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Overview: Machine learning for quantum many-body physics
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1) Phase classification: supervised/unsupervised (+ many different physical 
systems) & characterizing phases 

2) Interpretability (analysis of bottlenecks, (symbolic) regression, CCNN 
architecture, Hessian based approach,…) 

3) Neural network quantum states 
• Representation — learning the state 
• Finding ground states/dynamics 

4) Reinforcement learning  
• Quantum error correction/state control 
• Experiment design 
• … 

5) Quantum machine learning

See e.g. Dawid et al., Mach. Learn.: Sci. Technol. 3 (2021)

Original work: Carleo & Troyer, Science 355 (2017) 

Review: Torlai & Melko, Annu. Rev. Condens. Matter Phys. (2020) 

Original work: Carrasquilla & Melko, Nature Physics 13 (2017) 

See e.g. Melnikov et al., PNAS 115 (2017)

See e.g. Biamonte et al., Nature 549 (2017)

Recent review: Dawid et al., arXiv:2204.04198
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What problems are we trying to solve
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Some (interesting) model with some 
tuning parameter

Some Input Some (machine learning) method

• (quantum) magnetism 
• Topological transition 
• Non-equilibrium dynamics 
• Characterize a quantum 

system 
• …

• Spin configurations 
• Expectation values of 

observables 
• Quantum states 
• Entanglement spectra 
• …

• Supervised and 
unsupervised methods 

• Different neural network 
architectures  

• Support vector machines 
• …
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Machine learning phases of matter
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LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS4035
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Figure 1 | Machine learning the ferromagnetic Ising model. a, The output layer averaged over a test set as a function of T/J for the square-lattice
ferromagnetic Ising model. The inset in a displays a schematic of the fully connected neural network used in our simulations. b, Plot showing data collapse
of the average output layer as a function of tL1/⌫ , where t=(T �Tc)/J is the reduced temperature. Linear system sizes L= 10,20,30,40 and 60 are
represented by crosses, up triangles, circles, diamonds and squares, respectively. c, Plot of the finite-size scaling of the crossing temperature T⇤/J (down
triangles). d–f, Analogous data to a–b, but for the triangular Ising ferromagnet using the neural network trained for the square-lattice model. The vertical
orange lines signal the critical temperatures of the models in the thermodynamic limit, Tc/J=2/ ln(1+

p
2) for the square lattice17 and Tc/J=4/ ln3 for the

triangular lattice19. The dashed vertical lines represent our estimates of Tc/J from finite-size scaling. The error bars represent one standard deviation
statistical uncertainty (see Supplementary Information).

and the high-temperature states are distinguished by their spin–spin
correlation functions: power-law decay at T = 0, and exponential
decay at T =1. Instead we feed raw Monte Carlo configurations
to train a neural network (Fig. 1a) to distinguish ground states
from high-temperature states (Fig. 2a,b). For a square-ice system
with N = 2⇥ 16⇥ 16 spins, we find that a neural network with
100 hidden units successfully distinguishes the states with a 99%
accuracy. The network does so solely based on spin configurations,
with no information about the underlying lattice—a feat di�cult for
the human eye, even if supplemented with a layout of the underlying
Hamiltonian locality.

We now examine an Ising lattice gauge theory, the prototypical
example of a topological phase of matter, without an order param-
eter at T = 0 (refs 8,20). The Hamiltonian is H =�J

P
p

Q
i2p � z

i ,
where the Ising spins live on the bonds of a two-dimensional square
lattice with plaquettes p (see Fig. 2c). The ground state is again a
degenerate manifold8,21 with exponentially decaying spin–spin cor-
relations. As in the square-ice model, we attempt to use the neural
network in Fig. 1a to classify the high- and low-temperature states,
but find that the training fails to classify the test sets to an accuracy
of over 50%—equivalent to simply guessing. Instead, we employ a
convolutional neural network (CNN)3,22 which readily takes advan-
tage of the two-dimensional structure as well as the translational
invariance of the model. We optimize the CNN in Fig. 2d using
Monte Carlo configurations from the Ising gauge theory at T = 0
andT =1. The CNNdiscriminates high-temperature from ground
states with an accuracy of 100% in spite of the lack of an order
parameter or qualitative di�erences in the spin–spin correlations.

We find that the discriminative power of the CNN relies on the det-
ection of satisfied local energetic constraints of the theory, namely
whether

Q
i2p � z

i is either +1 (satisfied) or �1 (unsatisfied) on
each plaquette of the system (see the Supplementary Fig. 5). We
construct an analytical model to explicitly exploit the presence of
local constraints in the classification task, which discriminates our
test sets with an accuracy of 100% (see Supplementary Fig. 6).

Notice that, because there is no finite-temperature phase
transition in the Ising gauge theory, we have restricted our analysis
to temperatures T =0 and T =1, only. However, in finite systems,
violations of the local constraints are strongly suppressed, and the
system is expected to slowly cross over to the high-temperature
phase. The crossover temperature T ⇤ happens as the number of
thermally excited defects ⇠N exp(�2J�) is of the order of one,
implying T ⇤/J ⇠1/ ln

p
N (ref. 23). As the presence of local defects

is the mechanism through which the CNN decides whether a
system is in its ground state or not, we expect that it will be
able to detect the crossover temperature in a test set at small but
finite temperatures. In Fig. 3 we present the results of the output
neurons of our analytical model for di�erent system sizes averaged
over test sets at di�erent temperatures. We estimate the inverse
crossover temperature �⇤J based on the crossing point of the low-
and high-temperature output neurons. As expected theoretically,
this depends on the system size, and as shown in the inset in Fig. 3,
a clear logarithmic crossover is apparent. This result showcases the
ability of the CNN to detect not only phase transitions, but also
non-trivial crossovers between topological phases and their high-
temperature counterparts.
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2D Ising model at finite temperature 
Input: spin configurations 

Method: fully connected neural network

LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS4037
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Figure 1 | Learning the topological phase transition in the Kitaev chain. a, Evolution of the entanglement spectrum as a function of the chemical potential µ.
Here we plot the largest four eigenvalues of the reduced density matrix ⇢A. The degeneracy structure is clearly observable. b, Principal component
analysis of the entanglement spectrum. All data points are shown in the plane of the first two principal components y1 and y2. c, Supervised learning
with blanking. The shaded region is blanked out during the training phase, and the NN can still predict the correct transition point µ=�2t. d, P(µ0

c),
evolution of the accuracy of prediction, as a function of the proposed critical point µ0

c, which shows the universal W-shape. See text for more details.
(Parameters for training: batch size Nb = 100, learning rate ↵=0.075 and regularization l2 =0.001. See the Methods for an explanation of these terms.)

the generalizing power of the NN by blanking out the training
data around the transition, and show that it can still predict
the transition accurately. We then purposefully mislabel the data,
thereby confusing the network, and introduce the characteristic
shape of the networks’ performance function.

The Kitaev chain model is defined through the following
Hamiltonian:

Ĥ =�t
LX

i=1

�
ĉ†
i+1ĉi + ĉi+1ĉi +h.c.

�
�µ

LX

i=1

ĉ†
i ĉi (1)

where t > 0 controls the hopping and the pairing of spinless
fermions alike andµ is a chemical potential. The ground state of this
model has a quantum phase transition from a topologically trivial
(|µ|>2t) to a non-trivial state (|µ|<2t) as the chemical potential
µ is tuned across µ=±2t .

We use the ES to compress the quantum-mechanical
wavefunction. The ES is defined as follows. The whole system
is first divided into two subsets A and B, after which the reduced
density matrix of subset A is calculated by partially tracing out
the degrees of freedom in B, that is, ⇢A = TrB| ih |. Denoting
the eigenvalues of ⇢A as �i, the ES is then defined as the set of
numbers � ln�i. It is important to remark that various types of
bipartition of the whole system into subsets A and B exist, such as
dividing the bulk into extensive disconnected parts26, divisions in
momentum space27 or indeed even random partitioning28. In this
work, we use the usual spatial bipartition into left and right halves
of the whole system.

As shown in Fig. 1a, the ES of the Kitaev chain is clearly
distinguishable in the two phases, especially since the non-trivial
phase has a degeneracy structure as do all symmetry-protected
topological phases18. This feature is clear also for human eyes,
and a machine-learning routine is overkill. We use this model for
demonstration purposes and in the following, we will apply the

introduced methodology to more complex models. The data for
machine learning are chosen to be the largest 10 eigenvalues �i, for
L= 20 with an equal partitioning LA = LB = 10, and for various
values of �4tµ0.

First we perform unsupervised learning, using an established
method for feature extraction. The entanglement spectra are
interpreted as points in a 10-dimensional space, andwe use principal
component analysis (PCA)29 to extract mutually orthogonal axes
along which most of the variance of the data can be observed. PCA
amounts to a linear transformation Y =XW , where X is an N ⇥10
matrix containing the entanglement spectra as rows (N =104 is the
number of samples).

The orthogonal matrixW has vectors representing the principal
components !` as its columns, which are determined through the
eigenvalue equation XTX!` = �`!`. The eigenvalues �` are the
singular values of the matrix X , and are hence non-negative real
numbers, and we normalize them such that

P
�` = 1. The result

of PCA is shown in Fig. 1b, and it is indeed possible to cluster the
spectra into three sets: µ<�2t , µ=�2t and µ>�2t .

We now turn to training a feedforward NN on the
10-dimensional inputs, and refer to the online Methods and
ref. 30 for more details. For completeness, we mention the essentials
of NNs in Fig. 2.

We train the network with 80 hidden sigmoid neurons in a single
hidden layer, and 2 output neurons. The first/second output neuron
predicts the (not necessarily normalized) probability for the data to
be in trivial/non-trivial phase, and the predicted phase is the phase
with the larger probability. We use stochastic gradient descent and
l2 regularization to try to minimize a cross-entropy cost function.
The network easily learns to distinguish the spectra and is able to
generalize to unseen data points.

Arguably the most important objective of machine learning in
general is that of generalization. After all, learning is demonstrated
by being able to perform well on examples that have not been
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1D Kitaev chain 
Input: entanglement spectra 

Method:  learning by confusion (with neural net)

Nieuwenburg et al., Nature Physics 13 (2017) 
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(a) (b)

FIG. 2. The output of the neural network directly provides a mean-
ingful estimate of the phase diagram for a finite system N = 12
(background in (a)) from just 50 disorder realizations, while tradi-
tional quantities, like the gap statistics (background in (b)) are still
far too noisy. The dots in (a) are the extrapolated phase boundary in
the thermodynamic limit obtained from 100 disorder realizations via
the data collapse for systems up to N = 18, shown exemplary for
✏ = 0.5 in Figure 3. The symbols in (b) are the phase boundaries
found in [13] based on the average adjacent gap ratio r (triangles)
and the dynamical spin fraction f (triangles pointing downwards) for
systems of size up to N = 22 and vastly more disorder realizations
(the data collapse plots for all values of ✏ are shown in the Appendix
in Figure 4).

Another interesting feature in which our method differs
from average adjacent gap ratio (as well as most other quan-
tities that have been used in exact diagonalization studies so
far) is the value of the scaling exponent ⌫. Our method consis-
tently yields ⌫ ⇡ 1.6, independent of the energy range and the
precise choice of the training data (under the condition that
it is sufficient to ensure convergence of the training), while
the average adjacent gap ratio yields ⌫ ⇡ 0.9 [13]. Both ex-
ponents violate the (heuristic) Harris criterion, which for one
spacial dimension predicts ⌫ > 2 [25, 26], but the larger value
of our “order parameter” is closer to the predicted value and
there is hope that by moving to even larger system sizes, the
best data collapse will be obtained with ⌫ ⇡ 2. This is another
indication that our automatically detected “order parameter”
suffer less from finite size effects than more traditional quan-
tities. The size of the region in which the network is unsure
which label to assigned shrinks during training and eventually
converges. It is a natural measure for the broadening of the
phase transition due to finite size effects.

Our method has a number of additional desirable properties.
The intermediate values of the average adjacent gap ratio do
not have a physical meaning, whereas the output of the neural
network has an immediate interpretation as to how certain the
phase prediction is. The predicted values of hc and the sizes
of the plateaus are stable against changing the regions from
which the first kind of training data is generated. The aver-
age adjacent gap ratio, actually attains the Poisson value at
the integrable point at h = 0 and it moreover fails to capture
the transition if one does not restrict to a fixed magnetization
sector. Our method does not suffer from either of these two
drawbacks.

Importantly, the computational time for training and eval-

(a) (b)

FIG. 3. Exemplary output (a) of the neural network at normalized
energy ✏ = 0.5 averaged over 50 disorder realizations and the data
collapse (inset) to determine the position of the phase transition hc in
the thermodynamic limit. The average adjacent gap ratio r is still far
too noisy (b) to obtain a good collapse (inset) for the same amount
of averaging. The error bands show the ensemble standard deviation
s = (

PN
i (xi � x̂)2/(N � 1))1/2 of the disorder average.

uating the output of the adversarial neural network is almost
negligible compared to the time it takes to generate states for
mapping out the phase diagram. As much fewer disorder real-
izations are necessary per point, this yields a huge net gain in
computational time. Our approach thus will allow to meaning-
fully include states from larger system sizes, which can now
be generated with state-of-the-art shift invert algorithms [16],
into studies of MBL.

IV. CONCLUSIONS

We have demonstrated that ML can be used to automate the
task of identifying relevant features that most efficiently cap-
ture the physics of phase transitions in quantum systems — a
formidable task so far reserved for human researchers. Con-
cretely, the competitive process of adversarial domain adapta-
tion, is able to “invent” a new “order parameter” for the MBL
phase transition that yields meaningful results from vastly
fewer disorder realizations than established methods.

It seems fair to say that the resulting quantity actually cap-
tures the essential physics, as the network, once trained, can
correctly identify the phase transition not only at different en-
ergy densities, but also in similar but distinct models. This is
remarkable, since the MBL transition has mostly defied ana-
lytical approaches and even the question of what is the best
way to delineate the phase could not be resolved in a satis-
factory way. Our method is directly applicable to other non-
standard critical phenomena beyond MBL and can be used to
distinguish multiple phases, even across different classes of
models, as long as their Hilbert spaces are compatible [24].

As the automatic feature identification does not rely on a
human understanding of the underlying physical processes,
our approach has the potential to lead to new insights into
poorly understood many-body phenomena such as MBL or
topological phases through an analysis of the feature extrac-
tion layer. The tools for this are still in their infancy, but evolv-

Many-body localization 
Input: eigenstates of the Hamiltonian 

Method: Adversarial training (two neural nets)

Huembeli et al., PRB 99 (2019)
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FIG. 2. Probabilities of the superfluid phase Psf for the Bose-
Hubbard model on the triangular lattice with different values of N
and t/U at β = 100 and L = 12. Inset: The corresponding variances
of the predictions.

which can be directly related to the winding of configuration
space in the imaginary time direction. Extracting this winding
requires knowledge about the imaginary time direction and
cannot be extracted from a single time slice. Moreover, we
find that all the curves approximately cross at the critical
point, and N = 64 is nearly converged.

The above example shows that the deep learning model
can well predict the quantum phases and related continuous
phase transition. However, the quantum phase transition could
also be first order or an intermediate phase could emerge
between two phases. A question we address now is whether
deep learning can predict the existence of the intermediate
phase without “knowing” it. For this we consider an extended
hard-core Bose-Hubbard model on the triangular lattice,

H = −t
∑

〈i j〉
(b†

i b j + H.c.) + V
∑

〈i j〉
nin j + µ

∑

i

ni, (3)

where V denotes the repulsive interaction between nearest-
neighbor sites, hard core implies that only occupancies ni =
0, 1 are allowed, and µ is the chemical potential. The phase di-
agram is shown in Fig. 3(a). The solid phase breaks the trans-
lational symmetry and the superfluid phase breaks the U(1)
symmetry. Interesting, there is an intermediate supersolid
phase which breaks both symmetries [38–47]. The triangular
lattice is composed of three sublattices. The solid phase can be
viewed as two sublattices being fully occupied and the other
one is empty. A qualitative picture of the supersolid phase
is a doped solid with holes that can move on a honeycomb
sublattice [38].

Following the same strategy as above, we collect the sam-
ples deep in phases from regions marked with color blocks
in Fig. 3(a), and the length of the imaginary time is around
7 × 104. After data compression, we feed them into the deep
learning model for training. Next, we run the prediction in the
whole parameter region. As shown in the inset of Fig. 3(b),
a first-order phase transition is clearly reflected by the sud-
den jump of the prediction of the probabilities of the solid
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FIG. 3. (a) Phase diagram of the extended hard-core Bose-
Hubbard model on the triangular lattice (with size L × L, L = 12)
calculated by QMC [38]. The red and blue rectangles are the re-
gions which we use as the training set. (b) The predictions of the
probabilities of the solid phase with different N on the trajectory
along the black dashed line in (a). The inset is the predictions
of the probabilities of the solid phase during the first-order phase
transition along the trajectory marked with the black line [µ/V = 4.5
and t/V ∈ [0.186, 0.196] with step δ(t/V ) = 0.002] at the top right
corner in (a). (c1)–(c4) Predicted phase diagrams with N = 32, 64,
128, and 256, respectively.

phase. Because of the large difference between the solid and
superfluid phase, even small N can present the discontinuity
of the phase transition. In order to check the behavior of
the deep learning model to the “unknown” supersolid phase,
we choose the “L” shape trajectory, going from µ/U = 4.5
to 3.0 with fixed t/U = 0.08, and then going from t/U =
0.08 to 0.20 with fixed µ/U = 3.0. The predictions of the
probabilities of the solid phase Ps are plotted in Fig. 3(b) (the
probability of the superfluid phase is Psf = 1 − Ps). In contrast
to the continuous quantum phase transition, decreasing the
compression rate makes the curve more smooth. In other
words, the deep learning model becomes more “confused”
in the supersolid phase when taking into account more data.
If we label the region with Ps ∈ (0, 1) as the intermediate
region, from the predictions on the whole phase diagram in
Figs. 3(c1)–3(c4) with N = 32, 64, 128, and 256, we can
find the intermediate region approaches the real boundary of
the supersolid phase. The neural network has been trained to
recognize the superfluid and solid phase. When it faces the
coexisting order in the intermediate phase, the different con-
tributions from the supersolid will intensify the corresponding
output neurons such that the prediction value is neither zero
nor one. As a complementary test, we performed simulations
with three output neurons—including one additional neuron
to learn the intermediate phase. Using an enlarged training set,
we find a phase diagram identical to the one identified by the
“confusion” approach discussed above (see the Appendix for
details).

In brief, the relation between the prediction of probability
and compression strength can be used to distinguish the direct
quantum phase transition and intermediate phases. The reason

121104-3

Mott insulator to superfluid transition 
Input: QMC configurations from SSE 

Method: convolutional neural network

Dong et al., PRB 99 (2019)



Annabelle Bohrdt

ASC summer school 20226

Topological phase diagram of Haldane model 
Input: experimental time of flight images 

Method: convolutional neural network

Machine learning phases of matter

LETTERS NATURE PHYSICS

two Chern numbers in a small transition region with a full width of 
100–200 Hz, which is due to the inhomogeneity of the system.

We use the same trained network to map out the entire two-
dimensional phase diagram using just a few images per parameter 
set. In Fig. 2c we plot the expectation value of the Chern number 

= ∑ ×=−C C PC 1
1

C as a function of the shaking frequency and shak-
ing phase. The network identifies the two lobes with Chern numbers 
−1 and +1, which are characteristic for the Haldane model, in quan-
titative agreement with a numerical calculation of the Floquet sys-
tem (see Methods). The identification from single snapshots allows 
mapping out the full two-dimensional Haldane phase diagram.  

Fully connected layer Classification
(Softmax)

Input image (151 × 151 pixel) Convolutional layer
8 filter (5 × 5 pixel)

C = −1

...
 

