Lecture 1: Theoretical Foundations of Deep Learning

Gitta Kutyniok

(Ludwig-Maximilians-Universität München and University of Tromsø)

Arnold Sommerfeld School "Physics meets Artificial Intelligence" LMU Munich, September 12 - 16, 2022

The Dawn of Artificial Intelligence in Public Life

Spectacular Success in Science

NEWS • 30 NOVEMBER 2020

'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures

Google's deep-learning program for determining the 3D shapes of proteins stands to transform biology, say scientists.

STRUCTURE SOLVER

DeepMind's AlphaFold 2 algorithm significantly outperformed other teams at the CASP14 proteinfolding contest - and its previous version's performance at the last CASP.

uow maximilians
universitat MONCHEN

Impact on Mathematical/Physical Problem Settings

Some Examples:

- Inverse Probleme/Imaging Science (2012-)
\sim Denoising
\sim Edge Detection
\sim Inpainting
\sim Classification
\sim Superresolution
\sim Limited-Angle Computed Tomography
$\sim \ldots$

Impact on Mathematical/Physical Problem Settings

Some Examples:

- Inverse Probleme/Imaging Science (2012-)
\sim Denoising
\sim Edge Detection
\sim Inpainting
\sim Classification
\sim Superresolution
\sim Limited-Angle Computed Tomography
$\sim \ldots$
- Numerical Analysis of Partial Differential Equations (2017-)
\sim Black-Scholes PDE
\sim Allen-Cahn PDE
\sim Parametric PDEs
\sim...

Impact on Mathematical/Physical Problem Settings

Some Examples:

- Inverse Probleme/Imaging Science (2012-)
\sim Denoising
\sim Edge Detection
\sim Inpainting
\sim Classification
\sim Superresolution
\sim Limited-Angle Computed Tomography
$\sim \ldots$
- Numerical Analysis of Partial Differential Equations (2017-)
\sim Black-Scholes PDE
\sim Allen-Cahn PDE
\sim Parametric PDEs
$\sim \ldots$

- Modelling (2018-)
\sim Learning physical laws from data

Artificial Intelligence = Alchemy?

Ali Rahimi, a researcher in artificial intelligence (AI) at Google in San Francisco, California, took a swipe at his field last December-and received a 40 -second ovation for it. Speaking at an AI conference, Rahimi charged that machine learning algorithms, in which computers learn through trial and error, have become a form of "alchemy." Researchers, he said, do not know why some algorithms work and others don't, nor do they have rigorous criteria for choosing one AI architecture over another. Now, in a paper presented on 30 April at the International Conference on Learning Representations in Vancouver, Canada, Rahimi and his collaborators document examples of what they see as the alchemy problem and offer prescriptions for bolstering Al's rigor.

Problem with Reliability

Computers can be made to see a sea turtle as a gun or hear a concerto as someone's voice, which is raising concerns about using artificial intelligence in the real world.

Role of Theory

Two Key Challenges:

Mathematics for Artificial Intelligence!

- Can we derive a deep theoretical understanding of deep learning?
- How can we make deep learning more robust?

Artificial Intelligence for Mathematical/Physical Problem Settings!

- How can we use deep learning to improve imaging science?
- Can we develop superior PDE solvers via deep learning?

Delving Deeper into Artificial Intelligence...

First Appearance of Artificial Intelligence

Key Task of McCulloch and Pitts (1943):

- Develop an algorithmic approach to learning.
- Mimicking the functionality of the human brain.

> Goal: Artificial Intelligence!

Artificial Neurons

Artificial Neurons

Artificial Neurons

Definition: An artificial neuron with weights $w_{1}, \ldots, w_{n} \in \mathbb{R}$, bias $b \in \mathbb{R}$ and activation function $\varrho: \mathbb{R} \rightarrow \mathbb{R}$ is defined as the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\varrho\left(\sum_{i=1}^{n} x_{i} w_{i}-b\right)=\varrho(\langle x, w\rangle-b)
$$

where $w=\left(w_{1}, \ldots, w_{n}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right)$.

Artificial Neurons

Definition: An artificial neuron with weights $w_{1}, \ldots, w_{n} \in \mathbb{R}$, bias $b \in \mathbb{R}$ and activation function $\varrho: \mathbb{R} \rightarrow \mathbb{R}$ is defined as the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\varrho\left(\sum_{i=1}^{n} x_{i} w_{i}-b\right)=\varrho(\langle x, w\rangle-b)
$$

where $w=\left(w_{1}, \ldots, w_{n}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right)$.

Examples of Activation Functions:

\Rightarrow Heaviside function $\varrho(x)= \begin{cases}1, & x>0, \\ 0, & x \leq 0 .\end{cases}$
\Rightarrow Sigmoid function $\varrho(x)=\frac{1}{1+e^{-x}}$.
\Rightarrow Rectifiable Linear Unit $(\operatorname{ReLU}) \varrho(x)=\max \{0, x\}$.

Affine Linear Maps and Weights

Remark: Concatenating artificial neurons leads to compositions of affine linear maps and activation functions.

Example: The following part of a neural network is given by

$$
\Phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad \Phi(x)=W^{(2)} \varrho\left(W^{(1)} x+b^{(1)}\right)+b^{(2)}
$$

$$
W^{(1)}=\left(\begin{array}{ccc}
w_{11}^{(1)} & w_{12}^{(1)} & 0 \\
0 & 0 & w_{23}^{(1)} \\
0 & 0 & w_{33}^{(1)}
\end{array}\right)
$$

$$
W^{(2)}=\left(\begin{array}{ccc}
w_{11}^{(2)} & w_{12}^{(2)} & 0 \\
0 & 0 & w_{23}^{(2)}
\end{array}\right)
$$

Definition of a Deep Neural Network

Definition:

Assume the following notions:
$\nabla d \in \mathbb{N}$: Dimension of input layer.

- L : Number of layers.
$\triangleright \varrho: \mathbb{R} \rightarrow \mathbb{R}$: (Non-linear) function called activation function.
$>T_{\ell}: \mathbb{R}^{N_{\ell-1}} \rightarrow \mathbb{R}^{N_{\ell}}, \ell=1, \ldots, L$, where $T_{\ell} x=W^{(\ell)} x+b^{(\ell)}$
Then $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N_{L}}$ given by

$$
\Phi(x)=T_{L} \varrho\left(T_{L-1} \varrho\left(\ldots \varrho\left(T_{1}(x)\right)\right), \quad x \in \mathbb{R}^{d}\right.
$$

is called (deep) neural network (DNN).

Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):

- Drastic improvement of computing power.
\sim Networks with hundreds of layers can be trained.
\sim Deep Neural Networks!
- Age of Data starts.
\leadsto Vast amounts of training data is available.

Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):
$>$ Drastic improvement of computing power.
\sim Networks with hundreds of layers can be trained.
\sim Deep Neural Networks!

- Age of Data starts.
\leadsto Vast amounts of training data is available.

Surprising Phenomenon:

(Source: Belkin, Hsu, Ma, Mandal; 2019)
LudwisMAXIMILIANS
UNIVERSITAT MONCHEN

Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):

- Drastic improvement of computing power.
\sim Networks with hundreds of layers can be trained.
\sim Deep Neural Networks!

- Age of Data starts.

\sim Vast amounts of training data is available.

Surprising Phenomenon:

(Source: Berner, Grohs, Kutyniok, Petersen; 2
(Source: Belkin, Hsu, Ma, Mandal; 2019)

Training of Deep Neural Networks

High-Level Set Up:
\Rightarrow Samples $\left(x_{i}, f\left(x_{i}\right)\right)_{i=1}^{m}$ of a function such as $f: \mathcal{M} \rightarrow\{1,2, \ldots, K\}$. \sim Training- and test data set.

MNINERSITA
MONCHEN

Training of Deep Neural Networks

High-Level Set Up:

\Rightarrow Samples $\left(x_{i}, f\left(x_{i}\right)\right)_{i=1}^{m}$ of a function such as $f: \mathcal{M} \rightarrow\{1,2, \ldots, K\}$. \sim Training- and test data set.

- Select an architecture of a deep neural network, i.e., a choice of $d, L,\left(N_{\ell}\right)_{\ell=1}^{L}$, and ϱ.

