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moduli space, the surface area of the boundary will just be the surface area of the boundary

in moduli space. Taking the region R to be a sphere in moduli space of radius r, we find

A(S1)

V (S1)
∼

√
K

r

so the condition Eq. (5.2) becomes

L >
K

r2
. (5.3)

Thus, if we consider a large enough region, or the entire moduli space in order to find

the total number of vacua, the condition for the asymptotic vacuum counting formulas we

have discussed in this work to hold is L > cK with some order one coefficient. But if we

subdivide the region into subregions which do not satisfy Eq. (5.3), we will find that the

number of vacua in each subregion will show oscillations around this central scaling. In

fact, most regions will contain a smaller number of vacua (like S above), while a few should

have anomalously large numbers (like S′ above), averaging out to Eq. (5.1).

5.1 Flux vacua on rigid Calabi-Yau

As an illustration of this, consider the following toy
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Figure 6: Values of τ for rigid CY
flux vacua with Lmax = 150.

problem with K = 4, studied in [1]. The configuration

space is simply the fundamental region of the upper

half plane, parameterized by τ . The flux superpoten-

tials are taken to be

W = Aτ + B

with A = a1 + ia2 and B = b1 + ib2 each taking values

in Z+ iZ. This would be obtained if we considered flux

vacua on a rigid Calabi-Yau, with no complex structure

moduli, b3 = 2, and the periods Π1 = 1 and Π2 = i.

The tadpole condition NηN/2 ≤ L becomes

ImA∗B ≤ L (5.4)

One then has

DW = 0 ↔ τ̄ = −B

A
. (5.5)

Thus, it is very easy to find all the vacua and the value

of τ at which they are stabilized in this problem. We

first enumerate all choices of A and B satisfying the

bound Eq. (5.4), taking one representative of each orbit

of the SL(2, Z) duality group. As discussed in [1], this can be done by taking a2 = 0,

0 ≤ b1 < a1 and a1b2 ≤ L. Then, for each choice of flux, we take the value of τ from

Eq. (5.5) and map it into the fundamental region by an SL(2, Z) transformation. The

resulting plot for L = 150 is shown in figure 6.
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Outline
1. What is string data, and why is it interesting? 

2. Applications of ML methods: 

1. Optimizing vacua via genetic algorithms, reinforcement 
learning; optimization and representation. 

2. Discovering symmetries in near-optimal vacua, from 
forward maps. 

3. Learning CY metrics; differentiable programming for 
strings, supersymmetry.



Forward, Reverse

• Today we will see that ML can help both “forward” and 
“reverse” directions of studying string theory. 

• Forward map: advances in computing Calabi-Yau metrics, 
identifying symmetries in systems… 

• Inverse map: how to pick UV ingredients that give specified 
low-energy physics?

3

model output

UV ingredients “low”-energy physics



I. What is string data?
and why is it interesting?



Why is string data interesting?
• Unifying framework: string models for both particle physics and 

cosmology 

• Plenty of data! In various corners,  or  metastable 
ground states. 

• Computational challenges: integers  NP-hard problems! 

• Data is “pure”: analytic/noiseless descriptions of systems. 
Symbolic regression a possibility? 

• Data has interesting mathematical structure! Opportunity to 
develop new models, explore exotic symmetries.

10500 10272,000

⟹



Why is string data interesting?

• Naïveté: computational methods have been often overlooked 
in the string theory community, so it is likely significant 
advances can still be made.



• In 11D, string theory is unique. When compactified to 10D, we 
have a handful of (related) string theories. 

• There are many 4D vacua specified by a compactification: 

                         

and discrete ingredients (branes, fluxes, …) on the background.

ℳ10 = M4 × CY6

String Data



Landscape of Geometries
• The exact number of distinct CY manifolds is unknown, but it 

is at the least huge. 

• Various classes of constructions. For example, toric varieties. 

• In [Kreuzer, Skarke ’00], all  4d reflexive 
polytopes  were constructed/classified. 

• Each “fine regular star triangulation” of such a  gives a 
toric variety in which the anticanonical hypersurface is a 
smooth Calabi-Yau.