Neuron

C = +1

C = 0

Fig. 1 | Using a neural network to identify physical phases from experimental images. Single images of the density of atoms in momentum space after 
time-of-flight (false-colour representation of a single-channel image) serve as input for a deep convolutional neural network with a variety of layers 
including convolutional filters and fully connected layers. The white line represents the sliding of the filters across the input image. The final softmax 
layer outputs the probability that the image belongs to one of the classes (here, Chern numbers C!=!−1, 0 or 1). The weights of the network are trained on 
many labelled images and the network can then classify an unknown single image with high confidence. This approach—originally developed for image 
recognition—works well for identifying physical quantum phases from experimental images.
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Fig. 2 | Mapping out a topological phase diagram using a neural network. 
a, Examples of single experimental images of ultracold fermionic atoms 
released from the driven optical lattice. The shaking phase is ϕ!=!−90° and 
the shaking frequencies are ω/2π!=!5.0!kHz (C!=!0), ω/2π!=!6.4!kHz (C!=!1) 
and ω/2π!=!7.8!kHz (C!=!0), respectively. The images are 151!×!151 pixels 
in size centred around zero momentum and include the full first Brillouin 
zone (white hexagon). b, Probability for the different Chern number classes 
as identified by the trained neural network. The network was trained for 
Floquet frequencies far away from the phase transitions (grey, thin short 
lines in c). The probability is averaged over the results for 47 individual 
images and the error bars denote Clopper–Pearson 68% confidence 
intervals using the Wald method. We identify the positions of the phase 
transitions at 6.124(3)!kHz and 6.869(3)!kHz by fitting an error function 
to the data and extracting the point of 50% probability. The dashed lines 
show the transitions as expected from an ab initio numerical calculation. 
The inset illustrates the tight-binding scheme of the Haldane model with 
the staggered fluxes through the subplaquettes. c, The Haldane-like 
phase diagram of the Floquet system obtained from 10,436 evaluated test 
images (3–7 images per parameter) using a neural network trained at the 
parameters indicated by the grey lines (in total 15,963 images for training 
and 3,992 images for validation of the network). The training regions cover 
only 3% of the phase diagram. The solid lines indicate the predicted phase 
transitions from our ab initio numerical calculation. d, The circles show the 
positions of the phase transitions for circular shaking (ϕ!=!−90°) at varying 
lattice depths V identified by a network trained with the data at V!=!7.4!Er 
(see Methods). The error bars denote the width of the error function 
fitted to the network output as in b. The lines show the predicted phase 
transitions from our ab initio numerical calculation with the red regions 
indicating the systematic uncertainty calculated for an error of 0.2° on 
the polarization of the lattice beams. Source data for b–d are provided in 
Supplementary Data 1–3.

NATURE PHYSICS | VOL 15 | SEPTEMBER 2019 | 917–920 | www.nature.com/naturephysics918

Rem et al., Nature Physics 15 (2019)
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• Directly looking at weights 
• Bottleneck based approach 
• Support vector machines 
• Hessian based approach 
• Taylor expansion type approach 

• Correlator convolutional neural network

An incomplete and biased overview
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Basics of machine learning
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Figure 2.6: Illustration of (a) a typical fully-connected (here: single-layer) NN and
(b) one of its neurons (simple perceptron) and the computations associated with it.

2.4.4 Neural networks

Artificial neural networks (ANNs), typically referred to as neural networks (NNs), are a large
class of models used to process data in ML tasks. They are parametrized functions that are
themselves composed of many simple functions. As the name suggests, ANNs were originally
proposed by taking inspiration from the neural networks that constitute our brains. They are
typically composed of interconnected layers that sequentially process information, see fig. 2.6.
Each layer contains multiple nodes or units, also called artificial neurons or perceptrons27. Each
node i takes as input a vector x = (x1, x2, . . . , xm) 2 Rm, corresponding to the activations of
all nodes in the previous layer. Each node outputs a scalar value y 2 R (its activation) that
is computed as y = f (w¸i x+ bi), where the parameters wi 2 Rm and bi 2 R are the node’s
weights and bias, respectively. The weights of a node control the strength of its connection
to the neurons of the previous layer. The function f is a non-linear function called activation
function. Common choices are the rectified linear unit (ReLU)

f (x) =max(0, x), (2.44)

the sigmoid function (eq. (2.36)), or the tanh function

f (x) = tanh(x) =
ex � e�x

ex + e�x
. (2.45)

The first layer is called input layer, where the activations of its nodes are set according to
the vector x encoding the input data. The last layer is called output layer and the activations
of its nodes constitute the output of the NN. All intermediate layers are called hidden layers.
NNs where each node is by default connected to all nodes in the subsequent layer are referred
to as fully connected. The number of layers, nodes, and their connections is known as the
architecture of an NN. NNs are considered deep if they are composed of many hidden layers28.
ML methods based on deep neural networks (DNNs) as models fall under the name of DL [7].

A central question regarding NNs is what types of functions they can represent (recall our
previous discussion on traditional ML vs. DL). First, consider an NN without its nonlinear
activation functions. The function realized by such an NN is a simple affine map, i.e., con-
sists of multiplying the input by a weight matrix and adding to it an additional bias vector.

27Here and in the following, we refer to the modern perceptron introduced by Minsky and Papert [62] which
can contain smooth activation functions in contrary to the Heaviside step function utilized in Rosenblatt’s original
perceptron [63].

28There is no clear consensus on the threshold of depth that divides shallow and deep NNs.

35

Image: Dawid et al., arXiv:2204.04198
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FIG. 3. (a), (b) The distribution of the (absolute values of) weights w(2)
j between the hidden layer neurons and the output neuron in an

ANN with RELU neurons, (a) at random initialization before, and (b) after training. In the case shown, jmax is the very first neuron with j = 1.
(c), (d) The distribution of weights w(1)

jmax,i associated with the input i for the dominant neuron jmax, (c) at random initialization before, and
(d) after training. Here i labels the type of triangle, the real and imaginary parts of the contributions, and the lattice position !r = (x, y). The
major contribution to the output comes from the imaginary parts of the correlations from the four d = 1 triangles (see Fig. 1), whose weights
are depicted in red, yellow, green, and blue, respectively. In comparison, the weights associated with other inputs are much closer to zero even
after training, as illustrated by the w(1)

jmax,i distributions in magenta.

as the quantum spin-Hall insulator, with a quantized spin-Hall
conductance and a vanishing charge Hall conductance. The
characteristic Z2 topological invariant is only known as a loop
integral

I = 1
2π i

∮
d!k · ∂!k ln[Pf(!k) + iδ], (8)

of the phase winding of the Pfaffian Pf(!k) =
Pf[〈un(!k)|$|um(!k)〉] over a contour in momentum space
enclosing half the Brillouin zone [36], where n and m
are band labels, and $ is the time-reversal operator. A
position-basis expression for the Z2 index I , the counterpart
of Eq. (2) for the Chern number, is not known in general.

In the presence of spin sz conservation, a Z2 TI is equiv-
alent to two copies of Chern insulators, with σ ↑

xy = 1 for the
spin-up (sz =↑) electrons and an antichiral quantum Hall in-
sulator σ ↓

xy = −1 for the spin-down electrons (sz =↓). Hence
Eq. (2) for each spin component will serve as a position-basis
expression for the Z2 index. It is known, however, that the
Z2 TI state is well defined through the momentum space

expression for the Z2 index Eq. (8), even when the Rashba
spin-orbit coupling breaks sz conservation.

We turn to the physical response of an effective spin current
to a transverse electric field: the spin-Hall conductivity. Shi
et al. [40] introduced the effective spin current in spin-orbit
coupled systems, in the absence of average torque, as a time
derivative of the spin-displacement operator: Ĵs = dr̂ŝz

dt =
1/h̄[H, r̂ŝz]. The flat-band Hamiltonian is defined as Ĥ ′ =
1 − P̂, where P̂ is the projection operator onto the valence
band of H . Ĥ ′ is adiabatically connected to the model Hamil-
tonian H , and thus shares the topological properties such
as the spin-Hall conductivity and the Z2 topological index.
According to the Kubo formula, the spin-Hall conductivity of
H ′ is

trP[P, xŝz][P, y]

=
∑

( jkl,sz
j ,s

z
k ,s

z
l

Pj,sz
j ;k,sz

k
Pk,sz

k ;l,sz
l
Pl,sz

l ; j,sz
j

(
ŝz

jx j − ŝz
kxk

)
(yk − yl ),

(9)

where Pj,sz
j ;k,sz

k
≡ 〈c†

j,sz
j ;
ck,sz

k
〉 are the two-point correlators of

H and the summation is over all triangles, with vertices j,
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FIG. 8. The application of supervised machine learning on the
Z2 lattice gauge theory uses Monte Carlo samples of the smallest
Wilson loops, the plaquettes, as inputs to the ANN. The ANN
consists of neurons with RELU activation functions.

samples of the smallest Wilson loops Wp on the L = 12 dual
lattice as the inputs to the ANN (see Fig. 8).

We use normalized Monte Carlo samples of the set of Wp
for the two distinctive phases above (λp = 0.83) and below
(λp = 0.68) the critical value as the training set, with λb =
0.1, to perform the supervised learning. In Ref. [12], the phase
diagram mapped out for the λb/λp plane by the optimized
ANN was found to be in good agreement with the value of Tc
determined by finite-size scaling of Monte Carlo data, giving
confidence in that phase diagram. As in the earlier sections,
we use a shallow ANN with RELU neurons (see Fig. 8). An
inspection of an ANN trained to correctly distinguish phases
of the Z2 lattice gauge theory (Z2 topological order) shows
multiple hidden layer neurons to participate. This is shown in
the distribution of weights w(2)

j in Fig. 9. As in the case of the
Z2 TI (see Sec. III), this implies that the decision boundary
criterion for the Z2 lattice gauge theory is also a nontrivial
function of the inputs.

To gain insight into the function that the ANN learns,
we introduce nonlinearity within the preprocessing so that
the target function can be represented approximately linearly.
For this, we include asymptotically higher-order terms of the
normalized inputs xi as new inputs, in exchange for reducing
the width of the hidden layer. This way, we aim to deter-
mine the nature of the nonlinearity captured in Fig. 9. In
particular, we can include higher-order terms xix j in the input
for further training steps when the inputs xi and x j show a
strong correlation at the current step, for instance y(xi, x j ) +
y(x j, xi ) − 2y(xi/2 + x j/2, xi/2 + x j/2) with all other inputs
omitted in the expression. For simplicity, we limit ourselves
to the quadratic order of the original inputs, related to Wp for
the study of the Z2 lattice gauge theory. In the meantime,
we gradually reduce the hidden layer width of the RELU
neural network to approach the linear limit, and eliminate
newly included inputs that do not contribute significantly
to the output, reducing the width while maintaining perfor-
mance (see Fig. 10). When the supervised machine learning
of the RELU neural network finally converges with a small
hidden layer width, the ANN can be interpreted as in the

FIG. 9. The distribution of the absolute values of the weights
between the hidden layer neurons and the output neuron. The deci-
sion boundary for the Z2 lattice gauge theory (Z2 topological order)
involves the interplay between multiple hidden layer neurons.

linear function formalism of Sec. II. In comparison with
Taylor expansion [33,34], our anatomy of the ANN is both
automated and relatively cost-efficient, as only higher-order
contributions deemed relevant are retained in the end. Also,
our algorithm mainly offers a preprocessing of the inputs,
which can complement Taylor expansion of the ANN for a
nonlinear decision function in terms of the inputs.

The above iterative approach singles out the products of
neighboring inputs (see Fig. 11) as new inputs that simulta-
neously permit the hidden layer width to shrink to as narrow
as three neurons wide and contribute with the most weight.
Here we averaged over the weights for the inputs of identical
geometry to obtain the relative contributions w̄(1)

jmax
for each

type of higher-order inputs. The selection of the higher-order
inputs and their weights offers much insight into the learning
of the ANN. Firstly, it is notable that products of more distant
inputs are left out. The new higher-order inputs are exclusively
those that combine two smaller loops from the initial input
to form a larger loop. This is a feature that is commensurate
with expectation for the Abelian gauge theory, for which small
Wilson loops fuse to form larger Wilson loops. Secondly, the
fact that the new larger loops acquire larger weight compared
to the original small loop indicates that the ANN’s criteria
are consistent with expectation for a deconfinement transition
of the Z2 lattice gauge theory. For a rigorous identification

FIG. 10. A supervised machine learning framework that progres-
sively includes higher-order terms of the original inputs to handle the
nonlinearity, and reduces the hidden layer width for interpretability.
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that govern the phenomena of interest. One viable interpretive
method is Taylor expansion, which has succeeded in the
extraction of certain order parameter expressions [33] and
even laws of physics [34,35]; however, its complexity quickly
evolves out of control as the ANN architecture or the target
function becomes more complicated.

Here we consider three investigations of topological quan-
tum phase transitions, each using a shallow fully connected
feed-forward neural network. The quantum phase transitions
are between topologically trivial states and three distinct topo-
logical phases in two spatial dimensions: a time-reversal sym-
metry breaking Chern insulator (CI), a time-reversal-invariant
Z2 topological insulator (TI), and a Z2 quantum spin liquid
(QSL). Of the three cases, the ANN-based phase diagram
for a Chern insulator [11] and Z2 quantum spin liquid [12]
have been previously obtained by two of us. The case of
the ANN-based phase diagram for the Z2 TI, as far as we
know, is first obtained in Sec. III here, although the model
of Kane and Mele [36] is well known. In all three cases,
the topological order is detected using only a simple shallow
ANN, by using the physically motivated features introduced
in Ref. [11], designated quantum loop topography (QLT).
The QLT consists of a semilocal gauge-invariant product of
two-point functions from (variational) Monte Carlo instances.
The specific geometry of the QLT is guided by characteristics
of the phase itself, i.e., it is based on “domain knowledge.”
Given the simplicity of our ANN, and its ability to interpolate
between QLT and the topological phases of interest, it is
plausible that insight into this physics can be derived by
probing the “interior” of the ANN to illuminate properties of
the function it has learned.

In this paper, we probe trained ANNs that yield correct
topological quantum phase diagrams for the three cases of in-
terest. We find interpretations of the “learning” of these ANNs
fall into two classes: (1) a linear function corresponding to a
topological invariant, and (2) nonlinear functions that build
nonlocal and nonlinear observables from our QLT inputs. The
CI case in Sec. II falls into class (1), and the Z2 TI and
the Z2 QSL cases fall into class (2). The remainder of this
paper is organized as follows. In Sec. II, we review the QLT
and ANN-based phase detection for the Chern insulators, and
interpret the trained ANN. In Sec. III, we obtain an ANN-
based phase diagram for the Z2 TI using a new QLT, and
again interpret what the trained ANN has learned about the
system. In Sec. IV, we examine an ANN trained to detect the
Z2 quantum spin liquid phase, and interpret the methodology
it has learned. We close with a summary and concluding
remarks in Sec. V.

II. INTERPRETING LINEAR ML: CHERN INSULATORS

QLT for CI assigns a D(dc)-dimensional vector of complex
numbers to each lattice site j, thereby forming a quasi-two-
dimensional “image.” The elements of the vector associated
to the site j are chained products such as

P̃jk|αP̃kl |β P̃l j |γ (QLT for CI), (1)

where k and l are two sites that form a triangle with site j.
In Eq. (1), each P̃jk|α ≡ 〈c†

j ck〉α is a variational Monte Carlo
sample of the two-point correlations associated with sites j, k

FIG. 1. Our supervised machine learning architecture for a topo-
logical quantum Hall insulator consists of a quantum loop topogra-
phy feature-selection layer and an ANN with a single hidden layer.
The neurons are rectified linear units with RELU(z) = max (z, 0) as
the nonlinear activation function, as illustrated in the inset.

evaluated at Monte Carlo step α, and β, γ label different
Monte Carlo steps. The length D(dc) of the vector is set by
the total number of triangles anchored at the site j with lateral
distance d ! dc, where dc is the cutoff scale that can remain
close to the lattice constant for a gapped system (see Fig. 1).

The above choice of QLT for CI is motivated by the charac-
teristic response function that defines CI, the Hall conductivity
for free fermion systems [11]:

σxy = e2

h
1
N

∑

$ jkl

4π iPjkPkl Pl jS$ jkl , (2)

where Pi j ≡ 〈c†
i c j〉 is the equal-time two-point correlation

between sites i and j, S$ jkl is the signed area of the triangle
jkl , and N is the total number of sites [37,38]. Hence QLT
in Eq. (1) provides input that could contribute to the Hall
conductivity, albeit with noisy single Monte Carlo instance
data P̃jk|α ≡ 〈c†

j ck〉α . More importantly, since it is constructed
from loops, QLT provides only gauge-invariant data to the
ANN.

We now train an ANN using QLT from a model that ex-
hibits a topological quantum phase transition (TQPT) between
trivial insulator and Chern insulators [39], and probe the ANN
to interpret how it has learned. The model Hamiltonian is a
tight-binding model on a two-dimensional square lattice [11]:

H (κ ) =
∑

%r
(−1)yc†

%r+x̂c%r + [1 + (−1)y(1 − κ )]c†
%r+ŷc%r

+ (−1)y iκ
2

[c†
%r+x̂+ŷc%r + c†

%r+x̂−ŷc%r] + H.c., (3)

where %r = (x, y) and 0 ! κ ! 1 is a tuning parameter. The
κ = 1 limit is the π -flux square lattice model for a quantum
Hall insulator with Chern number C = 1, while the κ = 0
limit reduces to decoupled two-leg ladders. H (κ ) interpolates
between the quantum Hall insulator and the normal insulator
with a TQPT at κ = 0.5. We study a system of size 12×12
lattice spacings.

Figure 1 shows the architecture of our single hidden layer
ANN. The trained ANN with weights w(1),w(2) and biases
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FIG. 2. Analysis of single-species snapshots using
CNNs with one filter. Sample 5 ⇥ 5 filters for four inde-
pendent runs are shown for (A) n ⇠ 0.82 and (B) n ⇠ 1.00.
The CNN architecture is shown in Fig. 1C. The testing accu-
racies are between 91% and 95%. The visual pattern in each
5 ⇥ 5 filter in (A) is consistent with recognizing short range
AF correlations. The four representative runs in (B) indi-
cate patterns capturing long range order at half filling. (C)
shows similar filters evolved from training runs using DQMC
simulations. The testing accuracies are at least 68%. Panels
(D) and (E) provide theory data for the nearest neighbor
spin-spin correlation for U = 8t vs. density at di↵erent tem-
peratures (NLCE), and vs. distance for n ⇠ 0.81 and n ⇠ 1.00
at T = 0.44t (DQMC). This figure illustrates that AI can cap-
ture the correct trends in magnetic behavior of the Hubbard
model, and that the trained filters carry a clear physical in-
terpretation.

ture, hundreds of snapshots taken at the extreme temper-
atures along with their labels are provided to the CNN
for training. During the training, the network adjusts its
free parameters to minimize the di↵erence between given
labels and its prediction [22]. The convolutional layer in
our CNN interacts directly with the input snapshots, and
therefore, examining the filter after the completion of the
training can teach us about the most important feature
the network has picked up.

Figure 2A shows a sample of four 5⇥5 filters after four
di↵erent runs in which the CNN is trained to distinguish
experimental snapshots of a single species of fermions at
the highest temperature from those at the lowest tem-
perature when n ⇠ 0.82. If we expect mostly random be-
havior at high temperature, of the order of the largest en-
ergy scale in the system, the features that spontaneously
develop in the filters during training will most likely rep-
resent patterns found in the low-temperature snapshots.