Sometimes selected entries of the matrices $\left(W^{(\ell)}\right)_{\ell=1}^{L}$,
 i.e., weights, are set to zero at this point.

Training of Deep Neural Networks

High-Level Set Up:

- Samples $\left(x_{i}, f\left(x_{i}\right)\right)_{i=1}^{m}$ of a function such as $f: \mathcal{M} \rightarrow\{1,2, \ldots, K\}$.
\sim Training- and test data set.

- Select an architecture of a deep neural network, i.e., a choice of $d, L,\left(N_{\ell}\right)_{\ell=1}^{L}$, and ϱ.

Sometimes selected entries of the matrices $\left(W^{(\ell)}\right)_{\ell=1}^{L}$,
 i.e., weights, are set to zero at this point.
\Rightarrow Learn the affine-linear functions $\left(T_{\ell}\right)_{\ell=1}^{L}=\left(W^{(\ell)} \cdot+b^{(\ell)}\right)_{\ell=1}^{L}$ by

$$
\min _{\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}} \sum_{i=1}^{m} \mathcal{L}\left(\Phi_{\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}}\left(x_{i}\right), f\left(x_{i}\right)\right)+\lambda \mathcal{R}\left(\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}\right)
$$

yielding the network $\Phi_{\left(W^{\left.(\ell), b^{(\ell)}\right)_{\ell}}\right.}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N_{L}}$,

$$
\Phi_{\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}}(x)=T_{L \varrho}\left(T_{L-1} \varrho\left(\ldots \varrho\left(T_{1}(x)\right)\right)\right.
$$

This is often done by stochastic gradient descent.

Training of Deep Neural Networks

High-Level Set Up:

- Samples $\left(x_{i}, f\left(x_{i}\right)\right)_{i=1}^{m}$ of a function such as $f: \mathcal{M} \rightarrow\{1,2, \ldots, K\}$.
\sim Training- and test data set.

- Select an architecture of a deep neural network, i.e., a choice of $d, L,\left(N_{\ell}\right)_{\ell=1}^{L}$, and ϱ.

Sometimes selected entries of the matrices $\left(W^{(\ell)}\right)_{\ell=1}^{L}$,
 i.e., weights, are set to zero at this point.
\Rightarrow Learn the affine-linear functions $\left(T_{\ell}\right)_{\ell=1}^{L}=\left(W^{(\ell)} \cdot+b^{(\ell)}\right)_{\ell=1}^{L}$ by

$$
\min _{\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}} \sum_{i=1}^{m} \mathcal{L}\left(\Phi_{\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}}\left(x_{i}\right), f\left(x_{i}\right)\right)+\lambda \mathcal{R}\left(\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}\right)
$$

yielding the network $\Phi_{\left(W^{\left.(\ell), b^{(\ell)}\right)_{\ell}}\right.}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N_{L}}$,

$$
\Phi_{\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}}(x)=T_{L \varrho}\left(T_{L-1} \varrho\left(\ldots \varrho\left(T_{1}(x)\right)\right)\right.
$$

This is often done by stochastic gradient descent.

$$
\text { Goal: } \Phi_{\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}}\left(x_{i}\right) \approx f\left(x_{i}\right) \text { for the test data! }
$$

Mathematics for Artificial Intelligence

Expressivity:

- Which aspects of a neural network architecture affect the performance of deep learning?
$~$ Applied Harmonic Analysis, Approximation Theory, ...

Mathematics for Artificial Intelligence

Expressivity:

- Which aspects of a neural network architecture affect the performance of deep learning?
$~$ Applied Harmonic Analysis, Approximation Theory, ...
- Learning:
- Why does stochastic gradient descent converge to good local minima despite the non-convexity of the problem?
\sim Algebraic/Differential Geometry, Optimal Control, Optimization, ...

Mathematics for Artificial Intelligence

Expressivity:

- Which aspects of a neural network architecture affect the performance of deep learning?
$~$ Applied Harmonic Analysis, Approximation Theory, ...
- Learning:
- Why does stochastic gradient descent converge to good local minima despite the non-convexity of the problem?
\sim Algebraic/Differential Geometry, Optimal Control, Optimization, ...
- Generalization:
- Can we derive overall success guarantees (on the test data set)?
$~$ Learning Theory, Probability Theory, Statistics, ...

Mathematics for Artificial Intelligence

- Expressivity:
- Which aspects of a neural network architecture affect the performance of deep learning?
$~$ Applied Harmonic Analysis, Approximation Theory, ...
- Learning:
- Why does stochastic gradient descent converge to good local minima despite the non-convexity of the problem?
\leadsto Algebraic/Differential Geometry, Optimal Control, Optimization, ...
- Generalization:
- Can we derive overall success guarantees (on the test data set)? \sim Learning Theory, Probability Theory, Statistics, ...
- Explainability:
- Why did a trained deep neural network reach a certain decision?
$~$ Information Theory, Uncertainty Quantification, ...

Artificial Intelligence for Mathematical/Physical Problem Settings

- Inverse Problems:
$>$ How do we optimally combine deep learning with model-based approaches?
- Are neural networks capable of replacing highly specialized numerical algorithms in natural sciences?
$~$ Imaging Science, Inverse Problems, Microlocal Analysis, ...

Artificial Intelligence for Mathematical/Physical Problem Settings

- Inverse Problems:
$>$ How do we optimally combine deep learning with model-based approaches?
\rightarrow Are neural networks capable of replacing highly specialized numerical algorithms in natural sciences?
$~$ Imaging Science, Inverse Problems, Microlocal Analysis, ...

- Partial Differential Equations:

- Why do neural networks perform well in very high-dimensional environments?
- Are neural networks capable of replacing highly specialized numerical algorithms in natural sciences?
\sim Numerical Mathematics, Partial Differential Equations, ...

Plan for the 2 Lectures

Are Deep Neural Networks at Least as Good as All Previous Mathematical Methods?

- Expressivity

Plan for the 2 Lectures

Are Deep Neural Networks at Least as Good as All Previous Mathematical Methods?

- Expressivity

Are Deep Neural Networks Really Better Than Classical Methods? Solving...

- ...Inverse Problems: Optimally combining deep learning with classical methods!
- ...Partial Differential Equations: Breaking the curse of dimensionality!

Plan for the 2 Lectures

Are Deep Neural Networks at Least as Good as All Previous

 Mathematical Methods?- Expressivity

Are Deep Neural Networks Really Better Than Classical Methods? Solving...

- ...Inverse Problems: Optimally combining deep learning with classical methods!
- ...Partial Differential Equations: Breaking the curse of dimensionality!

Is Artificial Intelligence Reliable?

- Generalization
- Explainability
- Limitations

Are Deep Neural Networks at Least as Good as All Previous Mathematical Methods?

Expressivity

One major ingredient of mathematical methods is typically a suitable representation/approximation of the function/data:

Deep neural networks are universal!

Some Key Questions in Expressivity:

- What is the expressive power of a given architecture?
\Rightarrow What effect has the depth of a neural network in this respect?
$>$ What is the complexity of the approximating neural network?
- What are suitable function spaces to consider?

Revisiting Approximation Theory

The World is Compressible!

Wavelet Transform (JPEG2000):

$$
f \mapsto\left(\left\langle f, \psi_{j, m}\right\rangle\right)_{j, m} .
$$

Definition: For a wavelet $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$, a wavelet system is defined by

$$
\left\{\psi_{j, m}: j \in \mathbb{Z}, m \in \mathbb{Z}^{2}\right\}, \quad \text { where } \psi_{j, m}(x):=2^{j} \psi\left(2^{j} x-m\right) .
$$

Modeling Multivariate Data/Functions

Key Observation:

Directional structures are often crucial!

Modeling Multivariate Data/Functions

Key Observation:

Directional structures are often crucial!

