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The Dawn of Artificial Intelligence in Public Life

Telecommunication/

Self-Driving Cars % Speech Recognition

Health Care




Spectacular Success in Science

‘It will change everything’: DeepMind’s Al
makes gigantic leap in solving protein
structures

Google’s deep-learning program for determining the 3D shapes of proteins

stands to transform biology, say scientists.
Nature 588, 203-204 (2020)

STRUCTURE SOLVER

DeepMind’s AlphaFold 2 algorithm significantly
outperformed other teams at the CASP14 protein-
folding contest — and its previous version’s
performance at the last CASP.
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Impact on Mathematical/Physical Problem Settings

Some Examples:

Inverse Probleme/Imaging Science (2012-)
~> Denoising

~> Edge Detection

~> Inpainting

~> Classification

~» Superresolution

~> Limited-Angle Computed Tomography
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Impact on Mathematical/Physical Problem Settings

Some Examples:

Inverse Probleme/Imaging Science (2012-)
~> Denoising

~> Edge Detection

~> Inpainting

~> Classification

~» Superresolution

~> Limited-Angle Computed Tomography

Numerical Analysis of Partial Differential Equations (2017-)
~ Black-Scholes PDE
~» Allen-Cahn PDE
~» Parametric PDEs

Modelling (2018-)
~» Learning physical laws from data




Artificial Intelligence = Alchemy?

Scienc

Al researchers allege that machine learning is
alchemy

By Matthew Hutson | May. 3, 2018, 11:15 AM

Ali Rahimi, a researcher in artificial intelligence (Al) at Google in San Francisco, California, took a
swipe at his field last December—and received a 40-second ovation for it. Speaking at an Al
conference, Rahimi charged that machine learning algorithms, in which computers learn through
trial and error, have become a form of "alchemy." Researchers, he said, do not know why some
algorithms work and others don', nor do they have rigorous criteria for choosing one Al
architecture over another. Now, in a paper presented on 30 April at the International Conference
on Learning Representations in Vancouver, Canada, Rahimi and his collaborators document
examples of what they see as the alchemy problem and offer prescriptions for bolstering Al's
rigor.
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Problem with Reliability

By Linda Geddes 5th December 2018

Computers can be made to see a sea turtle as a gun or hear
a concerto as someone’s voice, which is raising concerns
about using artificial intelligence in the real world.

MACHINE MINDS | ARTIFICIAL INTFITIGFNCE EB




Role of Theory

Two Key Challenges:

Mathematics for Artificial Intelligence!
Can we derive a deep theoretical understanding of deep learning?

How can we make deep learning more robust?

Artificial Intelligence for Mathematical/Physical Problem Settings!
How can we use deep learning to improve imaging science?

Can we develop superior PDE solvers via deep learning?




Delving Deeper into Artificial Intelligence...




First Appearance of Artificial Intelligence

Key Task of McCulloch and Pitts (1943):
Develop an algorithmic approach to learning.

Mimicking the functionality of the human brain.

Goal: Artificial Intelligence!




Artificial Neurons
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Artificial Neurons

Definition: An artificial neuron with weights wy,...,w, € R, bias b € R
and activation function ¢ : R — R is defined as the function f : R” —» R

given by

f(x1,..c,Xn) = 0 (ZXIWI - b) = o({x,w) — b),
i=1

where w = (w1, ..., w,) and x = (X1, ..., Xn).




Artificial Neurons

Definition: An artificial neuron with weights wy,...,w, € R, bias b € R
and activation function ¢ : R — R is defined as the function f : R” —» R

given by

f(x1,..c,Xn) = 0 (ZXIWI - b) = o({x,w) — b),
i=1

where w = (w1, ..., w,) and x = (X1, ..., Xn).

Examples of Activation Functions:
1, > 0,

Heaviside function o(x) = x
0, x<0.

Sigmoid function o(x) = 14—%

Rectifiable Linear Unit (ReLU) p(x) = max{0, x}. .
LM




Affine Linear Maps and Weights

Remark: Concatenating artificial neurons leads to compositions of affine
linear maps and activation functions.

Example: The following part of a neural network is given by

®:R3 5 R d(x) = WP o(WBx 4 pM)Yy 4 p(3),

® 0

O Wit Wio )
W = 0 0 W3
o 0wy




Definition of a Deep Neural Network

Definition:
Assume the following notions:

d € N: Dimension of input layer.
L: Number of layers.
0 : R — R: (Non-linear) function called activation function.
To RNt s RNe ¢ =1, ... L, where Tyx = WO x 4 p(®)
Then & : RY — RN given by
®(x) = Tro(Ti—10(. .. o(T1(x))), x € R,
is called (deep) neural network (DNN).




Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):
Drastic improvement of computing power.
~» Networks with hundreds of layers can be trained.
~» Deep Neural Networks!

