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Motivation
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Toy Workflow
• In science, we often perform some subdiagram of:
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[Planck ’18]

constrain 
inflationary models
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How we progress

Model Experiment/ 
Observation

Inference

Motivation

DataConclusions

Predictions
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On Earth In the sky

Keep models simple & 
clean 

through experimental 
design

One sky is all we got. We 
have to deal with signals 
and background as they 

are.

slide: C. Weniger



• Advanced computational models allow us to simulate data 
across length scales:
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Length scale [m]

Particle 
colliders

Evolution of 
the Universe

Gravitational 
lensingEpidemics

Neuron 
activity

[Cranmer, Brehmer, Louppe PNAS (2020), arXiv:1911.01429]

• However, forward models are not well-suited for statistical 
inference.

model output
compute

gravitational waves
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Parameter Inference
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likelihood

prior

evidence

: parametersθ

: datax

posterior

• Go from data to constraints using Bayes’ formula 

 

• Classical techniques (Markov Chain Monte Carlo, Nested 
Sampling) use evaluations of the likelihood to accept/reject 
proposed steps, giving (weighted) samples of the joint 
posterior  

p (θ |x) =
p (x |θ) p(θ)

p(x)

p(θ |x), θ = (θ1, θ2, …, θD)



Intractability
• The word intractable often shows up when discussing 

Bayesian inference. 

• What is typically meant is there is a high-dimensional integral 
we don’t have the resources to perform numerically, e.g. 

 (with  high-dimensional). 

• Note that the likelihood can even be intractable, 

 with  latent variables.

p(x) = ∫ dθp(x |θ)p(θ) θ

p(x |θ) = ∫ dηp(x, z |θ) z
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The evidence is  
typically intractable

The likelihood can  
also be intractable

⟹ MCMC, …

⟹ ???



Simulators
• Deterministic evolution of initial state 

• e.g. differential equations, fluid dynamics, 
N-body simulations… 

• Stochastic evolution 

• e.g. Markov processes, molecular 
dynamics, stochastic differential 
equations… 

• Integral over latent variables is typically 

intractable p(x |θ) = ∫ p(x, z |θ)dz

10 Slide: K. Cranmer



Latent vs. Nuisance

• Latent variables: unobserved “data”  

• Nuisance parameter: calibration, etc.  

• Practically, the same consequence — need to integrate/
marginalize to get correct answer! This is often intractable.

p(x, z |θ)

p(x |θ, η)
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Now to formally state “the two problems of classical inference” …



Problem 1: intractable 
likelihood

• For most simulators, we cannot evaluate the full likelihood. 

• In cosmology: large-scale structure, 21-cm field, most late-time 
observations… 

• Practitioners often restrict to theoretically controlled summary statistics 
such as the power spectrum at large scales. 

• We should worry that we’re throwing the baby out with the bathwater.
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21cm field, 
[SKA white paper 

1210.0197]
dirty  

statistics

information



These problems clearly demand more refined summary statistics. 
One option is hand-crafted summaries, e.g. persistent homology for 
large-scale structure, whose likelihoods can be approximated. 
Would prefer more knobs to optimize, theoretical guarantees about 
saturating information content.
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[Biagetti, AC, Shiu (JCAP) ’20; 
AC, Biagetti, Shiu (NeurIPS wksp ’20)]

[Equilateral NG,  
2203.08262] [ CDM, to appear]Λ



Problem 2: scaling

• Even if likelihood is known/
tractable: 

• For realistic inference, one must 
vary over instrumental calibration 
parameters, foreground 
residuals, latent variables… 

• Sampling the joint posterior 
scales poorly with parameter 
space dimension.
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[Handley et al. 1506.00171]

classical inference cost 
w/ dimension



The curse of dimensionality

Parameter of interest

Feroz+ 0809.3437 (MultiNest) 
Handley+ 1502.01856 (PolyChord)

100 Million simulations

50 parameters
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Nsims ∝ N γ
params , γ ≈ 2.5

slide: C. Weniger



There has to be a better way…
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1. High-fidelity physics simulator  

2. Deep learning 

3. ??? 

4. Profit
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2. Simulation-Based 
Inference
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Simulators vs. Likelihoods
• Insight: running a stochastic simulator 

with input  gives an output  that is 
drawn from an implicit likelihood  

• “Simulation-based inference” or 
“likelihood-free inference” or “implicit 
likelihood inference” or … [review: 
Cranmer, Brehmer, Louppe PNAS ’20] 

• Recent rapid progress thanks to deep 
learning algorithms [Papamarkios et al. ’19; 
Greenberg et al. ’19; Hermans et al. ’20; …].

