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The Dawn of Artificial Intelligence in Public Life

Health Care

Telecommunication/
Speech RecognitionSelf-Driving Cars

Legal Issues



Spectacular Success in Science



Impact on Mathematical/Physical Problem Settings

Some Examples:

▶ Inverse Probleme/Imaging Science (2012–)
; Denoising
; Edge Detection
; Inpainting
; Classification
; Superresolution
; Limited-Angle Computed Tomography
; ...

▶ Numerical Analysis of Partial Differential Equations (2017–)
; Black-Scholes PDE
; Allen-Cahn PDE
; Parametric PDEs
; ...

▶ Modelling (2018–)
; Learning physical laws from data
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Artificial Intelligence = Alchemy?



Problem with Reliability



Role of Theory

Two Key Challenges:

Mathematics for Artificial Intelligence!

▶ Can we derive a deep theoretical understanding of deep learning?

▶ How can we make deep learning more robust?

▶ ...

Artificial Intelligence for Mathematical/Physical Problem Settings!

▶ How can we use deep learning to improve imaging science?

▶ Can we develop superior PDE solvers via deep learning?

▶ ...



Delving Deeper into Artificial Intelligence...



First Appearance of Artificial Intelligence

Key Task of McCulloch and Pitts (1943):

▶ Develop an algorithmic approach to learning.

▶ Mimicking the functionality of the human brain.

Goal: Artificial Intelligence!



Artificial Neurons



Artificial Neurons



Artificial Neurons

Definition: An artificial neuron with weights w1, ...,wn ∈ R, bias b ∈ R
and activation function ϱ : R → R is defined as the function f : Rn → R
given by

f (x1, ..., xn) = ϱ

(
n∑

i=1

xiwi − b

)
= ϱ(⟨x ,w⟩ − b),

where w = (w1, ...,wn) and x = (x1, ..., xn).

Examples of Activation Functions:

▶ Heaviside function ϱ(x) =

{
1, x > 0,

0, x ≤ 0.

▶ Sigmoid function ϱ(x) = 1
1+e−x .

▶ Rectifiable Linear Unit (ReLU) ϱ(x) = max{0, x}.
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Affine Linear Maps and Weights

Remark: Concatenating artificial neurons leads to compositions of affine
linear maps and activation functions.

Example: The following part of a neural network is given by

Φ : R3 → R2, Φ(x) = W (2)ϱ(W (1)x + b(1)) + b(2).
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Definition of a Deep Neural Network

Definition:
Assume the following notions:

▶ d ∈ N: Dimension of input layer.

▶ L: Number of layers.

▶ ϱ : R → R: (Non-linear) function called activation function.

▶ Tℓ : RNℓ−1 → RNℓ , ℓ = 1, . . . , L, where Tℓx = W (ℓ)x + b(ℓ)

Then Φ : Rd → RNL given by

Φ(x) = TLϱ(TL−1ϱ(. . . ϱ(T1(x))), x ∈ Rd ,

is called (deep) neural network (DNN).



Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):
▶ Drastic improvement of computing power.

; Networks with hundreds of layers can be trained.
; Deep Neural Networks!

▶ Age of Data starts.
; Vast amounts of training data is available.

Surprising Phenomenon:

(Source: Berner, Grohs, Kutyniok, Petersen; 2021)

Underfitting Overfitting

(Source: Belkin, Hsu, Ma, Mandal; 2019)



Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):
▶ Drastic improvement of computing power.

; Networks with hundreds of layers can be trained.
; Deep Neural Networks!

▶ Age of Data starts.
; Vast amounts of training data is available.

Surprising Phenomenon:

(Source: Berner, Grohs, Kutyniok, Petersen; 2021)

Underfitting Overfitting

(Source: Belkin, Hsu, Ma, Mandal; 2019)



Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):
▶ Drastic improvement of computing power.

; Networks with hundreds of layers can be trained.
; Deep Neural Networks!

▶ Age of Data starts.
; Vast amounts of training data is available.

