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Neural Network Successes



... and Failures

Deep neural networks have

▶ tremendous success for problems in scientific computing,

▶ but serious downsides.

Problems/Limitations:

▶ Robustness

▶ Explainability

▶ Severe dependence on data

▶ Specific task

▶ Reasoning

▶ ....
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Robustness

Requirements:

▶ Robustness problems should be immediately detectable or avoidable.

▶ Heuristic approaches do not satisfy certification standards.

Is complete robustness at all possible?

Source: Finlayson, Chung, Kohane, Beam, Adversarial Attacks Against Medical Deep Learning

Systems, arXiv:1804.05296



Explainability

Requirements:

▶ It should be possible to ask any question about a decision.

▶ The answer should reason as a human.

Is this achievable by connecting deep learning to natural language
processing?



Severe Dependence on Data

Amount of Data:

▶ Many applications do not have large amounts of training data.

▶ Methods such as data augmentation do not compensate this fully.

Problematic Data:

▶ Training data can unknowingly be biased.

▶ Uncertainty in the data can occur.

Can these problems be tackled at all?
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Specific Task and Reasoning

Requirements:

▶ It should be possible to train for multiple tasks.

▶ The neural network should also be able to reason.

▶ Ideally, lifelong learning should be possible.

Are there fundamental limitations that constrain us?



Strong Requirements for Reliability

Current major problem worldwide: Lack of reliability of AI technology!

International Position of Europe and Germany in Reliable AI:
▶ AI Strategy of the German Federal Government
▶ AI Act of the European Union

Major Goal:

Introduce Certificates for AI Technology!

Types of Understanding:
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Reliable AI

Key Requirements for Certificates:

▶ Bounds for generalization error

▶ Explainability approach (which is itself reliable)

▶ Understanding of fundamental problems



Can We Explain Network Decisions ... Reliably?



General Problem Setting

Question:

▶ Given a trained neural network.

▶ We don’t know what the training data was nor how it was trained.

; Can we determine how it operates?

Opening the Black Box!

Why is this important?

▶ Reasons for decisions required in various application settings.

▶ Scientists might get additional insights into their data.

▶ Trustworthiness can be improved.

Vision for the Future:

▶ Human-like answer to any question about a decision!
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History of the Field

Previous Relevance Mapping Methods:

▶ Gradient based methods:

▶ Sensitivity Analysis (Baehrens, Schroeter, Harmeling, Kawanabe, Hansen,
Müller, 2010)

▶ SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017)

▶ Backwards propagation based methods:

▶ Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015)
▶ Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen,

Müller, Samek, 2015)
▶ Deep Taylor (Montavon, Samek, Müller, 2018)

▶ Surrogate model based methods:

▶ LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro, Singh,
Guestrin, 2016)

▶ Game theoretic methods:

▶ Shapley values (Shapley, 1953), (Kononenko, Štrumbelj, 2010)
▶ SHAP (Shapley Additive Explanations) (Lundberg, Lee, 2017)
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Towards a More Mathematical Understanding



What is Relevance?

Main Goal: We aim to understand decisions of “black-box” predictors!

map for digit 3 map for digit 8

Classification as a Classical Task for Neural Networks:
▶ Which features are most relevant for the decision?

▶ Treat every pixel separately
▶ Consider combinations of pixels
▶ Incorporate additional knowledge

▶ How certain is the decision?



Tasks for Today

Challenges:

▶ What exactly is relevance in a mathematical sense?
; Rigorous definition of relevance by information theory.

▶ What is a good relevance map?
; Formulation of interpretability as optimization problem.

▶ How to compare different relevance maps?
; Canonical framework for comparison.

▶ How to extend to challenging modalities?
; Conceptually general and flexible interpretability approach.

▶ Can we also assign relevance to more complex features?
; Take appropriate decompositions of the data into account.
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The Rate-Distortion Viewpoint



The Relevance Mapping Problem

The Setting: Let

▶ Φ: Rn → Rm be a classification function,

▶ x ∈ Rn be an input signal.

Φ(x) = 0.97 “Monkey”
Φ

Φ(x) = 0.07 “Not a monkey”
Φ



The Relevance Mapping Problem

The Task:

▶ Determine the most relevant components of x for the prediction Φ(x).

▶ Choose S ⊆ {1, . . . , n} of components that are considered relevant.

▶ S should be small (usually not everything is relevant).

▶ Sc is considered non-relevant.