473,800,776
Δ ∈ ℤ4

Δ

8



Triangulations

• Fine: uses all points 

• Star: all simplices contain 
origin 

• Regular: descends from 
higher-dimensional convex 
hull

9

The 16 2d reflexive polytopes

regularity



Landscape of Geometries

• Number of points in 
polytope:  

• Number of triangulations 
grows combinatorially: 

 

• Symmetry was a hint of 
mirror symmetry.

h1,1 + 4

NFRST ≤ ( 4V − 1
h1,1 + 3)

10

χ = 2(h1,1 − h2,1)

h1,
1

+
h2,

1

[Demirtas, McAllister, Rios-Tascon]

h1,1
max = 419 ⟹ NFRST ≤ (14,111

494 ) ≈ 1.53 × 10928



Landscape of Fluxes

• Fix the internal space. 

• Integer fluxes are subject to 
boundedness condition 

 

• Number of fluxes  

• So 

Nflux < Lmax ∼ O(10 − 100)

∼ O(100)

(Lmax)# fluxes ∼ 10500

11

[Ashok, Douglas ‘03]

F-theory:  geometry with  flux choices  [Taylor,Wang]∃ 10272,000



The Shape of Flux Vacua
• Despite the enormous number of vacua, existence of states with 

specific properties is not guaranteed. Most regions are “voids”
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problem with K = 4, studied in [1]. The configuration
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half plane, parameterized by τ . The flux superpoten-
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Thus, it is very easy to find all the vacua and the value

of τ at which they are stabilized in this problem. We

first enumerate all choices of A and B satisfying the
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of the SL(2, Z) duality group. As discussed in [1], this can be done by taking a2 = 0,

0 ≤ b1 < a1 and a1b2 ≤ L. Then, for each choice of flux, we take the value of τ from
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resulting plot for L = 150 is shown in figure 6.

– 38 –

[AC, Shiu]distribution of  
vacua over moduli 

space

[Denef, Douglas]



Intersecting brane landscape

• Intersecting branes lead to non-Abelian gauge groups, chiral 
fermions. 

• Simple toroidal model, count via dynamic programming 
 distinct vacua [Loges, Shiu ‘22]

⟹
∼ 215 × 109

13

six-torus T6



Cooking with strings

• Question: how to arrange “realistic” 
vacuum? 

• Brute force search impossible: the string 
landscape is large and complex. 

geometry fluxes branes

our 
Universe?



• In this regime, computational 
complexity (scaling of algorithms with 
input size) is important.  

• Finding specific vacua is NP-complete 
(i.e. hard, probably exponentially!) in toy 
models [Denef,Douglas; Halverson,Rühle]  

• Q: does string theory realize “worst-case” 
instances of these problems, or is there 
more structure? Can we circumvent 
complexity?

Computational Complexity

[Bousso,Polchinski]



• Computational complexity not always a death sentence:

can we discover favorable structure in string data?
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“fluxes”

“moduli”

Introduce trick: solve approximate EOM, imposing  in “large complex structure limit” 
Then include small corrections for actual EOM, leading to .

|W̃0 | = 0
0 < |W0 | ≪ 1

String theory has special structure that can be exploited!



• When should a local search be feasible? Some intuition via fitness-distance 
correlation (FDC): 

                     

• Fitness is easy to max/minimize if  and  are anti/correlated, or . 

• Note that FDC depends on encoding, or representation. 

• Connection to dualities (see [Betzler,Krippendorf]). For nearest-neighbor Ising 
model:

FDC =
1
N

N

∑
i

( fi − f )(di − di)
σf σd

fi di |FDC | ∼ 1

: fitness 
: distance to optimum

fi
di

 FDCneighbor ∼ − 0.3
FDCdomain = − 1 easier to minimize energy via  

local operations

Representation and Optimization
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et al.



Pure Data
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Pure Data

21

Symbolic formula as tree, optimize via genetic algorithm

Application to gravitational waves: Wong and Cranmer

what can we learn about “noiseless” string data?



II. Applications



Optimization

23



Optimization

• Search problem: find  such that 
. 

• In other words minimize
 

• Lack of gradients (e.g. integer 
optimization), local minima make 
this difficult.

x
f(x) = y0

L(x) = d( f(x), y0) optimization in a landscape

Rastigin function



Genetic Algorithms
• Genetic algorithm [Hollands]: model 

dynamics after natural selection. 