Age of Data starts.
~» Vast amounts of training data is available.
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Training of Deep Neural Networks

High-Level Set Up:
Samples (x;, f(x;))7; of a function
suchas f: M — {1,2,...,K}.

~» Training- and test data set.
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Training of Deep Neural Networks

High-Level Set Up:
Samples (x;, f(x;))7; of a function
suchas f: M — {1,2,...,K}.

~» Training- and test data set.

i.e., a choice of d, L, (N;)-L_,, and o.

Sometimes selected entries of the matrices ( (, 1

i.e., weights, are set to zero at this point.
Learn the affine- Imear functions (T¢)5_; = (WO . +bO)E_ by

L I
(Wmln(e))e ZE G b(e))e(x,) f(x)) + )\R((W( ). b ))Z)

yielding the network ¢(W(f),b(l))@ :RY — RM,
W poy, (x) = Tro(Te-1o(. . - o( T1(x)))-

This is often done by stochastic gradient descent.

Goal: ® ) pey), (xi) = f(x;) for the test data!




Mathematics for Artificial Intelligence

Expressivity:
Which aspects of a neural network architecture affect the performance
of deep learning?

~» Applied Harmonic Analysis, Approximation Theory, ...
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Mathematics for Artificial Intelligence

Expressivity:

Which aspects of a neural network architecture affect the performance
of deep learning?

~» Applied Harmonic Analysis, Approximation Theory, ...

Learning;:

Why does stochastic gradient descent converge to good local minima
despite the non-convexity of the problem?

~> Algebraic/Differential Geometry, Optimal Control, Optimization, ...

Generalization:

Can we derive overall success guarantees (on the test data set)?
~> Learning Theory, Probability Theory, Statistics, ...

Explainability:

Why did a trained deep neural network reach a certain decision?

~> Information Theory, Uncertainty Quantification, ... .
LM




Artificial Intelligence for Mathematical /Physical Problem

Settings

Inverse Problems:
How do we optimally combine deep learning with model-based
approaches?
Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

~ Imaging Science, Inverse Problems, Microlocal Analysis, ...




Artificial Intelligence for Mathematical /Physical Problem

Settings

Inverse Problems:

How do we optimally combine deep learning with model-based
approaches?
Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

~ Imaging Science, Inverse Problems, Microlocal Analysis, ...

Partial Differential Equations:
Why do neural networks perform well in very high-dimensional
environments?
Are neural networks capable of replacing highly specialized numerical
algorithms in natural sciences?

~> Numerical Mathematics, Partial Differential Equations, ...
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Plan for the 2 Lectures

Are Deep Neural Networks at Least as Good as All Previous
Mathematical Methods?

Expressivity
Are Deep Neural Networks Really Better Than Classical Methods?
Solving...

...Inverse Problems: Optimally combining deep learning with classical
methods!

...Partial Differential Equations: Breaking the curse of dimensionality!

Is Artificial Intelligence Reliable?
Generalization
Explainability

Limitations




Are Deep Neural Networks at Least as Good as

All Previous Mathematical Methods?




One major ingredient of mathematical methods is typically a suitable
representation/approximation of the function/data:

Deep neural networks are universal!

Some Key Questions in Expressivity:
What is the expressive power of a given architecture?
What effect has the depth of a neural network in this respect?
What is the complexity of the approximating neural network?
What are suitable function spaces to consider?




Revisiting Approximation Theory




The World is Compressible!

Wavelet Transform (JPEG2000):
f = ((fa%,m))j,m'

Definition: For a wavelet ¢ € L*(R?), a wavelet system is defined by

{Yjm:jJEZ,mEe Z2}, where ¥j m(x) 1= 2j¢(2jx —m).




Modeling Multivariate Data/Functions

Key Observation:

Directional structures are often crucial!




Modeling Multivariate Data/Functions

Key Observation:

Directional structures are often crucial!

Problem with Wavelets:

=




Shearlets

Shearlets (Kutyniok, Labate; 2006):
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Shearlets

Shearlets (Kutyniok, Labate; 2006):

_ 20 _ 1 k .
Aj.:(o 2j/2)7 Sk.:(o 1), j, k €.

Then

.
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Shearlets

Shearlets (Kutyniok, Labate; 2006):

2 0 1 k .
AJ:(O 2j/2)7 Sk:<0 1)7 JakEZ'

Then

";ij,k,m = Q%Qﬁ(SkAj . —m).

— 1
"t




Shearlets are Optimal

Model of Images (Donoho; 2001):
“Cartoon-functions are functions governed by ~
a discontinuity curve.”

Theorem (Kutyniok, Lim; 2011):
“Shearlets fulfill the optimal compression rate for cartoon-functions.”




Shearlets are Optimal

Model of Images (Donoho; 2001):
“Cartoon-functions are functions governed by ~
a discontinuity curve.”

Theorem (Kutyniok, Lim; 2011):
“Shearlets fulfill the optimal compression rate for cartoon-functions.”