Original image x Relevant components S Non-relevant components Sc



Rate-Distortion Viewpoint

Alice Bob

Original image x Partial image S Random completion y

Φ(x) = 0.97

“Monkey”

Φ(y) = 0.91

“Monkey”

Expected Distortion:

D(S) = D(Φ, x ,S) = E
[
1

2
(Φ(x)− Φ(y))2

]



Rate-Distortion Explanation

Rate-Distortion Function:

R(ϵ) = min
S⊆{1,...,d}

{|S | : D(S) ≤ ϵ}

; Use this viewpoint for the definition of a relevance map!

Theorem (Wäldchen, Macdonald, Hauch, Kutyniok, 2021):
Given Φ, x , k ∈ {1, . . . , d}, and ϵ < 1

4 . Deciding whether R(ϵ) ≤ k is

NPPP-complete.

Finding a minimizer of R(ϵ) is hard!

Theorem (Wäldchen, Macdonald, Hauch, Kutyniok, 2021):
Given Φ, x , and α ∈ (0, 1). Approximating R(ϵ) to within a factor of d1−α

is NP-hard.

Even the approximation problem of it is hard!
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RDE (Macdonald, Wäldchen, Hauch, Kutyniok, 2020)

Problem Relaxation:

Discrete problem Continuous problem

Relevant set S ⊆ {1, . . . , d}

s ∈ [0, 1]d

Obfuscation yS = xS , ySc = nSc

y = s ⊙ x + (1− s)⊙ n

Distortion D(S)

D(s)

Rate/Size |S |

∥s∥1

Resulting Minimization Problem:

minimize D(s) + λ∥s∥1 subject to s ∈ [0, 1]d
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MNIST Experiment

Data Set

Image size 28× 28× 1
Number of classes 10
Training samples 50000

Test accuracy: 99.1%

input

convolution

5 × 5 × 1 × 32

average pooling

2 × 2

convolution

5 × 5 × 32 × 64

average pooling

2 × 2

convolution

5 × 5 × 64 × 64

average pooling

2 × 2

flatten

fully connected

576 × 1024

fully connected

1024 × 10

softmax

output

28 × 28 × 1

28 × 28 × 32

14 × 14 × 32

14 × 14 × 64

7 × 7 × 64

7 × 7 × 64

3 × 3 × 64

576

1024

10

10

MNIST dataset of handwritten digits (LeCun, Cortes, 1998)



MNIST Experiment

image SmoothGrad LRP-α-β SHAP RDE (diagonal)

Sensitivity Guided Backprop Deep Taylor LIME RDE (low-rank)

SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017), Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen, Müller, Samek, 2015), SHAP (Lundberg, Lee, 2017),

Sensitivity Analysis (Simonyan, Vedaldi, Zisserman, 2013), Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015), Deep Taylor Decompositions (Montavon, Samek, Müller,

2018), LIME (Ribeiro, Singh, Guestrin, 2016)



MNIST Experiment
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SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017), Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen, Müller, Samek, 2015), SHAP (Lundberg, Lee, 2017),

Sensitivity Analysis (Simonyan, Vedaldi, Zisserman, 2013), Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015), Deep Taylor Decompositions (Montavon, Samek, Müller,

2018), LIME (Ribeiro, Singh, Guestrin, 2016)



STL-10 Experiment

Data Set

Image size 96× 96× 3
(224× 224× 3)

Number of classes 10
Training samples 4000

Test accuracy: 93.5%

(VGG-16 convolutions pretrained on Imagenet)

input

convolution

3 × 3 × 3 × 64

convolution

3 × 3 × 64 × 64

average pooling

2 × 2

convolution

3 × 3 × 64 × 128

conv

3 × 3 × 128 × 128

average pool

2 × 2

convolution

3 × 3 × 128 × 256

convolution

3 × 3 × 256 × 256

convolution

3 × 3 × 256 × 256

average pool

2 × 2

convolution

3 × 3 × 256 × 512

convolution

3 × 3 × 512 × 512

convolution
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average pool

2 × 2

convolution

3 × 3 × 512 × 512

convolution

3 × 3 × 512 × 512

convolution

3 × 3 × 512 × 512

average pool

2 × 2

flatten

fully connected

25088 × 4096

fully connected

4096 × 4096

fully connected

4096 × 10

softmax

output

224 × 224 × 3

224 × 224 × 64

224 × 224 × 64

112 × 112 × 64

112 × 112 × 128

112 × 112 × 128

56 × 56 × 128

56 × 56 × 256

56 × 56 × 256

56 × 56 × 256

28 × 28 × 256

28 × 28 × 512

28 × 28 × 512

28 × 28 × 512

28 × 28 × 512

14 × 14 × 512

14 × 14 × 512

14 × 14 × 512

14 × 14 × 512

7 × 7 × 512

25088

4096

4096

10

10

STL-10 dataset (Coates, Lee, Ng, 2011), VGG-16 network (Simonyan, Zisserman, 2014)



STL-10 Experiment
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STL-10 Experiment
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Going Further...



