Lecture 1: Theoretical Foundations of Deep Learning

Gitta Kutyniok

(Ludwig-Maximilians-Universität München and University of Tromsø)

Arnold Sommerfeld School "Physics meets Artificial Intelligence" LMU Munich, September 12 – 16, 2022

The Dawn of Artificial Intelligence in Public Life

Spectacular Success in Science

NEWS · 30 NOVEMBER 2020

'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures

Google's deep-learning program for determining the 3D shapes of proteins stands to transform biology, say scientists. Nature 588, 203-204 (2020)

STRUCTURE SOLVER

DeepMind's AlphaFold 2 algorithm significantly outperformed other teams at the CASP14 proteinfolding contest — and its previous version's performance at the last CASP.

Impact on Mathematical/Physical Problem Settings

Some Examples:

- Inverse Probleme/Imaging Science (2012–)
 - \rightsquigarrow Denoising
 - \rightsquigarrow Edge Detection
 - \rightsquigarrow Inpainting
 - \rightsquigarrow Classification
 - \rightsquigarrow Superresolution
 - \rightsquigarrow Limited-Angle Computed Tomography

 $\sim \dots$

Impact on Mathematical/Physical Problem Settings

Some Examples:

- Inverse Probleme/Imaging Science (2012–)
 - \rightsquigarrow Denoising
 - \rightsquigarrow Edge Detection
 - \rightsquigarrow Inpainting
 - \rightsquigarrow Classification
 - \rightsquigarrow Superresolution
 - → Limited-Angle Computed Tomography

 $\sim \dots$

- Numerical Analysis of Partial Differential Equations (2017–) ~ Black-Scholes PDE
 - → Allen-Cahn PDE
 - → Parametric PDEs
 - $\sim \dots$

Impact on Mathematical/Physical Problem Settings

Some Examples:

- Inverse Probleme/Imaging Science (2012–)
 - \rightsquigarrow Denoising
 - \rightsquigarrow Edge Detection
 - \rightsquigarrow Inpainting
 - \rightsquigarrow Classification
 - \rightsquigarrow Superresolution
 - → Limited-Angle Computed Tomography

 $\sim \dots$

- Numerical Analysis of Partial Differential Equations (2017–) ~ Black-Scholes PDE
 - → Allen-Cahn PDE
 - → Parametric PDEs
 - $\sim \dots$
- Modelling (2018–) ~ Learning physical laws from data

Artificial Intelligence = Alchemy?

Al researchers allege that machine learning is alchemy

By Matthew Hutson May, 3, 2018, 11:15 AM

Ali Rahimi, a researcher in artificial intelligence (AI) at Google in San Francisco, California, took a swipe at his field last December-and received a 40-second ovation for it. Speaking at an AI conference, Rahimi charged that machine learning algorithms, in which computers learn through trial and error, have become a form of "alchemy." Researchers, he said, do not know why some algorithms work and others don't, nor do they have rigorous criteria for choosing one AI architecture over another. Now, in a paper presented on 30 April at the International Conference on Learning Representations in Vancouver, Canada, Rahimi and his collaborators document examples of what they see as the alchemy problem and offer prescriptions for bolstering Al's rigor.

Problem with Reliability

Computers can be made to see a sea turtle as a gun or hear a concerto as someone's voice, which is raising concerns about using artificial intelligence in the real world.

MACHINE MINDS | ARTIFICIAL INTELLIGENCE

►

► ...

Two Key Challenges:

Mathematics for Artificial Intelligence!

- Can we derive a deep theoretical understanding of deep learning?
- How can we make deep learning more robust?

Artificial Intelligence for Mathematical/Physical Problem Settings!

- How can we use deep learning to improve imaging science?
- Can we develop superior PDE solvers via deep learning?

Delving Deeper into Artificial Intelligence...

Key Task of McCulloch and Pitts (1943):

- Develop an algorithmic approach to learning.
- Mimicking the functionality of the human brain.

Goal: Artificial Intelligence!

Definition: An *artificial neuron* with *weights* $w_1, ..., w_n \in \mathbb{R}$, *bias* $b \in \mathbb{R}$ and *activation function* $\varrho : \mathbb{R} \to \mathbb{R}$ is defined as the function $f : \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x_1,...,x_n) = \varrho\left(\sum_{i=1}^n x_i w_i - b\right) = \varrho(\langle x,w \rangle - b),$$

where $w = (w_1, ..., w_n)$ and $x = (x_1, ..., x_n)$.

Definition: An *artificial neuron* with *weights* $w_1, ..., w_n \in \mathbb{R}$, *bias* $b \in \mathbb{R}$ and *activation function* $\varrho : \mathbb{R} \to \mathbb{R}$ is defined as the function $f : \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x_1,...,x_n) = \varrho\left(\sum_{i=1}^n x_i w_i - b\right) = \varrho(\langle x,w \rangle - b),$$

where $w = (w_1, ..., w_n)$ and $x = (x_1, ..., x_n)$.

Examples of Activation Functions:

- Heaviside function $\varrho(x) = \begin{cases} 1, & x > 0, \\ 0, & x \le 0. \end{cases}$
- Sigmoid function $\varrho(x) = \frac{1}{1+e^{-x}}$.
- Rectifiable Linear Unit (ReLU) $\varrho(x) = \max\{0, x\}$.

Remark: Concatenating artificial neurons leads to *compositions of affine linear maps and activation functions*.

Example: The following part of a neural network is given by

$$\Phi: \mathbb{R}^3 \to \mathbb{R}^2, \quad \Phi(x) = W^{(2)} \varrho(W^{(1)}x + b^{(1)}) + b^{(2)}.$$

Definition of a Deep Neural Network

Definition:

Assume the following notions:

- ▶ $d \in \mathbb{N}$: Dimension of input layer.
- L: Number of layers.

▶ $\rho : \mathbb{R} \to \mathbb{R}$: (Non-linear) function called *activation function*. ▶ $T_{\ell} : \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}, \ \ell = 1, \dots, L$, where $T_{\ell}x = W^{(\ell)}x + b^{(\ell)}$ Then $\Phi : \mathbb{R}^d \to \mathbb{R}^{N_L}$ given by

$$\Phi(x) = T_L \varrho(T_{L-1} \varrho(\dots \varrho(T_1(x)))), \quad x \in \mathbb{R}^d,$$

is called (deep) neural network (DNN).

Second Appearance of Neural Networks

- Key Observations by Y. LeCun et al. (around 2000):
 - Drastic improvement of computing power.
 ~ Networks with hundreds of layers can be trained.
 ~ Deep Neural Networks!
 - Age of Data starts.

~ Vast amounts of training data is available.

Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):

Drastic improvement of computing power.
 ~ Networks with hundreds of layers can be trained.
 ~ Deep Neural Networks!

Age of Data starts.

~ Vast amounts of training data is available.

Surprising Phenomenon:

(Source: Belkin, Hsu, Ma, Mandal; 2019)

Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):

- Drastic improvement of computing power.
 ~ Networks with hundreds of layers can be trained.
 ~ Deep Neural Networks!
- Age of Data starts.

~ Vast amounts of training data is available.

Surprising Phenomenon:

(Source: Belkin, Hsu, Ma, Mandal; 2019)

(Source: Berner, Grohs, Kutyniok, Petersen; 2

High-Level Set Up:

Samples $(x_i, f(x_i))_{i=1}^m$ of a function such as $f : \mathcal{M} \to \{1, 2, \dots, K\}$.

 \rightsquigarrow Training- and test data set.

High-Level Set Up:

Samples (x_i, f(x_i))^m_{i=1} of a function such as f : M → {1, 2, ..., K}.
 → Training- and test data set.