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):
Matlab (Kutyniok, Lim, Reisenhofer; 2013)
Julia (Loarca; 2017) .
Python (Look; 2018)
Tensorflow (Loarca; 2019)




Function Approximation in a Nutshell

Goal: Given C C L2(R9) and (p;)ics € L2(RY). Measure the suitability of
(¢i)ier for uniformly approximating functions from C.

Definition: The error of best N-term approximation of some f € C is
given by

f—fN 2 = inf f— CiQill2.
| ” INC1L#IN=N,(ci)iely | ,EZ/% il
The largest v > 0 such that

sup || — fyll2 = O(N™7) as N — oo
fec

determines the optimal (sparse) approximation rate of C by (pi)icy.




Function Approximation in a Nutshell

Goal: Given C C L2(R9) and (p;)ics € L2(RY). Measure the suitability of
(¢i)ier for uniformly approximating functions from C.

Definition: The error of best N-term approximation of some f € C is
given by

f—fN 2 = inf f— CiQill2.
| ” INC1L#IN=N,(ci)iely | ,EZ/% il
The largest v > 0 such that

sup || — fyll2 = O(N™7) as N — oo
fec

determines the optimal (sparse) approximation rate of C by (pi)icy.

Approximation accuracy <> Complexity of approximating system
in terms of sparsity
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Remark: Assume g is a polynomial of degree q. Then o( Wx + b) is also a
polynomial of degree g, hence ® is also a polynomial of degree < L - gq.
Hence in this case C(RY) cannot be well approximated.




Universality of Shallow Neural Networks

Remark: Assume g is a polynomial of degree q. Then o( Wx + b) is also a
polynomial of degree g, hence ® is also a polynomial of degree < L - gq.
Hence in this case C(RY) cannot be well approximated.

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K € RY compact, f : K — R continuous, ¢ : R — R continuous and
not a polynomial. Then, for each € > 0, there exist N € N,

ak, b € R, wy € RY with
N

If— ZakQ(<Wk7 ) = bi)||eo < €.

k=1

Every continuous function on a compact set can be arbitrarily well
approximated with a neural network with one single hidden layer.




Idea of Proof

For d > 1, ¢ continuous, o : R — R TFAE:

span{o((w,x) — b) : w € RY, b € R} is dense C(K,R).
o is not a polynomial.

Now: (ii)= (i) for d =1 and a smooth activation function p.
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Idea of Proof

For d > 1, ¢ continuous, o : R — R TFAE:

span{o({w, x) — b) : w € R4, b € R} is dense C(K,R).
o is not a polynomial.

Now: (ii)= (i) for d =1 and a smooth activation function p.
Since ¢ is not a polynomial, there exists one xg € R with
01 (—x0) # 0 for all k.
Constant functions can be arbitrarily well approximated:
o(hx — xo) = o(—xp) as h — 0.
Linear functions can be arbitrarily well approximated:

o((M+ h)x — x0) — o(x — xo)
h

—x0'(Ax—xp) for h—0

—x-0(-x), ash\—0.

~ Any polynomial can be well approximated, then use Stone-WeierstraB3
~> Finally, extend to d arbitrary.




Universality of Shallow Neural Networks

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K € RY compact, f : K — R continuous, ¢ : R — R continuous and
not a polynomial. Then, for each € > 0, there exist N € N,

ak, b € R, wy € RY with
N
IF =" aro((wie, ) — bi)lloo < €. %
k=1




Universality of Shallow Neural Networks

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K € RY compact, f : K — R continuous, ¢ : R — R continuous and
not a polynomial. Then, for each € > 0, there exist N € N,

ak, b € R, wy € RY with

N
1F = akel(wi, ) = bl < .
k=1

Approximation accuracy < Complexity of approximating network?




Universality of Shallow Neural Networks

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let K € RY compact, f : K — R continuous, ¢ : R — R continuous and
not a polynomial. Then, for each € > 0, there exist N € N,

ak, b € R, wy € RY with

N
1F = akel(wi, ) = bl < .
k=1

Approximation accuracy < Complexity of approximating network?

What about even optimality?




Complexity of a Deep Neural Network

Recall:

L: Number of layers.

0 : R — R: Activation function.
Ty RNe-r s RNe g =1,... L, where Tyx = WOx + p(®)
Then & : RY — RN given by
O(x) = Tro(Ti—10(. .. o(Ti(x))), xeRe,
is called (deep) neural network (DNN).
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Complexity of a Deep Neural Network

Recall:
L: Number of layers.
0 : R — R: Activation function. '
Ty RNe-r s RNe g =1,... L, where Tyx = WOx + p(®)
Then & : RY — RN given by
O(x) = Tro(Ti—10(. .. o(Ti(x))), xeRe,
is called (deep) neural network (DNN).