Surprising Phenomenon:

(Source: Berner, Grohs, Kutyniok, Petersen; 2021)

Underfitting Overfitting

(Source: Belkin, Hsu, Ma, Mandal; 2019)



Training of Deep Neural Networks

High-Level Set Up:

▶ Samples (xi , f (xi ))
m
i=1 of a function

such as f : M → {1, 2, . . . ,K}.
; Training- and test data set.

▶ Select an architecture of a deep neural network,
i.e., a choice of d , L, (Nℓ)

L
ℓ=1, and ϱ.

Sometimes selected entries of the matrices (W (ℓ))Lℓ=1,

i.e., weights, are set to zero at this point.

▶ Learn the affine-linear functions (Tℓ)
L
ℓ=1 = (W (ℓ) ·+b(ℓ))Lℓ=1 by

min
(W (ℓ),b(ℓ))ℓ

m∑
i=1

L(Φ(W (ℓ),b(ℓ))ℓ
(xi ), f (xi )) + λR((W (ℓ), b(ℓ))ℓ)

yielding the network Φ(W (ℓ),b(ℓ))ℓ
: Rd → RNL ,

Φ(W (ℓ),b(ℓ))ℓ
(x) = TLϱ(TL−1ϱ(. . . ϱ(T1(x))).

This is often done by stochastic gradient descent.

Goal: Φ(W (ℓ),b(ℓ))ℓ
(xi ) ≈ f (xi ) for the test data!
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Mathematics for Artificial Intelligence

▶ Expressivity:
▶ Which aspects of a neural network architecture affect the performance

of deep learning?

; Applied Harmonic Analysis, Approximation Theory, ...

▶ Learning:
▶ Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?

; Algebraic/Differential Geometry, Optimal Control, Optimization, ...

▶ Generalization:
▶ Can we derive overall success guarantees (on the test data set)?

; Learning Theory, Probability Theory, Statistics, ...

▶ Explainability:
▶ Why did a trained deep neural network reach a certain decision?

; Information Theory, Uncertainty Quantification, ...
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Artificial Intelligence for Mathematical/Physical Problem
Settings

▶ Inverse Problems:
▶ How do we optimally combine deep learning with model-based

approaches?
▶ Are neural networks capable of replacing highly specialized numerical

algorithms in natural sciences?

; Imaging Science, Inverse Problems, Microlocal Analysis, ...

▶ Partial Differential Equations:
▶ Why do neural networks perform well in very high-dimensional

environments?
▶ Are neural networks capable of replacing highly specialized numerical

algorithms in natural sciences?

; Numerical Mathematics, Partial Differential Equations, ...
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Plan for the 2 Lectures

Are Deep Neural Networks at Least as Good as All Previous
Mathematical Methods?

▶ Expressivity

Are Deep Neural Networks Really Better Than Classical Methods?
Solving...

▶ ...Inverse Problems: Optimally combining deep learning with classical
methods!

▶ ...Partial Differential Equations: Breaking the curse of dimensionality!

Is Artificial Intelligence Reliable?

▶ Generalization

▶ Explainability

▶ Limitations
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Are Deep Neural Networks at Least as Good as

All Previous Mathematical Methods?



Expressivity

One major ingredient of mathematical methods is typically a suitable
representation/approximation of the function/data:

Deep neural networks are universal!

Some Key Questions in Expressivity:

▶ What is the expressive power of a given architecture?

▶ What effect has the depth of a neural network in this respect?

▶ What is the complexity of the approximating neural network?

▶ What are suitable function spaces to consider?



Revisiting Approximation Theory



The World is Compressible!

Wavelet Transform (JPEG2000):

f 7→ (⟨f , ψj ,m⟩)j ,m.

Definition: For a wavelet ψ ∈ L2(R2), a wavelet system is defined by

{ψj,m : j ∈ Z,m ∈ Z2}, where ψj,m(x) := 2jψ(2jx −m).



Modeling Multivariate Data/Functions

Key Observation:

Directional structures are often crucial!

Problem with Wavelets:
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Shearlets

Shearlets (Kutyniok, Labate; 2006):

Aj :=

(
2j 0

0 2j/2

)
, Sk :=

(
1 k
0 1

)
, j , k ∈ Z.

Then
ψj ,k,m := 2

3j
4 ψ(SkAj · −m).
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Shearlets are Optimal

Model of Images (Donoho; 2001):
“Cartoon-functions are functions governed by
a discontinuity curve.”