Select an architecture of a deep neural network, i.e., a choice of *d*, *L*, $(N_{\ell})_{\ell=1}^{L}$, and ϱ .

Sometimes selected entries of the matrices $(W^{(\ell)})_{\ell=1}^{L}$, *i.e., weights, are set to zero at this point.*

High-Level Set Up:

Samples (x_i, f(x_i))^m_{i=1} of a function such as f : M → {1, 2, ..., K}.
 → Training- and test data set.

Select an architecture of a deep neural network, i.e., a choice of *d*, *L*, (*N*_ℓ)^L_{ℓ=1}, and *ρ*.

Sometimes selected entries of the matrices $(W^{(\ell)})_{\ell=1}^{L}$, *i.e., weights, are set to zero at this point.*

Learn the affine-linear functions $(T_{\ell})_{\ell=1}^{L} = (W^{(\ell)} \cdot + b^{(\ell)})_{\ell=1}^{L}$ by $\min \sum_{i=1}^{m} \mathcal{L}(\Phi_{(W^{(\ell)}, \ell^{(\ell)})}(x_i), f(x_i)) + \lambda \mathcal{R}((W^{(\ell)}, b^{(\ell)})_{\ell})$

 $\min_{(\mathcal{W}^{(\ell)},b^{(\ell)})_{\ell}}\sum_{i=1}^{\ell}\mathcal{L}(\Phi_{(\mathcal{W}^{(\ell)},b^{(\ell)})_{\ell}}(x_i),f(x_i))+\lambda\mathcal{R}((\mathcal{W}^{(\ell)},b^{(\ell)})_{\ell})$

yielding the network $\Phi_{(W^{(\ell)}, b^{(\ell)})_\ell} : \mathbb{R}^d \to \mathbb{R}^{N_L}$,

$$\Phi_{(W^{(\ell)},b^{(\ell)})_{\ell}}(x) = T_L \varrho(T_{L-1}\varrho(\ldots \varrho(T_1(x))).$$

This is often done by stochastic gradient descent.

High-Level Set Up:

Samples (x_i, f(x_i))^m_{i=1} of a function such as f : M → {1, 2, ..., K}.
 → Training- and test data set.

Select an architecture of a deep neural network, i.e., a choice of *d*, *L*, (*N*ℓ)^Lℓ=1, and *Q*.

Sometimes selected entries of the matrices $(W^{(\ell)})_{\ell=1}^{L}$, *i.e., weights, are set to zero at this point.*

Learn the affine-linear functions $(T_{\ell})_{\ell=1}^{L} = (W^{(\ell)} \cdot + b^{(\ell)})_{\ell=1}^{L}$ by $\min \sum_{i=1}^{m} f_{\ell}(\Phi_{(W^{(\ell)}, \ell^{(\ell)})}(x_{i}), f(x_{i})) + \lambda \mathcal{R}((W^{(\ell)}, b^{(\ell)})_{\ell})$

$$\min_{(W^{(\ell)}, b^{(\ell)})_{\ell}} \sum_{i=1}^{\mathcal{L}} \mathcal{L}(\Phi_{(W^{(\ell)}, b^{(\ell)})_{\ell}}(x_i), f(x_i)) + \lambda \mathcal{R}((W^{(\ell)}, b^{(\ell)})_{\ell})$$

yielding the network $\Phi_{(W^{(\ell)}, b^{(\ell)})_{\ell}} : \mathbb{R}^d \to \mathbb{R}^{N_L}$,

$$\Phi_{(W^{(\ell)},b^{(\ell)})_{\ell}}(x) = T_L \varrho(T_{L-1}\varrho(\ldots \varrho(T_1(x))).$$

This is often done by stochastic gradient descent.

Goal: $\Phi_{(W^{(\ell)}, b^{(\ell)})_{\ell}}(x_i) \approx f(x_i)$ for the test data!

Expressivity:

- Which aspects of a neural network architecture affect the performance of deep learning?
- \rightsquigarrow Applied Harmonic Analysis, Approximation Theory, ...

Expressivity:

- Which aspects of a neural network architecture affect the performance of deep learning?
- \rightsquigarrow Applied Harmonic Analysis, Approximation Theory, ...

Learning:

- Why does stochastic gradient descent converge to good local minima despite the non-convexity of the problem?
- \sim Algebraic/Differential Geometry, Optimal Control, Optimization, ...

Expressivity:

- Which aspects of a neural network architecture affect the performance of deep learning?
- \rightsquigarrow Applied Harmonic Analysis, Approximation Theory, ...

Learning:

Why does stochastic gradient descent converge to good local minima despite the non-convexity of the problem?

 \sim Algebraic/Differential Geometry, Optimal Control, Optimization, ...

Generalization:

Can we derive overall success guarantees (on the test data set)? Learning Theory, Probability Theory, Statistics, ...

Expressivity:

- Which aspects of a neural network architecture affect the performance of deep learning?
- \rightsquigarrow Applied Harmonic Analysis, Approximation Theory, ...

Learning:

Why does stochastic gradient descent converge to good local minima despite the non-convexity of the problem?

 \sim Algebraic/Differential Geometry, Optimal Control, Optimization, ...

Generalization:

Can we derive overall success guarantees (on the test data set)? Learning Theory, Probability Theory, Statistics, ...

Explainability:

▶ Why did a trained deep neural network reach a certain decision?
→ Information Theory, Uncertainty Quantification, ...

Artificial Intelligence for Mathematical/Physical Problem Settings

Inverse Problems:

- How do we optimally combine deep learning with model-based approaches?
- Are neural networks capable of *replacing highly specialized numerical algorithms* in natural sciences?
- \rightsquigarrow Imaging Science, Inverse Problems, Microlocal Analysis, ...

Artificial Intelligence for Mathematical/Physical Problem Settings

Inverse Problems:

- How do we optimally combine deep learning with model-based approaches?
- Are neural networks capable of *replacing highly specialized numerical algorithms* in natural sciences?
- \rightsquigarrow Imaging Science, Inverse Problems, Microlocal Analysis, ...

Partial Differential Equations:

- Why do neural networks perform well in very high-dimensional environments?
- Are neural networks capable of *replacing highly specialized numerical algorithms* in natural sciences?
- → Numerical Mathematics, Partial Differential Equations, ...

Are Deep Neural Networks at Least as Good as All Previous Mathematical Methods?

Expressivity

Are Deep Neural Networks at Least as Good as All Previous Mathematical Methods?

Expressivity

Are Deep Neural Networks Really Better Than Classical Methods? Solving...

- Inverse Problems: Optimally combining deep learning with classical methods!
- …Partial Differential Equations: Breaking the curse of dimensionality!

Are Deep Neural Networks at Least as Good as All Previous Mathematical Methods?

Expressivity

Are Deep Neural Networks Really Better Than Classical Methods? Solving...

- Inverse Problems: Optimally combining deep learning with classical methods!
- …Partial Differential Equations: Breaking the curse of dimensionality!
- Is Artificial Intelligence Reliable?
 - ► Generalization
 - Explainability
 - Limitations

Are Deep Neural Networks at Least as Good as All Previous Mathematical Methods?

One major ingredient of mathematical methods is typically a *suitable representation/approximation* of the function/data:

Deep neural networks are universal!

Some Key Questions in Expressivity:

- What is the expressive power of a given architecture?
- ▶ What effect has the *depth* of a neural network in this respect?
- What is the *complexity* of the approximating neural network?
- What are suitable function spaces to consider?

Revisiting Approximation Theory

The World is Compressible!

Wavelet Transform (JPEG2000): $f \mapsto (\langle f, \psi_{i,m} \rangle)_{i,m}$.