Measure for Complexity: The complexity C(®) is defined by

L
(@) :=> (IWOo+ [15“o) .
/=1
Key Challenge:
Approximation accuracy <> Complexity of approximating network

in terms of memory efficiency!
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VC Dimension




Lower Bounds for Approximation

Classical Approach:

VC Dimension

Towards Optimal Complexity:

How well can functions be approximated by neural networks with few
non-zero weights?
Can we derive a lower bound on the necessary number of weights?
Can we construct neural networks which attain this bound?

Are neural networks as good approximators as wavelets and shearlets?




A Fundamental Lower Bound

Complexity of a Function Class:
The optimal exponent v*(C) measures the complexity of C C L2(RY).




A Fundamental Lower Bound

Complexity of a Function Class:
The optimal exponent 4*(C) measures the complexity of C C L2(RY).

Theorem (Bdlcskei, Grohs, Kutyniok, and Petersen; 2019):
Let d €N, p: R = R, and let C C L?(RY). Further, let
Learn : (0,1) X C = NN c0.d0
satisfy that, for each f € Cand 0 < e < 1,
sup ||f — Learn(e, f)|2 < e.
feC

Then, for all v < ~*(C),

¢’ sup C(Learn(e, f)) — oo, as € — 0.
fec

Conceptual bound independent on the learning algorithm!




A Fundamental Lower Bound

Complexity of a Function Class:
The optimal exponent 4*(C) measures the complexity of C C L2(RY).

Theorem (Bdlcskei, Grohs, Kutyniok, and Petersen; 2019):
Let d €N, p: R = R, and let C C L?(RY). Further, let
Learn : (0,1) X C = NN c0.d0
satisfy that, for each f € Cand 0 < e < 1,
sup ||f — Learn(e, f)|2 < e.
feC

Then, for all v < ~*(C),

¢’ sup C(Learn(e, f)) — oo, as € — 0.
fec

Conceptual bound independent on the learning algorithm!

~» What happens for v = v*(C)?




Optimal Approximation

Key lIdeas for a Specific Function Class:
Consider a representation system with an optimal approximation rate.

Realize each element of a representation system by a neural network.

Mimic best N-term approximation by networks. \
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Optimal Approximation

Key lIdeas for a Specific Function Class:
Consider a representation system with an optimal approximation rate.

Realize each element of a representation system by a neural network.

Mimic best N-term approximation by networks. ///%WW\;Q\\\\ @
Choice for our Result: 7NV
Use the affine system of shearlets.

Theorem (Bdlcskei, Grohs, Kutyniok, and Petersen; 2019):
Let o be a suitably chosen, and let ¢ > 0. For all f € £2(R?) and N € N,
there exists a neural network ® with 3 layers and C(®) = O(N) satisfying

[f =@ SN =0 as N — oco.

This is the optimal rate; hence the first bound is sharp!




Optimal Approximation

Key lIdeas for a Specific Function Class:
Consider a representation system with an optimal approximation rate.
Realize each element of a representation system by a neural network.

Mimic best N-term approximation by networks.

Choice for our Result:
Use the affine system of shearlets.

Theorem (Bdlcskei, Grohs, Kutyniok, and Petersen; 2019):
Let o be a suitably chosen, and let ¢ > 0. For all f € £2(R?) and N € N,
there exists a neural network ® with 3 layers and C(®) = O(N) satisfying

[f =@ SN =0 as N — oco.

This is the optimal rate; hence the first bound is sharp!

Deep neural networks achieve optimal approximation
properties of all affine systems combined!




Numerical Experiments (with ReLUs & Backpropagation)
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Linear Singularity Subnetworks: &~ Ridgelets!




Numerical Experiments (with ReLUs & Backpropagation)

100 150 200 10 20 30 40 50

Linear Singularity Subnetworks: &~ Ridgelets!

40 60 80 100

10 20 30 40 50 60

Curvilinear Singularity Subnetworks: ~~ Shearlets!




Are Deep Neural Networks Really Better
Than Classical Methods?




Inverse Problems

Recovering the original data from a
transformed version!




Inverse Problems

Recovering the original data from a
transformed version!

Some Examples from Imaging:
Inpainting.
~» Recovery from incomplete data.

Magnetic Resonance Imaging.
~» Recovery from point samples of the Fourier transform.

Feature Extraction.
~» Separating the image into
different features.



[ll-Posed Inverse Problems

General Setting:
Given K: X — Y and y € Y, compute x € X with Kx = y.

Well-Posedness Conditions (Hadamard):

Existence: For each y € Y, there exists some x € X with Kx = y.
Uniqueness: Such an x € X is unique.

Stability: lim,_ 00 Kx, — Kx implies lim,_ o0 Xn — X.

lll-Posed Inverse Problems:

Need for regularization!