Theorem (Kutyniok, Lim; 2011):
“Shearlets fulfill the optimal compression rate for cartoon-functions.”

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):

▶ Matlab (Kutyniok, Lim, Reisenhofer; 2013)

▶ Julia (Loarca; 2017)

▶ Python (Look; 2018)

▶ Tensorflow (Loarca; 2019)
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Function Approximation in a Nutshell

Goal: Given C ⊆ L2(Rd) and (φi )i∈I ⊆ L2(Rd). Measure the suitability of
(φi )i∈I for uniformly approximating functions from C.

Definition: The error of best N-term approximation of some f ∈ C is
given by

∥f − fN∥2 := inf
IN⊂I ,#IN=N,(ci )i∈IN

∥f −
∑
i∈IN

ciφi∥2.

The largest γ > 0 such that

sup
f ∈C

∥f − fN∥2 = O(N−γ) as N → ∞

determines the optimal (sparse) approximation rate of C by (φi )i∈I .

Approximation accuracy ↔ Complexity of approximating system
in terms of sparsity
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Universality of Deep Neural Networks



Universality of Shallow Neural Networks

Remark: Assume ϱ is a polynomial of degree q. Then ϱ(Wx + b) is also a
polynomial of degree q, hence Φ is also a polynomial of degree ≤ L · q.
Hence in this case C (Rd) cannot be well approximated.

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K ⊂ Rd compact, f : K → R continuous, ϱ : R → R continuous and
not a polynomial. Then, for each ϵ > 0, there exist N ∈ N,
ak , bk ∈ R,wk ∈ Rd with

∥f −
N∑

k=1

akϱ(⟨wk , ·⟩ − bk)∥∞ ≤ ϵ.

Every continuous function on a compact set can be arbitrarily well
approximated with a neural network with one single hidden layer.
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Idea of Proof

▶ For d ≥ 1, ϱ continuous, ϱ : R → R TFAE:

(i) span{ϱ(⟨w , x⟩ − b) : w ∈ Rd , b ∈ R} is dense C (K ,R).
(ii) ϱ is not a polynomial.

▶ Now: (ii)⇒ (i) for d = 1 and a smooth activation function ϱ.

▶ Since ϱ is not a polynomial, there exists one x0 ∈ R with

ϱ(k)(−x0) ̸= 0 for all k.

▶ Constant functions can be arbitrarily well approximated:

ϱ(hx − x0) → ϱ(−x0) as h → 0.

▶ Linear functions can be arbitrarily well approximated:

ϱ((λ+ h)x − x0)− ϱ(x − x0)

h︸ ︷︷ ︸
→xϱ′(λx−x0) for h→0

→ x · ϱ′(−x0), as h, λ→ 0.

; Any polynomial can be well approximated, then use Stone-Weierstraß

; Finally, extend to d arbitrary.
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▶ Since ϱ is not a polynomial, there exists one x0 ∈ R with

ϱ(k)(−x0) ̸= 0 for all k .

▶ Constant functions can be arbitrarily well approximated:

ϱ(hx − x0) → ϱ(−x0) as h → 0.

▶ Linear functions can be arbitrarily well approximated:

ϱ((λ+ h)x − x0)− ϱ(x − x0)

h︸ ︷︷ ︸
→xϱ′(λx−x0) for h→0

→ x · ϱ′(−x0), as h, λ→ 0.

; Any polynomial can be well approximated, then use Stone-Weierstraß

; Finally, extend to d arbitrary.



Universality of Shallow Neural Networks

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K ⊂ Rd compact, f : K → R continuous, ϱ : R → R continuous and
not a polynomial. Then, for each ϵ > 0, there exist N ∈ N,
ak , bk ∈ R,wk ∈ Rd with

∥f −
N∑

k=1

akϱ(⟨wk , ·⟩ − bk)∥∞ ≤ ϵ.

Approximation accuracy ↔ Complexity of approximating network?

What about even optimality?
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Complexity of a Deep Neural Network

Recall:

▶ L: Number of layers.

▶ ϱ : R → R: Activation function.