Definition: For a wavelet $\psi \in L^2(\mathbb{R}^2)$, a *wavelet system* is defined by

 $\{\psi_{j,m}: j \in \mathbb{Z}, m \in \mathbb{Z}^2\}, \text{ where } \psi_{j,m}(x) := 2^j \psi(2^j x - m).$

Modeling Multivariate Data/Functions

Key Observation:

Directional structures are often crucial!

Modeling Multivariate Data/Functions

Key Observation:

Directional structures are often crucial!

Problem with Wavelets:

Shearlets (Kutyniok, Labate; 2006):

$$egin{array}{lll} {\mathcal A}_j := \left(egin{array}{cc} 2^j & 0 \ 0 & 2^{j/2} \end{array}
ight), \qquad {\mathcal S}_k := \left(egin{array}{cc} 1 & k \ 0 & 1 \end{array}
ight), \quad j,k \in {\mathbb Z}. \end{array}$$

$$\psi_{j,k,m} := 2^{\frac{3j}{4}} \psi(S_k A_j \cdot -m).$$

Shearlets (Kutyniok, Labate; 2006):

$$egin{array}{lll} {\mathcal A}_j := \left(egin{array}{cc} 2^j & 0 \ 0 & 2^{j/2} \end{array}
ight), \qquad {\mathcal S}_k := \left(egin{array}{cc} 1 & k \ 0 & 1 \end{array}
ight), \quad j,k \in {\mathbb Z}. \end{array}$$

$$\psi_{j,k,m} := 2^{\frac{3j}{4}} \psi(S_k A_j \cdot - m).$$

Shearlets (Kutyniok, Labate; 2006):

$$A_j := \left(egin{array}{cc} 2^j & 0 \ 0 & 2^{j/2} \end{array}
ight), \qquad S_k := \left(egin{array}{cc} 1 & k \ 0 & 1 \end{array}
ight), \quad j,k \in \mathbb{Z}.$$

$$\psi_{j,k,m} := 2^{\frac{3j}{4}} \psi(S_k A_j \cdot -m).$$

Shearlets (Kutyniok, Labate; 2006):

$$A_j := \left(egin{array}{cc} 2^j & 0 \ 0 & 2^{j/2} \end{array}
ight), \qquad S_k := \left(egin{array}{cc} 1 & k \ 0 & 1 \end{array}
ight), \quad j,k \in \mathbb{Z}.$$

$$\psi_{j,k,m} := 2^{\frac{3j}{4}} \psi(\mathbf{S}_k A_j \cdot -m).$$

Shearlets (Kutyniok, Labate; 2006):

$$A_j := \left(egin{array}{cc} 2^j & 0 \ 0 & 2^{j/2} \end{array}
ight), \qquad S_k := \left(egin{array}{cc} 1 & k \ 0 & 1 \end{array}
ight), \quad j,k \in \mathbb{Z}.$$

$$\psi_{j,k,m} := 2^{\frac{3j}{4}} \psi(S_k A_j \cdot -m).$$

Shearlets are Optimal

Model of Images (Donoho; 2001):

"*Cartoon-functions* are functions governed by a discontinuity curve."

Theorem (Kutyniok, Lim; 2011): "Shearlets fulfill the *optimal compression rate* for cartoon-functions."

Shearlets are Optimal

Model of Images (Donoho; 2001):

"*Cartoon-functions* are functions governed by a discontinuity curve."

Theorem (Kutyniok, Lim; 2011): "Shearlets fulfill the *optimal compression rate* for cartoon-functions."

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):

- Matlab (Kutyniok, Lim, Reisenhofer; 2013)
- ▶ Julia (Loarca; 2017)
- Python (Look; 2018)
- ► Tensorflow (Loarca; 2019)

Welcome to shearlab.org

Security is a MUTAB Many designed for processing time and interdimensional data with a costan close of boot functions saved classifies that shares (costance are proclassing with dispert to represent associating features cause) and new costan is mutabilities and data. The insuling operations has prove web-stand for image processing tasks such as upporting, decising or image separations on this vehicles we provide the full MUTAR code, a finanework for examination size, as well as personal information.

imiliar to wandet systems, sheafet systems are constructed by modifying penetar functions. For wavelet systems, these functions

Goal: Given $C \subseteq L^2(\mathbb{R}^d)$ and $(\varphi_i)_{i \in I} \subseteq L^2(\mathbb{R}^d)$. Measure the suitability of $(\varphi_i)_{i \in I}$ for uniformly approximating functions from C.

Definition: The *error of best N-term approximation* of some $f \in C$ is given by

$$||f - f_N||_2 := \inf_{I_N \subset I, \#I_N = N, (c_i)_{i \in I_N}} ||f - \sum_{i \in I_N} c_i \varphi_i||_2.$$

The largest $\gamma > 0$ such that

$$\sup_{f\in\mathcal{C}}\|f-f_N\|_2=O(N^{-\gamma}) \quad \text{ as } N\to\infty$$

determines the optimal (sparse) approximation rate of C by $(\varphi_i)_{i \in I}$.

Goal: Given $C \subseteq L^2(\mathbb{R}^d)$ and $(\varphi_i)_{i \in I} \subseteq L^2(\mathbb{R}^d)$. Measure the suitability of $(\varphi_i)_{i \in I}$ for uniformly approximating functions from C.

Definition: The *error of best N-term approximation* of some $f \in C$ is given by

$$||f - f_N||_2 := \inf_{I_N \subset I, \#I_N = N, (c_i)_{i \in I_N}} ||f - \sum_{i \in I_N} c_i \varphi_i||_2.$$

The largest $\gamma > 0$ such that

$$\sup_{f\in\mathcal{C}}\|f-f_N\|_2=O(N^{-\gamma}) \quad \text{ as } N\to\infty$$

determines the *optimal (sparse) approximation rate* of C by $(\varphi_i)_{i \in I}$.

Approximation accuracy ↔ Complexity of approximating system in terms of sparsity ____

Universality of Deep Neural Networks

Remark: Assume ρ is a polynomial of degree q. Then $\rho(Wx + b)$ is also a polynomial of degree q, hence Φ is also a polynomial of degree $\leq L \cdot q$. Hence in this case $C(\mathbb{R}^d)$ cannot be well approximated.

Remark: Assume ρ is a polynomial of degree q. Then $\rho(Wx + b)$ is also a polynomial of degree q, hence Φ is also a polynomial of degree $\leq L \cdot q$. Hence in this case $C(\mathbb{R}^d)$ cannot be well approximated.

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991): Let $K \subset \mathbb{R}^d$ compact, $f : K \to \mathbb{R}$ continuous, $\varrho : \mathbb{R} \to \mathbb{R}$ continuous and not a polynomial. Then, for each $\epsilon > 0$, there exist $N \in \mathbb{N}$, $a_k, b_k \in \mathbb{R}, w_k \in \mathbb{R}^d$ with

$$\|f-\sum_{k=1}^N a_k \varrho(\langle w_k,\cdot\rangle-b_k)\|_\infty\leq\epsilon.$$

Every continuous function on a compact set can be arbitrarily well approximated with a neural network with one single hidden layer.

For d ≥ 1, *ρ* continuous, *ρ* : ℝ → ℝ TFAE: (i) span{*ρ*(⟨*w*, *x*⟩ − *b*) : *w* ∈ ℝ^d, *b* ∈ ℝ} is dense C(K, ℝ). (ii) *ρ* is not a polynomial.

Now: (ii) \Rightarrow (i) for d = 1 and a smooth activation function ρ .

- ▶ Now: (ii) \Rightarrow (i) for d = 1 and a smooth activation function ρ .
- Since ϱ is not a polynomial, there exists one $x_0 \in \mathbb{R}$ with

$$\varrho^{(k)}(-x_0) \neq 0$$
 for all k .