Desiderata

Problems:

▶ Modifying the image with random noise or some background color
might lead to the obfuscation not being in the domain of the network.
; Does this give meaningful information about why the network

made its decisions?

▶ The explanations are pixel-based.
; Does this lead to useful information for

different modalities?

Goal:

▶ Take the conditional data distribution into account!

▶ Ensure that specifics of various modalities can be handled!
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General Approach

Optimization Problem:
We consider the following minimization problem:

min
s∈{0,1}d

Ey∼Υs

[
1

2
(Φ(x)− Φ(y))2

]
+ λ∥s∥1,

where y is generated by a trained inpainting network G as

y := x ⊙ s + G (x , s, n)⊙ (1− s).

Requirements of Different Modalities: Can be applied ...

▶ ... to images, but also audio data, etc.

▶ ... after a transform (e.g. wavelets) to allow more complex features.

Conceptually general and flexible interpretability approach!
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The World is Compressible!

Wavelet Transform (JPEG2000):

f 7→ (⟨f , ψj ,m⟩)j ,m.

Definition: For a wavelet ψ ∈ L2(R2), a wavelet system is defined by

{ψj,m : j ∈ Z,m ∈ Z2}, where ψj,m(x) := 2jψ(2jx −m).



Cartoon X (Kolek, Nguyen, Levie, Bruna, Kutyniok; 2022)



Detecting Reason for Adversarial Examples

CartoonX:

Baby

Screw



Numerical Experiments:

Other Types of Data



Audio Processing

NSynth Dataset:

Instrument Magnitude Phase
Importance Importance

Organ 0.829 1.0
Guitar 0.0 0.999
Flute 0.092 1.0
Bass 1.0 1.0
Reed 0.136 1.0
Vocal 1.0 1.0
Mallet 0.005 0.217
Brass 0.999 1.0
Keyboard 0.003 1.0
String 1.0 0.0



Telecommunication

RadioUNet (Levie, Cagkan, Kutyniok, Caire; 2020):

Estimated map Explanation



Deep Neural Networks are Not a Swiss Army Knife!

They do have Limitations!



Computability

Theory asserts

▶ the expressibility of the class of deep neural networks

▶ convergence of training algorithms

▶ generalization abilities

▶ ...

Theory does not sufficiently consider

▶ practical performance when trained by modern approaches

▶ required sample complexity

▶ limits of computability on today’s hardware

Theory-to-Practice Gap!

Goal: Examine the boundaries imposed by digital computations!
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What can actually be computed?

Computability on Digital Machines (informal):

A computable problem (function) is one for which the input-output
relation can be computed on a digital machine for any given accuracy.

Questions:

▶ Is the underlying problem feasible?
→ Computability of the ground truth

▶ Are the neural networks computable?
→ Computability of the network

▶ Can the neural networks be found with
the minimization problem?
→ Computability of the mapping from
data to approximation
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Questions:
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Why does Computability Matter?

▶ What is the best we can hope for?
▶ Non-computability of the ground truth
→ No approximation scheme

▶ Non-computability of the network
→ Despite existence, network may not
be computable

▶ Non-computability of the mapping
from data to approximation
→ Learning not feasible

▶ Can we trust the output of a computation?
▶ Computability guarantees prescribed error bounds
→ Reliable output

Non-computable problems can be tackled successfully in practice,
if limited precision suffices!

But we have no guarantees of correctness!
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Specific Example

Consider the modeling of a physical system S on a digital computer.

▶ Assume a mathematical model Smod for S describes the physical process and
allows to predict the output of S for any given input.

How well does Smod describe the real physical process S?

▶ Compute the corresponding output y = Sx for several input signals x .

▶ Compare these measurements with the theoretical prediction ypred = Smodx .

However, usually no closed-form solution for the output ypred exists!

▶ Use a computer to determine ypred of the model Smod for an input x .

▶ A digital computer can only compute an approximation ỹpred of ypred.

Control ∥ỹpred − ypred∥ algorithmically on the computer!

Otherwise...

▶ ...the calculated solution ỹpred might be far from ypred and comparing
measurements of S with ỹpred becomes meaningless!