▶ Tℓ : RNℓ−1 → RNℓ , ℓ = 1, . . . , L, where Tℓx = W (ℓ)x + b(ℓ)

Then Φ : Rd → RNL given by

Φ(x) = TLϱ(TL−1ϱ(. . . ϱ(T1(x))), x ∈ Rd ,

is called (deep) neural network (DNN).

Measure for Complexity: The complexity C (Φ) is defined by

C (Φ) :=
L∑

ℓ=1

(
∥W (ℓ)∥0 + ∥b(ℓ)∥0

)
.

Key Challenge:
Approximation accuracy ↔ Complexity of approximating network

in terms of memory efficiency!
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Lower Bounds for Approximation

Classical Approach:

▶ VC Dimension

Towards Optimal Complexity:
▶ How well can functions be approximated by neural networks with few

non-zero weights?
▶ Can we derive a lower bound on the necessary number of weights?
▶ Can we construct neural networks which attain this bound?

▶ Are neural networks as good approximators as wavelets and shearlets?
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A Fundamental Lower Bound

Complexity of a Function Class:
The optimal exponent γ∗(C) measures the complexity of C ⊂ L2(Rd).

Theorem (Bölcskei, Grohs, Kutyniok, and Petersen; 2019):
Let d ∈ N, ϱ : R → R, and let C ⊂ L2(Rd). Further, let

Learn : (0, 1)× C → NN∞,∞,d ,ϱ

satisfy that, for each f ∈ C and 0 < ϵ < 1,

sup
f ∈C

∥f − Learn(ϵ, f )∥2 ≤ ϵ.

Then, for all γ < γ∗(C),

ϵγ sup
f ∈C

C (Learn(ϵ, f )) → ∞, as ϵ→ 0.

Conceptual bound independent on the learning algorithm!

; What happens for γ = γ∗(C)?
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Optimal Approximation

Key Ideas for a Specific Function Class:

▶ Consider a representation system with an optimal approximation rate.

▶ Realize each element of a representation system by a neural network.

▶ Mimic best N-term approximation by networks.

Choice for our Result:
Use the affine system of shearlets.

Theorem (Bölcskei, Grohs, Kutyniok, and Petersen; 2019):
Let ϱ be a suitably chosen, and let ϵ > 0. For all f ∈ E2(R2) and N ∈ N,
there exists a neural network Φ with 3 layers and C (Φ) = O(N) satisfying

∥f − Φ∥2 ≲ N−1+ϵ → 0 as N → ∞.

This is the optimal rate; hence the first bound is sharp!

Deep neural networks achieve optimal approximation
properties of all affine systems combined!
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Numerical Experiments (with ReLUs & Backpropagation)

Linear Singularity Subnetworks: ≈ Ridgelets!

Curvilinear Singularity Subnetworks: ≈ Shearlets!
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Are Deep Neural Networks Really Better

Than Classical Methods?



Inverse Problems

Recovering the original data from a
transformed version!

Some Examples from Imaging:

▶ Inpainting.
; Recovery from incomplete data.

▶ Magnetic Resonance Imaging.
; Recovery from point samples of the Fourier transform.

▶ Feature Extraction.
; Separating the image into

different features.
+
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Ill-Posed Inverse Problems

General Setting:
Given K : X → Y and y ∈ Y , compute x ∈ X with Kx = y .

Well-Posedness Conditions (Hadamard):

▶ Existence: For each y ∈ Y , there exists some x ∈ X with Kx = y .

▶ Uniqueness: Such an x ∈ X is unique.

▶ Stability: limn→∞ Kxn → Kx implies limn→∞ xn → x .

Ill-Posed Inverse Problems:

Need for regularization!



Tikhonov Regularization

Standard Tikhonov Regularization:
Given an ill-posed inverse problems Kx = y , where K : X → Y , an
approximate solution xα ∈ X , α > 0, can be determined by minimizing

Jα(x) := ∥Kx − y∥2︸ ︷︷ ︸
Data fidelity term

+ α · ∥x∥2︸︷︷︸
Regularization Term

, x ∈ X .