- ▶ Now: (ii) \Rightarrow (i) for d = 1 and a smooth activation function ρ .
- ▶ Since ϱ is not a polynomial, there exists one $x_0 \in \mathbb{R}$ with

$$\varrho^{(k)}(-x_0) \neq 0$$
 for all k .

Constant functions can be arbitrarily well approximated:

$$arrho(hx-x_0)
ightarrowarrho(-x_0)$$
 as $h
ightarrow 0.$

- ▶ Now: (ii) \Rightarrow (i) for d = 1 and a smooth activation function ρ .
- Since ϱ is not a polynomial, there exists one $x_0 \in \mathbb{R}$ with

$$\varrho^{(k)}(-x_0) \neq 0$$
 for all k .

Constant functions can be arbitrarily well approximated:

$$arrho(hx-x_0)
ightarrowarrho(-x_0)$$
 as $h
ightarrow 0.$

▶ Linear functions can be arbitrarily well approximated:

$$\underbrace{\frac{\varrho((\lambda+h)x-x_0)-\varrho(x-x_0)}{h}}_{\rightarrow x\varrho'(\lambda x-x_0) \text{ for } h\rightarrow 0} \rightarrow x \cdot \varrho'(-x_0), \quad \text{ as } h, \lambda \rightarrow 0.$$

- ▶ Now: (ii) \Rightarrow (i) for d = 1 and a smooth activation function ρ .
- ▶ Since ϱ is not a polynomial, there exists one $x_0 \in \mathbb{R}$ with

$$\varrho^{(k)}(-x_0) \neq 0$$
 for all k .

Constant functions can be arbitrarily well approximated:

$$arrho(hx-x_0)
ightarrowarrho(-x_0)$$
 as $h
ightarrow 0.$

▶ Linear functions can be arbitrarily well approximated:

$$\underbrace{\frac{\varrho((\lambda+h)x-x_0)-\varrho(x-x_0)}{h}}_{\rightarrow x\varrho'(\lambda x-x_0) \text{ for } h\rightarrow 0} \rightarrow x \cdot \varrho'(-x_0), \quad \text{ as } h, \lambda \rightarrow 0.$$

 \sim Any polynomial can be well approximated, then use Stone-Weierstraß \sim Finally, extend to d arbitrary.

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991): Let $K \subset \mathbb{R}^d$ compact, $f : K \to \mathbb{R}$ continuous, $\varrho : \mathbb{R} \to \mathbb{R}$ continuous and not a polynomial. Then, for each $\epsilon > 0$, there exist $N \in \mathbb{N}$, $a_k, b_k \in \mathbb{R}, w_k \in \mathbb{R}^d$ with

$$\|f-\sum_{k=1}^N a_k \varrho(\langle w_k,\cdot\rangle-b_k)\|_\infty\leq\epsilon.$$

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991): Let $K \subset \mathbb{R}^d$ compact, $f : K \to \mathbb{R}$ continuous, $\varrho : \mathbb{R} \to \mathbb{R}$ continuous and not a polynomial. Then, for each $\epsilon > 0$, there exist $N \in \mathbb{N}$, $a_k, b_k \in \mathbb{R}, w_k \in \mathbb{R}^d$ with

$$\|f-\sum_{k=1}^N a_k \varrho(\langle w_k,\cdot
angle-b_k)\|_\infty\leq\epsilon.$$

Approximation accuracy \leftrightarrow Complexity of approximating network?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991): Let $K \subset \mathbb{R}^d$ compact, $f : K \to \mathbb{R}$ continuous, $\varrho : \mathbb{R} \to \mathbb{R}$ continuous and not a polynomial. Then, for each $\epsilon > 0$, there exist $N \in \mathbb{N}$, $a_k, b_k \in \mathbb{R}, w_k \in \mathbb{R}^d$ with

$$\|f-\sum_{k=1}^N a_k \varrho(\langle w_k,\cdot
angle-b_k)\|_\infty\leq\epsilon.$$

Approximation accuracy ↔ Complexity of approximating network? What about even optimality?

Complexity of a Deep Neural Network

Recall:

- L: Number of layers.
- ▶ ρ : $\mathbb{R} \to \mathbb{R}$: Activation function.

$$T_{\ell} : \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}, \ \ell = 1, \dots, L, \text{ where } T_{\ell}x = W^{(\ell)}x + b^{(\ell)}$$

Then $\Phi : \mathbb{R}^{d} \to \mathbb{R}^{N_{L}}$ given by

$$\Phi(x) = T_L \varrho(T_{L-1} \varrho(\dots \varrho(T_1(x))), \quad x \in \mathbb{R}^d,$$

is called (deep) neural network (DNN).

Complexity of a Deep Neural Network

Recall:

- L: Number of layers.
- $\rho : \mathbb{R} \to \mathbb{R}$: Activation function.

 $T_{\ell} : \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}, \ \ell = 1, \dots, L, \text{ where } T_{\ell} x = W^{(\ell)} x + b^{(\ell)}$ Then $\Phi : \mathbb{R}^d \to \mathbb{R}^{N_L}$ given by

$$\Phi(x) = T_L \varrho(T_{L-1} \varrho(\dots \varrho(T_1(x))), \quad x \in \mathbb{R}^d,$$

is called (deep) neural network (DNN).

Measure for Complexity: The complexity $C(\Phi)$ is defined by $C(\Phi) := \sum_{\ell=1}^{L} \left(\|W^{(\ell)}\|_{0} + \|b^{(\ell)}\|_{0} \right).$

Complexity of a Deep Neural Network

Recall:

- L: Number of layers.
- $\rho : \mathbb{R} \to \mathbb{R}$: Activation function.

 $T_{\ell} : \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}, \ \ell = 1, \dots, L, \text{ where } T_{\ell} x = W^{(\ell)} x + b^{(\ell)}$ Then $\Phi : \mathbb{R}^d \to \mathbb{R}^{N_L}$ given by

$$\Phi(x) = T_L \varrho(T_{L-1} \varrho(\dots \varrho(T_1(x)))), \quad x \in \mathbb{R}^d,$$

is called (deep) neural network (DNN).

Measure for Complexity: The complexity $C(\Phi)$ is defined by $C(\Phi) := \sum_{\ell=1}^{L} \left(\|W^{(\ell)}\|_{0} + \|b^{(\ell)}\|_{0} \right).$

Key Challenge:

Approximation accuracy ↔ Complexity of approximating network in terms of memory efficiency!

Classical Approach:

VC Dimension

Classical Approach:

VC Dimension

Towards Optimal Complexity:

- How well can functions be approximated by neural networks with few non-zero weights?
 - Can we derive a lower bound on the necessary number of weights?
 - Can we construct neural networks which attain this bound?
- Are neural networks as good approximators as wavelets and shearlets?

Complexity of a Function Class:

The *optimal exponent* $\gamma^*(\mathcal{C})$ measures the complexity of $\mathcal{C} \subset L^2(\mathbb{R}^d)$.

Complexity of a Function Class:

The *optimal exponent* $\gamma^*(\mathcal{C})$ measures the complexity of $\mathcal{C} \subset L^2(\mathbb{R}^d)$.

Theorem (Bölcskei, Grohs, Kutyniok, and Petersen; 2019): Let $d \in \mathbb{N}$, $\varrho : \mathbb{R} \to \mathbb{R}$, and let $\mathcal{C} \subset L^2(\mathbb{R}^d)$. Further, let

Learn : $(0,1) imes \mathcal{C} o \mathcal{NN}_{\infty,\infty,d,\varrho}$

satisfy that, for each $f \in \mathcal{C}$ and $0 < \epsilon < 1$,

$$\sup_{\substack{f \in \mathcal{C} \\ f \in \mathcal{C}}} \|f - \mathsf{Learn}(\epsilon, f)\|_2 \leq \epsilon.$$
 Then, for all $\gamma < \gamma^*(\mathcal{C})$,

$$\epsilon^{\gamma} \sup_{f \in \mathcal{C}} C(\operatorname{Learn}(\epsilon, f)) o \infty, \quad \text{ as } \epsilon o 0.$$

Conceptual bound independent on the learning algorithm!