θ x
p(x |θ)

20

θ

θ ↦ x
“simulator”



Neural X Estimation
• Developments use a neural network to approximate some 

quantity in Bayes’ formula: 

 

• Neural Posterior Estimation (NPE) 

• Neural Likelihood Estimation (NLE) 

• Neural Ratio Estimation (NRE)

p (θ |x) =
p (x |θ) p(θ)

p(x)
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(Conditional) Density Estimation
• NLE and NPE both estimate normalized probability densities. 

Consequences: 

• Restricted network architecture: e.g. normalizing flow, mixture 
density model. Can be difficult to train [Papamarkios et al. ‘21] 

• For high-dimensional data, need a compression network. 

• But: can be good inductive bias, especially if posterior or likelihood is 
“perturbation around Gaussian distribution”

22 figure: https://gebob19.github.io/normalizing-flows/

cf. pydelfi [Alsing et al. ’18,’19] 
moment networks [Jeffrey, Wandelt ‘20]



Ratio Estimation
• Ratio estimation is qualitatively different. 

• Train a classifier to distinguish data-
parameter pairs  jointly drawn

 (label ) from marginally 
drawn  (label )

(x, θ)
∼ p(x, θ) y = 1

∼ p(x)p(θ) y = 0
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r(x, θ) ≡

likelihood-to-
evidence ratio classifier

∼ p(x)p(θ)

[Hastie et al., 2001; Sugiyama et al., 2012; Cranmer et. al., 2015]

∼ p(x, θ) ∼ p(x)p(θ)



Ratio Estimation
• Intuitive picture: given two probability distributions , 

best guess for whether  came from  or  is closely related to 
the probability ratio 

 

• Now take . Your classifier has 
learned the likelihood-to-evidence ratio!

q1(x), q2(x)
x q1 q2

q1(x)
q2(x)

q1 = p(x, θ), q2 = p(x)p(θ)
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Vapnik’s principle: “When solving a problem of interest, do not solve a 
more general problem as an intermediate step.” 

q1(x), q2(x)
q1(x)
q2(x)



Ratio Estimation
• Classifiers are very flexible in network architecture. Training is 

also simple. 

• We still find it useful to use a “compression” or “embedding” 
network, which turns complex data  into features .x s

25
NB: this picture actually shows marginal ratio estimation, wait for next slide



Sidebar: Marginal Estimation
• With neural methods, automatic marginalization is possible. 

[Alsing,Wandelt ’19;Hermans et al. ’19; Miller et al. ’20; Jeffrey,Wandelt ‘20] 

• For comparison of various performances, see [Miller et al. ‘21] 

• For example, we define the marginal ratio 

  

which can be directly trained by omitting  from the information 
given to the classifier. We train an individual network for each 
marginal ratio.

r(ϑ, x) ≡
p(x |ϑ)

p(x)
=

∫ dη p(x |ϑ, η)p(η)
p(x)

η
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Marginal Neural Ratio Estimation

27
Vapnik’s principle pt. 2
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Some benefits of automatic marginalization

[Miller et al. ’20; Miller et al. ’21]



Sequential methods/
active learning
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Sequential Methods
• Sequential Neural X Estimation: 

use proposal density to select 
relevant simulations for training: 

• Current posterior estimator 

• Bayesian optimization: balance 
between hunting for best-fit and 
reducing uncertainty in results.  

• Note: definition of marginal X 
means nuisance parameters must 
be sampled from prior! 

30 Sequential Neural Posterior Estimation (SNPE, Papamakarios & Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019),



Truncation

• Sometimes priors are much wider than posteriors. Let’s call the 
relevant region of parameter space . 

• We zoom into the relevant region by approximating  
(requiring ) in a series of rounds. 

• With marginal posteriors,  is approximated via a product of low-
dimensional projections. These can reflect expected correlations.