Generalization:

Jα(x) := ∥Kx − y∥2︸ ︷︷ ︸
Data fidelity term

+ α · R(x)︸ ︷︷ ︸
Regularization Term

, x ∈ X .

The Regularization Term R
▶ ensures continuous dependence on the data,

▶ incorporates properties of the solution.
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Paradigm for Data Processing: Sparsity!

Sparse Signals:
A signal x ∈ Rn is k-sparse, if

∥x∥0 = #non-zero coefficients ≤ k.

; Model Σk : Union of k-dimensional subspaces

Compressible Signals:
A signal x ∈ Rn is compressible, if the sorted
coefficients have rapid (power law) decay.

; Model: ℓp ball with p ≤ 1

|xi |

k n



Recall: Shearlets as Sparsifying System

Model of Images (Donoho; 2001):
“Cartoon-functions are functions governed by
a discontinuity curve.”

Theorem (Kutyniok, Lim; 2011):
“Shearlets fulfill the optimal compression rate for cartoon-functions.”

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):

▶ Matlab (Kutyniok, Lim, Reisenhofer; 2013)

▶ Julia (Loarca; 2017)

▶ Python (Look; 2018)

▶ Tensorflow (Loarca; 2019)
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How to Penalize Non-Sparsity?

Intuition:

; Use the ℓ1 norm!

Sparse Regularization:
Solve an ill-posed inverse problem Kf = g by

f α := argmin
f

[
∥Kf − g∥2︸ ︷︷ ︸

Data fidelity term

+ α · ∥(⟨f , ψj ,m⟩)j ,m∥1︸ ︷︷ ︸
Penalty term

]
.
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Problem with Classical Approaches



(Limited Angle-) Computed Tomography

A CT scanner samples the Radon transform

Rf (ϕ, s) =

∫
L(ϕ,s)

f (x)dS(x),

for L(ϕ, s) =
{
x ∈ R2 : x1 cos(ϕ) + x2 sin(ϕ) = s

}
, ϕ ∈ [−π/2, π/2), and s ∈ R.

Challenging inverse problem if Rf (·, s) is only sampled
on [−ϕ, ϕ] ⊂ [−π/2, π/2).

Applications: Dental CT, electron tomography,...

Model-Based Approaches Fail (60◦ Missing Angle):

Original Image Filtered Backprojection Sparse Regularization with Shearlets
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Deep Learning Enters the Stage



Overview

Different Forms of Hybrid Approaches:
▶ Supervised approaches:

▶ Train a neural network end-to-end.
▶ Incorporate information about the operator K into the neural network.
▶ Combine neural networks with classical model-based approaches

(Plug-and-play, etc.)

▶ Semi-supervised approaches:
▶ Encode the regularization by a neural network (Adversarial regularizers,

etc.)
▶ The learning algorithm only requires a set of labels as well as a method

to assess how hard the inverse problem for this label would be.

▶ Unsupervised approaches:
▶ Parametrize the solutions as the output of a neural network (Deep

image priors, etc.)
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Convolutional Neural Networks (CNNs)

Schematic Illustration:

Operation in each Layer:
Input → Convolution → Activation → Pooling → Output



CNN Architecture for Inverse Problems

▶ U-Net architecture (Ronneberger et al.; 2015)

▶ Encoder-Decoder CNN with skip-connections

[Unser et al.,2017]



Models and Data

How to take the best out of both worlds:
Models and Data?

General Strategy:

▶ Employ model-based approaches as far as they are reliable.

▶ Apply deep learning only when it is necessary.



Zooming in on the Limited-Angle CT Problem

ϕ = 15◦, filtered backprojection (FBP)

ϕ = 30◦, filtered backprojection (FBP)ϕ = 45◦, filtered backprojection (FBP)ϕ = 60◦, filtered backprojection (FBP)ϕ = 75◦, filtered backprojection (FBP)ϕ = 90◦, filtered backprojection (FBP)

Illustration of Theorem [Quinto, 1993]:

‘visible”: singularities tangent “invisible”: singularities not tangent

to sampled lines to sampled lines
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Shearlets can Help

Key Idea: Filling the missing angle is an
inpainting problem of the wavefront set!

f = 1D for a set D ⊆ R2

with smooth boundary

Theorem (Kutyniok, Labate; 2006):
“Shearlets can identify the wavefront set at fine scales.”