Problem with Wavelets:

Shearlets

Shearlets (Kutyniok, Labate; 2006):

$$
A_{j}:=\left(\begin{array}{cc}
2^{j} & 0 \\
0 & 2^{j / 2}
\end{array}\right), \quad S_{k}:=\left(\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right), \quad j, k \in \mathbb{Z} .
$$

Then

$$
\psi_{j, k, m}:=2^{\frac{3 j}{4}} \psi\left(S_{k} A_{j} \cdot-m\right) .
$$

Shearlets

Shearlets (Kutyniok, Labate; 2006):

$$
A_{j}:=\left(\begin{array}{cc}
2^{j} & 0 \\
0 & 2^{j / 2}
\end{array}\right), \quad S_{k}:=\left(\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right), \quad j, k \in \mathbb{Z} .
$$

Then

$$
\psi_{j, k, m}:=2^{\frac{3 j}{4}} \psi\left(S_{k} A_{j} \cdot-m\right) .
$$

Shearlets

Shearlets (Kutyniok, Labate; 2006):

$$
A_{j}:=\left(\begin{array}{cc}
2^{j} & 0 \\
0 & 2^{j / 2}
\end{array}\right), \quad S_{k}:=\left(\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right), \quad j, k \in \mathbb{Z} .
$$

Then

$$
\psi_{j, k, m}:=2^{\frac{3 j}{4}} \psi\left(S_{k} A_{j} \cdot-m\right) .
$$

 Onchen

Shearlets

Shearlets (Kutyniok, Labate; 2006):

$$
A_{j}:=\left(\begin{array}{cc}
2^{j} & 0 \\
0 & 2^{j / 2}
\end{array}\right), \quad S_{k}:=\left(\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right), \quad j, k \in \mathbb{Z} .
$$

Then

$$
\psi_{j, k, m}:=2^{\frac{3 j}{4}} \psi\left(S_{k} A_{j} \cdot-m\right) .
$$

Shearlets

Shearlets (Kutyniok, Labate; 2006):

$$
A_{j}:=\left(\begin{array}{cl}
2^{j} & 0 \\
0 & 2^{j / 2}
\end{array}\right), \quad S_{k}:=\left(\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right), \quad j, k \in \mathbb{Z}
$$

Then

$$
\psi_{j, k, m}:=2^{\frac{3 j}{4}} \psi\left(S_{k} A_{j} \cdot-m\right) .
$$

Shearlets are Optimal

Model of Images (Donoho; 2001):
"Cartoon-functions are functions governed by a discontinuity curve."

Theorem (Kutyniok, Lim; 2011):
"Shearlets fulfill the optimal compression rate for cartoon-functions."

Shearlets are Optimal

Model of Images (Donoho; 2001):
 "Cartoon-functions are functions governed by a discontinuity curve."

Theorem (Kutyniok, Lim; 2011):
"Shearlets fulfill the optimal compression rate for cartoon-functions."

2D\&3D (parallelized) Fast Shearlet Transform (www. ShearLab.org):

- Matlab (Kutyniok, Lim, Reisenhofer; 2013)
- Julia (Loarca; 2017)
- Python (Look; 2018)
- Tensorflow (Loarca; 2019)

Function Approximation in a Nutshell

Goal: Given $\mathcal{C} \subseteq L^{2}\left(\mathbb{R}^{d}\right)$ and $\left(\varphi_{i}\right)_{i \in I} \subseteq L^{2}\left(\mathbb{R}^{d}\right)$. Measure the suitability of $\left(\varphi_{i}\right)_{i \in I}$ for uniformly approximating functions from \mathcal{C}.

Definition: The error of best N-term approximation of some $f \in \mathcal{C}$ is given by

$$
\left\|f-f_{N}\right\|_{2}:=\inf _{I_{N} \subset I, \# I_{N}=N,\left(c_{i}\right)_{i \in I_{N}}}\left\|f-\sum_{i \in I_{N}} c_{i} \varphi_{i}\right\|_{2}
$$

The largest $\gamma>0$ such that

$$
\sup _{f \in \mathcal{C}}\left\|f-f_{N}\right\|_{2}=O\left(N^{-\gamma}\right) \quad \text { as } N \rightarrow \infty
$$

determines the optimal (sparse) approximation rate of \mathcal{C} by $\left(\varphi_{i}\right)_{i \in I}$.

Function Approximation in a Nutshell

Goal: Given $\mathcal{C} \subseteq L^{2}\left(\mathbb{R}^{d}\right)$ and $\left(\varphi_{i}\right)_{i \in I} \subseteq L^{2}\left(\mathbb{R}^{d}\right)$. Measure the suitability of $\left(\varphi_{i}\right)_{i \in I}$ for uniformly approximating functions from \mathcal{C}.

Definition: The error of best N-term approximation of some $f \in \mathcal{C}$ is given by

$$
\left\|f-f_{N}\right\|_{2}:=\inf _{I_{N} \subset I, \# I_{N}=N,\left(c_{i}\right)_{i \in I_{N}}}\left\|f-\sum_{i \in I_{N}} c_{i} \varphi_{i}\right\|_{2}
$$

The largest $\gamma>0$ such that

$$
\sup _{f \in \mathcal{C}}\left\|f-f_{N}\right\|_{2}=O\left(N^{-\gamma}\right) \quad \text { as } N \rightarrow \infty
$$

determines the optimal (sparse) approximation rate of \mathcal{C} by $\left(\varphi_{i}\right)_{i \in I}$.
Approximation accuracy \leftrightarrow Complexity of approximating system in terms of sparsity

Universality of Deep Neural Networks

Universality of Shallow Neural Networks

Remark: Assume ϱ is a polynomial of degree q. Then $\varrho(W x+b)$ is also a polynomial of degree q, hence Φ is also a polynomial of degree $\leq L \cdot q$. Hence in this case $C\left(\mathbb{R}^{d}\right)$ cannot be well approximated.

Universality of Shallow Neural Networks

Remark: Assume ϱ is a polynomial of degree q. Then $\varrho(W x+b)$ is also a polynomial of degree q, hence Φ is also a polynomial of degree $\leq L \cdot q$. Hence in this case $C\left(\mathbb{R}^{d}\right)$ cannot be well approximated.

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991): Let $K \subset \mathbb{R}^{d}$ compact, $f: K \rightarrow \mathbb{R}$ continuous, $\varrho: \mathbb{R} \rightarrow \mathbb{R}$ continuous and not a polynomial. Then, for each $\epsilon>0$, there exist $N \in \mathbb{N}$, $a_{k}, b_{k} \in \mathbb{R}, w_{k} \in \mathbb{R}^{d}$ with

$$
\left\|f-\sum_{k=1}^{N} a_{k} \varrho\left(\left\langle w_{k}, \cdot\right\rangle-b_{k}\right)\right\|_{\infty} \leq \epsilon
$$

Every continuous function on a compact set can be arbitrarily well approximated with a neural network with one single hidden layer.

Idea of Proof

- For $d \geq 1, \varrho$ continuous, $\varrho: \mathbb{R} \rightarrow \mathbb{R}$ TFAE:
(i) $\operatorname{span}\left\{\varrho(\langle w, x\rangle-b): w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$ is dense $C(K, \mathbb{R})$.
(ii) ϱ is not a polynomial.
\Rightarrow Now: (ii) \Rightarrow (i) for $d=1$ and a smooth activation function ϱ.

Idea of Proof

\rightarrow For $d \geq 1, \varrho$ continuous, $\varrho: \mathbb{R} \rightarrow \mathbb{R}$ TFAE:
(i) $\operatorname{span}\left\{\varrho(\langle w, x\rangle-b): w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$ is dense $C(K, \mathbb{R})$.
(ii) ϱ is not a polynomial.
$>$ Now: $(\mathrm{ii}) \Rightarrow$ (i) for $d=1$ and a smooth activation function ϱ.
\rightarrow Since ϱ is not a polynomial, there exists one $x_{0} \in \mathbb{R}$ with

$$
\varrho^{(k)}\left(-x_{0}\right) \neq 0 \text { for all } k
$$

Idea of Proof

\rightarrow For $d \geq 1, \varrho$ continuous, $\varrho: \mathbb{R} \rightarrow \mathbb{R}$ TFAE:
(i) $\operatorname{span}\left\{\varrho(\langle w, x\rangle-b): w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$ is dense $C(K, \mathbb{R})$.
(ii) ϱ is not a polynomial.
$>$ Now: $(\mathrm{ii}) \Rightarrow$ (i) for $d=1$ and a smooth activation function ϱ.
\rightarrow Since ϱ is not a polynomial, there exists one $x_{0} \in \mathbb{R}$ with

$$
\varrho^{(k)}\left(-x_{0}\right) \neq 0 \text { for all } k
$$

- Constant functions can be arbitrarily well approximated:

$$
\varrho\left(h x-x_{0}\right) \rightarrow \varrho\left(-x_{0}\right) \text { as } h \rightarrow 0
$$