We find that the CNN consistently makes the distinc-
tion with more than 91% accuracy, and it does so using
filters showing a distinctive pattern indicative of short-
range antiferromagnetic (AF) correlations. The nearest-
neighbor checkerboard pattern emerging in the filters is
consistent with the fact that the correlation length in the
NFL region is about one lattice spacing. The appearance
of this feature at di↵erent locations in the filter for dif-
ferent training runs points to a redundancy: on average
the filter must reflect the translational symmetry of the
underlying system.
Training the CNN using similar snapshots obtained at

half filling results in filters that reflect a longer range anti-
correlation between neighboring fermions of the same
species (Fig. 2B). These findings suggest that the net-
work e↵ectively uses the strength of AF correlations as
a measure for classifying snapshots of a single species of
fermions. Figure 2, D and E show that the density, dis-
tance, and temperature dependence of the magnetic cor-
relations of the model, C(r), which are calculated here on
a 10⇥10 cluster using the determinental quantum Monte
Carlo (DQMC) [23], or in the thermodynamic limit using
the numerical linked cluster expansion (NLCE) [24, 25],
support this observation.
Quantum Monte Carlo simulations also provide a plat-

form to corroborate these findings. However, except in
one spatial dimension, these simulations cannot provide
projective measurements in the density basis. Instead,
theory “snapshots” can be constructed via expectation
values of local charge or spin density using instances
of auxiliary field variables during a simulation; for ex-
ample, the ith pixel of a spin-up DQMC snapshot is
hn̂i"ih = 1�Gii"(h), where Gii"(h) is the ith diagonal el-
ement of the spin-up equal time Green’s function matrix
for the auxiliary field instance h. We perform the simu-
lations for a 10⇥ 10 site Hubbard system with U = 8t at
several average average densities and temperatures [22].
At high temperatures, of the order of 3t, we find that

density snapshots are fuzzy with no clear empty sites;
mostly fluctuations about an average background density
can be seen. This fuzziness is less of a concern for single-
species snapshots (Fig. 1D), although they too lose their
pixelated character at higher temperatures. For this rea-
son, to eliminate fuzziness as an obvious feature for the
CNN to learn, instead of high-temperature snapshots, we
use low-temperature images whose pixels have been ran-
domly shu✏ed, e↵ectively destroying any physical corre-
lations. In the following, we refer to the latter as fake (as
opposed to real) snapshots.
Figure 2C shows sample filters from four di↵erent

training experiments using theory snapshots of single
species at n = 0.82. Despite reduced accuracies of
about 68%, we find that the trained features are in ex-
cellent agreement with those obtained with quantum gas
microscope snapshots. Results of other similar exper-
iments [22] are all consistent with these findings and

LETTERS NATURE PHYSICS

Hρ ̂ ≅ β− ̂e MF removes double occupancies in accordance with a large 
on-site interaction ≫U t.

We use Monte Carlo sampling techniques to generate snapshots 
in the Fock basis of the projected mean-field density matrix. To take 
into account virtual charge fluctuations present in the larger physi-
cal Hilbert space, we introduce doublon–hole pairs into the snap-
shots on neighbouring sites with probability 4t2/U2 determined by 
second-order perturbation theory. The overall energy scale in the 
mean-field Hamiltonian is fixed such that the nearest-neighbour 
spin correlator at half-filling matches the experimental value. This 
approach has been shown in ref. 15 to lead to good agreement of spin 
correlations for all relevant doping values. Our results are robust 
under small variations in the overall energy scale.

In the underdoped regime, the geometric string theory describes 
the fermionic charge carriers as bound states of two partons36–38: a 
heavy spinon and a light chargon (see also refs. 4,39–41). Their internal 
structure is described by a fluctuating geometric string of displaced 
spins connecting the spinon to the chargon3,34. To derive the prop-
erties of this string, the frozen spin approximation is assumed, in 
which the spin background does not change with doping but the 
anti-ferromagnetic order is hidden by the hole motion.

Each hole displaces the spins along the string by one site, which 
leads to an increase in spin interaction energy proportional to the spin 
correlations in the undoped system and a decrease of the overall stag-
gered magnetization. The distribution of the geometric string length 
is obtained from a microscopic calculation of the motion of a single 
hole at a given temperature and Hubbard parameter U/t (ref. 15).

To generate snapshots for the geometric string theory, we start 
from the experimental data at half-filling and for each doping value 
place the corresponding number of holes independently into the snap-
shots. The holes are then moved independently from one another in 
random directions through the antiferromagnet for a number of sites 
that is sampled from the theoretical string length distribution.

The experimental images contain information about only one 
spin species, while the other spin species as well as doublons and 
holes are detected as empty sites. Hence, before comparing our the-
oretical images to experimental results, the second spin species and 
doubly occupied sites are converted to empty sites in the theoretical 
data. All data used in this analysis are obtained for a temperature of 
T = 0.6J ± 0.1J, which corresponds to the currently lowest tempera-
tures available in the experiment.

We now train a CNN to distinguish snapshots from the follow-
ing classes: experimental data, geometric string theory and π-flux 
theory, all at 9% doping.

The performance of our neural network is visualized in Fig. 2. In 
this plot, the x axis displays the actual class of a snapshot and the y 
axis shows the probability for the neural network to sort it into the 
different classes. The accuracy for the classification of images, which 
corresponds to the weighted average of the diagonal entries, is 47%. 
This indicates that a classification of the experimental snapshots as 
one of the theories is in principle possible, since otherwise the CNN 
would be able to distinguish experimental data from either theory 
with a high accuracy. The main source of confusion for the CNN is 
the similarity between the experimental and the geometric string 
theory data, while a differentiation of the π-flux theory snapshots is 
more successful. Taking the first two categories together, the accu-
racy of the classification increases to 69%. This is a first indication 
that the geometric string theory resembles the experimental data at 
9% doping more closely than π-flux theory.

One of the most powerful features of neural networks is their 
ability to generalize to new situations not encountered during train-
ing. We make use of this property by first training a CNN to distin-
guish between snapshots from π-flux and geometric string theory at 
a fixed doping value; a task for which the CNN achieves a precision 
above 70%. Here, the precision is defined as the percentage of snap-
shots classified as a theory that actually belong to the said theory. 
The precision of the CNN can be further improved by increasing 
the system size, detecting holes and increasing the size of the train-
ing set (see Supplementary Information). Subsequently, we show 
experimental data to the CNN to sort them into one of the two the-
ory categories. The classification of experimental data then reveals 
how similar these snapshots are to the theoretically simulated data.

As shown in Fig. 3, the neural network classifies a majority of 
the experimental snapshots as geometric string theory over a broad 
range of doping values up to about 15%, even though conventional 
spin and charge correlation functions coincide equally well with 
experimental results in that regime for both theories15. For larger 
dopings, the experimental data cannot be unambiguously classified 
(see also Supplementary Information).

The ability of the neural network to distinguish π-flux from geo-
metric string theory on the level of individual images indicates that 
the physical structure of these states is different. We can further 
improve the accuracy of our classification by taking into account 
the information that an entire set of measurements belongs to the 
same physical state. When the CNN sorts each snapshot into one of 
the two categories with probabilities p and 1 − p, the entire sample 
is classified by the category in which the majority is sorted. As the 
number of shots in each category follows a binomial distribution, 
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Fig. 1 | Classifying quantum gas microscope snapshots of the doped Fermi–Hubbard model with CNNs. a, A schematic of the conjectured phase  
diagram of the finite-size 2D Fermi–Hubbard model. We use snapshots of the many-body quantum state at fixed doping and temperature as input data for 
the CNN. b, The main building block of CNNs, which are conventionally used to analyse visual imagery, is the convolutional layer with a set of learnable 
filters Mi as parameters42. At each possible position of a given filter in the input image, the inner product between the filter and the input data is computed. 
This yields a 2D activation map of the filter. During training, the network learns to set the entries of the filters such that the corresponding value in the 
activation map is high when specific types of pattern are detected. The convolutional layer is followed by a fully connected layer, which then sorts the data 
into the different categories.
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FIG. 3. Analysis of local moment snapshots using CNNs with multiple filters. (A) The six filters of a trained
CNN. Training is performed with the 5023 experimental local moment snapshots taken at n ⇠ 0.82 and T ⇠ 0.35. The
average testing accuracy in the last 20 epochs of the run is 62% ± 0.01% [22]. (B) The di↵erence in the average network
output for T ⇠ 0.35t real and fake snapshots as a function of the density of local moments when all six filters are present:

�
D
Network Output(1)

E
⌘

D
Network Output(1)(Xreal)

E
�

D
Network Output(1)(Xfake)

E
. Superscript (1) indicates the value at

the output neuron responsible for real low-temperature snapshots [22]. This quantity indicates roughly the percentage of the
output attributable to factors other than the density. (C) Similar to (B) at n ⇠ 0.82 when it has access to one filter at a time.
(D) Four representative filters of a CNN with sixteen 5⇥ 5 filters trained using DQMC snapshots of local moments [22]. (E)
(F) Same as (B) (C), but obtained using the CNN in (D).

hood of two empty sites being neighbors (m = 3), and the
anti-correlation of neighboring local moments (m = 4).
The first three have positive contributions that peak in
the NFL region, while the fourth has a negative contri-
bution in that region. These trends are consistent with
those seen in Fig. 3C. Figure 3E shows the overall signal
of the CNN for correlations unique to the NFL phase,
plotted across densities. It has a broad peak around
the NFL region. We find that including the informa-
tion about doublons, i.e., using full density snapshots,
generally improves the diversity of features seen in the
trained filters while yielding the same basic trends [22].

The techniques developed in this work for the AI-
assisted feature extraction in projective measurements
can be adapted to peek into other mysterious phenom-
ena for the Fermi-Hubbard model, such as the pseudogap
phase, or the magnetic polaron which has been observed
closer to half filling [35]. They can also be employed
to study other microscopic models of correlated systems.
Our work paves the way for AI related studies that go be-
yond mere categorization and the quest for gaining more
predictive power and focus instead on the inner-workings
of the machines to advance our understanding of compli-
cated natural phenomena.
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problem: assumes that we already know 
which dependence to look for —> we can 
only compare it against the quantities or 
features we suspect to be important. 

L(xin, xout) = |xin − xout |
2

Input 

… 
… 

Bottleneck

Layer 

… 

… 

OutputData 

xin xout

Phase classification

Figure 3.8: Analysis of bottleneck neurons of an AE trained to reconstruct spin con-
figurations of a two-dimensional Ising model. (a) Dependence of latent space pa-
rameter on the magnetization. Red (yellow) color corresponds to samples from the
low(high)-temperature regime. (b) Absolute magnetization, absolute rescaled values
of latent parameter and reconstruction loss, averaged for fixed temperature. Adapted
from Ref. [105].

showed that you can train such a special AE in a way that a user can ask a question via the
question neuron and the answer is encoded in the latent space.

As you see, AEs are to some degree inherently interpretable by virtue of their low-
dimensional latent space. However, the analysis of latent space does not give us any hint
on the order parameter or important features. We can only compare it against the quantities
or features we suspect to be important. If you look for a more automated way of detecting
order parameters, we can turn to very special CNNs.

Extracting order parameters with convolutional neural networks (CNNs). We have al-
ready mentioned that CNNs have natural bottlenecks in their architectures. These bottlenecks
are their filters or kernels, i.e., the structures with which they “scan” the data. Their size can
be thought of as a receptive field size and tells us how many neighboring features (e.g., pixels)
the network can analyze at the same time. Of course, if you have multiple convolutional layers
with multiple kernels of different sizes, intertwined with pooling layers, their analysis is still
challenging. But if you consider a simple CNN with only one or few subsequent convolutional
layers with kernels of a fixed size and only one averaging layer at the end of the architecture,
as presented in fig. 3.9(a), such a regression becomes tractable17. The mentioned architecture
was proposed by Wetzel et al. (2017) [125] and is called Interpretation Net or Correlation-
Probing Neural Network, see fig. 3.9(a). Such an architecture allows us to perform a regression
on the output neuron with features extracted by kernels. Eventually, we obtain an analytical
expression for the CNN decision function. If applied to a phase classification problem, such
a decision function could unravel the order parameter. It seems, however, that such a decision
function, and therefore the order parameter which may potentially be discovered through the
CNN, depends on the choice of kernel size. What is the appropriate choice of kernel size, and
thus decision function? Occam’s razor tells us that we should be interested in the simplest
decision function. That is, one should aim to take into account only a small number of input

17It remains non-trivial and involves careful zeroing of weights, Fourier series, and other tricks. If you are
interested, see Ref. [125]

58

Wetzel, PRE 96 (2017)

spin configurations of 2D Ising model
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FIG. 1. (a) The variational autoencoder architecture. Spectral functions x on a pointwise grid are fed into the encoder and
compressed into parameters µx,�x of an L-dimensional Gaussian distribution in latent space. Latent activations z are then
sampled from z ⇠ N (µx, diag(�

2
x)) before being fed into the decoder, which reconstructs the input spectrum. The contribution

to the loss from a given x, Lx is shown in brief, with arrows noting which components of pipeline contribute. (b) A schematic
showing that increasing � structures the data distribution in latent space such that the zi become statistically independent,
and aligns underlying generative factors (red/blue coloring) with the latent axes.

The weight matrices W and bias vectors b are all free,
learned parameters which we collectively denote as ✓.
In the encoding stage, the number of activations a(m)

steadily decreases, forcing the model to learn consec-
utively lower-dimensional representations of the input
data. We denote the final values output by the encoder
as l ⌘ a(Denc) = [l1, l2, ..., l2L], with L an architectural
hyperparameter.

VAEs are distinguished from traditional autoencoders
in the sense that these final activations no longer rep-
resent a single compressed point encoding the input x.
Instead, these activations are used to parameterize a nor-
mal distribution with mean vector µ = [l1, l2, ..., lL] and
log-variances �2 = [exp(lL+1), exp(lL+2), ..., exp(l2L)].
The L-dimensional space this distribution lives in is
called latent space, with each dimension being a latent
variable.

On any given forward pass, the encoder maps x 7!
[µx, ln�2

x], then samples from the obtained multivariate
normal distribution P (z|x) = N (µx, diag(�2

x)), where
diag constructs a diagonal matrix with �2

x along the di-
agonal. The sampled L-component latent vector z is then
finally passed to the decoder which generates the recon-
struction z 7! x̃. As is common practice, for simplicity
and speed we only sample a single z for each input x per
forward pass during training. Combined with the train-
ing procedure outlined in the next section, this sampling
process forces the VAE to acquire the notion of conti-

nuity and statistical independence in the learned latent
space. Thus, it is generally found that VAEs learn more
“meaningful”, statistically disentangled representations
than standard autoencoders [31].
The decoder is a deterministic fully-connected network

of Ddec hidden layers from the sampled latent variables
z back to the original input space, generally following a
reversed structure to the encoder as shown in Fig. 1. The
goal is for the decoded output to be a minimally-lossy re-
construction for the original input x. We denote the full
VAE action as f✓(x) ⇡ x, which is a random variable due
to the sampling within latent space. As before, all layers
of the decoder except for the last use the ReLU activa-
tion function. For the last layer of the decoder we utilize
Softplus(x) = log(1 + exp(x)) as the activation function
to enforce positivity of x̃ in a smooth manner. In this
work, all networks studied have Denc = Ddec = 5, with
hidden layer sizes manually tuned to [240, 160, 80, 60, 2L]
(reversed for the decoder, except for 2L ! L). We found
L = 10 to be su�ciently large to saturate reconstruction
performance on both datasets (see App.A).

C. Loss functions and training

The parameters ✓ of the VAE are learned during train-
ing as to minimize the objective loss function, L(✓;�).
This loss originates as a bound on the maximum like-

Goal: Functional form to relate physical input parameters to latent  vector z

Miles et al., PRB 104 (2021)
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its single discontinuity in the enlarged space, occurring
exactly when the path jumps between the two particle-
asymmetric lobes. This analysis further confirms that
these learned latent spaces are all meaningfully connected
to the same underlying physics, regardless of which sub-
set of the data is seen by the model.

C. Symbolic regression to extract physical
descriptors

Much of our previous analysis depended on having
the physical foresight to guess explicit physical features
which could correspond to various dimensions in latent
space. For use in machine learning-aided discovery, we
require some means to automatically extract these fea-
tures given a trained VAE. We propose a potential route
towards this goal using symbolic regression (SR) [20, 21].
We assume knowledge of the set of physical parameters
p associated with each spectral function (and hence each
latent vector z). Symbolic regression then attempts to
search through the space of functions of these param-
eters to create e↵ective descriptors which well describe
the latent dimensions individually.

In SR, functions are represented as syntax trees, where
operations appear as interior nodes, and parameters pi

appear as leaves [see Fig. 8(c,d) for examples]. We de-
fine the class of representable functions S by specify-
ing a list of unary and binary functions which are al-
lowed to appear in these trees. In this work, we limit
this list to include the standard binary arithmetic opera-
tions {+,�,⇥, /} as well as unary negation and inversion.
Then, we phrase the objective as finding the symbolic
function fi(p) in this class which maximizes the Pearson
correlation coe�cient with an individual latent zi:

f
⇤
i (p) = argmax

fi2S

E✓⇠D[(fi(p)� hfii)(zi(p)� hzii)]
�fi�zi

,

(7)
where expectation values indicate means with respect to
the dataset and �’s are standard deviations of the sub-
scripted variables. We note that this objective function
is invariant under an overall scale factor or constant shift
of either the f ’s or z’s. To bias the optimization process
towards simple expressions, an additional penalty is in-
troduced of the form �l where � is a hyperparameter and
l is the number of nodes in the syntax tree.