Shearlets can Separate the Visible and Invisible Part:
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Our Approach “Learn the Invisible (LtI)”
(Bubba, Kutyniok, Lassas, März, Samek, Siltanen, Srinivan; 2019)

Step 1: Reconstruct the visible

f ∗ := argmin
f≥0

∥Rϕ f − g∥22 + ∥SHψ(f )∥1,w

▶ Best available classical solution (little artifacts, denoised)

▶ Access “wavefront set” via sparsity prior on shearlets:

▶ For (j , k, l) ∈ Iinv: SHψ(f ∗)(j,k,l) ≈ 0
▶ For (j , k , l) ∈ Ivis: SHψ(f ∗)(j,k,l) reliable and near perfect

Step 2: Learn the invisible

NN θ : SHψ(f
∗)Ivis F

(
!
≈ SHψ(fgt)Iinv

)
U-Net

Step 3: Combine

fLtI = SHT
ψ (SHψ(f

∗)Ivis
+ F )



Numerical Results

Original

Filtered Backprojection Sparse Regularization with Shearlets

[Gu & Ye, 2017] Learn the Invisible (LtI)

Deep neural networks can outperform classical methods by far!
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Deep Network Shearlet Edge Extractor (DeNSE)
(Andrade-Loarca, Kutyniok, Öktem, Petersen; 2019)

Key Steps:

(1) Apply the shearlet transform to an image.
; Extract the correct features.
; Derive a good data representation.

(2) Consider patches of shearlet coefficients.
; Localize to each position.

(3) Apply a convolutional neural network.
; Predict the direction (180 directions) in each patch.

Network Architecture:



Numerical Results

Original

Human Annotation SEAL [Yu et al; 2018]

CoShREM [Reisenhofer et al.; 2015] DeNSE



Theoretically Analyzing the Effectiveness

of Deep Neural Networks: Solving PDEs!



Another Mystery

Recall from Expressivity:
Deep neural networks match the performance of the best classical
approximation tool in virtually every task!

Surprise from Practise of Neural Networks:

▶ Perform incredibly well in approximating high-dimensional functions.

▶ Often outperform classical, non-specialized approximation methods.

The Curse of Dimensionality:
Every approximation method deteriorates exponentially fast

with increasing dimension!
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Key Problem: The Curse!

“Introduction”: Bellman; 1961

Curse of Dimensionality: 102 evenly spaced points suffice to sample a
uni interval with no more than 10−2 distance between points. But an
equivalent sampling of a 10-dimensional unit hypercube with a lattice of
the same spacing would require 1020 = (102)10 sample points.
; Exponential growth.

Examples:

▶ Combinatorics

▶ Function approximation

▶ Machine learning

▶ Numerical integration



Partial Differential Equations

Some Facts about PDE Solvers:

▶ Precise physical models exist.

▶ The discretization process is very well understood.

▶ Often optimal solvers are available.
▶ A rich bouquet of highly sophisticated solvers are developed:

▶ Finite-element methods
▶ Wavelet-based approaches
▶ ...

Why do we need deep neural networks?

; Deep neural networks can beat the curse of dimensionality in high
dimensional problems!
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Deep Learning Approaches to PDEs

Common Approach to Solve PDEs with Neural Networks:
Approximate the solution u of a PDE

L(u) = f

by a neural network Φ, i.e., determine

L(Φ) ≈ f .

Key Ideas:

▶ Sampling of points in the spatial domain

▶ Incorporate PDE in the loss functions

Incomplete List of Contributions:
[Lagaris, Likas, Fotiadis; 1998], [E, Yu; 2017], [Czarnecki, Osindero, Jaderberg, Swirszcz, Pascanu; 2017], [Sirignano,

Spiliopoulos; 2017], [Han, Jentzen, E; 2017], [Raissi, Perdikaris, Karniadakis; 2020], [Grohs, Herrmann; 2021], . . .



Let’s Now Enter the World of Parametric PDEs



Why Parametric PDEs?

Parameter dependent families of PDEs arise in basically any branch of
science and engineering.