Idea of Proof

\rightarrow For $d \geq 1, \varrho$ continuous, $\varrho: \mathbb{R} \rightarrow \mathbb{R}$ TFAE:
(i) $\operatorname{span}\left\{\varrho(\langle w, x\rangle-b): w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$ is dense $C(K, \mathbb{R})$.
(ii) ϱ is not a polynomial.
$>$ Now: $(\mathrm{ii}) \Rightarrow$ (i) for $d=1$ and a smooth activation function ϱ.
\rightarrow Since ϱ is not a polynomial, there exists one $x_{0} \in \mathbb{R}$ with

$$
\varrho^{(k)}\left(-x_{0}\right) \neq 0 \text { for all } k
$$

- Constant functions can be arbitrarily well approximated:

$$
\varrho\left(h x-x_{0}\right) \rightarrow \varrho\left(-x_{0}\right) \text { as } h \rightarrow 0
$$

- Linear functions can be arbitrarily well approximated:

$$
\underbrace{\frac{\varrho\left((\lambda+h) x-x_{0}\right)-\varrho\left(x-x_{0}\right)}{h}}_{\rightarrow x \varrho^{\prime}\left(\lambda x-x_{0}\right) \text { for } h \rightarrow 0} \rightarrow x \cdot \varrho^{\prime}\left(-x_{0}\right), \quad \text { as } h, \lambda \rightarrow 0
$$

Idea of Proof

- For $d \geq 1, \varrho$ continuous, $\varrho: \mathbb{R} \rightarrow \mathbb{R}$ TFAE:
(i) $\operatorname{span}\left\{\varrho(\langle w, x\rangle-b): w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}$ is dense $C(K, \mathbb{R})$.
(ii) ϱ is not a polynomial.
$>$ Now: (ii) \Rightarrow (i) for $d=1$ and a smooth activation function ϱ.
\rightarrow Since ϱ is not a polynomial, there exists one $x_{0} \in \mathbb{R}$ with

$$
\varrho^{(k)}\left(-x_{0}\right) \neq 0 \text { for all } k
$$

- Constant functions can be arbitrarily well approximated:

$$
\varrho\left(h x-x_{0}\right) \rightarrow \varrho\left(-x_{0}\right) \text { as } h \rightarrow 0
$$

- Linear functions can be arbitrarily well approximated:

$$
\underbrace{\frac{\varrho\left((\lambda+h) x-x_{0}\right)-\varrho\left(x-x_{0}\right)}{h}}_{\rightarrow x \varrho^{\prime}\left(\lambda x-x_{0}\right) \text { for } h \rightarrow 0} \rightarrow x \cdot \varrho^{\prime}\left(-x_{0}\right), \quad \text { as } h, \lambda \rightarrow 0
$$

\leadsto Any polynomial can be well approximated, then use Stone-Weierstraß
\sim Finally, extend to d arbitrary.

Universality of Shallow Neural Networks

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991): Let $K \subset \mathbb{R}^{d}$ compact, $f: K \rightarrow \mathbb{R}$ continuous, $\varrho: \mathbb{R} \rightarrow \mathbb{R}$ continuous and not a polynomial. Then, for each $\epsilon>0$, there exist $N \in \mathbb{N}$, $a_{k}, b_{k} \in \mathbb{R}, w_{k} \in \mathbb{R}^{d}$ with

$$
\left\|f-\sum_{k=1}^{N} a_{k} \varrho\left(\left\langle w_{k}, \cdot\right\rangle-b_{k}\right)\right\|_{\infty} \leq \epsilon
$$

Universality of Shallow Neural Networks

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991): Let $K \subset \mathbb{R}^{d}$ compact, $f: K \rightarrow \mathbb{R}$ continuous, $\varrho: \mathbb{R} \rightarrow \mathbb{R}$ continuous and not a polynomial. Then, for each $\epsilon>0$, there exist $N \in \mathbb{N}$, $a_{k}, b_{k} \in \mathbb{R}, w_{k} \in \mathbb{R}^{d}$ with

$$
\left\|f-\sum_{k=1}^{N} a_{k} \varrho\left(\left\langle w_{k}, \cdot\right\rangle-b_{k}\right)\right\|_{\infty} \leq \epsilon
$$

Approximation accuracy \leftrightarrow Complexity of approximating network?

Universality of Shallow Neural Networks

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991): Let $K \subset \mathbb{R}^{d}$ compact, $f: K \rightarrow \mathbb{R}$ continuous, $\varrho: \mathbb{R} \rightarrow \mathbb{R}$ continuous and not a polynomial. Then, for each $\epsilon>0$, there exist $N \in \mathbb{N}$, $a_{k}, b_{k} \in \mathbb{R}, w_{k} \in \mathbb{R}^{d}$ with

$$
\left\|f-\sum_{k=1}^{N} a_{k} \varrho\left(\left\langle w_{k}, \cdot\right\rangle-b_{k}\right)\right\|_{\infty} \leq \epsilon
$$

Approximation accuracy \leftrightarrow Complexity of approximating network?
What about even optimality?

Complexity of a Deep Neural Network

Recall:

$>L$: Number of layers.
$\triangleright \varrho: \mathbb{R} \rightarrow \mathbb{R}:$ Activation function.

$>T_{\ell}: \mathbb{R}^{N_{\ell-1}} \rightarrow \mathbb{R}^{N_{\ell}}, \ell=1, \ldots, L$, where $T_{\ell} x=W^{(\ell)} x+b^{(\ell)}$
Then $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N_{L}}$ given by

$$
\Phi(x)=T_{L} \varrho\left(T_{L-1} \varrho\left(\ldots \varrho\left(T_{1}(x)\right)\right), \quad x \in \mathbb{R}^{d}\right.
$$

is called (deep) neural network (DNN).

Complexity of a Deep Neural Network

Recall:

$>L$: Number of layers.
$\triangleright \varrho: \mathbb{R} \rightarrow \mathbb{R}$: Activation function.

$>T_{\ell}: \mathbb{R}^{N_{\ell-1}} \rightarrow \mathbb{R}^{N_{\ell}}, \ell=1, \ldots, L$, where $T_{\ell} x=W^{(\ell)} x+b^{(\ell)}$
Then $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N_{L}}$ given by

$$
\Phi(x)=T_{L} \varrho\left(T_{L-1} \varrho\left(\ldots \varrho\left(T_{1}(x)\right)\right), \quad x \in \mathbb{R}^{d}\right.
$$

is called (deep) neural network (DNN).
Measure for Complexity: The complexity $C(\Phi)$ is defined by

$$
C(\Phi):=\sum_{\ell=1}^{L}\left(\left\|W^{(\ell)}\right\|_{0}+\left\|b^{(\ell)}\right\|_{0}\right)
$$

Complexity of a Deep Neural Network

Recall:

$>L$: Number of layers.
$\triangleright \varrho: \mathbb{R} \rightarrow \mathbb{R}$: Activation function.

$>T_{\ell}: \mathbb{R}^{N_{\ell-1}} \rightarrow \mathbb{R}^{N_{\ell}}, \ell=1, \ldots, L$, where $T_{\ell} x=W^{(\ell)} x+b^{(\ell)}$
Then $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N_{L}}$ given by

$$
\Phi(x)=T_{L \varrho} \varrho\left(T_{L-1} \varrho\left(\ldots \varrho\left(T_{1}(x)\right)\right), \quad x \in \mathbb{R}^{d}\right.
$$

is called (deep) neural network (DNN).
Measure for Complexity: The complexity $C(\Phi)$ is defined by

$$
C(\Phi):=\sum_{\ell=1}^{L}\left(\left\|W^{(\ell)}\right\|_{0}+\left\|b^{(\ell)}\right\|_{0}\right)
$$

Key Challenge:

Approximation accuracy \leftrightarrow Complexity of approximating network in terms of memory efficiency!