Tikhonov Regularization

Standard Tikhonov Regularization:
Given an ill-posed inverse problems Kx = y, where K : X — Y, an
approximate solution x* € X, o > 0, can be determined by minimizing

b= K=y +a- X2, xex.
~—~—

Data fidelity term Regularization Term




Tikhonov Regularization

Standard Tikhonov Regularization:
Given an ill-posed inverse problems Kx = y, where K : X — Y, an
approximate solution x* € X, o > 0, can be determined by minimizing

)= [Kx=yP +a- X2, xex.
~—~—
Data fidelity term Regularization Term
Generalization:
Jo(x) = |Kx—y|? + - R(x , xeX.
—_——— ~——
Data fidelity term Regularization Term

The Regularization Term R
ensures continuous dependence on the data,

incorporates properties of the solution.




Paradigm for Data Processing: Sparsity!

Sparse Signals:
A signal x € R" is k-sparse, if

||x|Jo = #non-zero coefficients < k.

~» Model X: Union of k-dimensional subspaces

Compressible Signals:
A signal x € R" is compressible, if the sorted

coefficients have rapid (power law) decay. |xi|
~ Model: £, ball with p <'1 \\




Recall: Shearlets as Sparsifying System

Model of Images (Donoho; 2001):

“Cartoon-functions are functions governed by ~
a discontinuity curve.”

Theorem (Kutyniok, Lim; 2011):

“Shearlets fulfill the optimal compression rate for cartoon-functions.”




Recall: Shearlets as Sparsifying System

Model of Images (Donoho; 2001):

“Cartoon-functions are functions governed by ~
a discontinuity curve.”

Theorem (Kutyniok, Lim; 2011):
“Shearlets fulfill the optimal compression rate for cartoon-functions.”

2D&3D (parallelized) Fast Shearlet Transform (www.ShearLab.org):
Matlab (Kutyniok, Lim, Reisenhofer; 2013)
Julia (Loarca; 2017) .
Python (Look; 2018)
Tensorflow (Loarca; 2019)




How to Penalize Non-Sparsity?

Intuition:

~» Use the ¢y norm!




How to Penalize Non-Sparsity?

Intuition:

Sparse Regularization:

Solve an Jjll-posed inverse problem Kf = g by

~» Use the ¢y norm!

F = argmin | |[KF —gl? + o J({F, bjm)imll |-
f e -

N
Data fidelity term Penalty term




Problem with Classical Approaches




(Limited Angle-) Computed Tomography

A CT scanner samples the Radon transform

RF(6.5) = [ Flx)ds(x).

L(¢,s)
for L(¢,s) = {x € R? : x; cos(¢) + xpsin(¢) = s}, ¢ € [-7/2,7/2), and s € R.
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(Limited Angle-) Computed Tomography

A CT scanner samples the Radon transform

RF(6.5) = [ Flx)ds(x).

L(¢,s)
for L(¢,s) = {x € R? : x; cos(¢) + xpsin(¢) = s}, ¢ € [-7/2,7/2), and s € R.

Challenging inverse problem if Rf(-,s) is only sampled
on [—¢,¢] C [-7/2,7/2).

Applications: Dental CT, electron tomography,... I@

Model-Based Approaches Fail (60° Missing Angle):

Original Image Filtered Backprojection Sparse Regularization with Shearl l'VI



Deep Learning Enters the Stage




Overview

Different Forms of Hybrid Approaches:

Supervised approaches:

Train a neural network end-to-end.

Incorporate information about the operator K into the neural network.
Combine neural networks with classical model-based approaches
(Plug-and-play, etc.)
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to assess how hard the inverse problem for this label would be.




Overview

Different Forms of Hybrid Approaches:

Supervised approaches:
Train a neural network end-to-end.
Incorporate information about the operator K into the neural network.
Combine neural networks with classical model-based approaches
(Plug-and-play, etc.)

Semi-supervised approaches:
Encode the regularization by a neural network (Adversarial regularizers,
etc.)
The learning algorithm only requires a set of labels as well as a method
to assess how hard the inverse problem for this label would be.

Unsupervised approaches:

Parametrize the solutions as the output of a neural network (Deep
image priors, etc.)




Convolutional Neural Networks (CNNs)

Schematic lllustration:

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0);

Convolutions and RelLU

L A I A A S A S I D I A i A

f fox
LT D LW L A DL T - - - - LA

Convolutions and RelU

- . - ’_‘_"%’"”
| | |
””

Convolutions and RelLU

Operation in each Layer:
Input — Convolution — Activation — Pooling — Output .
LM




CNN Architecture for Inverse Problems

U-Net architecture (Ronneberger et al.; 2015)

Encoder-Decoder CNN with skip-connections

Skip connection

(1 64 64 64 « # of channels 12864641 | 1)
U-net
- N N NN
spatial dimension :512x512
(647 128128 256 128 "128)
| | 256 x 256 I |
(128 256 236 512256 256) -+ 3x3conv.+BN
M T
128x128 + 2x2max pooling
- D ki ion
256" 512 512 1024 512 512 4 i
and concatenation
caxcs| H-HE-NH - - 1 Jod concatemat
(5124 1024 \1014] +BN +RelU
32x 32\ - E— — » 1x1conv.