Complexity of a Function Class:

The *optimal exponent* $\gamma^*(\mathcal{C})$ measures the complexity of $\mathcal{C} \subset L^2(\mathbb{R}^d)$.

Theorem (Bölcskei, Grohs, Kutyniok, and Petersen; 2019): Let $d \in \mathbb{N}$, $\varrho : \mathbb{R} \to \mathbb{R}$, and let $\mathcal{C} \subset L^2(\mathbb{R}^d)$. Further, let

Learn : $(0,1) imes \mathcal{C} o \mathcal{NN}_{\infty,\infty,d,\varrho}$

satisfy that, for each $f \in \mathcal{C}$ and $0 < \epsilon < 1$,

$$\sup_{f \in \mathcal{C}} \|f - \text{Learn}(\epsilon, f)\|_2 \leq \epsilon.$$

Then, for all $\gamma < \gamma^*(\mathcal{C})$,

$$\epsilon^{\gamma} \sup_{f \in \mathcal{C}} C(\text{Learn}(\epsilon, f)) \to \infty, \quad \text{as } \epsilon \to 0.$$

Conceptual bound independent on the learning algorithm! \rightsquigarrow What happens for $\gamma = \gamma^*(\mathcal{C})$?

Optimal Approximation

Key Ideas for a Specific Function Class:

- Consider a representation system with an optimal approximation rate.
- ▶ Realize each element of a representation system by a neural network.
- ▶ Mimic best *N*-term approximation by networks.

Optimal Approximation

Key Ideas for a Specific Function Class:

- Consider a representation system with an optimal approximation rate.
- Realize each element of a representation system by a neural network.
- Mimic best *N*-term approximation by networks.

Choice for our Result: Use the affine system of *shearlets*.

Theorem (Bölcskei, Grohs, Kutyniok, and Petersen; 2019): Let ρ be a suitably chosen, and let $\epsilon > 0$. For all $f \in \mathcal{E}^2(\mathbb{R}^2)$ and $N \in \mathbb{N}$, there exists a neural network Φ with 3 layers and $C(\Phi) = O(N)$ satisfying

$$\|f - \Phi\|_2 \lesssim N^{-1+\epsilon} \to 0 \text{ as } N \to \infty.$$

This is the optimal rate; hence the first bound is sharp!

Optimal Approximation

Key Ideas for a Specific Function Class:

- Consider a representation system with an optimal approximation rate.
- Realize each element of a representation system by a neural network.
- Mimic best N-term approximation by networks.

Choice for our Result: Use the affine system of *shearlets*.

Theorem (Bölcskei, Grohs, Kutyniok, and Petersen; 2019): Let ϱ be a suitably chosen, and let $\epsilon > 0$. For all $f \in \mathcal{E}^2(\mathbb{R}^2)$ and $N \in \mathbb{N}$, there exists a neural network Φ with 3 layers and $C(\Phi) = O(N)$ satisfying

$$\|f - \Phi\|_2 \lesssim N^{-1+\epsilon} \to 0$$
 as $N \to \infty$.

This is the optimal rate; hence the first bound is sharp!

Deep neural networks achieve optimal approximation properties of all affine systems combined!

Numerical Experiments (with ReLUs & Backpropagation)

Numerical Experiments (with ReLUs & Backpropagation)

Are Deep Neural Networks Really Better Than Classical Methods?

Recovering the original data from a transformed version!

Recovering the original data from a transformed version!

Some Examples from Imaging:

Inpainting.

 \rightsquigarrow Recovery from incomplete data.

- Magnetic Resonance Imaging.

 ~ Recovery from point samples of the Fourier transform.
- Feature Extraction.
 - → Separating the image into different features.

General Setting:

Given $K : X \to Y$ and $y \in Y$, compute $x \in X$ with Kx = y.

Well-Posedness Conditions (Hadamard):

- Existence: For each $y \in Y$, there exists some $x \in X$ with Kx = y.
- Uniqueness: Such an $x \in X$ is unique.
- Stability: $\lim_{n\to\infty} Kx_n \to Kx$ implies $\lim_{n\to\infty} x_n \to x$.

III-Posed Inverse Problems:

Need for regularization!

Standard Tikhonov Regularization:

Given an *ill-posed inverse problems* Kx = y, where $K : X \to Y$, an approximate solution $x^{\alpha} \in X$, $\alpha > 0$, can be determined by minimizing

$$J_{lpha}(x) := \underbrace{\|Kx - y\|^2}_{\mathsf{Data fidelity term}} + lpha \cdot \underbrace{\|x\|^2}_{\mathsf{Regularization Term}}, \quad x \in X.$$

Tikhonov Regularization

Standard Tikhonov Regularization:

Given an *ill-posed inverse problems* Kx = y, where $K : X \to Y$, an approximate solution $x^{\alpha} \in X$, $\alpha > 0$, can be determined by minimizing

$$J_{\alpha}(x) := \underbrace{\|Kx - y\|^2}_{\text{Data fidelity term}} + \alpha \cdot \underbrace{\|x\|^2}_{\text{Regularization Term}}, \quad x \in X.$$

Generalization:

$$J_{\alpha}(x) := \underbrace{\|Kx - y\|^2}_{\text{Data fidelity term}} + \alpha \cdot \underbrace{\mathcal{R}(x)}_{\text{Regularization Term}}, \quad x \in X.$$

The Regularization Term \mathcal{R}

- ensures continuous dependence on the data,
- incorporates properties of the solution.

Paradigm for Data Processing: Sparsity!

Sparse Signals:

A signal $x \in \mathbb{R}^n$ is *k*-sparse, if

 $||x||_0 = #$ non-zero coefficients $\leq k$.

 \rightsquigarrow Model Σ_k : Union of k-dimensional subspaces

Compressible Signals:

A signal $x \in \mathbb{R}^n$ is *compressible*, if the sorted coefficients have rapid (power law) decay. $|x_i|$

 \sim Model: ℓ_p ball with $p \leq 1$

Recall: Shearlets as Sparsifying System

Model of Images (Donoho; 2001):

"*Cartoon-functions* are functions governed by a discontinuity curve."

Theorem (Kutyniok, Lim; 2011): "Shearlets fulfill the *optimal compression rate* for cartoon-functions."

Recall: Shearlets as Sparsifying System

Model of Images (Donoho; 2001):

"*Cartoon-functions* are functions governed by a discontinuity curve."

Theorem (Kutyniok, Lim; 2011): "Shearlets fulfill the *optimal compression rate* for cartoon-functions."

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):

- Matlab (Kutyniok, Lim, Reisenhofer; 2013)
- ▶ Julia (Loarca; 2017)
- Python (Look; 2018)
- ► Tensorflow (Loarca; 2019)

Welcome to shearlab.org

Security is a MUMA likely decepted for previous part and interdemonant data with a costan tick of hick hardness saved statistics to dwarfs cycles are particularly will adopted to represent annexespect balance that as offered that are done costan in annohmenous data. The matting operations has prove web-studied for many processing tasks such as quantum, decising or many separations of this vehicles we provide the full MUTARE code, a finanework for examination and an period information mysterized.

imiliar to wandet systems, sheafet systems are constructed by modifying penetar functions. For wavelet systems, these functions

How to Penalize Non-Sparsity?

Intuition:

 \rightsquigarrow Use the ℓ_1 norm!

How to Penalize Non-Sparsity?

Intuition:

 \rightsquigarrow Use the ℓ_1 norm!