Lower Bounds for Approximation

Classical Approach:

- VC Dimension

Lower Bounds for Approximation

Classical Approach:

- VC Dimension

Towards Optimal Complexity:

- How well can functions be approximated by neural networks with few non-zero weights?
- Can we derive a lower bound on the necessary number of weights?
- Can we construct neural networks which attain this bound?
- Are neural networks as good approximators as wavelets and shearlets?

A Fundamental Lower Bound

Complexity of a Function Class:

The optimal exponent $\gamma^{*}(\mathcal{C})$ measures the complexity of $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$.

A Fundamental Lower Bound

Complexity of a Function Class:

The optimal exponent $\gamma^{*}(\mathcal{C})$ measures the complexity of $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$.
Theorem (Bölcskei, Grohs, Kutyniok, and Petersen; 2019): Let $d \in \mathbb{N}, \varrho: \mathbb{R} \rightarrow \mathbb{R}$, and let $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$. Further, let

$$
\text { Learn : }(0,1) \times \mathcal{C} \rightarrow \mathcal{N} \mathcal{N}_{\infty, \infty, d, \varrho}
$$

satisfy that, for each $f \in \mathcal{C}$ and $0<\epsilon<1$,

$$
\sup \|f-\operatorname{Learn}(\epsilon, f)\|_{2} \leq \epsilon .
$$

Then, for all $\gamma<\gamma^{*}(\mathcal{C})$,

$$
\epsilon^{\gamma} \sup _{f \in \mathcal{C}} C(\operatorname{Learn}(\epsilon, f)) \rightarrow \infty, \quad \text { as } \epsilon \rightarrow 0 .
$$

Conceptual bound independent on the learning algorithm!

A Fundamental Lower Bound

Complexity of a Function Class:

The optimal exponent $\gamma^{*}(\mathcal{C})$ measures the complexity of $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$.
Theorem (Bölcskei, Grohs, Kutyniok, and Petersen; 2019): Let $d \in \mathbb{N}, \varrho: \mathbb{R} \rightarrow \mathbb{R}$, and let $\mathcal{C} \subset L^{2}\left(\mathbb{R}^{d}\right)$. Further, let

$$
\text { Learn : }(0,1) \times \mathcal{C} \rightarrow \mathcal{N} \mathcal{N}_{\infty, \infty, d, \varrho}
$$

satisfy that, for each $f \in \mathcal{C}$ and $0<\epsilon<1$,

$$
\sup \|f-\operatorname{Learn}(\epsilon, f)\|_{2} \leq \epsilon .
$$

Then, for all $\gamma<\gamma^{*}(\mathcal{C})$,

$$
\epsilon^{\gamma} \sup _{f \in \mathcal{C}} C(\operatorname{Learn}(\epsilon, f)) \rightarrow \infty, \quad \text { as } \epsilon \rightarrow 0
$$

Conceptual bound independent on the learning algorithm!
\sim What happens for $\gamma=\gamma^{*}(\mathcal{C})$?

Optimal Approximation

Key Ideas for a Specific Function Class:

- Consider a representation system with an optimal approximation rate.
- Realize each element of a representation system by a neural network.
- Mimic best N-term approximation by networks.

Optimal Approximation

Key Ideas for a Specific Function Class:

- Consider a representation system with an optimal approximation rate.
$>$ Realize each element of a representation system by a neural network.
- Mimic best N-term approximation by networks.

Choice for our Result:

 Use the affine system of shearlets.

Theorem (Bölcskei, Grohs, Kutyniok, and Petersen; 2019): Let ϱ be a suitably chosen, and let $\epsilon>0$. For all $f \in \mathcal{E}^{2}\left(\mathbb{R}^{2}\right)$ and $N \in \mathbb{N}$, there exists a neural network Φ with 3 layers and $C(\Phi)=O(N)$ satisfying

$$
\|f-\Phi\|_{2} \lesssim N^{-1+\epsilon} \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

This is the optimal rate; hence the first bound is sharp!

Optimal Approximation

Key Ideas for a Specific Function Class:

- Consider a representation system with an optimal approximation rate.
$>$ Realize each element of a representation system by a neural network.
- Mimic best N-term approximation by networks.

Choice for our Result: Use the affine system of shearlets.

Theorem (Bölcskei, Grohs, Kutyniok, and Petersen; 2019): Let ϱ be a suitably chosen, and let $\epsilon>0$. For all $f \in \mathcal{E}^{2}\left(\mathbb{R}^{2}\right)$ and $N \in \mathbb{N}$, there exists a neural network Φ with 3 layers and $C(\Phi)=O(N)$ satisfying

$$
\|f-\Phi\|_{2} \lesssim N^{-1+\epsilon} \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

This is the optimal rate; hence the first bound is sharp!
Deep neural networks achieve optimal approximation properties of all affine systems combined!

Numerical Experiments (with ReLUs \& Backpropagation)

Numerical Experiments (with ReLUs \& Backpropagation)

Are Deep Neural Networks Really Better

 Than Classical Methods?
Inverse Problems

Recovering the original data from a transformed version!

Inverse Problems

Recovering the original data from a transformed version!

Some Examples from Imaging:
$>$ Inpainting.
$~$ Recovery from incomplete data.

- Magnetic Resonance Imaging.

\sim Recovery from point samples of the Fourier transform.
- Feature Extraction.
\sim Separating the image into different features.

III-Posed Inverse Problems

General Setting:

Given $K: X \rightarrow Y$ and $y \in Y$, compute $x \in X$ with $K x=y$.

Well-Posedness Conditions (Hadamard):

- Existence: For each $y \in Y$, there exists some $x \in X$ with $K x=y$.
- Uniqueness: Such an $x \in X$ is unique.
- Stability: $\lim _{n \rightarrow \infty} K x_{n} \rightarrow K x$ implies $\lim _{n \rightarrow \infty} x_{n} \rightarrow x$.

III-Posed Inverse Problems:

Need for regularization!

Tikhonov Regularization

Standard Tikhonov Regularization:

Given an ill-posed inverse problems $K x=y$, where $K: X \rightarrow Y$, an approximate solution $x^{\alpha} \in X, \alpha>0$, can be determined by minimizing

$$
J_{\alpha}(x):=\underbrace{\|K x-y\|^{2}}_{\text {Data fidelity term }}+\alpha \cdot \underbrace{\|x\|^{2}}_{\text {Regularization Term }}, \quad x \in X .
$$

Tikhonov Regularization

Standard Tikhonov Regularization:

Given an ill-posed inverse problems $K x=y$, where $K: X \rightarrow Y$, an approximate solution $x^{\alpha} \in X, \alpha>0$, can be determined by minimizing

$$
J_{\alpha}(x):=\underbrace{\|K x-y\|^{2}}_{\text {Data fidelity term }}+\alpha \cdot \underbrace{\|x\|^{2}}_{\text {Regularization Term }}, \quad x \in X .
$$

Generalization:

$$
J_{\alpha}(x):=\underbrace{\|K x-y\|^{2}}_{\text {Data fidelity term }}+\alpha \cdot \underbrace{\mathcal{R}(x)}_{\text {Regularization Term }}, \quad x \in X
$$

The Regularization Term \mathcal{R}

- ensures continuous dependence on the data,
- incorporates properties of the solution.

Paradigm for Data Processing: Sparsity!

Sparse Signals:

A signal $x \in \mathbb{R}^{n}$ is k-sparse, if

$$
\|x\|_{0}=\# \text { non-zero coefficients } \leq k
$$

\sim Model Σ_{k} : Union of k-dimensional subspaces

Compressible Signals:

A signal $x \in \mathbb{R}^{n}$ is compressible, if the sorted coefficients have rapid (power law) decay. $\left|x_{i}\right|$ \leadsto Model: ℓ_{p} ball with $p \leq 1$

Recall: Shearlets as Sparsifying System

Model of Images (Donoho; 2001):
"Cartoon-functions are functions governed by a discontinuity curve."

Theorem (Kutyniok, Lim; 2011):
"Shearlets fulfill the optimal compression rate for cartoon-functions."

Recall: Shearlets as Sparsifying System

Model of Images (Donoho; 2001):

"Cartoon-functions are functions governed by a discontinuity curve."

Theorem (Kutyniok, Lim; 2011):
"Shearlets fulfill the optimal compression rate for cartoon-functions."