One symbolic function f
⇤
i is regressed per active la-

tent dimension zi. We utilize the gplearn library [34],
which performs this search using genetic algorithm tech-
niques [35]. At the beginning of the regression, a large
number Npop of trial symbolic functions are added to a
population by constructing random syntax trees up to a
given finite depth. At each stage, the worst-performing
functions are discarded and new functions are generated
by randomly modifying the best-performing functions us-
ing biologically inspired mutation and crossover opera-
tions. Mutation operations randomly replace nodes with

FIG. 8. Results of applying symbolic regression to learn func-
tions describing each latent variable of the VAE trained on the
TK-dominated dataset (Fig. 4). (a) Symbolic regression pop-
ulation fitness and (b) program length as the algorithm learns
f⇤
1 . (c,d) Obtained symbolic syntax trees and equivalent func-
tions which maximize correlation with the active latents zi.
(e,f) Scatterplots showing f⇤

i vs. zi for each latent dimension,
analogous to Fig. 4(c, d).

alternate operations or parameters, while crossover op-
erations mix subtrees between functions. Iterating these
processes improves the general performance of the entire
population until reaching some plateau. While this ap-
proach is generally sensitive to the specification of various
hyperparameters controlling mutation/crossover proba-
bilities, we find that other than increasing the population
size to 5000 and the program length penalty to � = 0.01,
the default package parameters perform well for our pur-
poses.
We apply this approach to extract explicit functions

describing the latent dimensions of VAEs trained on the
TK-dominated dataset in Fig. 4. Since |B|, T ⌧ TK in
this dataset, the available Hamiltonian parameters which
may appear in our regressed functions are {U,�, ✏d}. We
find it useful to enforce unitless expressions by setting
the available leaf nodes in the regression to be the unit-
less ratios p = {U/�, ✏d/U, ✏d/�}. We regress two func-
tions f

⇤
1 (p), f

⇤
2 (p) to obtain symbolic expressions which

correlate well with the two active latent variables z1, z2,
resulting in Fig. 8.
Remarkably, we consistently find the function auto-

matically discovered as describing z1 to be f⇤
1 = ✏d(✏d+U)

U�

One possibility: symbolic regression on the latent space

• Here: one-particle Anderson 
impurity model spectral 
functions  

• Use genetic algorithm to 
obtain functional form

Miles et al., PRB 104 (2021)

Symbolic regression

More on symbolic regression (using neural nets): 
Feynman AI: Udrescu & Tegmark, Sci. Adv. 6 (2020)
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modeling process itself, rather than on specific physical
systems. We formalize a simplified physical modeling
process, which we then translate into a neural network
architecture. This neural network architecture can be
applied to a wide variety of physical systems, both classical
and quantum, and is flexible enough to accommodate
different additional desiderata on representations of the
system that we may wish to impose.
We start by considering a simplified version of the

physical modeling process, pictured in Fig. 1(a).
Physicists’ interactions with the physical world take the
form of experimental observations [e.g., a time series
ðti; xðtiÞÞi∈f1;…;Ng describing the motion of a particle at
constant speed]. The models physicists build do not deal
with these observations directly, but rather with a repre-
sentation of the underlying physical state of the observed
system [e.g., the two parameters initial position and speed,
ðx0; vÞ]. Which parameters are used is an important part of
the model, and wewill give suggestions about what makes a
good representation below. Finally, the model specifies how
to make predictions (i.e., answer questions) based on the
knowledge of the physical state of the system (e.g., “where is
the particle at time t0?”). More formally, this physical
modeling process can be regarded as an “encoder” E: O →
R mapping the set of possible observations O to represen-
tations R, followed by a “decoder” D: R ×Q → A map-
ping the sets of all possible representationsR and questions
Q to answers A.
Network structure.—This modeling process can be

translated directly into a neural network architecture, which
we refer to as SciNet in the following [Fig. 1(b)]. The
encoder and decoder are both implemented as feed-forward
neural networks. The resulting architecture, except for the
question input, resembles an autoencoder in representation
learning [76,77], and more specifically the architecture in
Ref. [79]. During the training, we provide triples of the

form (o; q; acorrðo; qÞ) to the network, where acorrðo; qÞ ∈
A is the correct reply to question q ∈ Q given the
observation o ∈ O. The learned parametrization is typically
called latent representation [76,77]. To feed the questions
into the neural network, they are encoded into a sequence of
real parameters. Thereby, the actual representation of a
single question is irrelevant as long as it allows the network
to distinguish questions that require different answers.
It is crucial that the encoder is completely free to choose

a latent representation itself, instead of us imposing a
specific one. Because neural networks with at least one
hidden layer composed of sufficiently many neurons can
approximate any continuous function arbitrarily well [80],
the fact that the functions E and D are implemented as
neural networks does not significantly restrict their general-
ity. However, unlike in an autoencoder, the latent repre-
sentation need not describe the observations completely;
instead, it only needs to contain the information necessary
to answer the questions posed.
This architecture allows us to extract knowledge from the

neural network: all of the useful information is stored in the
representation, and the size of this representation is small
compared to the total number of degrees of freedom (d.o.f.)
of the network. This allows us to interpret the learned
representation. Specifically, we can compare SciNet’s
latent representation to a hypothesized parameterization
to obtain a simple map from one to the other. If we do not
even have any hypotheses about the system at hand, we
may still gain some insights solely from the number of
required parameters or from studying the change in the
representation when manually changing the input, and the
change in output when manually changing the representa-
tion (as in, e.g., Ref. [78]).
Desired properties for a representation.—For SciNet to

produce physically useful representations, we need to
formalize what makes a good parameterization of a

(a) (b)

FIG. 1. Learning physical representations. (a) Human learning. A physicist compresses experimental observations into a simple
representation (encoding). When later asked any question about the physical setting, the physicist should be able to produce a correct
answer using only the representation and not the original data. We call the process of producing the answer from the representation
“decoding.” For example, the observations may be the first few seconds of the trajectory of a particle moving with constant speed; the
representation could be the parameters “speed v” and “initial position x0” and the question could be “where will the particle be at a later
time t0?” (b) Neural network structure for SciNet. Observations are encoded as real parameters fed to an encoder (a feed-forward neural
network, see SM [3]), which compresses the data into a representation (latent representation). The question is also encoded in a number
of real parameters, which, together with the representation, are fed to the decoder network to produce an answer. (The number of neurons
depicted is not representative.)
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measurement perfectly regardless of the number of latent
neurons. This means that purely from operational data, we
can make a statement about the tomographic completeness
of measurements and about the number of d.o.f. of the
underlying unknown quantum system.
Enforcing a simple time evolution.—As mentioned

above, if the physically relevant parameters can change,
we can enforce a representation that has a simple update
rule. For illustration, we will consider time evolution here,
but more general update rules are possible. To accommo-
date changing physical parameters, we need to extend the
latent representation as shown in Fig. 3(a). Instead of a
single latent representation with a decoder attached to it, we
now have many latent representations that are generated
from the initial representation by a time evolution network.
Each representation has a decoder attached to it to produce
an answer to a question. Because we only want the
parameters, but not the physical model, to change in time,

all time evolution steps and decoders are identical; i.e., they
implement the same function. The encoder, time evolution
network, and decoder are trained simultaneously. To
enforce parameters with a simple time evolution, we restrict
the time evolution network to implementing very simple
functions, such as addition of a constant [84].
Heliocentric solar system.—In the 16th century,

Copernicus used observations of the positions of different
planets in the night sky [Fig. 3(b)] to hypothesize that the
Sun, and not the Earth, is at the center of our solar system.
This heliocentric view was confirmed by Kepler at the start
of the 17th century based on astronomic data collected by
Brahe, showing that the planets move around the Sun in
simple orbits. Here, we show that SciNet similarly uses
heliocentric angles when forced to find a representation for
which the time evolution of the variables takes a very
simple form, a typical requirement for time-dependent
variables in physics.
The observations given to SciNet are angles θMðt0Þ of

Mars and θSðt0Þ of the Sun as seen from Earth at a starting
time t0 (which is varied during training). The time evolution
network is restricted to addition of a constant (the value of
which is learned during training). At each time step i,
SciNet is asked to predict the angles as seen from Earth at
the time ti using only its representation rðtiÞ. Because this
question is constant, we do not need to feed it to the
decoder explicitly.
We train SciNet with randomly chosen subsequences of

weekly (simulated) observations of the angles θM and θS
within Copernicus’ lifetime (3665 observations in total).
For our simulation, we assume circular orbits of Mars and
Earth around the Sun. Figure 3(c) shows the learned
representation and confirms that SciNet indeed stores a
linear combination of heliocentric angles. We stress
that the training data only contains angles observed from
Earth, but SciNet nonetheless switches to a heliocentric
representation.

(a) (b) (c)

FIG. 3. Heliocentric model of the solar system. SciNet is given the angles of the Sun and Mars as seen from Earth at an initial time t0
and has to predict these angles for later times. (a) Recurrent version of SciNet for time-dependent variables. Observations are encoded
into a simple representation rðt0Þ at time t0. Then, the representation is evolved in time to rðt1Þ and a decoder is used to predict aðt1Þ, and
so on. In each (equally spaced) time step, the same time evolution network and decoder network are applied. (b) Physical setting. The
heliocentric angles ϕE and ϕM of the Earth and Mars are observed from the Sun; the angles θS and θM of the Sun and Mars are observed
from Earth. All angles are measured relative to the fixed star background. (c) Representation learned by SciNet. The activations r1;2ðt0Þ
of the two latent neurons at time t0 [see Fig. 3(a)] are plotted as a function of the heliocentric angles ϕE and ϕM. The plots show that the
network stores and evolves parameters that are linear combinations of the heliocentric angles.

(a) One qubit (b) Two qubits

FIG. 2. Quantum tomography. SciNet is given tomographic
data for one or two qubits, as shown in part (a) and (b) of the
figure, respectively, and an operational description of a meas-
urement as a question input and has to predict the probabilities of
outcomes for this measurement. The plots show the root mean
square error of SciNet’s measurement predictions for test data as a
function of the number of latent neurons. In the tomographically
complete case, SciNet recovers the number of (real) d.o.f.
required to describe a one and a two qubit state (which are
two and six, respectively). Tomographically incomplete data can
be recognized, since the prediction error remains high as one
increases the number of latent neurons.
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measurement perfectly regardless of the number of latent
neurons. This means that purely from operational data, we
can make a statement about the tomographic completeness
of measurements and about the number of d.o.f. of the
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but more general update rules are possible. To accommo-
date changing physical parameters, we need to extend the
latent representation as shown in Fig. 3(a). Instead of a
single latent representation with a decoder attached to it, we
now have many latent representations that are generated
from the initial representation by a time evolution network.
Each representation has a decoder attached to it to produce
an answer to a question. Because we only want the
parameters, but not the physical model, to change in time,

all time evolution steps and decoders are identical; i.e., they
implement the same function. The encoder, time evolution
network, and decoder are trained simultaneously. To
enforce parameters with a simple time evolution, we restrict
the time evolution network to implementing very simple
functions, such as addition of a constant [84].
Heliocentric solar system.—In the 16th century,

Copernicus used observations of the positions of different
planets in the night sky [Fig. 3(b)] to hypothesize that the
Sun, and not the Earth, is at the center of our solar system.
This heliocentric view was confirmed by Kepler at the start
of the 17th century based on astronomic data collected by
Brahe, showing that the planets move around the Sun in
simple orbits. Here, we show that SciNet similarly uses
heliocentric angles when forced to find a representation for
which the time evolution of the variables takes a very
simple form, a typical requirement for time-dependent
variables in physics.
The observations given to SciNet are angles θMðt0Þ of

Mars and θSðt0Þ of the Sun as seen from Earth at a starting
time t0 (which is varied during training). The time evolution
network is restricted to addition of a constant (the value of
which is learned during training). At each time step i,
SciNet is asked to predict the angles as seen from Earth at
the time ti using only its representation rðtiÞ. Because this
question is constant, we do not need to feed it to the
decoder explicitly.
We train SciNet with randomly chosen subsequences of

weekly (simulated) observations of the angles θM and θS
within Copernicus’ lifetime (3665 observations in total).
For our simulation, we assume circular orbits of Mars and
Earth around the Sun. Figure 3(c) shows the learned
representation and confirms that SciNet indeed stores a
linear combination of heliocentric angles. We stress
that the training data only contains angles observed from
Earth, but SciNet nonetheless switches to a heliocentric
representation.
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FIG. 3. Heliocentric model of the solar system. SciNet is given the angles of the Sun and Mars as seen from Earth at an initial time t0
and has to predict these angles for later times. (a) Recurrent version of SciNet for time-dependent variables. Observations are encoded
into a simple representation rðt0Þ at time t0. Then, the representation is evolved in time to rðt1Þ and a decoder is used to predict aðt1Þ, and
so on. In each (equally spaced) time step, the same time evolution network and decoder network are applied. (b) Physical setting. The
heliocentric angles ϕE and ϕM of the Earth and Mars are observed from the Sun; the angles θS and θM of the Sun and Mars are observed
from Earth. All angles are measured relative to the fixed star background. (c) Representation learned by SciNet. The activations r1;2ðt0Þ
of the two latent neurons at time t0 [see Fig. 3(a)] are plotted as a function of the heliocentric angles ϕE and ϕM. The plots show that the
network stores and evolves parameters that are linear combinations of the heliocentric angles.

(a) One qubit (b) Two qubits

FIG. 2. Quantum tomography. SciNet is given tomographic
data for one or two qubits, as shown in part (a) and (b) of the
figure, respectively, and an operational description of a meas-
urement as a question input and has to predict the probabilities of
outcomes for this measurement. The plots show the root mean
square error of SciNet’s measurement predictions for test data as a
function of the number of latent neurons. In the tomographically
complete case, SciNet recovers the number of (real) d.o.f.
required to describe a one and a two qubit state (which are
two and six, respectively). Tomographically incomplete data can
be recognized, since the prediction error remains high as one
increases the number of latent neurons.
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modeling process itself, rather than on specific physical
systems. We formalize a simplified physical modeling
process, which we then translate into a neural network
architecture. This neural network architecture can be
applied to a wide variety of physical systems, both classical
and quantum, and is flexible enough to accommodate
different additional desiderata on representations of the
system that we may wish to impose.
We start by considering a simplified version of the

physical modeling process, pictured in Fig. 1(a).
Physicists’ interactions with the physical world take the
form of experimental observations [e.g., a time series
ðti; xðtiÞÞi∈f1;…;Ng describing the motion of a particle at
constant speed]. The models physicists build do not deal
with these observations directly, but rather with a repre-
sentation of the underlying physical state of the observed
system [e.g., the two parameters initial position and speed,
ðx0; vÞ]. Which parameters are used is an important part of
the model, and wewill give suggestions about what makes a
good representation below. Finally, the model specifies how
to make predictions (i.e., answer questions) based on the
knowledge of the physical state of the system (e.g., “where is
the particle at time t0?”). More formally, this physical
modeling process can be regarded as an “encoder” E: O →
R mapping the set of possible observations O to represen-
tations R, followed by a “decoder” D: R ×Q → A map-
ping the sets of all possible representationsR and questions
Q to answers A.
Network structure.—This modeling process can be

translated directly into a neural network architecture, which
we refer to as SciNet in the following [Fig. 1(b)]. The
encoder and decoder are both implemented as feed-forward
neural networks. The resulting architecture, except for the
question input, resembles an autoencoder in representation
learning [76,77], and more specifically the architecture in
Ref. [79]. During the training, we provide triples of the

form (o; q; acorrðo; qÞ) to the network, where acorrðo; qÞ ∈
A is the correct reply to question q ∈ Q given the
observation o ∈ O. The learned parametrization is typically
called latent representation [76,77]. To feed the questions
into the neural network, they are encoded into a sequence of
real parameters. Thereby, the actual representation of a
single question is irrelevant as long as it allows the network
to distinguish questions that require different answers.
It is crucial that the encoder is completely free to choose

a latent representation itself, instead of us imposing a
specific one. Because neural networks with at least one
hidden layer composed of sufficiently many neurons can
approximate any continuous function arbitrarily well [80],
the fact that the functions E and D are implemented as
neural networks does not significantly restrict their general-
ity. However, unlike in an autoencoder, the latent repre-
sentation need not describe the observations completely;
instead, it only needs to contain the information necessary
to answer the questions posed.
This architecture allows us to extract knowledge from the

neural network: all of the useful information is stored in the
representation, and the size of this representation is small
compared to the total number of degrees of freedom (d.o.f.)
of the network. This allows us to interpret the learned
representation. Specifically, we can compare SciNet’s
latent representation to a hypothesized parameterization
to obtain a simple map from one to the other. If we do not
even have any hypotheses about the system at hand, we
may still gain some insights solely from the number of
required parameters or from studying the change in the
representation when manually changing the input, and the
change in output when manually changing the representa-
tion (as in, e.g., Ref. [78]).
Desired properties for a representation.—For SciNet to

produce physically useful representations, we need to
formalize what makes a good parameterization of a

(a) (b)

FIG. 1. Learning physical representations. (a) Human learning. A physicist compresses experimental observations into a simple
representation (encoding). When later asked any question about the physical setting, the physicist should be able to produce a correct
answer using only the representation and not the original data. We call the process of producing the answer from the representation
“decoding.” For example, the observations may be the first few seconds of the trajectory of a particle moving with constant speed; the
representation could be the parameters “speed v” and “initial position x0” and the question could be “where will the particle be at a later
time t0?” (b) Neural network structure for SciNet. Observations are encoded as real parameters fed to an encoder (a feed-forward neural
network, see SM [3]), which compresses the data into a representation (latent representation). The question is also encoded in a number
of real parameters, which, together with the representation, are fed to the decoder network to produce an answer. (The number of neurons
depicted is not representative.)
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vision, the idea of interpreting bottleneck layers is also seen
in disentangling autoencoders [40].

The ANNs we are considering in this work are a variant
of the previously proposed SNNs, a class of ANNs that have
been applied to object tracking, face recognition, and image
similarity detection [41–44]. An SNN consists of two (iden-
tical) ANNs that are applied to a pair of input data points.
The two networks share their weights and biases, which are
updated simultaneously during training. The goal of the net-
work is to map the input pairs to a set of latent variables that
determine the similarity of the pair.

The general problem an SNN attempts to solve can be
stated as follows: Given two data points x and y related by an
equivalence relation (e.g., the same event in a relativistic set-
ting measured by two observers in different reference frames),
is it possible to correctly and automatically classify them as
related? Further, if x and y are not related, then we require the
ANN to classify them as not related.

Siamese neural networks can solve an extension of a clas-
sification problem with relatively little training data per class.
Instead of training a traditional neural network to distinguish
between a fixed number of classes, an SNN can probe the
similarity of one data point with another prototypical data
point for a certain class. This reformulation bears many ad-
vantages. First, the number of classes does not need to be
fixed. Further, it is no longer necessary to train on all of the
classes. A successfully trained SNN might be able to share its
learned representation to distinguish between classes that are
not in the training set. These properties become important in
the limit of many (possibly infinitely many) classes or in the
case where only a few data points are available in each class.

The following are the contributions we make in this paper.
(i) We introduce the SNN to the field of theoretical physics.
(ii) We demonstrate its usage in the well known contexts

of special relativity, electromagnetism, and the motion of par-
ticles in a central potential. In the case of special relativity,
these SNNs learn whether or not two different observations of
physical phenomena correspond to the same event. In the case
of electromagnetism, these SNNs learn whether or not given
two field configurations, one can be transformed into the other
via a Lorentz transformation. In the case of motion of parti-
cles, these SNNs discover whether or not two observations of
position and momenta describe the same particle.

(iii) Further, we successfully interpret the intermediate
output representations of the SNN and recover the mathe-
matical formulations of known physical conserved quantities
and invariants, e.g., the space-time interval or the angular
momentum.

(iv) Since the interpretation of the SNN yields signatures of
known physical equations, we argue that our SNN has indeed
learned to understand physical concepts instead of merely
performing basic pattern matching.

II. NEURAL NETWORK ARCHITECTURE

In this paper, we employ SNNs to determine whether or not
two samples belong to the same class (see Fig. 1). In this con-
text, our input data are a pair of samples Xi = (xi, x′

i ). In order
to formulate a supervised learning problem, we associate the
label yi = 0 with pairs that correspond to the same class (i.e.,

Loss

Input 1

Input 2

Label

Algebra
Layer

Interpretation Bottleneck

 Angular Momentum
 Energy

 Space Time Interval

FIG. 1. Schematic architecture of an interpretable SNN. Our
SNN contains a bottleneck of only a single neuron; the output of this
layer is called the intermediate output of the network. We observe
that this bottleneck encodes quantities which are strongly correlated
with invariants such as the energy or the space-time interval.

xi and x′
i are related via an equivalence relation) and yi = 1 to

pairs that belong to different classes (i.e., the input pairs are
not related). In this sense, we can reformulate a classification
problem with many (possibly infinitely many) classes into a
traditional binary classification problem.

For this purpose, we construct our SNN consisting of sev-
eral building blocks. The first building block is composed of
a pair of identical neural networks. This pair of networks is
applied simultaneously to each of the samples in a data point
pair xi and x′

i . The last layer of the network pair only contains
a single neuron; we refer to this layer as the bottleneck. The
output of the bottleneck layer is the intermediate output of
the SNN. The intermediate output is merged by performing
appropriate algebraic operations. Let us denote by f (xi ) and
f (x′

i ) the output of each of the neural networks. Then the
algebra layer calculates [ f (xi ) − f (x′

i )]
2 before supplying it

to a sigmoid neuron such that the output of the full SNN can
be written as

F (Xi ) = sigmoid{w[ f (xi ) − f (x′
i )]

2 + b}. (1)

The SNN outputs a probability that signifies whether the
two samples belong to the same class or not (see Fig. 2). For
the purpose of training, we minimize the binary cross-entropy
loss function between the SNN F (Xi ) and the label yi on
the training set. After training is complete, the generalization
performance is measured on the test set. While training the
SNN, we enforce weight sharing in the network pair to make
sure these networks learn the same function. We note that, in
the context of our physical examples, a natural minimization
of the binary cross-entropy loss function is achieved if f (xi )
learns a symmetry invariant or a conserved quantity.

After having successfully trained the SNN, our goal is to
answer the question of which features this neural network
bases its decision on. In general, there is no easy answer
to this question, since analyzing even small neural networks
can be extremely challenging. So far, there does not exist a
comprehensive theory of what is learned by artificial neural
networks.
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FIG. 2. Schematic description of the task solved by the siamese neural network. (a) In the case of special relativity and electromagnetism,
our network is tasked to learn if two descriptions from different perspectives correspond to the same event or the same electromagnetic field
configuration. (b) In the context of Newtonian gravity, we train our network to detect if two observations of velocities and positions correspond
to the same particle moving in a central potential.