Some Exemplary Problem Classes:

▶ Complex design problems

▶ Inverse problems

▶ Optimization tasks

▶ Uncertainty quantification

▶ ...

The number of parameters can be

▶ finite (physical properties such as domain geometry, ...)

▶ infinite (modeling of random stochastic diffusion field, ...)



The Parametric Map

Example of Parametric Diffusion Equation:
The following parametric diffusion equation has the form

−∇ · (ay (x) · ∇uy (x)) = f (x), on Ω = (0, 1)2, uy |∂Ω = 0,

where f ∈ L2(Ω) and ay ∈ L∞(Ω) is a diffusion coefficient depending on a
parameter y ∈ Y.

Parametric Map:
Consider the map Rp ⊃ Y ∋ y 7→ uy , where p ∈ N, for various choices of
parametrizations

Rp ⊃ Y ∋ y 7→ ay .

General Form:

Y ∋ y 7→ uy ∈ H such that L(uy , y) = fy .

Curse of Dimensionality: Computational cost too high!



The Parametric Map

Example of Parametric Diffusion Equation:
The following parametric diffusion equation has the form

−∇ · (ay (x) · ∇uy (x)) = f (x), on Ω = (0, 1)2, uy |∂Ω = 0,

where f ∈ L2(Ω) and ay ∈ L∞(Ω) is a diffusion coefficient depending on a
parameter y ∈ Y.

Parametric Map:
Consider the map Rp ⊃ Y ∋ y 7→ uy , where p ∈ N, for various choices of
parametrizations

Rp ⊃ Y ∋ y 7→ ay .

General Form:

Y ∋ y 7→ uy ∈ H such that L(uy , y) = fy .

Curse of Dimensionality: Computational cost too high!



What can Deep Neural Networks do?

Parametric Map:

Rp ⊇ Y ∋ y 7→ uhy ∈ RD such that by
(
uhy , v

)
= fy (v) for all v .

Can a neural network approximate the parametric map?

Advantages:

▶ After training, extremely rapid computation of the map.

▶ Flexible, universal approach.

Questions: Let ϵ > 0.

(1) Does there exist a neural network Φ such that

∥Φ(y)− uhy∥ ≤ ϵ for all y ∈ Y?

(2) How does the complexity of Φ depend on p and D?

(3) How do neural networks perform numerically on this task?
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Theoretical Results

Theorem (Kutyniok, Petersen, Raslan, Schneider; 2021):

▶ There exists a neural network Φ which approximates the parametric map:

∥Φ(y)− uhy∥ ≤ ϵ for all y ∈ Y.

▶ The dependence of C (Φ) on p and D can be (polynomially) controlled.

Proof:

▶ Consider the reduced basis method.

▶ Approximate the solution derived now by a neural network.

▶ This requires approximating multiplication and inversion of matrices.

▶ Monitor the complexity of this network.

Do neural networks also beat the curse when trained?
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Test Set-Up for Numerical Experiments

Parametric Diffusion Equation:
We will consider the following parametric diffusion equation:

−∇ · (ay (x) · ∇uy (x)) = f (x), on Ω = (0, 1)2, uy |∂Ω = 0,

where f ∈ L2(Ω) and ay ∈ L∞(Ω) is a diffusion coefficient depending on a
parameter y ∈ Y.

Parametric Map:
We learn a discretization of the map Rp ⊃ Y ∋ y 7→ uy , where p ∈ N, for various
choices of parametrizations

Rp ⊃ Y ∋ y 7→ ay .

What We Vary...

▶ Type of parametrization

▶ Dimension of parameter space

▶ Complexity of hyper-parameters



Parametric Diffusion Equation

Parametric Diffusion Equation:

−∇ · (a(x) · ∇ua(x)) = f (x), on Ω = (0, 1)2, u|∂Ω = 0,

where

a ∈ A = {ay : y ∈ Y} ⊂ L∞(Ω) and f (x) = 20 + 10x1 − 5x2.

Affine Parametrization: For fixed functions (ai )
p
i=0 ⊂ L∞(Ω),

A =

{
ay = a0 +

p∑
i=1

yiai : y = (yi )
p
i=1 ∈ Y

}
.