2D\&3D (parallelized) Fast Shearlet Transform (www. ShearLab.org):

- Matlab (Kutyniok, Lim, Reisenhofer; 2013)
- Julia (Loarca; 2017)
- Python (Look; 2018)
- Tensorflow (Loarca; 2019)

How to Penalize Non-Sparsity?

Intuition:

\leadsto Use the ℓ_{1} norm!

How to Penalize Non-Sparsity?

Intuition:

\leadsto Use the ℓ_{1} norm!

Sparse Regularization:

Solve an ill-posed inverse problem $K f=g$ by

$$
f^{\alpha}:=\underset{f}{\operatorname{argmin}}[\underbrace{\|K f-g\|^{2}}_{\text {Data fidelity term }}+\alpha \cdot \underbrace{\left\|\left(\left\langle f, \psi_{j, m}\right\rangle\right)_{j, m}\right\|_{1}}_{\text {Penalty term }}] .
$$

Problem with Classical Approaches

(Limited Angle-) Computed Tomography

A CT scanner samples the Radon transform

$$
\mathcal{R} f(\phi, s)=\int_{L(\phi, s)} f(x) d S(x),
$$

for $L(\phi, s)=\left\{x \in \mathbb{R}^{2}: x_{1} \cos (\phi)+x_{2} \sin (\phi)=s\right\}, \phi \in[-\pi / 2, \pi / 2)$, and $s \in \mathbb{R}$.

(Limited Angle-) Computed Tomography

A CT scanner samples the Radon transform

$$
\mathcal{R} f(\phi, s)=\int_{L(\phi, s)} f(x) d S(x)
$$

for $L(\phi, s)=\left\{x \in \mathbb{R}^{2}: x_{1} \cos (\phi)+x_{2} \sin (\phi)=s\right\}, \phi \in[-\pi / 2, \pi / 2)$, and $s \in \mathbb{R}$.
Challenging inverse problem if $\mathcal{R} f(\cdot, s)$ is only sampled

$$
\text { on }[-\phi, \phi] \subset[-\pi / 2, \pi / 2) \text {. }
$$

Applications: Dental CT, electron tomography,...

(Limited Angle-) Computed Tomography

A CT scanner samples the Radon transform

$$
\mathcal{R} f(\phi, s)=\int_{L(\phi, s)} f(x) d S(x)
$$

for $L(\phi, s)=\left\{x \in \mathbb{R}^{2}: x_{1} \cos (\phi)+x_{2} \sin (\phi)=s\right\}, \phi \in[-\pi / 2, \pi / 2)$, and $s \in \mathbb{R}$.
Challenging inverse problem if $\mathcal{R} f(\cdot, s)$ is only sampled

$$
\text { on }[-\phi, \phi] \subset[-\pi / 2, \pi / 2)
$$

Applications: Dental CT, electron tomography,...
Model-Based Approaches Fail (60° Missing Angle):

Original Image

Filtered Backprojection

Sparse Regularization with Shearlets//

Deep Learning Enters the Stage

Overview

Different Forms of Hybrid Approaches:

- Supervised approaches:
- Train a neural network end-to-end.
- Incorporate information about the operator K into the neural network.
- Combine neural networks with classical model-based approaches (Plug-and-play, etc.)

Overview

Different Forms of Hybrid Approaches:

- Supervised approaches:
- Train a neural network end-to-end.
- Incorporate information about the operator K into the neural network.
- Combine neural networks with classical model-based approaches (Plug-and-play, etc.)
- Semi-supervised approaches:
- Encode the regularization by a neural network (Adversarial regularizers, etc.)
- The learning algorithm only requires a set of labels as well as a method to assess how hard the inverse problem for this label would be.

Overview

Different Forms of Hybrid Approaches:

- Supervised approaches:
- Train a neural network end-to-end.
$>$ Incorporate information about the operator K into the neural network.
- Combine neural networks with classical model-based approaches (Plug-and-play, etc.)
- Semi-supervised approaches:
- Encode the regularization by a neural network (Adversarial regularizers, etc.)
\Rightarrow The learning algorithm only requires a set of labels as well as a method to assess how hard the inverse problem for this label would be.
- Unsupervised approaches:
- Parametrize the solutions as the output of a neural network (Deep image priors, etc.)

Convolutional Neural Networks (CNNs)

Schematic Illustration:

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)

Operation in each Layer:
Input \rightarrow Convolution \rightarrow Activation \rightarrow Pooling \rightarrow Output

CNN Architecture for Inverse Problems

- U-Net architecture (Ronneberger et al.; 2015)
- Encoder-Decoder CNN with skip-connections

Skip connection

Models and Data

How to take the best out of both worlds: Models and Data?

General Strategy:

- Employ model-based approaches as far as they are reliable.
- Apply deep learning only when it is necessary.

Zooming in on the Limited-Angle CT Problem

$\phi=15^{\circ}$, filtered backprojection (FBP)

Zooming in on the Limited-Angle CT Problem

$\phi=30^{\circ}$, filtered backprojection (FBP)

Zooming in on the Limited-Angle CT Problem

$\phi=45^{\circ}$, filtered backprojection (FBP)

Zooming in on the Limited-Angle CT Problem

$\phi=60^{\circ}$, filtered backprojection (FBP)

Zooming in on the Limited-Angle CT Problem

$\phi=75^{\circ}$, filtered backprojection (FBP)

Zooming in on the Limited-Angle CT Problem

$\phi=90^{\circ}$, filtered backprojection (FBP)

Zooming in on the Limited-Angle CT Problem

Illustration of Theorem [Quinto, 1993]:

"visible": singularities tangent to sampled lines
"invisible": singularities not tangent to sampled lines

Shearlets can Help

Key Idea: Filling the missing angle is an inpainting problem of the wavefront set!

$$
\begin{aligned}
& f=1_{D} \text { for a set } D \subseteq \mathbb{R}^{2} \\
& \text { with smooth boundary }
\end{aligned}
$$

Shearlets can Help

Key Idea: Filling the missing angle is an inpainting problem of the wavefront set!

$f=1_{D}$ for a set $D \subseteq \mathbb{R}^{2}$
with smooth boundary
Theorem (Kutyniok, Labate; 2006):
"Shearlets can identify the wavefront set at fine scales."

Shearlets can Help

Key Idea: Filling the missing angle is an inpainting problem of the wavefront set!

$$
f=1_{D} \text { for a set } D \subseteq \mathbb{R}^{2}
$$

with smooth boundary

Theorem (Kutyniok, Labate; 2006):
"Shearlets can identify the wavefront set at fine scales."
Shearlets can Separate the Visible and Invisible Part:

Our Approach "Learn the Invisible (Ltl)"

(Bubba, Kutyniok, Lassas, März, Samek, Siltanen, Srinivan; 2019)

Step 1: Reconstruct the visible

$$
f^{*}:=\underset{f \geq 0}{\operatorname{argmin}}\left\|\mathcal{R}_{\phi} f-g\right\|_{2}^{2}+\left\|\mathrm{SH}_{\psi}(f)\right\|_{1, w}
$$

- Best available classical solution (little artifacts, denoised)

$>$ Access "wavefront set" via sparsity prior on shearlets:
\Rightarrow For $(j, k, I) \in \mathcal{I}_{\text {inv }}: \mathrm{SH}_{\psi}\left(f^{*}\right)_{(j, k, l)} \approx 0$
\Rightarrow For $(j, k, l) \in \mathcal{I}_{\mathrm{vis}}: \mathrm{SH}_{\psi}\left(f^{*}\right)_{(j, k, l)}$ reliable and near perfect

Step 2: Learn the invisible

$$
\mathcal{N N}_{\theta}: \mathrm{SH}_{\psi}\left(f^{*}\right)_{\mathcal{I}_{\mathrm{vis}}} \longrightarrow F\left(\stackrel{!}{\approx} \mathrm{SH}_{\psi}\left(f_{\mathrm{gt}}\right)_{\mathcal{I}_{\mathrm{inv}}}\right)
$$

Step 3: Combine

$$
f_{\mathrm{LtI}}=\mathrm{SH}_{\psi}^{T}\left(\mathrm{SH}_{\psi}\left(f^{*}\right)_{\mathcal{I}_{\mathrm{vis}}}+F\right)
$$

Numerical Results

Original

Filtered Backprojection

[Gu \& Ye, 2017]

Sparse Regularization with Shearlets

Learn the Invisible (LtI)

Numerical Results

Original

Filtered Backprojection

[Gu \& Ye, 2017]

Sparse Regularization with Shearlets

Learn the Invisible (LtI)

Deep neural networks can outperform classical methods by far!