Sparse Regularization:

Solve an *ill-posed inverse problem* Kf = g by

$$f^{\alpha} := \underset{f}{\operatorname{argmin}} \Big[\underbrace{\|Kf - g\|^2}_{\text{Data fidelity term}} + \alpha \cdot \underbrace{\|(\langle f, \psi_{j,m} \rangle)_{j,m}\|_1}_{\text{Penalty term}} \Big].$$

Problem with Classical Approaches

(Limited Angle-) Computed Tomography

A CT scanner samples the Radon transform

 $\text{for } L(\phi,s) = \left\{ x \in \mathbb{R}^2 : x_1 \cos(\phi) + x_2 \sin(\phi) = s \right\}, \ \phi \in [-\pi/2,\pi/2), \text{ and } s \in \mathbb{R}.$

 $\mathcal{R}f(\phi,s) = \int_{L(\phi,s)} f(x) dS(x),$

(Limited Angle-) Computed Tomography

A CT scanner samples the Radon transform

for $L(\phi, s) = \left\{x \in \mathbb{R}^2 : x_1 \cos(\phi) + x_2 \sin(\phi) = s\right\}$, $\phi \in [-\pi/2, \pi/2)$, and $s \in \mathbb{R}$.

 $\mathcal{R}f(\phi,s) = \int_{L(\phi,s)} f(x) dS(x),$

Challenging inverse problem if $\mathcal{R}f(\cdot, s)$ is only sampled on $[-\phi, \phi] \subset [-\pi/2, \pi/2)$.

Applications: Dental CT, electron tomography,...

(Limited Angle-) Computed Tomography

A CT scanner samples the Radon transform

CO CO

 $\text{for } L(\phi,s) = \left\{ x \in \mathbb{R}^2 : x_1 \cos(\phi) + x_2 \sin(\phi) = s \right\}, \ \phi \in [-\pi/2,\pi/2), \text{ and } s \in \mathbb{R}.$

 $\mathcal{R}f(\phi,s) = \int_{L(\phi,s)} f(x) dS(x),$

Challenging inverse problem if $\mathcal{R}f(\cdot, s)$ is only sampled on $[-\phi, \phi] \subset [-\pi/2, \pi/2)$.

Applications: Dental CT, electron tomography,...

Model-Based Approaches Fail (60° Missing Angle):

Original Image

Filtered Backprojection

Sparse Regularization with Shearl

Deep Learning Enters the Stage

Different Forms of Hybrid Approaches:

- Supervised approaches:
 - Train a neural network end-to-end.
 - Incorporate information about the operator K into the neural network.
 - Combine neural networks with classical model-based approaches (Plug-and-play, etc.)

Different Forms of Hybrid Approaches:

Supervised approaches:

- Train a neural network end-to-end.
- Incorporate information about the operator K into the neural network.
- Combine neural networks with classical model-based approaches (Plug-and-play, etc.)

Semi-supervised approaches:

- Encode the regularization by a neural network (Adversarial regularizers, etc.)
- The learning algorithm only requires a set of labels as well as a method to assess how hard the inverse problem for this label would be.

Different Forms of Hybrid Approaches:

Supervised approaches:

- Train a neural network end-to-end.
- Incorporate information about the operator K into the neural network.
- Combine neural networks with classical model-based approaches (Plug-and-play, etc.)

Semi-supervised approaches:

- Encode the regularization by a neural network (Adversarial regularizers, etc.)
- The learning algorithm only requires a set of labels as well as a method to assess how hard the inverse problem for this label would be.
- Unsupervised approaches:
 - Parametrize the solutions as the output of a neural network (Deep image priors, etc.)

Convolutional Neural Networks (CNNs)

Schematic Illustration:

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)

Operation in each Layer:

 $\mathsf{Input} \to \mathsf{Convolution} \to \mathsf{Activation} \to \mathsf{Pooling} \to \mathsf{Output}$

CNN Architecture for Inverse Problems

- U-Net architecture (Ronneberger et al.; 2015)
- Encoder-Decoder CNN with skip-connections

How to take the best out of both worlds: Models and Data?

General Strategy:

- Employ *model-based approaches* as far as they are reliable.
- Apply *deep learning* only when it is necessary.

 $\phi = 15^{\circ}$, filtered backprojection (FBP)

 $\phi = 30^{\circ}$, filtered backprojection (FBP)

 $\phi = 45^{\circ}$, filtered backprojection (FBP)

 $\phi = 60^{\circ}$, filtered backprojection (FBP)

 $\phi = 75^{\circ}$, filtered backprojection (FBP)

 $\phi = 90^{\circ}$, filtered backprojection (FBP)

 $\phi=90^\circ\text{, filtered backprojection (FBP)}$

Illustration of Theorem [Quinto, 1993]:

visible": singularities tangent to sampled lines

"invisible": singularities not tangent to sampled lines

Shearlets can Help

Key Idea: Filling the missing angle is an inpainting problem of the wavefront set!

 $f = 1_D$ for a set $D \subseteq \mathbb{R}^2$ with smooth boundary

Shearlets can Help

Key Idea: Filling the missing angle is an inpainting problem of the wavefront set!

 $f = 1_D$ for a set $D \subseteq \mathbb{R}^2$ with smooth boundary

Theorem (Kutyniok, Labate; 2006): "Shearlets can identify the wavefront set at fine scales."

Shearlets can Help

Key Idea: Filling the missing angle is an inpainting problem of the wavefront set!

 $f = 1_D$ for a set $D \subseteq \mathbb{R}^2$ with smooth boundary

Theorem (Kutyniok, Labate; 2006): "Shearlets can identify the wavefront set at fine scales."

Shearlets can Separate the Visible and Invisible Part:

Our Approach "Learn the Invisible (Ltl)" (Bubba, Kutyniok, Lassas, März, Samek, Siltanen, Srinivan; 2019)

Step 1: Reconstruct the visible

$$f^* := \operatorname*{argmin}_{f \geq 0} \| \, \mathcal{R}_\phi \, f - g \|_2^2 + \| \, \mathsf{SH}_\psi(f) \|_{1,\mathsf{w}}$$

Access "wavefront set" via sparsity prior on shearlets:

▶ For
$$(j, k, l) \in \mathcal{I}_{inv}$$
: SH _{ψ} $(f^*)_{(j,k,l)} \approx 0$
▶ For $(j, k, l) \in \mathcal{I}_{vis}$: SH _{ψ} $(f^*)_{(j,k,l)}$ reliable and near perfect

Step 2: Learn the invisible

$$\mathcal{NN}_{\theta}: \mathsf{SH}_{\psi}(f^*)_{\mathcal{I}_{\mathrm{vis}}} \longrightarrow \mathcal{F} \left(\stackrel{!}{\approx} \mathsf{SH}_{\psi}(f_{\mathrm{gt}})_{\mathcal{I}_{\mathrm{inv}}} \right)$$

Step 3: Combine

 $f_{\tt LtI} = \mathsf{SH}_\psi^T \left(\mathsf{SH}_\psi(f^*)_{\mathcal{I}_{\tt vis}} + F \right)$

Numerical Results

Original

Filtered Backprojection

[Gu & Ye, 2017]

Sparse Regularization with Shearlets

Learn the Invisible (Ltl)

Numerical Results

Original

Filtered Backprojection

[Gu & Ye, 2017]

Sparse Regularization with Shearlets

Learn the Invisible (LtI)

Deep neural networks can outperform classical methods by far!

Deep Network Shearlet Edge Extractor (DeNSE)

(Andrade-Loarca, Kutyniok, Öktem, Petersen; 2019)

Key Steps:

 $(1) \ \mbox{Apply the shearlet transform to an image.}$

- \sim Extract the correct features.
- \rightsquigarrow Derive a good data representation.
- (2) Consider patches of shearlet coefficients. \sim *Localize to each position.*
- (3) Apply a convolutional neural network.
 → Predict the direction (180 directions) in each patch.