[Unser et al.,2017]




Models and Data

How to take the best out of both worlds:
Models and Data?

General Strategy:
Employ model-based approaches as far as they are reliable.

Apply deep learning only when it is necessary.




Zooming in on the Limited-Angle CT Problem

¢ = 15°, filtered backprojection (FBP)




Zooming in on the Limited-Angle CT Problem

¢ = 30°, filtered backprojection (FBP)




Zooming in on the Limited-Angle CT Problem

¢ = 45°, filtered backprojection (FBP)




Zooming in on the Limited-Angle CT Problem

¢ = 60°, filtered backprojection (FBP)




Zooming in on the Limited-Angle CT Problem

¢ = 75°, filtered backprojection (FBP)




Zooming in on the Limited-Angle CT Problem

¢ =90°, filtered backprojection (FBP)




Zooming in on the Limited-Angle CT Problem

¢ =90°, filtered backprojection (FBP)

lllustration of Theorem [Quinto, 1993]:

‘visible”: singularities tangent “invisible”: singularities not tangent
to sampled lines to sampled lines




Shearlets can Help

Key Idea: Filling the missing angle is an L /
inpainting problem of the wavefront set! :

\ S

1’:1[;1‘0raseth]R2
with smooth boundary
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Shearlets can Help

Key Idea: Filling the missing angle is an L /
inpainting problem of the wavefront set! :

\ S

1’:1[;1‘0raseth]R2
with smooth boundary

Theorem (Kutyniok, Labate; 2006):
“Shearlets can identify the wavefront set at fine scales.”

Shearlets can Separate the Visible and Invisible Part:




Our Approach “Learn the Invisible (Ltl)”

(Bubba, Kutyniok, Lassas, Marz, Samek, Siltanen, Srinivan; 2019)

Step 1: Reconstruct the visible
F o= argmin | Ry £ — g3+ | SHu(D)l

Best available classical solution (little artifacts, denoised)

Access “wavefront set” via sparsity prior on shearlets: S

For (j, k, 1) € Tiny: SHy(F*)(iaey ~ 0 N4
For (j, k, ) € Zyis: SHy(f*)(j k.1 reliable and near perfect %

Step 2: Learn the invisible

NN+ SHy(f")z,..

oy

[ &

[ &

@
U

|
s ——F (” SHw(fgt)Lm)

et

T
2

Step 3: Combine

= SHT(5H.()z, +



Numerical Results

Filtered Backprojection Sparse Regularization with Shearlets

Original

[Gu & Ye, 2017] Learn the Invisible (Ltl)




Numerical Results

Filtered Backprojection Sparse Regularization with Shearlets

Original

[Gu & Ye, 2017] Learn the Invisible (Ltl)

Deep neural networks can outperform classical methods by far!



Deep Network Shearlet Edge Extractor (DeNSE)

(Andrade-Loarca, Kutyniok, Oktem, Petersen; 2019)

Key Steps:

Apply the shearlet transform to an image.
~» Extract the correct features.
~» Derive a good data representation.

Consider patches of shearlet coefficients.
~» Localize to each position.

Apply a convolutional neural network.
~» Predict the direction (180 directions) in each patch.

Network Architecture:




Numerical Results

Human Annotation SEAL [Yu et al; 2018]

CoShREM [Reisenhofer et al.; 2015] DeNSE

Original




Theoretically Analyzing the Effectiveness

of Deep Neural Networks: Solving PDEs!




Another Mystery

Recall from Expressivity:
Deep neural networks match the performance of the best classical
approximation tool in virtually every task!
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Another Mystery

Recall from Expressivity:
Deep neural networks match the performance of the best classical
approximation tool in virtually every task!

Surprise from Practise of Neural Networks:
Perform incredibly well in approximating high-dimensional functions.

Often outperform classical, non-specialized approximation methods.

The Curse of Dimensionality:
Every approximation method deteriorates exponentially fast
with increasing dimension!




Key Problem: The Curse!

“Introduction”: Bellman; 1961 T T T T T T

Curse of Dimensionality: 102 evenly spaced points suffice to sample a
uni interval with no more than 10~2 distance between points. But an
equivalent sampling of a 10-dimensional unit hypercube with a lattice of
the same spacing would require 102 = (102)!° sample points.
~» Exponential growth.
Examples:

Combinatorics

Function approximation

Machine learning

Numerical integration



Partial Differential Equations

Some Facts about PDE Solvers:
Precise physical models exist.
The discretization process is very well understood.

Often optimal solvers are available.
A rich bouquet of highly sophisticated solvers are developed:

Finite-element methods
Wavelet-based approaches
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Partial Differential Equations

Some Facts about PDE Solvers:
Precise physical models exist.
The discretization process is very well understood.