Deep Network Shearlet Edge Extractor (DeNSE)

 (Andrade-Loarca, Kutyniok, Öktem, Petersen; 2019)
Key Steps:

(1) Apply the shearlet transform to an image.
\sim Extract the correct features.
\sim Derive a good data representation.
(2) Consider patches of shearlet coefficients.
\sim Localize to each position.
(3) Apply a convolutional neural network.
\sim Predict the direction (180 directions) in each patch.
Network Architecture:

Numerical Results

Theoretically Analyzing the Effectiveness of Deep Neural Networks: Solving PDEs!

Another Mystery

Recall from Expressivity:
 Deep neural networks match the performance of the best classical approximation tool in virtually every task!

Another Mystery

Recall from Expressivity:

Deep neural networks match the performance of the best classical approximation tool in virtually every task!

Surprise from Practise of Neural Networks:

- Perform incredibly well in approximating high-dimensional functions.
- Often outperform classical, non-specialized approximation methods.

Another Mystery

Recall from Expressivity:

Deep neural networks match the performance of the best classical approximation tool in virtually every task!

Surprise from Practise of Neural Networks:

- Perform incredibly well in approximating high-dimensional functions.
- Often outperform classical, non-specialized approximation methods.

The Curse of Dimensionality:
Every approximation method deteriorates exponentially fast with increasing dimension!

Key Problem: The Curse!

"Introduction": Bellman; 1961

Curse of Dimensionality: 10^{2} evenly spaced points suffice to sample a uni interval with no more than 10^{-2} distance between points. But an equivalent sampling of a 10 -dimensional unit hypercube with a lattice of the same spacing would require $10^{20}=\left(10^{2}\right)^{10}$ sample points.
\sim Exponential growth.

Examples:

- Combinatorics
- Function approximation
- Machine learning
- Numerical integration

Partial Differential Equations

Some Facts about PDE Solvers:

- Precise physical models exist.
- The discretization process is very well understood.
- Often optimal solvers are available.
- A rich bouquet of highly sophisticated solvers are developed:
- Finite-element methods
- Wavelet-based approaches

Partial Differential Equations

Some Facts about PDE Solvers:

- Precise physical models exist.
- The discretization process is very well understood.
- Often optimal solvers are available.
- A rich bouquet of highly sophisticated solvers are developed:
- Finite-element methods
- Wavelet-based approaches

Why do we need deep neural networks?

Partial Differential Equations

Some Facts about PDE Solvers:

- Precise physical models exist.
- The discretization process is very well understood.
- Often optimal solvers are available.
- A rich bouquet of highly sophisticated solvers are developed:
- Finite-element methods
- Wavelet-based approaches

Why do we need deep neural networks?

\sim Deep neural networks can beat the curse of dimensionality in high dimensional problems!

Deep Learning Approaches to PDEs

Common Approach to Solve PDEs with Neural Networks:

Approximate the solution u of a PDE

$$
\mathcal{L}(u)=f
$$

by a neural network Φ, i.e., determine

$$
\mathcal{L}(\Phi) \approx f
$$

Key Ideas:

- Sampling of points in the spatial domain
- Incorporate PDE in the loss functions

Incomplete List of Contributions:

[Lagaris, Likas, Fotiadis; 1998], [E, Yu; 2017], [Czarnecki, Osindero, Jaderberg, Swirszcz, Pascanu; 2017], [Sirignano,
Spiliopoulos; 2017], [Han, Jentzen, E; 2017], [Raissi, Perdikaris, Karniadakis; 2020], [Grohs, Herrmann; 2021],

Let's Now Enter the World of Parametric PDEs

Why Parametric PDEs?

Parameter dependent families of PDEs arise in basically any branch of science and engineering.

Some Exemplary Problem Classes:

- Complex design problems
- Inverse problems
- Optimization tasks
- Uncertainty quantification
- ...

The number of parameters can be

- finite (physical properties such as domain geometry, ...)
- infinite (modeling of random stochastic diffusion field, ...)

The Parametric Map

Example of Parametric Diffusion Equation:

The following parametric diffusion equation has the form

$$
-\nabla \cdot\left(a_{y}(\mathbf{x}) \cdot \nabla u_{y}(\mathbf{x})\right)=f(\mathbf{x}), \quad \text { on } \Omega=(0,1)^{2},\left.\quad u_{y}\right|_{\partial \Omega}=0
$$

where $f \in L^{2}(\Omega)$ and $a_{y} \in L^{\infty}(\Omega)$ is a diffusion coefficient depending on a parameter $y \in \mathcal{Y}$.

Parametric Map:

Consider the map $\mathbb{R}^{p} \supset \mathcal{Y} \ni y \mapsto u_{y}$, where $p \in \mathbb{N}$, for various choices of parametrizations

$$
\mathbb{R}^{p} \supset \mathcal{Y} \ni y \mapsto a_{y} .
$$

The Parametric Map

Example of Parametric Diffusion Equation:

The following parametric diffusion equation has the form

$$
-\nabla \cdot\left(a_{y}(\mathbf{x}) \cdot \nabla u_{y}(\mathbf{x})\right)=f(\mathbf{x}), \quad \text { on } \Omega=(0,1)^{2},\left.\quad u_{y}\right|_{\partial \Omega}=0
$$

where $f \in L^{2}(\Omega)$ and $a_{y} \in L^{\infty}(\Omega)$ is a diffusion coefficient depending on a parameter $y \in \mathcal{Y}$.

Parametric Map:

Consider the map $\mathbb{R}^{p} \supset \mathcal{Y} \ni y \mapsto u_{y}$, where $p \in \mathbb{N}$, for various choices of parametrizations

$$
\mathbb{R}^{p} \supset \mathcal{Y} \ni y \mapsto a_{y} .
$$

General Form:

$$
\mathcal{Y} \ni y \mapsto u_{y} \in \mathcal{H} \quad \text { such that } \quad \mathcal{L}\left(u_{y}, y\right)=f_{y} .
$$

What can Deep Neural Networks do?

Parametric Map:

$$
\mathbb{R}^{p} \supseteq \mathcal{Y} \ni y \mapsto \mathbf{u}_{y}^{\mathrm{h}} \in \mathbb{R}^{D} \quad \text { such that } \quad b_{y}\left(u_{y}^{h}, v\right)=f_{y}(v) \text { for all } v .
$$

Can a neural network approximate the parametric map?

What can Deep Neural Networks do?

Parametric Map:

$$
\mathbb{R}^{p} \supseteq \mathcal{Y} \ni y \mapsto \mathbf{u}_{y}^{\mathrm{h}} \in \mathbb{R}^{D} \quad \text { such that } \quad b_{y}\left(u_{y}^{h}, v\right)=f_{y}(v) \text { for all } v .
$$

Can a neural network approximate the parametric map?

Advantages:

$>$ After training, extremely rapid computation of the map.

- Flexible, universal approach.

Questions: Let $\epsilon>0$.
(1) Does there exist a neural network Φ such that

$$
\left\|\Phi(y)-\mathbf{u}_{y}^{\mathrm{h}}\right\| \leq \epsilon \quad \text { for all } y \in \mathcal{Y} ?
$$

(2) How does the complexity of Φ depend on p and D ?
(3) How do neural networks perform numerically on this task?

Theoretical Results

Theorem (Kutyniok, Petersen, Raslan, Schneider; 2021):

- There exists a neural network Φ which approximates the parametric map:

$$
\left\|\Phi(y)-\mathbf{u}_{y}^{\mathrm{h}}\right\| \leq \epsilon \quad \text { for all } y \in \mathcal{Y}
$$

- The dependence of $C(\Phi)$ on p and D can be (polynomially) controlled.

Theoretical Results

Theorem (Kutyniok, Petersen, Raslan, Schneider; 2021):

- There exists a neural network Φ which approximates the parametric map:

$$
\left\|\Phi(y)-\mathbf{u}_{y}^{\mathrm{h}}\right\| \leq \epsilon \quad \text { for all } y \in \mathcal{Y} .
$$

- The dependence of $C(\Phi)$ on p and D can be (polynomially) controlled.