Network Architecture

Numerical Results

Original

Human Annotation

SEAL [Yu et al; 2018]

CoShREM [Reisenhofer et al.; 2015]

DeNSE

Theoretically Analyzing the Effectiveness of Deep Neural Networks: Solving PDEs!

Recall from Expressivity:

Deep neural networks match the performance of the best classical approximation tool in virtually every task!

Recall from Expressivity:

Deep neural networks match the performance of the best classical approximation tool in virtually every task!

Surprise from Practise of Neural Networks:

- Perform incredibly well in approximating high-dimensional functions.
- ▶ Often outperform classical, non-specialized approximation methods.

Recall from Expressivity:

Deep neural networks match the performance of the best classical approximation tool in virtually every task!

Surprise from Practise of Neural Networks:

- Perform incredibly well in approximating high-dimensional functions.
- Often outperform classical, non-specialized approximation methods.

The Curse of Dimensionality:

Every approximation method deteriorates exponentially fast with increasing dimension!

Key Problem: The Curse!

"Introduction": Bellman; 1961

Curse of Dimensionality: 10^2 evenly spaced points suffice to sample a uni interval with no more than 10^{-2} distance between points. *But* an equivalent sampling of a 10-dimensional unit hypercube with a lattice of the same spacing would require $10^{20} = (10^2)^{10}$ sample points. \sim *Exponential growth*.

Examples:

- Combinatorics
- Function approximation
- Machine learning
- Numerical integration

Some Facts about PDE Solvers:

- Precise physical models exist.
- ▶ The discretization process is very well understood.
- Often optimal solvers are available.
- A rich bouquet of highly sophisticated solvers are developed:
 - Finite-element methods
 - Wavelet-based approaches
 - ▶ ..

Some Facts about PDE Solvers:

- Precise physical models exist.
- ▶ The discretization process is very well understood.
- Often optimal solvers are available.
- A rich bouquet of highly sophisticated solvers are developed:
 - Finite-element methods
 - Wavelet-based approaches
 - ▶ ...

Why do we need deep neural networks?

Some Facts about PDE Solvers:

- Precise physical models exist.
- ▶ The discretization process is very well understood.
- Often optimal solvers are available.
- A rich bouquet of highly sophisticated solvers are developed:
 - Finite-element methods
 - Wavelet-based approaches
 - ▶ ...

Why do we need deep neural networks?

→ Deep neural networks can beat the curse of dimensionality in high dimensional problems!

Common Approach to Solve PDEs with Neural Networks: Approximate the solution *u* of a PDE

$$\mathcal{L}(u) = f$$

by a neural network $\Phi,$ i.e., determine

 $\mathcal{L}(\Phi) \approx f.$

Key Ideas:

- Sampling of points in the spatial domain
- Incorporate PDE in the loss functions

Incomplete List of Contributions:

[Lagaris, Likas, Fotiadis; 1998], [E, Yu; 2017], [Czarnecki, Osindero, Jaderberg, Swirszcz, Pascanu; 2017], [Sirignano, Spiliopoulos; 2017], [Han, Jentzen, E; 2017], [Raissi, Perdikaris, Karniadakis; 2020], [Grohs, Herrmann; 2021],

Let's Now Enter the World of Parametric PDEs

Parameter dependent families of PDEs arise in basically any branch of science and engineering.

Some Exemplary Problem Classes:

- Complex design problems
- Inverse problems
- Optimization tasks
- Uncertainty quantification

The number of parameters can be

- ▶ finite (physical properties such as domain geometry, ...)
- ▶ infinite (modeling of random stochastic diffusion field, ...)

Example of Parametric Diffusion Equation:

The following parametric diffusion equation has the form

$$-
abla \cdot (a_y(\mathbf{x}) \cdot
abla u_y(\mathbf{x})) = f(\mathbf{x}), \quad ext{ on } \Omega = (0,1)^2, \quad u_y|_{\partial\Omega} = 0,$$

where $f \in L^2(\Omega)$ and $a_y \in L^{\infty}(\Omega)$ is a diffusion coefficient depending on a parameter $y \in \mathcal{Y}$.

Parametric Map:

Consider the map $\mathbb{R}^p \supset \mathcal{Y} \ni y \mapsto u_y$, where $p \in \mathbb{N}$, for various choices of parametrizations

$$\mathbb{R}^p \supset \mathcal{Y} \ni y \mapsto a_y.$$

Example of Parametric Diffusion Equation:

The following parametric diffusion equation has the form

$$-
abla \cdot (a_y(\mathbf{x}) \cdot
abla u_y(\mathbf{x})) = f(\mathbf{x}), \quad ext{ on } \Omega = (0,1)^2, \quad u_y|_{\partial\Omega} = 0,$$

where $f \in L^2(\Omega)$ and $a_y \in L^{\infty}(\Omega)$ is a diffusion coefficient depending on a parameter $y \in \mathcal{Y}$.

Parametric Map:

Consider the map $\mathbb{R}^p \supset \mathcal{Y} \ni y \mapsto u_y$, where $p \in \mathbb{N}$, for various choices of parametrizations

$$\mathbb{R}^p \supset \mathcal{Y} \ni y \mapsto a_y.$$

General Form:

 $\mathcal{Y} \ni y \mapsto u_y \in \mathcal{H}$ such that $\mathcal{L}(u_y, y) = f_y$.

Curse of Dimensionality: Computational cost too high!

What can Deep Neural Networks do?

Parametric Map:

 $\mathbb{R}^{p} \supseteq \mathcal{Y} \ni y \ \mapsto \ \mathbf{u}_{y}^{\mathrm{h}} \in \mathbb{R}^{D} \quad \text{such that} \quad b_{y}\left(u_{y}^{h}, v\right) = f_{y}(v) \ \text{for all } v.$

Can a neural network approximate the parametric map?

Parametric Map:

 $\mathbb{R}^{p} \supseteq \mathcal{Y} \ni y \ \mapsto \ \mathbf{u}_{y}^{\mathrm{h}} \in \mathbb{R}^{D} \quad \text{such that} \quad b_{y}\left(u_{y}^{h}, v\right) = f_{y}(v) \ \text{for all } v.$

Can a neural network approximate the parametric map?

Advantages:

- After training, extremely rapid computation of the map.
- Flexible, universal approach.

Questions: Let $\epsilon > 0$.

(1) Does there exist a neural network Φ such that

$$\|\Phi(y) - \mathbf{u}_y^{\mathrm{h}}\| \le \epsilon$$
 for all $y \in \mathcal{Y}$?

(2) How does the *complexity of* Φ depend on *p* and *D*?

3) How do neural networks *perform numerically* on this task?

Theorem (Kutyniok, Petersen, Raslan, Schneider; 2021):

 \blacktriangleright There exists a neural network Φ which approximates the parametric map:

$$\|\Phi(y) - \mathbf{u}_y^{\mathrm{h}}\| \le \epsilon$$
 for all $y \in \mathcal{Y}$.

The dependence of $C(\Phi)$ on p and D can be (polynomially) controlled.

Theorem (Kutyniok, Petersen, Raslan, Schneider; 2021):

 \blacktriangleright There exists a neural network Φ which approximates the parametric map:

$$\|\Phi(y) - \mathbf{u}_{y}^{\mathrm{h}}\| \leq \epsilon$$
 for all $y \in \mathcal{Y}$.

▶ The dependence of $C(\Phi)$ on p and D can be (polynomially) controlled.

Proof:

- Consider the reduced basis method.
- Approximate the solution derived now by a neural network.
- This requires approximating multiplication and inversion of matrices.
- Monitor the complexity of this network.