One of our crucial insights is that in order to interpret
what our SNN learns, we have designed the SNN to include
a bottleneck at the output of the first building block before
merging (see Fig. 1). We will see later that our SNN learns
conserved quantities and invariants at the bottleneck in order
to make its decision about whether two samples belong to
the same class. Further, by interpreting the network, we can
predict conserved quantities and invariants with no additional
prior knowledge.

If the number of neurons in the bottleneck layer increases,
one can achieve better accuracy at the cost of interpretability.
The interpretability can in principle be retained if one enforces
decorrelated intermediate outputs. More details about our neu-
ral network architecture and the learning procedure can be
found in Appendix B.

III. PERFORMING MACHINE LEARNING

A. Space-time in special relativity

1. Introduction

The first physical system we consider in this work is the
Minkowski space-time in special relativity. An event is a four-
vector (t, x, y, z) ∈ R4 that combines spatial coordinates and
a moment in time. The Minkowski space-time is R4 with a
scalar product induced by the metric ηµν = diag(−1, 1, 1, 1),

〈x, y〉 = ηµνxµyν = xµyν, (2)

where we have used xµ = ηµνxν . Thereby we define the
space-time interval s by

〈x, x〉 = −t2 + x2 + y2 + z2 = s2. (3)

The Lorentz group is the set of transformations which pre-
serve the scalar product on the Minkowski space-time

O(3, 1) = {# ∈ M(R4) : 〈#x,#y〉 = 〈x, y〉 ∀ x, y ∈ R4}
(4)

and thus also preserve the space-time interval.

2. SNN training

In this section, we discuss how to teach the neural network
to identify, in special relativity, whether two observations
by different observers correspond to the same event. These
observers are at the same position but move with a relative ve-
locity in some direction. For this purpose, we prepare positive
training data of pairs of observations that correspond to the
same event and negative data where a pair of measurements
does not describe the same event.

More specifically, in order to train our neural networks
with data we prepare a training data set consisting of pairs
of measurements of the same event in Minkowski space-time
seen from two different observers X µ = (xµ, x′µ = # µ

ν xν ) =
((t, x, y, z), (t ′, x′, y′, z′)). Here # is a random Lorentz trans-
formation which is sampled from all possible Lorentz
transformations. More details can be found in Appendix A.
We sample 50 000 space-time events xµ and Lorentz transfor-
mations # to create pairs of events that form the positive data
set. We associate with each pair the label y = 0. Further, we
create a negative data set where each pair of space-time coor-
dinates is not related by a Lorentz transformation. In practice,
we implement this by randomly permuting among all second
elements of all pairs of space-time events in the positive data
set. Each pair in the negative data set is labeled with y = 1. In
addition to this training set, we prepare a similar test data set
of 5000 positive pairs and 5000 negative pairs.

The SNN is trained to predict if a pair of observations
describe the same event or not. This is done by optimizing the
weights of the neural network via backpropagation to mini-
mize the binary cross-entropy loss between network output yp
and true label yt . After training, the neural network is able
to correctly predict if a pair of observations belong to the
same event with an accuracy of approximately 94% on the
training data set and approximately 92% on the test data set.
The training and testing accuracies during training can be seen
in Fig. 9.

Following the successful training of our SNN, we want to
understand what the neural network has learned. This can be
achieved by examining the intermediate output of the neu-
ral network, which acts as an interpretable bottleneck. We
perform a hierarchy of linear regressions with polynomial
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TABLE I. Regression scores of the regression on the interme-
diate output in the case of special relativity, which measures the
normalized distance between regression and data. The score metric
is known as the coefficient of determination or R2 score. The best
possible score is 1; the score can be negative.

Order Train score Test score

1 0.0013 0.0005
2 0.9894 0.9893
3 0.9900 0.9899
4 0.9907 0.9906

features (i.e., polynomial regression) on the intermediate out-
put with respect to the input. If we assume that the Taylor
expansion of the decision function is sufficiently accurate at
the decision boundary, we can hope to get insightful results.

We perform ridge regression with polynomial features of
the input on the intermediate output of the SNN. We start with
polynomials of degree 1 and increase the degree of the poly-
nomial features until the regression becomes accurate. From
Table I one can immediately infer that the optimal degree of
the polynomial features is 2.

The result of the regression in an ordered manner is

f (x) ≈ − 87.41t2 − 60.48 − 0.11x

− 0.10yz + 0.04ty + 0.06z

+ 0.07y + 0.10tx + 0.12tz

+ 0.15xz + 0.21xy + 2.50t

+ 88.10z2 + 88.61y2 + 88.63x2

≈ 88 (−t2 + x2 + y2 + z2)︸ ︷︷ ︸
=s2

−60. (5)

We can see that four nontrivial features dominate all others. If
we assume that the regression includes small approximation
errors, we can infer that the SNN has learned the invariant
quantity s2 = −t2 + x2 + y2 + z2. This quantity is the space-
time interval, a known invariant of the Lorentz group. In cases
where the regression does not yield a clear result, one can
cross-check the second-order regression result with higher
orders of regression and observe if the dominant features stay
the same. Another option is to do the whole training procedure
with a different random seed and see what parts of the results
keep the same ratio.

To summarize, as long as the ANN is only able to use a
single scalar function to decide if two events are the same, it
calculates the space-time interval. If the space-time interval
is the same, the ANN predicts that both coordinates in a
pair belong to the same event. While it is often difficult to
decide if neural networks learn to understand physical con-
cepts to make decisions, here we argue that our SNN does
so. To confirm our derivation, we draw a scatter plot for a
subset of our data points of the intermediate output versus
the space-time interval in Fig. 3 and observe a nearly perfect
nonlinear correlation between these two. Note that we have
cross-checked the second-order regression result with higher
orders of regression and found that the dominant features stay
the same.

FIG. 3. Special relativity: correlation between the intermediate
output of the siamese neural network at the bottleneck layer and the
space-time interval.

Finally, we examine whether the SNN can also learn a
different quantity to decide if two observations from different
observers belong to the same event. For this purpose, we again
prepare a training and a test data set, as explained above.
However, in the preparation of the data set, we keep the
space-time interval fixed. We attempt to train the SNN to learn
to associate corresponding observations. However, the ANN
fails to train in this case. After the best training cycle, the ANN
can only predict if two observations belong to the same event
with an accuracy of 58% on the training set or 57% on the
testing set, which is barely better than random. This fact leads
to the conclusion that the SNN is unable find another invariant
of the Lorentz group besides the space-time interval.

The fact that the SNN fails to distinguish observations in
this reduced data set hints that all observations with the same
space-time interval can be transformed into each other by a
Lorentz transformation. Further, it indicates that there is no
other symmetry invariant. Both of these statements are of
course known to be true. However, one needs to be careful
since the same conclusions could be drawn if the neural net-
work is not powerful enough to learn an underlying invariant.

B. Motion in a central potential

1. Introduction

As a second system we consider the motion of a particle
in a central potential, such as the movement of a planet in the
gravitational potential of the sun. Newtonian gravity can be
formulated via the Hamiltonian

H = p2

2m
− GmM

r
. (6)

Here p is the momentum, r =
√

x2 + y2 is the distance from
the potential center, m is the mass of the planet, M is the mass
of the sun, and G is Newton’s constant of gravitation. Given an
initial position x and velocity v one can calculate the trajectory
of motion by solving Hamilton’s equations

ẋ = ∂px H, ṗx = −∂xH,

ẏ = ∂py H, ṗy = −∂yH.
(7)
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4.2.2 Support vector machines

In the previous section, we have discussed how to use kernel methods for regression problems
(in particular ridge regression). In this section, we show how can we use them for classifica-
tion. In this context, the intuition behind the kernel approach is to embed the input space into
the feature space in such a way that the data becomes linearly separable with a hyperplane
(as described already in section 4.1.1). The most common ML-classification method utilizing
the kernel trick are support vector machines (SVMs).6

SVMs have been introduced already in section 2.4.3 as geometric linear classifiers. Before
we see how kernels enter SVMs, let us make a reminder how linear SVMs work and rephrase
the optimization problem that we have described in section 2.4.3. The problem there is to
find an optimal hyperplane separating data from different classes. The optimal hyperplane is
defined as the one with the maximal distance between the hyperplane and the data points. In
other words, we can say that all data points need to be at least the distance M away from the
hyperplane. The data points that are separated from the hyperplane exactly by M , so are the
closest to the hyperplane, become support points, xs,i . The classification problem boils down to
finding such a hyperplane described by ✓ that maximizes the margin between the hyperplane
and support points xs,i (see fig. 2.5). As we can rescale the hyperplane in an arbitrary way, we
can have |✓| = 1/M . Then maximizing a margin, becomes minimizing ✓ that in turn comes
down to minimizing the Lagrange function L in eq. (2.41), which we write here again for the
readability:

L =
1
2
|✓|2 �

nX

i=1

↵i [yi (✓¸xi + ✓0)� 1] , (4.22)

where the Lagrange multipliers ↵i are chosen such that

↵i [yi (✓¸xi + ✓0)� 1] = 0 8 i = 1, . . . , n . (4.23)

As we have already discussed, ↵i is non-zero (and positive) only for xs,i . In practice, rather
than minimizing L, we go for the dual formulation of the problem, and we maximize a La-
grange dual, LD, which provides the lower bound for L. LD remains a quadratic program
similarly as L as we have discussed in section 2.4.3. To express the problem via LD, we firstly
take the derivative of L with respect to ✓ and ✓0 and set it to zero. We arrive at:

✓ =
nX

i=1

↵i yixi

0=
nX

i=1

↵i yi .

(4.24)

We can see that the coefficients ✓ are given by the Lagrange multipliers ↵i , which can be found
numerically. When we plug these equations back to the Lagrange function in eq. (4.22), we
arrive to the Lagrange dual:

LD =
nX

i=1

↵i �
1
2

nX

i=1

nX

j=1

↵i↵ j yi y jx
¸
i x j subject to ↵i � 0 . (4.25)

Finally, to put kernels in the picture, we change the notation from x
¸
i x j to
⌦
xi ,x j
↵
. For

now, it remains a linear model. To deal with non-linearities in the input space, we can now

6There is a variant of this approach designed for regression called support vector regression that is almost
identical with KRR but minimizes a different form of a loss function.
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(as described already in section 4.1.1). The most common ML-classification method utilizing
the kernel trick are support vector machines (SVMs).6

SVMs have been introduced already in section 2.4.3 as geometric linear classifiers. Before
we see how kernels enter SVMs, let us make a reminder how linear SVMs work and rephrase
the optimization problem that we have described in section 2.4.3. The problem there is to
find an optimal hyperplane separating data from different classes. The optimal hyperplane is
defined as the one with the maximal distance between the hyperplane and the data points. In
other words, we can say that all data points need to be at least the distance M away from the
hyperplane. The data points that are separated from the hyperplane exactly by M , so are the
closest to the hyperplane, become support points, xs,i . The classification problem boils down to
finding such a hyperplane described by ✓ that maximizes the margin between the hyperplane
and support points xs,i (see fig. 2.5). As we can rescale the hyperplane in an arbitrary way, we
can have |✓| = 1/M . Then maximizing a margin, becomes minimizing ✓ that in turn comes
down to minimizing the Lagrange function L in eq. (2.41), which we write here again for the
readability:

L =
1
2
|✓|2 �

nX

i=1

↵i [yi (✓¸xi + ✓0)� 1] , (4.22)

where the Lagrange multipliers ↵i are chosen such that

↵i [yi (✓¸xi + ✓0)� 1] = 0 8 i = 1, . . . , n . (4.23)

As we have already discussed, ↵i is non-zero (and positive) only for xs,i . In practice, rather
than minimizing L, we go for the dual formulation of the problem, and we maximize a La-
grange dual, LD, which provides the lower bound for L. LD remains a quadratic program
similarly as L as we have discussed in section 2.4.3. To express the problem via LD, we firstly
take the derivative of L with respect to ✓ and ✓0 and set it to zero. We arrive at:

✓ =
nX

i=1

↵i yixi

0=
nX

i=1

↵i yi .

(4.24)

We can see that the coefficients ✓ are given by the Lagrange multipliers ↵i , which can be found
numerically. When we plug these equations back to the Lagrange function in eq. (4.22), we
arrive to the Lagrange dual:

LD =
nX

i=1

↵i �
1
2

nX

i=1

nX

j=1

↵i↵ j yi y jx
¸
i x j subject to ↵i � 0 . (4.25)

Finally, to put kernels in the picture, we change the notation from x
¸
i x j to
⌦
xi ,x j
↵
. For

now, it remains a linear model. To deal with non-linearities in the input space, we can now

6There is a variant of this approach designed for regression called support vector regression that is almost
identical with KRR but minimizes a different form of a loss function.
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Figure 4.2: The kernel form makes a difference! The same data as in fig. 4.1 is
classified using an SVM with different kernel choices. The black line corresponds to
each underlying decision boundary. (a) As the data is not linearly separable, a linear
kernel does not work. (b) A polynomial kernel up to degree 50 does the trick with
the expense of signs of overfitting. (c) Due to the rotation symmetry, an RBF kernel
is best suited for classifying this data set whose decision boundary closely resembles
the actual underlying decision boundary of the data shown in (d).

introduce a feature map, xi ! �(xi), which gives us

LD =
nX

i=1

↵i �
1
2

nX

i=1

nX

j=1

↵i↵ j yi y j
⌦
� (xi) ,�
�
x j
�↵

. (4.26)

So we finally see our kernel function, K(xi ,x j) =
⌦
� (xi) ,�
�
x j
�↵

, appearing. In this kernel
formulation, the margin we maximize is between the hyperplane and the support points in
the feature space. Therefore, the SVM problem boils down to maximizing LD numerically to
find the coefficients ↵i and the parameters of the kernel function K , e.g., using sequential
minimal optimization [61]. Once these are known, the hyperplane separating the classes in
the typically high-dimensional space is also known. With the optimal hyperplane f̂ we can
then make predictions at an arbitrary test point x⇤:

f̂ (x⇤) = ✓
¸
�(x) + ✓0 =
X

i

↵i yi h� (xi) ,� (xi)i + ✓0 =
X

i

↵i yiK (xi ,x) + ✓0 . (4.27)
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find the coefficients ↵i and the parameters of the kernel function K , e.g., using sequential
minimal optimization [61]. Once these are known, the hyperplane separating the classes in
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Figure 4.1: Toy example of a labeled two-dimensional data set. The data points are
labeled according to their position with respect to the decision boundary indicated
by the black circle in (a). In this input space, such a data set is not linearly separable.
After a transformation of the input variables into a non-linear feature space, however,
the data becomes linearly separable as indicated by the black line in (b).

matical foundation of kernels allow us, as we see in the next section, to enrich our motivation
with rigorous, analytical validity. Especially important from a practical point of view is the
representer theorem: so far, we have set out to find a suitable transformation, i.e., function
to simplify our task at hand. However, it is unclear how to optimize over functions instead
of parameters. The representer theorem endows us with both: in essence, it assures that the
optimization over the function space is equivalent to optimizing the coefficients of a closed
form solution which, in turn, allows us to devise feasible numerical optimization routines.

In the following, we start with an intuitive example to illustrate why and how the trans-
formation into the feature space can be beneficial. Afterwards, we properly introduce the
mathematical notion of kernels that gives us the analytical tools at hand that are required to
understand the representer theorem.

4.1.1 Intuition behind the kernel trick

To gain some intuition, let us consider a labeled two-dimensional data set as depicted in fig. 4.1.
In this toy example, the black line indicates the underlying decision boundary, i.e., the line
that separates input data with different labels. In higher dimensions, the decision boundary
generalizes to a hyperplane. In our example, one label refers to the center of the data cloud
and the other label to its outskirts. A label distribution is said to be separable if one can
draw such a decision boundary, i.e., it is separable if we can find at least one hyperplane
separating the two class sets. If, furthermore, this decision boundary is linear, the data is
called linearly separable.2 Clearly, our toy data set is not linearly separable in the input space.
As a consequence, we cannot find a straight line that fully separates the two data classes by
means of a simplistic linear classifier. Additionally, other linear methods such as PCA (see
chapter 3) fail to cluster this data.

2Whether a given data set actually is (linearly) separable or not, is not easily detectable. In practice, we can
at least run algorithms such as an SVM explained in section 2.4.3 which are guaranteed to find the corresponding
separating hyperplane if it exists.
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FIG. 1. (a) Average test set accuracy of support vector machines
with polynomial kernel K(σ ,σ ′) = (σ · σ ′)k trained on Monte Carlo
sampled configurations from the 2D Ising model. For each number
of training samples, the accuracy is averaged over 100 independent
training and test sets. (b) The SVM classifies samples according to
sgn(d(σ )). The decision function d(σ ) for the SVM with a quadratic
polynomial kernel is evaluated by Monte Carlo sampling at different
temperatures and compared to the squared magnetization per spin m2.
The arbitrary scale factor and offset in the SVM decision function
are fixed by matching the decision function to 〈m2〉 at T = 1.6 and
T = 2.9.

each sample is labeled with its corresponding phase in the
binary class yi = ±1. We train SVMs to learn to discriminate
between the two phases for different numbers of samples in
the training set, with a corresponding change in the number
of samples at each temperature. For the Ising model, we limit
our survey to a linear and a quadratic kernel of general form
K(σ ,σ ′) = (σ · σ ′ + c0)k with k = 1,2 and c0 = 0. Note that
in general, it might be necessary for the learning procedure to
find the optimal c0 as well.

In order to quantify the performance of each SVM model,
the main metric that we study is the test set accuracy as a
function of the number of samples in the training set, for the
value of γ , which results in the optimal accuracy of the model,
illustrated in Fig. 1(a). For the linear kernel, the exploration of
γ is over a log-spaced grid of 11 values from 10−5 to 105. For

the quadratic kernel the accuracy does not depend significantly
on the choice of γ and thus we fixed it at γ = 10−5. For
a given number of training samples and regularization γ , the
test set accuracy is additionally averaged over different random
selections of training and test sets.

Results for the test set accuracy and for the SVM decision
function are shown in Fig. 1. As seen in Fig. 1(a), the quadratic
kernel performs extremely well with mean test set accuracy
≈97% for L = 40. This can be easily interpreted, since we
know that this model possesses a quadratic order parameter that
linearly discriminates the FM from the PM, i.e., the squared
magnetization per spin m2 = (

∑
a σa/N)2. We find that the

quadratic kernel reaches very significant performance with
only a few dozen samples in the training set, which is a result
of the simplicity of this model. Moreover, with increasing
number of samples the test set accuracy approaches a plateau
value, which increases with system size toward 100%. This is
the expected behavior, since at the critical point the fluctuations
of the order parameter approach zero in the thermodynamic
limit and it is thus possible to discriminate perfectly between
both phases.

For the linear kernel [Fig. 1(a)], the accuracy shows
nonmonotonic behavior with the total number of training set
samples and does not improve with increasing system size.
This is a consequence of the fact that a linear decision function
is unable to discriminate between the FM and PM phases.
Namely, in the FM phase configurations have magnetization
per spin near ±1, while for the PM phase most configurations
have approximately zero magnetization. Thus, the k = 1
kernel is asking a linear decision boundary to separate a data
set with three clusters—an impossible task. Close inspection
of the decision function learned by the SVM reveals it contains
random linear coefficients without any structure, confirming
that nothing physically relevant is being learned about the data
in this case.