Proof:

- Consider the reduced basis method.
- Approximate the solution derived now by a neural network.
- This requires approximating multiplication and inversion of matrices.
- Monitor the complexity of this network.

Theoretical Results

Theorem (Kutyniok, Petersen, Raslan, Schneider; 2021):

- There exists a neural network Φ which approximates the parametric map:

$$
\left\|\Phi(y)-\mathbf{u}_{y}^{\mathrm{h}}\right\| \leq \epsilon \quad \text { for all } y \in \mathcal{Y} .
$$

- The dependence of $C(\Phi)$ on p and D can be (polynomially) controlled.

Proof:

- Consider the reduced basis method.
- Approximate the solution derived now by a neural network.
- This requires approximating multiplication and inversion of matrices.
- Monitor the complexity of this network.

Do neural networks also beat the curse when trained?

Test Set-Up for Numerical Experiments

Parametric Diffusion Equation:

We will consider the following parametric diffusion equation:

$$
-\nabla \cdot\left(a_{y}(\mathbf{x}) \cdot \nabla u_{y}(\mathbf{x})\right)=f(\mathbf{x}), \quad \text { on } \Omega=(0,1)^{2},\left.\quad u_{y}\right|_{\partial \Omega}=0,
$$

where $f \in L^{2}(\Omega)$ and $a_{y} \in L^{\infty}(\Omega)$ is a diffusion coefficient depending on a parameter $y \in \mathcal{Y}$.

Parametric Map:

We learn a discretization of the map $\mathbb{R}^{p} \supset \mathcal{Y} \ni y \mapsto u_{y}$, where $p \in \mathbb{N}$, for various choices of parametrizations

$$
\mathbb{R}^{p} \supset \mathcal{Y} \ni y \mapsto a_{y} .
$$

What We Vary...

- Type of parametrization
- Dimension of parameter space
- Complexity of hyper-parameters

Parametric Diffusion Equation

Parametric Diffusion Equation:

$$
-\nabla \cdot\left(a(\mathbf{x}) \cdot \nabla u_{a}(\mathbf{x})\right)=f(\mathbf{x}), \quad \text { on } \Omega=(0,1)^{2},\left.\quad u\right|_{\partial \Omega}=0
$$

where

$$
a \in \mathcal{A}=\left\{a_{y}: y \in \mathcal{Y}\right\} \subset L^{\infty}(\Omega) \quad \text { and } \quad f(x)=20+10 x_{1}-5 x_{2}
$$

Affine Parametrization: For fixed functions $\left(a_{i}\right)_{i=0}^{p} \subset L^{\infty}(\Omega)$,

$$
\mathcal{A}=\left\{a_{y}=a_{0}+\sum_{i=1}^{p} y_{i} a_{i}: y=\left(y_{i}\right)_{i=1}^{p} \in \mathcal{Y}\right\}
$$

- Trigonometric polynomials
- Chessboard partition
- Cookies with fixed radii

Non-Affine Parametrization:

- Cookies with variable radii
$>$ Clipped polynomials

Further Set-Up

Finite Element Space:

- $\Omega=[0,1]^{2}$ with 101×101 equidistant grid points

Fixed Neural Network:

$\Rightarrow(p, 300, \ldots, 300,10201)$ with $L=11$ layers

- Activation function: 0.2-LReLU.

Fixed Training Procedure:

- Training set: 20000 i.i.d. parameter samples
- Neural network: Initialized according to a normal distribution with mean 0 and standard deviation 0.1
- Loss function: Relative error on the finite-element discretization of \mathcal{H}
- Optimization: Batch gradient descent

Dimension:

- Various dimensions of the parameter set up to 91.

Numerical Experiments, I

Trigonometric Polynomials:

$$
\mathcal{A}^{\operatorname{tp}}(p, \sigma):=\left\{\mu+\sum_{i=1}^{p} y_{i} \cdot i^{\sigma} \cdot\left(1+a_{i}\right): y \in \mathcal{Y}=[0,1]^{p}\right\},
$$

for some fixed shift $\mu>0$, scaling coefficient $\sigma \in \mathbb{R}$, and

$$
a_{i}(\mathbf{x})=\sin \left(\left\lfloor\frac{i+2}{2}\right\rfloor \pi x_{1}\right) \sin \left(\left\lceil\frac{i+2}{2}\right\rceil \pi x_{2}\right), \quad \text { for } i=1, \ldots, p .
$$

Numerical Results:

Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion

Numerical Experiments, II

Chessboard Partition: Let $p=s^{2}$ for some $s \in \mathbb{N}$. Then

$$
\mathcal{A}^{\mathrm{cb}}(p, \mu):=\left\{\mu+\sum_{i=1}^{p} y_{i} \mathcal{X}_{\Omega_{i}}: y \in \mathcal{Y}=[0,1]^{p}\right\}
$$

where $\left(\Omega_{i}\right)_{i=1}^{p}$ forms a $s \times s$ chessboard partition of $(0,1)^{2}$ and $\mu>0$ is a fixed shift.

Numerical Results:

$$
p=25
$$

Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion
Equation by Deep Neural Networks. J. Sci. Comput., to appear.

Numerical Experiments, III

Cookies with Variable Radii: For $s \in \mathbb{N}$ and every $i=1, \ldots, s$, we are given disks $\Omega_{i, y_{i+s^{2}}}$ with centers $((2 k+1) /(2 s),(2 \ell-1) /(2 s))$, where $i=k s+\ell$ for uniquely determined $k \in\{0, \ldots s-1\}$ and $\ell \in\{1, \ldots, s\}$ and radius $y_{i+s^{2}} /(2 s)$:

$$
\mathcal{A}^{\mathrm{cvr}}(p, \mu):=\left\{\mu+\sum_{i=1}^{p} y_{i} \mathcal{X}_{\Omega_{i, y_{i}+s^{2}}}: y \in \mathcal{Y}=[0,1]^{p} \times[0.5,0.9]^{p}\right\} .
$$

Numerical Results:

$$
p=50 \text { and } \mu=10^{-4}
$$

Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion

Interpretation

Hypotheses and Results:

- The performance does not suffer from the curse of dimensionality.
- True, we never observed an exponential scaling.

Interpretation

Hypotheses and Results:

- The performance does not suffer from the curse of dimensionality.
- True, we never observed an exponential scaling.
- The performance is very sensitive to parametrization.
- True, there are strong differences in the performance.
- More complex parametrized sets yield higher errors, whereas simpler sets or spaces with intuitively lower intrinsic dimensionality yield smaller errors.
\leadsto The approximation theoretical intrinsic dimension of the parametric problem is a main factor in determining the hardness!

Interpretation

Hypotheses and Results:

- The performance does not suffer from the curse of dimensionality.
- True, we never observed an exponential scaling.
- The performance is very sensitive to parametrization.
- True, there are strong differences in the performance.
- More complex parametrized sets yield higher errors, whereas simpler sets or spaces with intuitively lower intrinsic dimensionality yield smaller errors.
\sim The approximation theoretical intrinsic dimension of the parametric problem is a main factor in determining the hardness!
- Learning is efficient also for non-affinely parametrized problems.
- True, there is no fundamental difference of the performance for non-affinely parametrized problems.

Some Final Thoughts...

Conclusions

Artificial Intelligence:

- Impressive performance in real-world applications!
$>$ A theoretical foundation of is largely missing!

Mathematics for Deep Learning:

- Expressivity: Optimal architectures?
- Learning: Controllable, efficient algorithms?
- Generalization: Performance on test data sets?
- Explainability: Explaining network decisions?

Deep Learning for Mathematical/Physical Problem Settings:

- Significantly better solvers of inverse problems.

- Beating the curse of dimensionality for partial differential equations.

THANK YOU!

References available at:

www. ai.math.lmu.de/kutyniok
Survey Paper (arXiv:2105.04026):
Berner, Grohs, Kutyniok, Petersen, The Modern Mathematics of Deep Learning.
Check related information on Twitter at:
@GittaKutyniok
Upcoming Book:

- P. Grohs and G. Kutyniok, eds.

Mathematical Aspects of Deep Learning Cambridge University Press, 2022.

