect before sigmoid -

S1s

E

(=}

Z10
0.5

0.0 -
050 —025 000 025 050 075
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Data augmentation

Shifted energy scale

- teston augmented data [specific systematics]
shift leading pixed by —10% ... + 10%
effect on opreq ONly after sigmoid
adversarial attack [hierarchical subjets = top]

- test on noisy data

20-40% noise on constituents
minor effect before sigmoid

- test with noise events [pile-up]

increased error for constituent architecture
instability for image architecture

Hpred




Data augmentation

Shifted energy scale

- teston augmented data [specific systematics]

shift leading pixed by —10% ... + 10%
effect on opreq ONly after sigmoid
adversarial attack [hierarchical subjets = top]

- test on noisy data

20-40% noise on constituents
minor effect before sigmoid

- test with noise events [pile-up]

increased error for constituent architecture
instability for image architecture

[y
=]

- train on augmented data

10% noise on constituents
augmented training softening adversarial attack

=]
©
——
—
——

=)
©
——i

Network output
o
~
[EE—

0.6 + Lola, trained on JES
! B-Lola trained on JES
0.5 + loLa
I  B-lLoLa
0.4
-0.2 0.0 0.2

Shift




Data augmentation

Shifted energy scale

- teston augmented data [specific systematics]

shift leading pixed by —10% ... + 10%
effect on opreq ONly after sigmoid
adversarial attack [hierarchical subjets = top]

- test on noisy data

20-40% noise on constituents
minor effect before sigmoid

- test with noise events [pile-up]

increased error for constituent architecture
instability for image architecture

1.0
- train on augmented data

10% noise on constituents
augmented training softening adversarial attack

— Jet classification bottom lines
BNN classification working

Network output
(=
~
e

Lola, trained on JES

statistical uncertainy controlled 05 I Protatramed onEs
sigmoid output leading pattern | Blola
training- and test-data augmentation 04 ) oo o>

Shift




Generation problem

Unsupervised Bayesian networks [geliagente, HauBmann, Luchmann,

- data: event sample [points in 2D space]

learn phase space density

normalizing flow mapping to latent space nn
standard distribution in latent space (caussian]
mapping bijective

sample from latent space

- Bayesian version

allow weight distributions

learn uncertainty map

- 2D wedge ramp

1- g(xr%ax - Xv%in)

Xmax — Xmin

p(x) =ax+b=ax +

(x — %)2 (Aa)?
+ (1 + 2)2 (Dxmax)? + (1 - 2)2 (A Xin)?

explaining minimum in opreq(x)

(8p)® =

TP]

Normalized

BINN
Truth

0.07

0.06

0.05

0.04

Absolute Uncertainty

0.03

0.02

T Oprd
B 00y

Fit: Aa = 0.09, Az = 0.01

0.2 0.4 0.6



Generation problem

Unsupervised Bayesian networks [geliagente, HauBmann, Luchmann,

- data: event sample [points in 2D space]

learn phase space density
normalizing flow mapping to latent space nn
standard distribution in latent space (caussian]
mapping bijective
sample from latent space

- Bayesian version

allow weight distributions
learn uncertainty map

- 2D wedge ramp

- kicker ramp
- Gaussian ring [u =4, w=1]
2
Gry p—r? 5 |r=w? 1 2
AP=’f 2 (Ap)™ + W w (Aw)

explaining dip in opreq(X)

TP]

0.03

Normalized

B

0.01

Absolute Uncertainty

3.0

S
&

o

x107%

—— Fit: Ap=0.04

— O
B tioy




Generation problem

Unsupervised Bayesian networks  [geliagente, HauBmann, Luchmann, TP]

- data: event sample [points in 2D space]

learn phase space density

normalizing flow mapping to latent space nn
standard distribution in latent space (caussian]
mapping bijective 001
sample from latent space

- Bayesian version

allow weight distributions y
learn uncertainty map !

x107%

0.03

B

Normalized

. 2D wedge ramp G Ap=004  — opu
i 30 B tdop
- kicker ramp .
- Gaussian ring [ =4, w=1] B0 %
2 H
G(r) p—rl? 2 |(r=pP? 1 2 fw ~
Ap = | =2 Ap) +|—5— — —| (Aw 2
Vol ’ ’ w2 ( /"‘) w3 ( ) <10

explaining dip in opreq(X)

— INNs just (non-parametric) fits




Bayesian networks

Initially developed for inference they work for...

...regression with error bars
...classification with error bars
...generation with error bars

Modern Machine Learning in LHC Physics

Tilman Plehn, Anja Butter, Barry Dillon, and Claudius Krause
Institut fiir Theoretische Physik, Universitit Heidelberg

September 15, 2022

Abstract

papers of the last few years, many of ip. Thisis
best, and they allow us 1o tell “how modem machine I
physics.
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http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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