Often optimal solvers are available.
A rich bouquet of highly sophisticated solvers are developed:

Finite-element methods
Wavelet-based approaches

Why do we need deep neural networks?

~> Deep neural networks can beat the curse of dimensionality in high
dimensional problems!




Deep Learning Approaches to PDEs

Common Approach to Solve PDEs with Neural Networks:
Approximate the solution v of a PDE

L(u)="f
by a neural network @, i.e., determine
L(P) ~ f.

Key ldeas:
Sampling of points in the spatial domain

Incorporate PDE in the loss functions

Incomplete List of Contributions:
[Lagaris, Likas, Fotiadis; 1998], [E, Yu; 2017], [Czarnecki, Osindero, Jaderberg, Swirszcz, Pascanu; 2017], [Sirignano,

Spiliopoulos; 2017], [Han, Jentzen, E; 2017], [Raissi, Perdikaris, Karniadakis; 2020], [Grohs, Herrmann; 2021], .

LM




Let’s Now Enter the World of Parametric PDEs




Why Parametric PDEs?

Parameter dependent families of PDEs arise in basically any branch of
science and engineering.

Some Exemplary Problem Classes:
Complex design problems x
Inverse problems

Optimization tasks

Uncertainty quantification

The number of parameters can be
finite (physical properties such as domain geometry, ...)

infinite (modeling of random stochastic diffusion field, ...)




The Parametric Map

Example of Parametric Diffusion Equation:
The following parametric diffusion equation has the form

—V - (ay(x) - Vuy(x)) = f(x), on Q=(0, 1)2, uylon = 0,

where f € L2(Q) and a, € L°°(Q) is a diffusion coefficient depending on a
parameter y € ).

Parametric Map:

Consider the map R © YV 3 y + u,,, where p € N, for various choices of
parametrizations

RPD Y3y a.




The Parametric Map

Example of Parametric Diffusion Equation:
The following parametric diffusion equation has the form

~V - (ay(x) - Vuy(x)) = f(x),  onQ=(0,1)? uylon =0,
where f € L2(Q) and a, € L°°(Q) is a diffusion coefficient depending on a
parameter y € ).

Parametric Map:
Consider the map R © YV 3 y + u,,, where p € N, for various choices of
parametrizations
RPD Y3y a.
General Form:
Y3y — u, €M suchthat L(uy,y)="1,.
Curse of Dimensionality: Computational cost too high! .
LM




What can Deep Neural Networks do?

Parametric Map:

RPOY3y — uy € R? suchthat by (uf,v) =f(v) forall v.

Can a neural network approximate the parametric map?




What can Deep Neural Networks do?

Parametric Map:

RPOY3y — uy € R? suchthat by (uf,v) =f(v) forall v.

Can a neural network approximate the parametric map?

Advantages:
After training, extremely rapid computation of the map.

Flexible, universal approach.

Questions: Let € > 0.

Does there exist a neural network ® such that

[®(y) —upl| <e  forallye)?

How does the complexity of ® depend on p and D?

How do neural networks perform numerically on this task?



Theoretical Results

Theorem (Kutyniok, Petersen, Raslan, Schneider; 2021):

There exists a neural network ® which approximates the parametric map:
||¢()’)_U§|| <e forally e Y.

The dependence of C(®) on p and D can be (polynomially) controlled.
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||¢()’)_U5|| <e forally e Y.
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Proof:
Consider the reduced basis method.
Approximate the solution derived now by a neural network.
This requires approximating multiplication and inversion of matrices.

Monitor the complexity of this network.




Theoretical Results

Theorem (Kutyniok, Petersen, Raslan, Schneider; 2021):
There exists a neural network ® which approximates the parametric map:

||¢()’)_U5|| <e forally e Y.

The dependence of C(®) on p and D can be (polynomially) controlled.

Proof:
Consider the reduced basis method.
Approximate the solution derived now by a neural network.
This requires approximating multiplication and inversion of matrices.

Monitor the complexity of this network.

Do neural networks also beat the curse when trained?




Test Set-Up for Numerical Experiments

Parametric Diffusion Equation:
We will consider the following parametric diffusion equation:

~V - (ay(x) - Vuy(x)) = f(x), on Q2=(0,1)>, ulon=0,

where f € [2(Q2) and a, € L>°(Q) is a diffusion coefficient depending on a
parameter y € ).

Parametric Map:
We learn a discretization of the map R” > Y > y — u,, where p € N, for various
choices of parametrizations

RPDY 3y a,.
What We Vary...
Type of parametrization

Dimension of parameter space

Complexity of hyper-parameters



Parametric Diffusion Equation

Parametric Diffusion Equation:
—V-(a(x) - Vuy(x)) = f(x), onQ=(0,1)%, uloa =0,
where

acA={a,: yeY}CL®(Q) and f(x)=20+10x; — 5.