Theorem (Kutyniok, Petersen, Raslan, Schneider; 2021):

 \blacktriangleright There exists a neural network Φ which approximates the parametric map:

$$\|\Phi(y) - \mathbf{u}_y^{\mathrm{h}}\| \le \epsilon$$
 for all $y \in \mathcal{Y}$.

▶ The dependence of $C(\Phi)$ on p and D can be (polynomially) controlled.

Proof:

- Consider the reduced basis method.
- Approximate the solution derived now by a neural network.
- This requires approximating multiplication and inversion of matrices.
- Monitor the complexity of this network.

Do neural networks also beat the curse when trained?

Test Set-Up for Numerical Experiments

Parametric Diffusion Equation:

We will consider the following parametric diffusion equation:

$$-
abla \cdot (a_y(\mathbf{x}) \cdot
abla u_y(\mathbf{x})) = f(\mathbf{x}), \quad \text{ on } \Omega = (0,1)^2, \quad u_y|_{\partial\Omega} = 0,$$

where $f \in L^2(\Omega)$ and $a_y \in L^{\infty}(\Omega)$ is a diffusion coefficient depending on a parameter $y \in \mathcal{Y}$.

Parametric Map:

We learn a discretization of the map $\mathbb{R}^p \supset \mathcal{Y} \ni y \mapsto u_y$, where $p \in \mathbb{N}$, for various choices of parametrizations

$$\mathbb{R}^p \supset \mathcal{Y} \ni y \mapsto a_y.$$

What We Vary...

- Type of parametrization
- Dimension of parameter space
- Complexity of hyper-parameters

Parametric Diffusion Equation

Parametric Diffusion Equation:

$$-
abla \cdot (a(\mathbf{x}) \cdot
abla u_a(\mathbf{x})) = f(\mathbf{x}), \quad \text{ on } \Omega = (0,1)^2, \quad u|_{\partial\Omega} = 0,$$

where

$$a\in \mathcal{A}=\{a_y:\ y\in \mathcal{Y}\}\subset L^\infty(\Omega) \quad ext{and} \quad f(x)=20+10x_1-5x_2.$$

Affine Parametrization: For fixed functions $(a_i)_{i=0}^p \subset L^{\infty}(\Omega)$,

$$\mathcal{A} = \left\{ a_y = a_0 + \sum_{i=1}^p y_i a_i : y = (y_i)_{i=1}^p \in \mathcal{Y} \right\}.$$

- Trigonometric polynomials
- Chessboard partition
- Cookies with fixed radii

Non-Affine Parametrization:

- Cookies with variable radii
- Clipped polynomials

Further Set-Up

Finite Element Space:

 $\blacktriangleright~\Omega=[0,1]^2$ with 101 \times 101 equidistant grid points

Fixed Neural Network:

- $(p, 300, \dots, 300, 10201)$ with L = 11 layers
- Activation function: 0.2-LReLU.

Fixed Training Procedure:

- Training set: 20000 i.i.d. parameter samples
- Neural network: Initialized according to a normal distribution with mean 0 and standard deviation 0.1
- \blacktriangleright Loss function: Relative error on the finite-element discretization of ${\cal H}$
- Optimization: Batch gradient descent

Dimension:

► Various dimensions of the parameter set up to 91.

Numerical Experiments, I

Trigonometric Polynomials:

$$\mathcal{A}^{ ext{tp}}(p,\sigma) \coloneqq \left\{ \mu + \sum_{i=1}^p y_i \cdot i^\sigma \cdot (1+\mathsf{a}_i) : \ y \in \mathcal{Y} = [0,1]^p
ight\},$$

for some fixed shift $\mu >$ 0, scaling coefficient $\sigma \in \mathbb{R},$ and

$$a_i(\mathbf{x}) = \sin\left(\left\lfloor \frac{i+2}{2}
ight
floor \pi x_1
ight) \sin\left(\left\lceil \frac{i+2}{2}
ight
ceil \pi x_2
ight), \quad \text{for } i = 1, \dots, p.$$

Numerical Results:

LUDWIG MAXIMILIANS-UNIVERSITAT MÜNCHEN

Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks. J. Sci. Comput., to appear.

Numerical Experiments, II

Chessboard Partition: Let $p = s^2$ for some $s \in \mathbb{N}$. Then

$$\mathcal{A}^{ ext{cb}}(\pmb{
ho},\mu)\coloneqq \left\{\mu+\sum_{i=1}^p y_i\mathcal{X}_{\Omega_i}:\; y\in\mathcal{Y}=\left[0,1
ight]^p
ight\},$$

where $(\Omega_i)_{i=1}^p$ forms a $s \times s$ chessboard partition of $(0,1)^2$ and $\mu > 0$ is a fixed shift.

Numerical Results:

p = 25

Numerical Experiments, III

Cookies with Variable Radii: For $s \in \mathbb{N}$ and every i = 1, ..., s, we are given disks $\Omega_{i,y_{i+s^2}}$ with centers $((2k+1)/(2s), (2\ell-1)/(2s))$, where $i = ks + \ell$ for uniquely determined $k \in \{0, ..., s-1\}$ and $\ell \in \{1, ..., s\}$ and radius $y_{i+s^2}/(2s)$:

$$\mathcal{A}^{\mathrm{cvr}}(p,\mu)\coloneqq \left\{\mu+\sum_{i=1}^p y_i\mathcal{X}_{\Omega_{i,y_{i+s^2}}}: \ y\in\mathcal{Y}=[0,1]^p imes [0.5,0.9]^p
ight\}.$$

Numerical Results:

Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks. J. Sci. Comput., to appear.

Hypotheses and Results:

- ▶ The performance does not suffer from the curse of dimensionality.
 - True, we never observed an exponential scaling.

Hypotheses and Results:

- The performance does not suffer from the curse of dimensionality.
 - True, we never observed an exponential scaling.
- The performance is very sensitive to parametrization.
 - True, there are strong differences in the performance.
 - More complex parametrized sets yield higher errors, whereas simpler sets or spaces with intuitively lower intrinsic dimensionality yield smaller errors.
 - → The approximation theoretical intrinsic dimension of the parametric problem is a main factor in determining the hardness!

Hypotheses and Results:

- The performance does not suffer from the curse of dimensionality.
 - True, we never observed an exponential scaling.
- The performance is very sensitive to parametrization.
 - True, there are strong differences in the performance.
 - More complex parametrized sets yield higher errors, whereas simpler sets or spaces with intuitively lower intrinsic dimensionality yield smaller errors.
 - → The approximation theoretical intrinsic dimension of the parametric problem is a main factor in determining the hardness!
- Learning is efficient also for non-affinely parametrized problems.
 - True, there is no fundamental difference of the performance for non-affinely parametrized problems.

Some Final Thoughts...

Conclusions

Artificial Intelligence:

- Impressive performance in real-world applications!
- A theoretical foundation of is largely missing!

Mathematics for Deep Learning:

- Expressivity: Optimal architectures?
- Learning: Controllable, efficient algorithms?
- Generalization: Performance on test data sets?
- Explainability: Explaining network decisions?

Deep Learning for Mathematical/Physical Problem Settings:

- Significantly better solvers of *inverse problems*.
- Beating the curse of dimensionality for *partial differential equations*.

THANK YOU!

References available at:

www.ai.math.lmu.de/kutyniok

Survey Paper (arXiv:2105.04026):

Berner, Grohs, Kutyniok, Petersen, The Modern Mathematics of Deep Learning.

Check related information on Twitter at:

@GittaKutyniok

Upcoming Book:

P. Grohs and G. Kutyniok, eds. Mathematical Aspects of Deep Learning Cambridge University Press, 2022.