As noted above, the accuracy of the SVM with a quadratic
kernel on the test set does not depend significantly on the
regularization parameter γ . An advantage of SVMs is that we
can visualize the decision function being learned. From Eq. (2),
the decision function for an SVM with quadratic polynomial
kernel can be expressed as

d(σ ) =
∑

a

∑

x

C(a)
x σ aσ a+x + b. (3)

In Fig. 2, we display the heat map of Cx = 〈C(a)
x 〉a, where

〈. . .〉a denotes averaging with respect to all sites a for γ = 106

and γ = 10−6 and system size L = 30. It is interesting to
note that even though the classification performance is very
similar, the SVM decision function corresponds to different
order parameters depending on the amount of regularization.
Clearly, at γ = 106, the SVM is learning m2 as the order
parameter of the model up to finite-size effects. In contrast, at
γ = 10−6, the SVM is learning to calculate the square of the
total magnetization within some fixed distance of each spin
and summing all these different local contributions. A more
detailed Fourier decomposition of C

(a)
x shows that the k = 0

mode is dominant for any amount of regularization, but at
small γ the contributions from other small k modes are larger.
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each sample is labeled with its corresponding phase in the
binary class yi = ±1. We train SVMs to learn to discriminate
between the two phases for different numbers of samples in
the training set, with a corresponding change in the number
of samples at each temperature. For the Ising model, we limit
our survey to a linear and a quadratic kernel of general form
K(σ ,σ ′) = (σ · σ ′ + c0)k with k = 1,2 and c0 = 0. Note that
in general, it might be necessary for the learning procedure to
find the optimal c0 as well.

In order to quantify the performance of each SVM model,
the main metric that we study is the test set accuracy as a
function of the number of samples in the training set, for the
value of γ , which results in the optimal accuracy of the model,
illustrated in Fig. 1(a). For the linear kernel, the exploration of
γ is over a log-spaced grid of 11 values from 10−5 to 105. For

the quadratic kernel the accuracy does not depend significantly
on the choice of γ and thus we fixed it at γ = 10−5. For
a given number of training samples and regularization γ , the
test set accuracy is additionally averaged over different random
selections of training and test sets.

Results for the test set accuracy and for the SVM decision
function are shown in Fig. 1. As seen in Fig. 1(a), the quadratic
kernel performs extremely well with mean test set accuracy
≈97% for L = 40. This can be easily interpreted, since we
know that this model possesses a quadratic order parameter that
linearly discriminates the FM from the PM, i.e., the squared
magnetization per spin m2 = (

∑
a σa/N)2. We find that the

quadratic kernel reaches very significant performance with
only a few dozen samples in the training set, which is a result
of the simplicity of this model. Moreover, with increasing
number of samples the test set accuracy approaches a plateau
value, which increases with system size toward 100%. This is
the expected behavior, since at the critical point the fluctuations
of the order parameter approach zero in the thermodynamic
limit and it is thus possible to discriminate perfectly between
both phases.

For the linear kernel [Fig. 1(a)], the accuracy shows
nonmonotonic behavior with the total number of training set
samples and does not improve with increasing system size.
This is a consequence of the fact that a linear decision function
is unable to discriminate between the FM and PM phases.
Namely, in the FM phase configurations have magnetization
per spin near ±1, while for the PM phase most configurations
have approximately zero magnetization. Thus, the k = 1
kernel is asking a linear decision boundary to separate a data
set with three clusters—an impossible task. Close inspection
of the decision function learned by the SVM reveals it contains
random linear coefficients without any structure, confirming
that nothing physically relevant is being learned about the data
in this case.

As noted above, the accuracy of the SVM with a quadratic
kernel on the test set does not depend significantly on the
regularization parameter γ . An advantage of SVMs is that we
can visualize the decision function being learned. From Eq. (2),
the decision function for an SVM with quadratic polynomial
kernel can be expressed as

d(σ ) =
∑
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x σ aσ a+x + b. (3)

In Fig. 2, we display the heat map of Cx = 〈C(a)
x 〉a, where

〈. . .〉a denotes averaging with respect to all sites a for γ = 106

and γ = 10−6 and system size L = 30. It is interesting to
note that even though the classification performance is very
similar, the SVM decision function corresponds to different
order parameters depending on the amount of regularization.
Clearly, at γ = 106, the SVM is learning m2 as the order
parameter of the model up to finite-size effects. In contrast, at
γ = 10−6, the SVM is learning to calculate the square of the
total magnetization within some fixed distance of each spin
and summing all these different local contributions. A more
detailed Fourier decomposition of C
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mode is dominant for any amount of regularization, but at
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• Independent of ML architecture 
• Look at curvature around minimum of the training loss
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model parameters caused by some action can be approximated using the Hessian matrix of the empirical risk
(training loss) calculated at the minimum of the loss landscape at θ̃, namely (Hθ̃)ij = ∂2

θiθj
L(D,θ)|θ=θ̃ . Hθ̃

describes the local curvature around the minimum point reached within the training. The eigenvectors of
Hθ̃ corresponding to the largest positive eigenvalues indicate directions with the steepest ascent around the
minimum. The high curvature implies that the training data strongly determines the model parameters
along that direction5. In contrary to the common intuition, the training of a ML model leads to a local
minimum or a saddle point [50, 53, 54]: the vast majority of the eigenvalues is close to zero, indicating
various flat directions and some small negative eigenvalues are also present, indicating directions with
negative curvature. Such a non-positive curvature around the minimum, in general, does not affect the
quality of the model predictions but may cause problems when working with the Hessian.

All the methods we study in this work approximate how the change of parameters impacts the model
predictions, but the reason for the change of parameters is different for each method. Influence functions
and RelatIF study the removal of a single training point from a training data set, RUE analyzes training on
various samples of the training data set, while LEs modify model parameters in the flat directions of the
Hessian. These methods aim to answer different questions regarding the reliability and interpretability of the
model, and we will discuss them in detail in the following sections.

2.3. Leave-one-out training, influence function, similarity, and relative influence function
2.3.1. Leave-one-out training
Let us consider a model trained on n training points and making a prediction at a test point. Now, we remove
a single training point zr from the training setD,D→D\zr , retrain the model, and check the influence of
this removal on the test loss. If the prediction is now worse (resp. better), i.e. the test loss is higher (resp.
lower), then zr is a helpful (resp. harmful) training example for this specific test point. If the prediction stays
the same, zr is not influential to this prediction. With such an analysis, called leave-one-out (LOO) training,
we can therefore judge how influential a certain training point is for a test prediction.

2.3.2. Influence functions
Retraining the model is, however, expensive, and an approximation of the LOO training was proposed and
named influence functions [55–57]. It was then ported to ML applications by Koh and Liang [42, 43]. The
influence function reads:

I(zr,ztest) =
1

n
∇θL(ztest, θ̃)TH−1

θ̃
∇θL(zr, θ̃)≡

1

n
∇LT

testH
−1
θ̃

∇Lr, (1)

and it estimates the change of the test loss for a chosen test point ztest after the removal of a chosen training
point zr.∇θL(ztest, θ̃) is the gradient of the loss function of the single test point, and∇θL(zr, θ̃) is the
gradient of the loss function of the single training point whose removal’s impact is being approximated. Both
are calculated at the minimum θ̃ of the training loss landscape.

2.3.3. Geometrical interpretation
The influence function (1) can be written as the inner product of−∇Ltest and−H−1

θ̃
∇Lr [44], where the

term−H−1
θ̃

∇Lr describes an approximated change in parameters θ̃ → θ ′ due to the removal of the training
point zr (for a derivation, see appendix A of [42]). This formulation emphasizes the geometric interpretation
of influence functions, which is a projection of the approximated change in parameters due to the removal of
a training point onto the test sample’s negative loss gradient (see figure 1(b)). The term−H−1

θ̃
∇Lr can also

be understood as a Newton step [58] towards a new minimum resulting from a removal of zr. Note that the
same term involves scaling by the inverse of eigenvalues of H−1

θ̃
. In other words, we see that the influence

function is a scalar product of the gradients∇Ltest and∇Lr accounting for a local curvature of the loss
landscape described by Hθ̃ . The resulting value of influence functions depends on two factors: how similar
are the test and the removed training point and how representative they are in the data set.

2.3.4. Similarity measure
Firstly, the more similar the test point and the removed training point are, the larger is the value of the
influence function between them. More specifically, the largest influence is for the change in parameters

5 If themodel parameters are varied along directions of the steepest ascent around theminimum, i.e. along the eigenvectors corresponding
to the largest positive eigenvalues of the Hessian, the value of the training loss function changes the most. In other words, these directions
are bounded themost by the training data. There are also two empirical observations supporting this claim. Firstly, numerical simulations
on the example of a one-dimensional nonlinear regression problem show that gradients of training examples lie along the directions of
the highest curvature [45]. Secondly, the analysis of the Hessian spectrum shows that in deep learning problems number of directions
with a significant ascent around the minimum is equal roughly to the number of classes in the problem minus one [50–52].
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Figure 1. (a) The scheme of this study’s scope. The ML problem starts with a model depending on parameters θ. Training a model
consists in finding optimal parameters θ̃ which minimize a training loss function, L(D), calculated for the training data set,D.
The Hessian of the training loss at the minimum, Hθ̃ , describes the curvature around the minimum and is a basis for four
methods which provide the notion of similarity (influence and relative influence functions), estimation of uncertainty (RUE) and
extrapolation score (LEs) of the model prediction. They give insight into the reliability and interpretability of the model after its
training. (b) All four methods address the change in the model’s predictions due to various actions. This change can be
approximated by analyzing the projection of the gradient of the test loss (black arrows) and the gradients of training points (green
arrows) corrected for the local curvature described by the Hessian. An outlier (blue arrow) is here a training point being very
different from an average one in a data set. Blue dashed lines are large projections of the outlier gradient corrected by the local
curvature onto the gradients of the test points.

which is along the direction of∇Ltest. It happens when the gradients∇Ltest and∇Lr are aligned in the
parameter space, corrected for the local curvature of the loss landscape, so when the test point, ztest, is similar
to the removed training point, zr. Note that by similarity here we understand the distance in the model’s
internal representation, so in the model’s parameter space, corrected by the local curvature described by the
Hessian. This similarity is different than, e.g. similarity as a distance of input vectors zr and ztest in the input
space X or the similarity in the Euclidean parameter space. In particular, the predictive model and especially
neural networks can be highly nonlinear and may use an internal representation in which similar (close)
points are far away in both the input and the Euclidean parameter space. We can then define a model’s
similarity measure between data points zi and zj equal to [45]:

S(zi,zj) = [∇θL(zi, θ̃)TH−1
θ̃

∇θL(zj, θ̃)]2 ≡ [∇LT
i H

−1
θ̃

∇Lj]
2 ∝ I(zi,zj)2. (2)

2.3.5. Representative data and outliers
The second factor impacting the value of the influence function (and therefore the similarity measure) is the
direction along which∇Ltest or∇Li lie. For example, the gradient may be aligned with the eigenvectors of
Hθ̃ corresponding to the largest eigenvalues, which are the directions where the training data strongly
determines the model parameters. Such an alignment happens for the most common or representative data
points. The gradient also can point in the direction of one of many eigenvectors with almost zero eigenvalues,
which may happen for distinct or unrepresentative data points called outliers. Due to projection onto the
inverse of Hθ̃ and scaling by the inverse of corresponding eigenvalues, the influence function is larger for
gradients pointing in the flat curvature of Hθ̃ than for gradients pointing to the high curvature. Therefore,
the values of influence functions between two data points are determined by how similar the two data points
are from the model’s perspective and how representative these data points are in the data set.

2.3.6. Sensitivity to outliers
A careful reader notices that influence functions as well as the similarity measure S(zi,zj)may then be
sensitive to outliers, i.e. data points with extreme values that significantly deviate from the majority of data
points [59]. The removal of such an outlier can cause a large change in parameters. Therefore, the outlier is
likely to have a large influence on a wide range of test samples, having a global effect on the test set. This
global effect is visualized in figure 1(b), where the blue gradient of the outlier projected onto the inverted
Hessian space has large projection lengths with the gradients of two very different test points. Conversely, the
removal of a typical training example zi whose gradient points towards high curvature of the Hessian (green
arrows in figure 1(b)) causes a small change in parameters and has a significant influence only for similar test
points (circled in red in the figure).

4

• Influence function: indicates which training points are 

influential for a chosen (test) prediction. Analysis of the most 
influential examples can reveal the characteristics which impacts 

the machine learning predictions.  
• Resampling uncertainty estimation: check 

whether there are training samples similar to test sample & how 
big/small errors are on this training data 

• Extrapolation: explore flat basin around minimum, make 

predictions for the same test point, calculate variance of the test 
loss

Dawid et al., Mach. Learn.: Sci. Technol 3 (2022)
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Figure 6. RUE vs. the quantum phase transition width. (a), (b) RUE plotted as error bars of predictions of two CNNs with the
same architecture trained on the 12- and 14-site systems. The uncertainty regime is narrower for the 14-site system than for the
12-site one. (c) Order parameters across the same transition for the 12- and 14-site systems. Due to the finite-size effect, the
transition is sharper in the 14-site system than the 12-site.

3.6.3. Error bars for 12- and 14-site systems
More importantly, we see that these uncertainty regimes have different widths for two different system sizes
(see panels (a) and (b) of figure 6). If we set a threshold for RUE’s value to 5 × 10−5, the uncertainty regime
spans between 1 and 3.6V1/J for 12 sites and 1 and 2.8V1/J for 14 sites. It is a direct consequence of the
finite-size effect because of which the transition is sharper for the 14-site system than for the 12-site one.
Figure 6(c) depicts the order parameter OCDW−I for both system sizes, and one can clearly see a sharper
phase transition for larger system size. Due to the sharper transition and smaller number of test data with
low representation in the training data, the non-zero RUE regime is always narrower in the 14-site case,
regardless of the chosen threshold for the RUE’s value.

Therefore, RUE is a way of providing similarity-based confidence in the ML model predictions.

4. Conclusions

In this work, we presented four interpretability and reliability methods that are independent of the
architecture and the training procedure of the ML models. They rely on the computation of the Hessian of
the training loss describing the curvature around the local minimum. We showed how these methods could
be applied to ML models that classify many-body physics phase diagrams, here the phase classification of the
1D spinless Fermi–Hubbard model. Our findings are summarized in the following:

• We compared influence functions and RelatIFs. According to influence functions, themost influential train-
ing points were the most similar to the test point and the most unrepresentative in the data set. RelatIF
ignored the second aspect and focused on similarity. Here, wemean the similarity as a distance in themodel’s
learned internal representation space. The analysis of this learned similarity, enabled by influence functions
and RelatIFs, increases the interpretability of the ML model.

• Thanks to the focus on unrepresentative data, influence functions immediately pinpointed anomalies in the
training set and improved the model’s reliability. The model can be better understood when the influence
of the training outliers is known. For example, an outlier training point can have zero influence on all the
test points. This shows that the model ignores such outliers during the training. In phase-detection tasks, in
general, the model should be prone against outliers, and therefore, one can further use such knowledge to
improve the model and its training.

• With the help of influence functions, we also showed that, even if a feature is irrelevant for the phase clas-
sification (like a global sign of the wavefunction), the model may still note such features. This finding is
consistentwith the results found in [24]. These findings challenge our intuition aboutwhat really is a feature-
invariant model.

• The test loss calculated by comparing the output of the ML model and the ground-truth label tends to be
interpreted as an uncertainty of the ML model. This interpretation is tempting due to the simplicity of the
test loss calculation but has limited use and can fail miserably on OOD test points. Therefore, we need other
tools to increase our trust in the ML model.

• We showed how LEs are able to identify predictions that are made by a ML model with a high level of
extrapolation. In other words, it shows how sensitive the prediction is to the arbitrary choices outside the
learning problem, e.g. the random seed. Thanks to this property, LEES perfectly highlighted all out-of-
distribution (OOD) points in our test set.

12

Phase transition less/more sharp for L=12/14

Dawid et al., Mach. Learn.: Sci. Technol 3 (2022)
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Setting the stage: quantum simulation
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FIG. 1. Probing antiferromagnetism in the Hubbard
model with a quantum gas microscope. a, Schematic
view of the 2D Hubbard phase diagram, including predicted
phases. This work explores the trajectories traced by the red
arrows for a U/t = 7.2(2) Hubbard model. The strongest
antiferromagnetic order is observed at the starred point. b,
Experimental setup. We trap 6Li atoms in a 2D square optical
lattice. We use the combined potential of the optical lattice
and a DMD to trap the atoms in a central sample ⌦ of homo-
geneous density, surrounded by a dilute reservoir. c, Exem-
plary raw and processed images of the atomic distribution of
single experimental realizations, with both spins components
present (upper) and one spin component removed (lower). The
observed chequerboard pattern in the spin-removed images in-
dicates the presence of an antiferromagnet.

where ⇢s is the spin sti↵ness and C⇠ is a constant [30].
However, for the finite-size system investigated in this
work, a crossover to antiferromagnetic long-range order
does occur at a non-zero temperature, where ⇠ becomes
comparable to the system size and m

z becomes of order
unity.

Two aspects were critical in realizing antiferromagnetic
LRO in our experiment: first, reaching su�ciently low
temperatures and second, creating a well-defined region
of uniform density within the atomic cloud where the
LRO state can form. We address both challenges simul-
taneously by exploiting the high-resolution microscope at
the heart of the experiment, which enables in situ, high-
fidelity, and site-resolved measurements of the lattice oc-
cupation. We use a digital micromirror device (DMD) as
a spatial light modulator in the image plane of the mi-
croscope to control the atomic potential landscape at a
single-site level [37]. We engineer the potential to split the
system into two subsystems: a central disk-shaped region
⌦ containing > 75 sites, surrounded by a large reservoir
at much lower density, see Fig. 1b (and Extended Data
Fig. 1). Partitioning the system enhances the inherent

entropy redistribution in the trap by shifting a higher
fraction of the total entropy to the reservoir [38]. Ad-
ditionally, the potential within ⌦ is shaped to cancel the
underlying harmonic potential, ensuring a highly uniform
and tunable filling, see Extended Data Fig. 2 (Methods).

A balanced mixture of the two lowest hyperfine states
of 6Li with repulsive contact interactions is adiabatically
loaded into an isotropic, square, 7.4(1)ER lattice with
spacing a = 569 nm, where ER/h = 25.6 kHz. The lat-
tice is combined with a DMD-engineered potential at
the focus of the microscope. The system is well de-
scribed by the Hubbard model with t/h = 0.90(2) kHz
and U/h = 6.50(3) kHz where h is the Planck constant,
leading to U/t = 7.2(2). Similar to previous work, our
detection method is based on selective spin removal fol-
lowed by site-resolved imaging of the remaining atomic
distribution [25], see Fig. 1c. Averaging over many inde-
pendent experimental realizations, we determine the spin
correlator along the z-direction

Cd =
1

Nd

1

S2

X

r,s2⌦
d=r�s

hŜz
r Ŝ

z
si � hŜz

rihŜz
si (3)

where the normalization Nd is the number of di↵erent
two-point correlators at displacement d within ⌦. The
correlator compares the number of parallel and anti-
parallel spin orientations on two sites separated by d, i.e.
is positive (negative) if parallel (anti-parallel) spin orien-
tations are preferred. Figure 2a shows Cd for di↵erent
temperatures. For the lowest temperature we find spin
correlations alternating in sign even up to the largest dis-
tance of d = |d| = 10 across the entire disk, as expected
for an antiferromagnetic LRO state. We determine the
temperature of each sample by comparing the measured
nearest-neighbour correlator C1 to quantum Monte Carlo
predictions at half-filling, which gives T/t = 0.25(2) for
the lowest temperature (Methods).

As temperature increases, the strength of antiferromag-
netic order disappears rapidly, until for T/t = 0.64(6)
only nearest-neighbour spin correlations remain. For a
quantitative analysis of the spin correlations we plot in
Fig. 2b a binned azimuthal average of the sign-corrected
spin correlator (�1)iCd as a function of distance d (Meth-
ods). For large distances d > 2 the measured correlation
functions exhibit an exponential scaling with distance,
verified by fitting N0 exp(�d/⇠) to each dataset, with the
correlation length ⇠ and N0 as free parameters (N0 the
same for all fits). For our 2D system quantum fluctuations
lead to an increase in spin correlations at short distances
d  2 above the exponential dependence, most promi-
nently visible in the nearest-neighbour correlator [39]. In
Fig. 2d we show the experimentally determined correla-
tion length as a function of temperature, which increases
dramatically at temperatures around T/t = 0.4. For the
lowest temperature we find ⇠ = 8.3(9) sites, which is ap-
proximately equal to the system size of 10 sites, as ex-
pected for LRO.