▶ Trigonometric polynomials

▶ Chessboard partition

▶ Cookies with fixed radii

Non-Affine Parametrization:

▶ Cookies with variable radii

▶ Clipped polynomials



Further Set-Up

Finite Element Space:

▶ Ω = [0, 1]2 with 101× 101 equidistant grid points

Fixed Neural Network:

▶ (p, 300, . . . , 300, 10201) with L = 11 layers

▶ Activation function: 0.2-LReLU.

Fixed Training Procedure:

▶ Training set: 20000 i.i.d. parameter samples

▶ Neural network: Initialized according to a normal distribution with mean 0
and standard deviation 0.1

▶ Loss function: Relative error on the finite-element discretization of H
▶ Optimization: Batch gradient descent

Dimension:

▶ Various dimensions of the parameter set up to 91.



Numerical Experiments, I

Trigonometric Polynomials:

Atp(p, σ) :=

{
µ+

p∑
i=1

yi · iσ · (1 + ai ) : y ∈ Y = [0, 1]p

}
,

for some fixed shift µ > 0, scaling coefficient σ ∈ R, and

ai (x) = sin

(⌊
i + 2

2

⌋
πx1

)
sin

(⌈
i + 2

2

⌉
πx2

)
, for i = 1, . . . , p.

Numerical Results:
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Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion
Equation by Deep Neural Networks. J. Sci. Comput., to appear.



Numerical Experiments, II

Chessboard Partition: Let p = s2 for some s ∈ N. Then

Acb(p, µ) :=

{
µ+

p∑
i=1

yiXΩi
: y ∈ Y = [0, 1]p

}
,

where (Ωi )
p
i=1 forms a s × s chessboard partition of (0, 1)2 and µ > 0 is a fixed

shift.

Numerical Results:
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Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion
Equation by Deep Neural Networks. J. Sci. Comput., to appear.



Numerical Experiments, III

Cookies with Variable Radii: For s ∈ N and every i = 1, . . . , s, we are given
disks Ωi,yi+s2

with centers ((2k + 1)/(2s), (2ℓ− 1)/(2s)), where i = ks + ℓ for
uniquely determined k ∈ {0, . . . s − 1} and ℓ ∈ {1, . . . , s} and radius yi+s2/(2s):

Acvr(p, µ) :=

{
µ+

p∑
i=1

yiXΩi,y
i+s2

: y ∈ Y = [0, 1]p × [0.5, 0.9]p

}
.

Numerical Results:
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Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion
Equation by Deep Neural Networks. J. Sci. Comput., to appear.



Interpretation

Hypotheses and Results:

▶ The performance does not suffer from the curse of dimensionality.

▶ True, we never observed an exponential scaling.

▶ The performance is very sensitive to parametrization.

▶ True, there are strong differences in the performance.
▶ More complex parametrized sets yield higher errors, whereas simpler

sets or spaces with intuitively lower intrinsic dimensionality yield
smaller errors.

; The approximation theoretical intrinsic dimension of the parametric
problem is a main factor in determining the hardness!

▶ Learning is efficient also for non-affinely parametrized problems.

▶ True, there is no fundamental difference of the performance for
non-affinely parametrized problems.
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Some Final Thoughts...



Conclusions

Artificial Intelligence:

▶ Impressive performance in real-world applications!

▶ A theoretical foundation of is largely missing!

Mathematics for Deep Learning:

▶ Expressivity: Optimal architectures?

▶ Learning: Controllable, efficient algorithms?

▶ Generalization: Performance on test data sets?

▶ Explainability: Explaining network decisions?

Deep Learning for Mathematical/Physical Problem Settings:

▶ Significantly better solvers of inverse problems.

▶ Beating the curse of dimensionality for partial differential equations.



THANK YOU!

References available at:
www.ai.math.lmu.de/kutyniok

Survey Paper (arXiv:2105.04026):
Berner, Grohs, Kutyniok, Petersen, The Modern Mathematics of Deep Learning.

Check related information on Twitter at:
@GittaKutyniok

Upcoming Book:
▶ P. Grohs and G. Kutyniok, eds.

Mathematical Aspects of Deep Learning
Cambridge University Press, 2022.
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