Γ

Γ
̂p(θ |x) > ϵ

Γ
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[Miller et al. ’20; Miller et al. ’21]

“Truncated Marginal  
Neural Ratio Estimation” 

(TMNRE)



Applications
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Example- CMB PS cosmology
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We can reproduce MCMC results with 3 orders of magnitude fewer simulator runs

Alternative to: 
Long MCMC waiting times [AC et al. ’21 (JCAP)]



Example - LSS and 21cm 
cosmology
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Porqueres+ 2108.04825

Based on HMC

Based 
on 

CNN

Zhao+ 2105.03344

Makinen+ 2107.07405 

Breaking degeneracy 
between DM density 
and power-spectrum 

amplitude

Breaking degeneracy between 

ionisation parameters  and Tvir ζ
Alternative to: 
Hand-crafted summaries



Example - Strong lensing
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Searching light DM halos

Related work: He+ 2010.13221 (similar in spirit, using ABC)

Probing population effects of light dark 
matter halos rather than individual detections

Anau Montel+ 2205.09126

Wagner-Carena+ 2203.00690 (constraining subhalo mass function 
normalization)

Halo mass 
function 
cutoff

Alternative to: 
HMC, parameter reduction, ABC, …

Image credit: Wagner-Carena+ 2203.00690



Example — foreground removal

• exploit “moment network” — directly target marginal mean/
variance [Jeffrey, Wandelt]
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More examples

Brehmer+ 1909.02005, Coogan+ 
2010.07032, Legin+ 2112.05278, 
Wagner-Carena+ 2203.00690, 

Anau Montel+ 2205.09126, 
Coogan+ 2207.xxxxx 

Strong lensing

Effective field theory
Morrison+ 2203.13403

GW parameters
Delaunoy+ 2010.12931, Dax+ 2106.12594, …

Mishra-Sharma+ 2110.01620
Fermi GeV excess

Mishra-Sharma+ 2110.06931
Astrometry

Stellar streams
Hermans+ 2011.14923
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Truncation: Strong lensing
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Target mock observation

Round 1 Round 2 Round 6

…

Truncation focuses training data generation in the 
regions of the parameter space most relevant for 
analysing a particular observation.

Tr
ai

ni
ng

 d
at

a

Algorithm: “Truncated Marginal Neural Ratio Estimation” (TMNRE)
Miller+ 2107.01214 (truncated priors) 



Software and 
Benchmarking
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Software

https://www.mackelab.org/sbi

https://www.mackelab.org/sbi


swyft

41

Amsterdam, Nov 2022

• A python library built on pytorch/
lightning 

• “Official” implementation of Truncated 
Marginal Neural Ratio Estimation 
(TMNRE) algorithm 

• Makes it simple to estimate marginal 
posteriors for very high dimensional 
models 

• https://github.com/undark-lab/swyft

Crash course 
• Bring your own 

simulator 
• Learn deep learning & 

TMNRE

• Sign up to the Email list: shorturl.at/cdfw3

Software

https://github.com/undark-lab/swyft
http://shorturl.at/cdfw3
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Demo?
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https://github.com/undark-lab/swyft/blob/master/notebooks/Examples%20-
%201.%20Custom%20networks.ipynb 

https://github.com/undark-lab/swyft/blob/master/notebooks/Examples%20-%201.%20Custom%20networks.ipynb
https://github.com/undark-lab/swyft/blob/master/notebooks/Examples%20-%201.%20Custom%20networks.ipynb


Consistency
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Amortization and Consistency
• Once trained, our network can rapidly generate posteriors for 

any data drawn from . Called “amortization.” 

• This enables rapid tests of statistical consistency that are 
not possible with sampling-based methods.

p(x |θ)pΓ(θ)
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Amortization and Consistency
• We can therefore draw many samples from our simulation 

bank, generate posteriors, and see how often the true 
parameters lie within the credible region.N %
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Amortization and Consistency
• We compare the network’s predictions to the empirical coverage to 

assess convergence and ensure our network is not overconfident. 

• This consistency test makes no reference to likelihoods or the true 
parameters of observed data.

47 still converging… converged!
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Trouble in paradise???
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Gaussian model with wrong variance



Discussion
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Summary

• Simulation-based inference is making rapid progress with 
new deep learning algorithms.  

• Several routes: NPE, NLE, NRE, sequential/active methods…. 

• Already available software implementations.
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Discussion

• Many cool applications of SBI I haven’t mentioned: 
neuroscience, epidemiology, particle physics, … 

• Ongoing work examines consistency, how modifications to 
vanilla algorithms can avoid mistakes, improving efficiency. 

• Together we can unlock the full scientific content of the data 
we measure!
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