Mazurenko et al., Nature 545 (2017)
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Grusdt et al., PRX 8 (2018), Grusdt et al., PRB 99 (2019), 
Bohrdt et al., NJP 22 (2020)
Early work: Bulaevskii et al., JETP 27 (1968),  
Trugman, PRB 37 (1988),  Manousakis, PRB 75 (2007)

Geometric string theory Resonating valence bond theory 

( -flux theory)π

P. W. Anderson, Science 235, 1196 (1987)
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“The theoretical problem is so hard that 
there isn’t an obvious criterion for right.” 

— Steven Kivelson, Stanford University
Science 314 (2006)
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Setting the stage: correlations
4

FIG. 3. Breakdown of polaronic correlations. A, Relation between bare and connected spin correlations in the vicinity of
a hole. B, Connected correlation (represented as bonds) of spins on NN and diagonal lattice sites (grey dots) in the presence
of a single hole (white central dot) for di↵erent dopings. C, Connected correlations as a function of bond distance r from
the hole, where we flip the sign of correlations with bond length d =

p
2. Thus a positive correlation indicates a connected

signal opposing the two-point correlations at half filling. Error bars denote one s.e.m. and are smaller than the point size.
The full width of doping bins for B, C is 0.1. D, Doping dependence of the NN and diagonal bonds closest to the hole (see
insets). Square (circular) datapoints were extracted from a dataset with 52.0(1) (91.3(1)) average number of particles. Solid
lines represent numerical calculations (see legend) and shaded bands indicate (where visible) their statistical s.e.m. This figure
is based on 18 107 experimental realizations at kBT = 0.52(5) t and U/t = 7.4(8).

best captured by TPSC calculations. However, below
�FL the susceptibility �s stops increasing for weaker dop-
ings. This behavior is reminiscent of the pseudogap phe-
nomenon as well as anomalous with respect to our FL
calculations, and supported by QMC results [41]. This
indicates, that the metallic regime below �FL is of a dif-
ferent nature than the conventional Fermi liquid found
at higher dopings (for convergence of structure factors in
FL see [33]).

The weakly doped metallic regime hosts magnetic po-
larons, whose dressing cloud can be measured with a
three-point correlator of two spins around a hole [16, 29].
For spin-balanced systems hŜz

ri
i = 0, the connected part

simplifies to [33]

C
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� C
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and measures how the bond is perturbed away from the
background two-point correlation by post-selecting on a
hole at a third position r3, c.f. Fig. 1C. The distance of
the bond center to the hole is given by r = (r1+r2)/2�
r3.

For � around 10%, a hole perturbs all bonds in its
vicinity with a sign opposite to the antiferromagnetic
background, such that NN spins (d = 1) align more ferro-
magnetically (parallel) and diagonal spins (d =

p
2) more

antiferromagnetically (antiparallel), see Fig. 3. Doublon-
hole fluctuations cause a similar connected signal already
at half-filling, but play a minor role at 10% doping [33].
When measuring the strength of this e↵ect versus bond
distance from the hole, the radial dependence of the po-
laronic dressing is obtained (see Fig. 3B).

In the Fermi-liquid regime at large doping, the Pauli
exclusion principle prevents fermions with the same spins
to occupy sites in a small volume [25]. This causes an
enhanced antiferromagnetic alignment of all bonds (also
d = 1) in the presence of a hole and in fact is expected to
cause small amplitude oscillations of that alignment with
larger distance from the hole, akin to Friedel oscillations
around a static hole.
Therefore, a useful indicator for the transition between

the two metals is the NN bond (d = 1) closest to the hole,
whose connected correlation continuously evolves from
ferromagnetic to antiferromagnetic across the regimes,
see Fig. 3C. An intial drop of the connected signal is
expected from the higher concentration of polarons, as
their dressing clouds start to overlap. Around 20% dop-
ing, the closest NN bond becomes uncorrelated with the
presence of the hole and builds up an antiferromagnetic
alignment towards �FL, consistent with ED. At a similar
doping � ⇠ �FL, the closest distance connected diagonal
correlations are maximally antiferromagnetic.
String and RVB predictions for Cc

�
are very distinguish-

able at weak dopings. Only the polaron model (string)
reproduces the experimental ferromagnetic alignment of
the closest NN bond, while RVB states show strong dis-
crepancies to experiment. Uniform RVB is a prime ex-
ample of how a theoretical approach can show excel-
lent agreement with experiment in two-point correlations
at low doping, but reveal strong deviations at higher-
order correlators. At large dopings, uniform RVB and
free fermions start to capture the correlations driven by
fermionic statistics.
QMC studies of Fermi-Hubbard systems found the
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is based on 18 107 experimental realizations at kBT = 0.52(5) t and U/t = 7.4(8).

best captured by TPSC calculations. However, below
�FL the susceptibility �s stops increasing for weaker dop-
ings. This behavior is reminiscent of the pseudogap phe-
nomenon as well as anomalous with respect to our FL
calculations, and supported by QMC results [41]. This
indicates, that the metallic regime below �FL is of a dif-
ferent nature than the conventional Fermi liquid found
at higher dopings (for convergence of structure factors in
FL see [33]).

The weakly doped metallic regime hosts magnetic po-
larons, whose dressing cloud can be measured with a
three-point correlator of two spins around a hole [16, 29].
For spin-balanced systems hŜz
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and measures how the bond is perturbed away from the
background two-point correlation by post-selecting on a
hole at a third position r3, c.f. Fig. 1C. The distance of
the bond center to the hole is given by r = (r1+r2)/2�
r3.

For � around 10%, a hole perturbs all bonds in its
vicinity with a sign opposite to the antiferromagnetic
background, such that NN spins (d = 1) align more ferro-
magnetically (parallel) and diagonal spins (d =

p
2) more

antiferromagnetically (antiparallel), see Fig. 3. Doublon-
hole fluctuations cause a similar connected signal already
at half-filling, but play a minor role at 10% doping [33].
When measuring the strength of this e↵ect versus bond
distance from the hole, the radial dependence of the po-
laronic dressing is obtained (see Fig. 3B).

In the Fermi-liquid regime at large doping, the Pauli
exclusion principle prevents fermions with the same spins
to occupy sites in a small volume [25]. This causes an
enhanced antiferromagnetic alignment of all bonds (also
d = 1) in the presence of a hole and in fact is expected to
cause small amplitude oscillations of that alignment with
larger distance from the hole, akin to Friedel oscillations
around a static hole.
Therefore, a useful indicator for the transition between

the two metals is the NN bond (d = 1) closest to the hole,
whose connected correlation continuously evolves from
ferromagnetic to antiferromagnetic across the regimes,
see Fig. 3C. An intial drop of the connected signal is
expected from the higher concentration of polarons, as
their dressing clouds start to overlap. Around 20% dop-
ing, the closest NN bond becomes uncorrelated with the
presence of the hole and builds up an antiferromagnetic
alignment towards �FL, consistent with ED. At a similar
doping � ⇠ �FL, the closest distance connected diagonal
correlations are maximally antiferromagnetic.
String and RVB predictions for Cc

�
are very distinguish-

able at weak dopings. Only the polaron model (string)
reproduces the experimental ferromagnetic alignment of
the closest NN bond, while RVB states show strong dis-
crepancies to experiment. Uniform RVB is a prime ex-
ample of how a theoretical approach can show excel-
lent agreement with experiment in two-point correlations
at low doping, but reveal strong deviations at higher-
order correlators. At large dopings, uniform RVB and
free fermions start to capture the correlations driven by
fermionic statistics.
QMC studies of Fermi-Hubbard systems found the
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measured distribution function across all dop-
ings. Across all observables considered, both of
these theories perform quite well, especially in
comparison to the sprinkled-holes simulation
and the naïve phenomenologicalmodels detailed
in section 5 of (14). However, we find the sign
change of Csð

ffiffiffi
2

p
Þ to be a key qualitative feature

that is captured only by geometric strings.

Antimoment correlations

All observables studied in this work thus far have
focused on the spin sector of theHubbardmodel.
Next, we examine correlations in the charge sector.
At sufficiently low temperatures, one may expect
signatures of pairing (10, 28) or stripe phases
(29, 30), which lead to hole bunching. However,
anticorrelations of the holes, as observed previ-
ously at increased temperatures (24), are expected
in the strongly correlated metallic regime of the
Hubbardmodel. The transition between these two
regimes in the Hubbard model phase diagram is
not yet fully understood; however, the currently
accessible experimental regime allows us to place
more accurate bounds on where this transition
can occur. We continue to compare experimental
results to predictions of p-flux states, but do not
compare to predictions of the geometric string
theory because it approximates that charges are
uncorrelated. Rather, because each string is asso-
ciated with a single hole, correlation functions of
holes can reveal possible interactions and correla-
tions between geometric strings, should they exist.
In our experiment, doubly occupied sites appear

as empty when imaged and the exact hole cor-
relation is not directly accessible; rather, we
measure “antimoment” correlationsChðjdjÞat a
distance jdj, which include contributions from
doublon-doublon and doublon-hole correlations:

ChðjdjÞ ≡
"
hð1# n̂s;iÞð1# n̂s;iþdÞi

#hð1# n̂s;iÞihð1# n̂s;iþdÞi
#

ð4Þ

where n̂s;i is the single particle occupation on
site i. Note that this correlator is identical to the
moment correlator. At half-filling, numerics indi-
cate positive antimoment correlations at the per-
cent level for nearest neighbors, dominated by
positive doublon-hole correlations (24). Doublon-
hole pairs beyond nearest neighbors become in-
creasingly unlikely; therefore, to avoid the effects
of doublon-hole pairs, we focus on correlations at
distances greater than 1. We find the nearest-
neighbor antimoment correlator at half-filling to
be weaker than predicted according to numerics,
whichmay be caused by imperfect imaging fidel-
ity. However, this effect only weakens the mag-
nitude of the antimoment correlators measured;
we therefore focus on qualitative conclusions from
the experimental data.
Figure 5A shows the antimoment correlation

for 3% (top) and 19% doping (bottom) at a tem-
perature T ¼ 0:65ð4ÞJ . Whereas holes appear
uncorrelated close to half-filling, at larger doping
qualitatively different behavior appears. We find
statistically significant antimoment anticorre-
lations out to distances over two sites, reflecting

Chiu et al., Science 365, 251–256 (2019) 19 July 2019 5 of 6

Fig. 4. Spin correlations and staggered magnetization. (A) Decay of nearest-neighbor (left),
diagonal next-nearest-neighbor (center), and straight nearest-neighbor (right) spin-spin correlation
functions upon doping. The p-flux theory most quantitatively explains Csð1Þ, but only the string

model captures the sign change of Csð
ffiffiffi
2

p
Þ. In all three cases, sprinkled holes overestimate the spin

correlations. Doping error bars are calculated as in (14), section 2.1; all other error bars represent
1 SEM. (B) Full counting statistics of the staggered magnetization for doping values of 6.0(5)%
(left), 10.0(8)% (center), and 19.7(6)% (right). Both p-flux states and geometric strings show
reasonable agreement, whereas sprinkled holes do not. The figure is based on more than
29,900 experimental realizations at average temperature T = 0.65(4)J.
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Fig. 5. Observation of hole antibunching. (A) Antimoment correlation function for weak (top)
and strong (bottom) doping. The correlation functions are different up to a distance of d = 2.
(B) Diagonal next-nearest neighbor and straight next-nearest neighbor antimoment correlators
versus doping. At both distances negative correlations grow with doping. (C) Normalized antimo-

ment correlator at d ¼
ffiffiffi
2

p
versus doping. The experimental result cannot be explained by the p-flux

or a point-like magnetic polaron theory (see text), but instead matches a free fermionic chargon
theory. In (B) and (C), error bars on the doping are calculated as in (14), section 2.1. All other
error bars represent 1 SEM. The figure is based on more than 9900 experimental realizations at an
average temperature T = 0.65(4)J.
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measured distribution function across all dop-
ings. Across all observables considered, both of
these theories perform quite well, especially in
comparison to the sprinkled-holes simulation
and the naïve phenomenologicalmodels detailed
in section 5 of (14). However, we find the sign
change of Csð

ffiffiffi
2

p
Þ to be a key qualitative feature

that is captured only by geometric strings.

Antimoment correlations

All observables studied in this work thus far have
focused on the spin sector of theHubbardmodel.
Next, we examine correlations in the charge sector.
At sufficiently low temperatures, one may expect
signatures of pairing (10, 28) or stripe phases
(29, 30), which lead to hole bunching. However,
anticorrelations of the holes, as observed previ-
ously at increased temperatures (24), are expected
in the strongly correlated metallic regime of the
Hubbardmodel. The transition between these two
regimes in the Hubbard model phase diagram is
not yet fully understood; however, the currently
accessible experimental regime allows us to place
more accurate bounds on where this transition
can occur. We continue to compare experimental
results to predictions of p-flux states, but do not
compare to predictions of the geometric string
theory because it approximates that charges are
uncorrelated. Rather, because each string is asso-
ciated with a single hole, correlation functions of
holes can reveal possible interactions and correla-
tions between geometric strings, should they exist.
In our experiment, doubly occupied sites appear

as empty when imaged and the exact hole cor-
relation is not directly accessible; rather, we
measure “antimoment” correlationsChðjdjÞat a
distance jdj, which include contributions from
doublon-doublon and doublon-hole correlations:

ChðjdjÞ ≡
"
hð1# n̂s;iÞð1# n̂s;iþdÞi

#hð1# n̂s;iÞihð1# n̂s;iþdÞi
#

ð4Þ

where n̂s;i is the single particle occupation on
site i. Note that this correlator is identical to the
moment correlator. At half-filling, numerics indi-
cate positive antimoment correlations at the per-
cent level for nearest neighbors, dominated by
positive doublon-hole correlations (24). Doublon-
hole pairs beyond nearest neighbors become in-
creasingly unlikely; therefore, to avoid the effects
of doublon-hole pairs, we focus on correlations at
distances greater than 1. We find the nearest-
neighbor antimoment correlator at half-filling to
be weaker than predicted according to numerics,
whichmay be caused by imperfect imaging fidel-
ity. However, this effect only weakens the mag-
nitude of the antimoment correlators measured;
we therefore focus on qualitative conclusions from
the experimental data.
Figure 5A shows the antimoment correlation

for 3% (top) and 19% doping (bottom) at a tem-
perature T ¼ 0:65ð4ÞJ . Whereas holes appear
uncorrelated close to half-filling, at larger doping
qualitatively different behavior appears. We find
statistically significant antimoment anticorre-
lations out to distances over two sites, reflecting
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Fig. 4. Spin correlations and staggered magnetization. (A) Decay of nearest-neighbor (left),
diagonal next-nearest-neighbor (center), and straight nearest-neighbor (right) spin-spin correlation
functions upon doping. The p-flux theory most quantitatively explains Csð1Þ, but only the string

model captures the sign change of Csð
ffiffiffi
2

p
Þ. In all three cases, sprinkled holes overestimate the spin

correlations. Doping error bars are calculated as in (14), section 2.1; all other error bars represent
1 SEM. (B) Full counting statistics of the staggered magnetization for doping values of 6.0(5)%
(left), 10.0(8)% (center), and 19.7(6)% (right). Both p-flux states and geometric strings show
reasonable agreement, whereas sprinkled holes do not. The figure is based on more than
29,900 experimental realizations at average temperature T = 0.65(4)J.
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Fig. 5. Observation of hole antibunching. (A) Antimoment correlation function for weak (top)
and strong (bottom) doping. The correlation functions are different up to a distance of d = 2.
(B) Diagonal next-nearest neighbor and straight next-nearest neighbor antimoment correlators
versus doping. At both distances negative correlations grow with doping. (C) Normalized antimo-

ment correlator at d ¼
ffiffiffi
2

p
versus doping. The experimental result cannot be explained by the p-flux

or a point-like magnetic polaron theory (see text), but instead matches a free fermionic chargon
theory. In (B) and (C), error bars on the doping are calculated as in (14), section 2.1. All other
error bars represent 1 SEM. The figure is based on more than 9900 experimental realizations at an
average temperature T = 0.65(4)J.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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opin

g va
lues

 of 
abo

ut 1
5% 

(see
 Sup

plem
enta

ry I
nfor

mat
ion 

for 
deta

ils).
In s

umm
ary,

 we 
hav

e de
mon

stra
ted 

that
 CN

Ns p
rovi

de a
 pow

er -
ful 

tool
 to 

ana
lyse

 the
 larg

e am
oun

t of
 exp

erim
enta

l da
ta o

btai
ned

 
from

 qua
ntum

 gas
 mic

rosc
ope

s. In
divi

dua
l sn

apsh
ots 

can
 be 

clas
si -

fied
 to t

heo
retic

al p
redi

ctio
ns a

nd w
e ca

n th
ereb

y de
term

ine 
whi

ch 
theo

ry fi
ts b

est. 
We 

app
ly th

is m
etho

d to
 the

 Fer
mi–

Hub
bard

 mo
del 

on a
 squ

are 
latti

ce a
nd f

ind 
that

 on 
a m

icro
scop

ic le
vel 

the 
exp

eri -
men

tal d
ata 

mor
e clo

sely
 res

emb
le th

e ge
ome

tric
 stri

ng t
heo

ry w
ith 

sho
rt-r

ang
e hi

dde
n or

der 
than

 the
 π-fl

ux R
VB 

theo
ry in

 the
 reg

ime
 

of l
ow 

dop
ing.

 Ou
r an

alys
is s

ugg
ests

 a q
uali

tativ
e ch

ang
e of

 thi
s 

beh
avio

ur b
etw

een
 15 

to 2
0% 

dop
ing.

Con
ven

tion
al o

bser
vab

les, 
such

 as 
the 

stag
gere

d m
agn

etiz
atio

n 
or t

wo-
poin

t sp
in c

orre
latio

n fu
ncti

ons
, ha

rdly
 allo

w fo
r a 

dist
inc -

tion
 bet

wee
n th

e th
eori

es u
nde

r co
nsid

erat
ion 

and
 it d

epe
nds

 on
 

the 
cho

sen 
obs

erva
ble 

whi
ch t

heo
ry w

ill b
e fa

vou
red15 . By

 con
tras

t, 
the 

CN
N s

earc
hes 

for 
patt

erns
 in 

the 
coll

ecti
on o

f sn
apsh

ots 
in a

n 
unb

iase
d w

ay w
itho

ut s
pec

ifyin
g ce

rtai
n p

hysi
cal 

obs
erva

bles
 and

 with
 tha

t se
arch

es f
or s

truc
ture

 in 
the 

man
y-bo

dy d
ensi

ty m
atri

x. 
Tur

ning
 this

 arg
ume

nt a
rou

nd, 
it re

mai
ns a

n in
tere

stin
g op

en c
hal -

leng
e to

 un
ders

tand
 how

 the
 CN

N c
lass

ifies
 the

 sna
psh

ots,
 wh

ich 
we p

lan 
to a

ddr
ess 

in a
 futu

re w
ork.