Affine Parametrization: For fixed functions (a;)?_, C L>(Q),

P
Az{ay:ao—i-Zy;a,-:y 1637}
i=1

Trigonometric polynomials

Chessboard partition

Cookies with fixed radii
Non-Affine Parametrization:

Cookies with variable radii

Clipped polynomials



Further Set-Up

Finite Element Space:

Q = [0, 1]? with 101 x 101 equidistant grid points

Fixed Neural Network:
(p,300,...,300,10201) with L = 11 layers
Activation function: 0.2-LReLU.

Fixed Training Procedure:
Training set: 20000 i.i.d. parameter samples

Neural network: Initialized according to a normal distribution with mean 0
and standard deviation 0.1

Loss function: Relative error on the finite-element discretization of H

Optimization: Batch gradient descent

Dimension:

Various dimensions of the parameter set up to 91.



Numerical Experiments, |

Trigonometric Polynomials:

A®(p,0) = {/HrZy, 1+a,):y€37=[0,1]"}7

for some fixed shift p > 0, scaling coefficient o € R, and

a;j(x) = sin ({%J 7TX1> sin ({%-‘ 7TX2> , fori=1,...,p

Numerical Results:

Mean relative test error

10t
Parameter dimension p

Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion
Equation by Deep Neural Networks. J. Sci. Comput., to appear.




Numerical Experiments, |l

Chessboard Partition: Let p = s for some s € N. Then

P
AP(pp) =+ yiko : y eV =[0,17¢,
i=1

where (€;)7_, forms a s x s chessboard partition of (0,1)% and x> 0 is a fixed
shift.

Numerical Results:

2

Mean relative error

Mean relative test error

1072

10t 0 5000 10000 15000 20000 25000 30000 35000 40000
Parameter dimension p Epochs

p=25

Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion
Equation by Deep Neural Networks. J. Sci. Comput., to appear.




Numerical Experiments, Il

Cookies with Variable Radii: For s € N and every i = 1,... s, we are given
disks €;, , with centers ((2k +1)/(2s), (2¢ —1)/(2s)), where i = ks + £ for
uniquely determined k € {0,...s — 1} and £ € {1,...,s} and radius y; .2 /(2s):

P
AV (pp) =+ yiXe, ,tyeY=[01]x[0509°
i=1

Numerical Results:

05
—— fixed, p=10"* — Training
~—e— variable, y=10"1 —— Evaluation
—— variable, =104

5 10-t 04

= —

2 g

k] 5}

E %

e} 3

E c 0.2

c 1072 H

3 =

= 01

0.0

10 0 5000 10000 15000 20000 25000 30000 35000 40000
Parameter dimension p Epochs

p=>50and p =10"*
Source: Geist, Petersen, Raslan, Schneider, Kutyniok. Numerical Solution of the Parametric Diffusion
Equation by Deep Neural Networks. J. Sci. Comput., to appear.
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The performance does not suffer from the curse of dimensionality.

True, we never observed an exponential scaling.
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The performance is very sensitive to parametrization.

True, there are strong differences in the performance.
More complex parametrized sets yield higher errors, whereas simpler
sets or spaces with intuitively lower intrinsic dimensionality yield
smaller errors.
~» The approximation theoretical intrinsic dimension of the parametric
problem is a main factor in determining the hardness!




Interpretation

Hypotheses and Results:
The performance does not suffer from the curse of dimensionality.
True, we never observed an exponential scaling.
The performance is very sensitive to parametrization.

True, there are strong differences in the performance.

More complex parametrized sets yield higher errors, whereas simpler
sets or spaces with intuitively lower intrinsic dimensionality yield
smaller errors.

~» The approximation theoretical intrinsic dimension of the parametric
problem is a main factor in determining the hardness!

Learning is efficient also for non-affinely parametrized problems.

True, there is no fundamental difference of the performance for
non-affinely parametrized problems.




Some Final Thoughts...




Conclusions

Artificial Intelligence:

Impressive performance in real-world applications!

A theoretical foundation of is largely missing!

Generalization: Performance on test data sets?

Mathematics for Deep Learning:

Expressivity: Optimal architectures?

Learning: Controllable, efficient algorithms?

Explainability: Explaining network decisions?

Deep Learning for Mathematical/Physical Problem Settings:

Significantly better solvers of inverse problems.

Beating the curse of dimensionality for partial differential equations..
LM




FACULTY OF MATHEMATICS, INFORMATICS AND STATISTICS
DEPARTMENT OF MATHEMATICS

MATHEMATICAL FOUNDATIONS

OF ARTIFICIAL INTELLIGENCE

THANK YOU!

References available at:
www.ai.math.lmu.de/kutyniok

Survey Paper (arXiv:2105.04026):
Berner, Grohs, Kutyniok, Petersen, The Modern Mathematics of Deep Learning.

Check related information on Twitter at:

@GittaKutyniok
Upcoming Book:

P. Grohs and G. Kutyniok, eds.
Mathematical Aspects of Deep Learning
Cambridge University Press, 2022.
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