▶ ...no information about the quality of the mathematical model!
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Theory of Computation

Turing machine ←→ Abstract idealization of digital computer
↓ ↓

Discrete problems Scientific computing: Continuous problems

Definition:
“A Turing machine is a mathematical model of computation that defines
an abstract machine that manipulates symbols on a strip of tape according
to a table of rules.”
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Computability

Definition:
A computable real number r is one for which there is a Turing machine
with the following property: Given n ∈ N on its initial tape, it terminates
with a rational number q such that |r − q| ≤ 2−n.

Definition:
A function f : R→ R is computable, if there exists an algorithm (Turing
machine) Γf , which gives for all computable x ∈ Rc and all n ∈ N an
approximation to f (x) with

|Γf (x , n)− f (x)| ≤ 2−n.
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A Large Problem Class



Inverse Problem in Imaging

Recall:
Given A ∈ Cm×N and y = Ax + e ∈ Cm of x ∈ CN , recover x .

Properties:

▶ A ∈ Cm×N sampling operator, typically m < N or even m≪ N
▶ successful approaches:

▶ Sparse regularization techniques
▶ Deep learning techniques or hybrid approaches

Optimization Problem:
Given A ∈ Cm×N and measurements y ∈ Cm, solve

arg min
x∈CN

∥x∥ℓ1 such that ∥Ax − y∥ℓ2 ≤ ε, ε > 0.
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Solution Set:
For A ∈ Cm×N and y ∈ Cm let

Ψ(A, y) := arg min
x∈CN

∥x∥ℓ1 such that ∥Ax − y∥ℓ2 ≤ ε.

Fundamental Questions:

What can actually be computed on digital hardware?

What are inherent restrictions of deep learning (performed on
digital hardware)?

Are we missing the correct tools and algorithms to train neural networks
adequately on digital machines or do such algorithms not exist at all?
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A Bit Disappointing News



Non-Computability of Finite Dimensional Inverse Problems

Solution Set:
For A ∈ Cm×N and y ∈ Cm let

Ψ(A, y) := arg min
x∈CN

∥x∥ℓ1 such that ∥Ax − y∥ℓ2 ≤ ε.

Theorem (Boche, Fono, Kutyniok; 2022):
The function Ψ : Cm×N × Cm → CN for fixed parameters ϵ ∈ (0, 1),
N ≥ 2, and m < N, is not computable.

Illustration of the Problem:
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Some Thoughts on the Result

Corollary:

▶ No algorithm exists, which on digital hardware derives neural networks
ΦA approximating Ψ(A, ·) for any given accuracy and all A ∈ Cm×N .

▶ The output of trained neural networks is not reliable (no guarantees).

▶ This result could point towards why instabilities and non-robustness
occurs for deep neural networks.

General Barrier:
This barrier on the capabilities of neural networks for finite-dimensional
inverse problems is caused by a combination of the following two separate
aspects:

▶ The mathematical structure and properties of finite-dimensional
inverse problems.

▶ The mathematical structure and properties of Turing
machines and thereby also of digital machines.
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What now?

New Emerging Hardware:

▶ Neuromorphic computing: Elements of computer modeled after
systems in the human brain and nervous system.

▶ Biocomputing: Living cells as the substrate for performing
human-defined computations

▶ Quantum computing: Computing units are typically
quantum circuits

Key Future Question:

Does the non-computability result also hold for different
computation models such as analog computers as well?

Theorem (Boche, Fono, Kutyniok; 2022):
The function Ψ : Cm×N × Cm → CN for fixed parameters ϵ ∈ (0, 1),
N ≥ 2, and m < N, is computable on a Blum-Shub-Smale machine.
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Some Final Thoughts...



Mathematics for Deep Learning

▶ Expressivity:
▶ Which aspects of a neural network architecture affect the performance

of deep learning?

; Applied Harmonic Analysis, Approximation Theory, ...

▶ Learning:
▶ Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?

; Algebraic/Differential Geometry, Optimal Control, Optimization, ...

▶ Generalization:
▶ Can we derive overall success guarantees (on the test data set)?

; Learning Theory, Probability Theory, Statistics, ...

▶ Explainability:
▶ Why did a trained deep neural network reach a certain decision?

; Information Theory, Uncertainty Quantification, ...



THANK YOU!

References available at:
www.ai.math.lmu.de/kutyniok

Survey Paper (arXiv:2105.04026):
Berner, Grohs, Kutyniok, Petersen, The Modern Mathematics of Deep Learning.

Check related information on Twitter at:
@GittaKutyniok

Upcoming Book:
▶ P. Grohs and G. Kutyniok, eds.

Mathematical Aspects of Deep Learning
Cambridge University Press, to appear.