1. Generate a population of candidate 
solutions. 

2. Parents are selected according to 
their fitness.  

3. Parents breed: their genotypes are 
combined according to some 
predefined set of operators. 

4. Children mutate with some probability. [Abel,Rizos],[Rühle], 
[AC,Schachner,Shiu], 
[AbdusSalam et al.]…

ACBB… BBAD… 

CCAD… DDDD… 

AABC… BCCD… 

ACBB… 

BBAD… 
ACAD… 

ACAB… 

selection

crossover

mutation

Repeat 2-4 with children replacing parents.

population



Optimizing Flux Vacua

• Type IIB flux vacua: integer fluxes 
stabilize complex structure moduli 
at specific values. 

• Goal: construct vacua with 
specific physical properties. 

• Integers make life harder.

(F3, H3) →DW=0 (⟨ϕ⟩, ⟨za⟩, …)

(⟨ϕ⟩, ⟨za⟩, …) →DW=0 (F3, H3)

our mission
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0 ≤ b1 < a1 and a1b2 ≤ L. Then, for each choice of flux, we take the value of τ from
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goal: find input that gives 
specific output

integers moduli vevs



Breeding Flux Vacua

Generation

size of nbhd

rapid  
evolution

two extrema 
compete settle into optimum

p = 10000

Population size

Task: search for g*s = 0.3

Two competing optima, cf. “schema”

NA = (3, − 1, * , * , * , − 8, * ,10)

NB = ( * ,4, * , − 7, 41 , − 2, − 33, * )

arbitrary

symmetric T6 = (T2)3

[AC,Schachner,Shiu ’19]

gs



Breeding Branes
• [Loges, Shiu ’21]: genetic algorithms efficient at generating 

consistent models with MSSM gauge group! Preliminary study 
of landscape statistics.



Reinforcement Learning
• RL: agent interacts with environment and receives rewards. Actions 

determined by policy . Policy a function of expected return given policy in 
state, expected return given action in state . 

• Balance between exploration (discover new strategies) and exploitation 
(reward from known good strategy) 

• Deep RL: use neural network to estimate e.g. .

π
Q(s, a)

Q

[book: Sutton&Barto]



RL for flux vacua
• [Krippendorf, Kroepsch, Syvaeri ‘21]: train RL agent to find flux 

vacua satisfying various criteria.

Metropolis

RL (A3C)



Identifying Symmetries
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Towards Statistics
• Reduce sampling bias by combining data from GA and RL [AC, 

Krippendorf, Schachner, Shiu @ NeurIPS ML4PS ’21] 

• Identified unexpected  symmetry relating near-optimal solutions!ℤ2
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structured learning  symbolic regression (  expert inspection) → →



Symmetries from symbolic flux vacua

• Impose (super)symmetry, 
holomorphy for “FluxNet.” Root-
finding is differentiable. 

• Symbolic regression on 
individual components/
networks. 

• Identify  by 
subsequent inspection.

SL(2,ℤ)

34

[AC]



• Explicit CY metrics hard to construct w/ conventional methods. 
They can tell us interesting physics (Yukawa couplings…) 

• Q: where to put flexible ansatz ? 

• Sven can tell us more details :-)

Modelθ

35
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2020 NeurIPS tutorial on Deep Implicit Layers

e.g. root-finding is differentiable! When is this a useful inductive bias?

N.B. this also means that gradient descent is feasible for continuous generalizations 
of search problems in string theory!
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Hard constraints like Sudoku also present in string theory (tadpole cancellation…)



III. Outlook



• The string landscape presents us with a “big data” problem — 
we stand to benefit from novel computational approaches. 

• Gradient-free optimization via genetic algorithms and 
reinforcement learning: not only identify “interesting 
recipes,” but also explore statistics near optimal states 

• Interplay between optimization and representation 

• String theory presents novel data for testing ML approaches 
and developing new computational insights.



Looking forward

• Identifying the proper ML methods (inductive biases etc.) for 
studying string-theoretic data remains an open question. 

• Incorporate modular groups like ? Develop 
symbolic methods? Impose supersymmetry constraints? 
Implicit layers for constrained optimization? 

• What structures are lurking in the data? Can we come up 
with better organizing principles for the landscape and string 
data?

SL(2,ℤ)
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