In t
his 

wor
k, w

e co
mpa

red 
two

 the
orie

s ou
t of

 ma
ny p

oten
tial 

can
dida

tes t
o th

e ex
peri

men
tal d

ata.
 In f

utur
e wo

rk, t
he i

nve
stig

atio
n 

of a
 larg

er c
lass

 of t
heo

ries
 wil

l pro
vide

 us w
ith f

urth
er in

form
atio

n 
abo

ut t
he s

truc
ture

 of t
he q

uan
tum

 stat
e of

 the
 2D

 Fer
mi–

Hub
bard

 
mod

el. S
trai

ghtf
orw

ard 
exte

nsio
ns i

nclu
de t

he c
omp

aris
on o

f sn
ap -

sho
ts fr

om 
the 

Ferm
i–H

ubb
ard 

mod
el to

 dif
fere

nt R
VB 

stat
es o

r 
pred

ictio
ns 

by 
qua

ntum
 dim

er m
ode

ls38 . Ex
ami

ning
 co

mpl
etel

y 
diff

eren
t pa

ram
eter

 reg
ime

s or
 eve

n m
ode

ls co
uld 

reve
al a

ddit
iona

l 
insi

ghts
. Cu

rren
t ex

peri
men

ts h
ave 

bee
n p

erfo
rme

d at
 com

para
-

bly 
high

 tem
pera

ture
s, w

here
 no 

d-w
ave 

pair
ing 

or c
harg

e or
der 

is 
exp

ecte
d. O

nce
 col

der 
tem

pera
ture

s ar
e ac

hiev
able

, it w
ill b

e in
ter -

esti
ng 

to c
omp

are 
geo

met
ric 

strin
g th

eory
 to 

theo
retic

al m
ode

ls 
with

 diff
eren

t typ
es o

f or
der 

para
met

er b
uilt.

The
 an

alys
is o

f sn
apsh

ots 
from

 qu
antu

m g
as m

icro
scop

y w
ith 

mac
hine

-lea
rnin

g te
chn

ique
s ha

s th
e ca

pab
ility

 to r
evea

l mi
cros

cop
ic 

mec
han

ism
s an

d hi
dde

n or
der 

in t
he c

ons
ider

able
 am

oun
t of

 ava
il -

able
 dat

a. M
achi

ne l
earn

ing 
of q

uan
tum

 ma
ny-b

ody
 sta

tes, 
perh

aps 
pos

sible
 thr

oug
h ex

peri
men

tal s
nap

shot
s, of

fers
 pro

spec
ts to

 find
 the

 
mos

t pre
dict

ive t
heo

ry a
mon

g a m
ultit

ude
 of c

omp
etin

g th
eori

es.

Onl
ine 

con
ten

t
Any

 me
thod

s, a
ddit

iona
l re

fere
nce

s, N
atur

e R
esea

rch 
repo

rtin
g 

sum
mar

ies, 
sou

rce 
data

, sta
tem

ents
 of c

ode
 and

 dat
a av

aila
bilit

y an
d 

asso
ciat

ed a
cces

sion
 cod

es a
re a

vail
able

 at h
ttps

://d
oi.o

rg/1
0.10

38/
s415

67-0
19-0

565
-x.

Dat
a av

aila
bilit

y
The

 dat
a th

at su
ppo

rt th
e pl

ots 
with

in th
is p

ape
r an

d ot
her 

find
ings

 
of th

is st
udy

 are
 ava

ilab
le fr

om 
the 

corr
espo

ndin
g au

thor
 upo

n re
a -

son
able

 req
uest

. Th
e ra

w d
ata 

are 
avai

labl
e in

 ref.
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Fig.
 2 | 

Cla
ssif

ying
 sin

gle 
sna

psh
ots

 of t
he m

any
-bo

dy d
ens

ity m
atri

x.  
a, R

and
om

ly c
hos

en s
nap

sho
ts fr

om
 the

 exp
erim

ent
 and

 the
 two

 the
orie

s. 
Col

our
ed s

ites
 are

 occ
upie

d by
 one

 spi
n sp

ecie
s; g

rey 
site

s re
pre

sen
t 

the
 oth

er s
pin 

spe
cies

, ho
les 

and
 dou

blon
s. b

, Th
e C

NN
 is t

rain
ed t

o 
iden

tify
 to 

whi
ch d

ata
set 

cate
gor

y an
y gi

ven
 sna

psh
ot b

elon
gs. 

Her
e, w

e 
con

side
r ex

per
ime

nta
l da

ta, g
eom

etri
c st

ring
s an

d sn
aps

hot
s fro

m π
-flu

x 
the

ory
, all

 at 9
% d

opin
g. c

, Th
e pr

oba
bilit

ies 
sho

w h
ow 

a sa
mp

le o
f 40

0 
sna

psh
ots 

tha
t ha

ve n
ot b

een
 use

d du
ring

 tra
inin

g is
 cla

ssif
ied.

 Wh
ile t

he 
π-flu

x th
eor

y is
 rec

ogn
ized

 com
par

ably
 we

ll, a
 cle

ar s
epa

rati
on b

etw
een

 
exp

erim
ent

al d
ata

 and
 geo

me
tric

 str
ings

 is n
ot p

oss
ible

. Th
e st

and
ard

 
erro

rs o
f th

e m
ean

 ove
r te

n re
pet

itio
ns o

f th
e pr

oce
ss a

re s
how

n by
 the

 
erro

r ba
rs (

see
 Sup

plem
ent

ary
 Inf

orm
atio

n fo
r de

tails
).
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d c
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d c
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 3 | 

Cla
ssif

ying
 exp

erim
ent

al d
ata

. a, 
The

 net
wor

k is
 tra

ined
 to 

dist
ingu

ish 
sna

psh
ots 

from
 geo

me
tric

 str
ing 

the
ory

 (bl
ue)

 and
 π-fl

ux t
heo

ry 
(ora

nge
) at

 eac
h do

ping
 val

ue. 
Aft

er t
he t

rain
ing 

seq
uen

ce, 
exp

erim
ent

al 
ima

ges
 at t

he s
am

e do
ping

 are
 sho

wn 
to t

he n
etw

ork
. b, 

The
 ave

rag
e of

 
the

 res
ulti

ng c
lass

ifica
tion

 of t
he e

xpe
rim

ent
al d

ata
 at t

he c
orre

spo
ndin

g 
dop

ing 
valu

e. T
he i

nse
t sh

ows
 the

 pre
cisi

on f
or t

he t
rain

ed c
lass

es o
n 

a su
bse

t of
 dat

a no
t us

ed f
or t

rain
ing.

 Th
e ve

rtic
al e

rror
 bar

s sh
ow 

the
 

stan
dar

d er
rors

 of t
he m

ean
 ove

r te
n re

pet
itio

ns o
f th

e pr
oce

ss a
nd a

re 
sma

ller
 tha

n th
e pl

ot m
arke

rs. T
he h

oriz
ont

al e
rror

 bar
s fo

r th
e do

ping
 are

 
obt

aine
d as

 des
crib

ed i
n th

e Su
ppl

em
ent

ary
 Inf

orm
atio

n.
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the pro
bability

 to ma
ke a w

rong cl
assifica

tion of
 the en

tire sam
ple 

decays
 expon

entially
 with t

he num
ber of 

snapsh
ots. Th

erefore
, the 

entire e
xperim

ental d
ataset a

t any d
oping v

alue be
low ~1

5% wo
uld 

be class
ified as

 geome
tric str

ing the
ory dat

a with a
lmost 1

00% pr
ob -

ability 
(see Su

ppleme
ntary I

nforma
tion). 

When 
the inp

ut to t
he 

networ
k consi

sts of fo
ur snap

shots fr
om the

 same c
ategory

, the pr
e -

cision i
s alread

y above
 80% an

d the fr
action 

of expe
riment

al imag
es 

classifi
ed as st

ring th
eory at

 low do
pings i

ncrease
s signif

icantly
 (see 

Supple
mentar

y Infor
mation

).
Moreo

ver, ou
r algor

ithm a
lso cla

ssifies 
the low

-tempe
rature 

experim
ental s

napsho
ts to g

eometr
ic strin

g theo
ry rath

er than
 

experim
ental h

igh-tem
peratur

e data,
 again 

up to d
oping v

alues o
f 

about 1
5% (se

e Supp
lement

ary Inf
ormati

on for 
details)

.
In sum

mary, w
e have 

demon
strated

 that C
NNs pr

ovide a
 power

-
ful too

l to ana
lyse th

e large
 amoun

t of exp
erimen

tal data
 obtain

ed 
from q

uantum
 gas mi

croscop
es. Ind

ividual
 snapsh

ots can
 be clas

si -
fied to 

theoret
ical pre

diction
s and w

e can t
hereby

 determ
ine wh

ich 
theory

 fits bes
t. We a

pply th
is meth

od to th
e Ferm

i–Hubb
ard mo

del 
on a sq

uare la
ttice an

d find 
that on

 a micr
oscopic

 level t
he exp

eri -
mental

 data m
ore clo

sely res
emble 

the geo
metric

 string 
theory

 with 
short-r

ange h
idden o

rder th
an the 

π-flux R
VB the

ory in 
the reg

ime 
of low

 dopin
g. Our

 analys
is sugg

ests a 
qualita

tive ch
ange o

f this 
behavi

our bet
ween 1

5 to 20
% dopi

ng.
Conven

tional 
observ

ables, s
uch as 

the sta
ggered

 magne
tization

 
or two

-point 
spin co

rrelatio
n func

tions, h
ardly a

llow fo
r a dist

inc -
tion be

tween 
the the

ories u
nder c

onside
ration 

and it 
depend

s on 
the cho

sen obs
ervable

 which
 theory

 will be
 favour

ed15 . By co
ntrast, 

the CN
N sear

ches fo
r patte

rns in 
the col

lection
 of sna

pshots 
in an 

unbias
ed way

 witho
ut spec

ifying 
certain

 physic
al obse

rvables
 and 

with th
at sear

ches fo
r struc

ture in
 the m

any-bo
dy den

sity ma
trix. 

Turnin
g this a

rgume
nt arou

nd, it r
emains

 an inte
resting

 open c
hal -

lenge t
o unde

rstand 
how th

e CNN
 classif

ies the
 snapsh

ots, wh
ich 

we plan
 to add

ress in 
a futur

e work
.

In this
 work, 

we com
pared t

wo the
ories o

ut of m
any po

tential 
candid

ates to 
the exp

erimen
tal data

. In futu
re work

, the inv
estigati

on 
of a lar

ger clas
s of the

ories w
ill prov

ide us w
ith furt

her inf
ormati

on 
about t

he stru
cture o

f the qu
antum

 state o
f the 2D

 Fermi
–Hubb

ard 
model.

 Straigh
tforwa

rd exte
nsions 

include
 the co

mparis
on of s

nap -
shots f

rom th
e Ferm

i–Hubb
ard mo

del to 
differen

t RVB 
states o

r 
predict

ions b
y quan

tum d
imer m

odels38 . Exam
ining c

omplet
ely 

differen
t param

eter reg
imes or

 even m
odels c

ould re
veal ad

ditiona
l 

insight
s. Curr

ent exp
erimen

ts have
 been 

perform
ed at c

ompar
a -

bly hig
h temp

erature
s, wher

e no d-
wave p

airing 
or char

ge orde
r is 

expecte
d. Onc

e colde
r temp

erature
s are ac

hievab
le, it w

ill be in
ter -

esting 
to com

pare g
eometr

ic strin
g theo

ry to t
heoreti

cal mo
dels 

with di
fferent

 types o
f order

 param
eter bu

ilt.
The an

alysis o
f snaps

hots fr
om qu

antum 
gas mi

croscop
y with

 
machin

e-learn
ing tech

niques 
has the

 capabi
lity to r

eveal m
icrosco

pic 
mechan

isms an
d hidd

en orde
r in the

 consid
erable 

amoun
t of ava

il -
able da

ta. Mac
hine le

arning 
of quan

tum m
any-bo

dy stat
es, perh

aps 
possibl

e throu
gh exp

erimen
tal snap

shots, o
ffers pr

ospects
 to find

 the 
most p

redictiv
e theor

y amon
g a mu

ltitude 
of com

peting 
theorie

s.

Online
 conte

nt
Any m

ethods
, addit

ional r
eferenc

es, Na
ture R

esearch
 repor

ting 
summa

ries, so
urce da

ta, state
ments 

of code
 and da

ta avail
ability 

and 
associa

ted acc
ession 

codes a
re avai

lable at
 https:/

/doi.or
g/10.10

38/
s41567

-019-0
565-x.

Data a
vailab

ility
The da

ta that 
suppor

t the pl
ots wit

hin thi
s paper

 and ot
her fin

dings 
of this 

study a
re avail

able fro
m the c

orrespo
nding a

uthor u
pon rea

-
sonabl

e reque
st. The

 raw da
ta are a

vailabl
e in ref
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Fig. 2 
| Class

ifying 
single

 snaps
hots o

f the m
any-bo

dy den
sity m

atrix.  
a, Ran

domly
 chose

n snap
shots 

from t
he exp

erimen
t and t

he two
 theori

es. 
Colour

ed site
s are o

ccupie
d by o

ne spin
 specie

s; grey
 sites r

eprese
nt 

the oth
er spin

 specie
s, hole

s and d
oublon

s. b, Th
e CNN

 is trai
ned to

 
identif

y to w
hich d

ataset
 categ

ory an
y given

 snaps
hot be

longs. 
Here, w

e 
consid

er exp
erimen

tal dat
a, geom

etric s
trings 

and sn
apsho

ts from
 π-flux 

theory
, all at 

9% do
ping. c

, The p
robabi

lities s
how h

ow a s
ample

 of 40
0 

snapsh
ots tha

t have
 not be

en use
d durin

g train
ing is c

lassifie
d. Wh

ile the
 

π-flux t
heory 

is reco
gnized

 comp
arably

 well, a
 clear 

separa
tion be

tween
 

experi
menta

l data 
and ge

ometr
ic strin

gs is n
ot pos

sible. T
he sta

ndard 
errors 

of the 
mean 

over te
n repe

titions
 of the

 proce
ss are 

shown
 by the

 
error b

ars (se
e Supp

lemen
tary In

format
ion for

 detail
s).
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a b

π-flux states

Geom
etric string
s

Geom
etric string

sI. Tea
ch

M i and c
onnec

tion w
eights

II. Sh
ow

CNN
Expe

rimen
t

CNN

M i and c
onnec

tion w
eights

π-flux states

Fig. 3 
| Class

ifying 
experi

menta
l data.

 a, The
 netwo

rk is tr
ained 

to 
disting

uish sn
apsho

ts from
 geom

etric s
tring t

heory 
(blue)

 and π-f
lux the

ory 
(orang

e) at e
ach do

ping va
lue. Af

ter the
 trainin

g sequ
ence, e

xperim
ental 

image
s at th

e same
 dopin

g are s
hown 

to the 
netwo

rk. b, T
he ave

rage o
f 

the res
ulting 

classif
ication

 of the
 exper

imenta
l data 

at the 
corres

pondin
g 

doping
 value.

 The in
set sho

ws the
 precis

ion for
 the tra

ined cl
asses 

on 
a subs

et of d
ata no

t used
 for tra

ining. T
he ver

tical er
ror bar

s show
 the 

standa
rd erro

rs of th
e mea

n over
 ten re

petitio
ns of t

he pro
cess a

nd are
 

smalle
r than 

the plo
t mark

ers. Th
e horiz

ontal e
rror ba

rs for t
he dop

ing are
 

obtain
ed as d

escrib
ed in t

he Sup
pleme

ntary I
nform

ation.
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the probab
ility to mak

e a wrong c
lassification

 of the enti
re sample 

decays expo
nentially w

ith the num
ber of snap

shots. Ther
efore, the 

entire expe
rimental da

taset at any
 doping val

ue below ~
15% would

 
be classified

 as geometr
ic string the

ory data wi
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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errors of the mean over ten repetitions of the process are shown by the 
error bars (see Supplementary Information for details).
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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distinguish snapshots from geometric string theory (blue) and π-flux theory 
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images at the same doping are shown to the network. b, The average of 
the resulting classification of the experimental data at the corresponding 
doping value. The inset shows the precision for the trained classes on 
a subset of data not used for training. The vertical error bars show the 
standard errors of the mean over ten repetitions of the process and are 
smaller than the plot markers. The horizontal error bars for the doping are 
obtained as described in the Supplementary Information.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.

a

c

π-flux
states

Geometric
strings

I. Teach

Mi and connection weights

CNN

Experiment

II. Show

Mi and connection weights

Experiment

π-flux
states

π-flux
states

Geometric
strings

Geometric
strings

Experiment

CNN

b

π
-
fl
u

x
 
s
t
a

t
e

s
G

e
o

m
e

t
r
i
c
 
s
t
r
i
n

g
s

E
x
p

e
r
i
m

e
n

t

Experiment Strings π-flux
0.0

0.2

0.4

0.6

0.8

1.0
P

r
o
b
a
b
i
l
i
t
y

π-flux

Strings

Experiment

π-flux

Strings

Experiment

π-flux

Strings

Experiment

Fig. 2 | Classifying single snapshots of the many-body density matrix.  
a, Randomly chosen snapshots from the experiment and the two theories. 
Coloured sites are occupied by one spin species; grey sites represent 
the other spin species, holes and doublons. b, The CNN is trained to 
identify to which dataset category any given snapshot belongs. Here, we 
consider experimental data, geometric strings and snapshots from π-flux 
theory, all at 9% doping. c, The probabilities show how a sample of 400 
snapshots that have not been used during training is classified. While the 
π-flux theory is recognized comparably well, a clear separation between 
experimental data and geometric strings is not possible. The standard 
errors of the mean over ten repetitions of the process are shown by the 
error bars (see Supplementary Information for details).

0.0 0.1 0.2 0.3

Doping

0.0

0.2

0.4

0.6

0.8

1.0

D
e
t
e
c
t
e
d
 
f
r
a
c
t
i
o
n

Geometric strings
π-flux states

0.0 0.3Doping
0

50

100

P
r
e
c
i
s
i
o

n
(
%

)

a

b

π-flux
states

Geometric
strings

Geometric
strings

I. Teach

Mi and connection weights

II. Show

CNN Experiment CNN

Mi and connection weights

π-flux
states

Fig. 3 | Classifying experimental data. a, The network is trained to 
distinguish snapshots from geometric string theory (blue) and π-flux theory 
(orange) at each doping value. After the training sequence, experimental 
images at the same doping are shown to the network. b, The average of 
the resulting classification of the experimental data at the corresponding 
doping value. The inset shows the precision for the trained classes on 
a subset of data not used for training. The vertical error bars show the 
standard errors of the mean over ten repetitions of the process and are 
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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theory, all at 9% doping. c, The probabilities show how a sample of 400 
snapshots that have not been used during training is classified. While the 
π-flux theory is recognized comparably well, a clear separation between 
experimental data and geometric strings is not possible. The standard 
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error bars (see Supplementary Information for details).
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.
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summaries, source data, statements of code and data availability and 
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of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the chosen observable which theory will be favoured15. By contrast, 
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Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.
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candidates to the experimental data. In future work, the investigation 
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model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.

a

c

π-flux
states

Geometric
strings

I. Teach

Mi and connection weights

CNN

Experiment

II. Show

Mi and connection weights

Experiment

π-flux
states

π-flux
states

Geometric
strings

Geometric
strings

Experiment

CNN

b

π
-fl

u
x
 s

ta
te

s
G

e
o
m

e
tr

ic
 s

tr
in

g
s

E
x
p
e
ri
m

e
n
t

Experiment Strings π-flux
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it
y

π-flux

Strings

Experiment

π-flux

Strings

Experiment

π-flux

Strings

Experiment

Fig. 2 | Classifying single snapshots of the many-body density matrix.  
a, Randomly chosen snapshots from the experiment and the two theories. 
Coloured sites are occupied by one spin species; grey sites represent 
the other spin species, holes and doublons. b, The CNN is trained to 
identify to which dataset category any given snapshot belongs. Here, we 
consider experimental data, geometric strings and snapshots from π-flux 
theory, all at 9% doping. c, The probabilities show how a sample of 400 
snapshots that have not been used during training is classified. While the 
π-flux theory is recognized comparably well, a clear separation between 
experimental data and geometric strings is not possible. The standard 
errors of the mean over ten repetitions of the process are shown by the 
error bars (see Supplementary Information for details).

0.0 0.1 0.2 0.3

Doping

0.0

0.2

0.4

0.6

0.8

1.0

D
e
te

c
te

d
 f
ra

c
ti
o
n

Geometric strings
π-flux states

0.0 0.3Doping
0

50

100

P
re

c
is

io
n

(%
)

a

b

π-flux
states

Geometric
strings

Geometric
strings

I. Teach

Mi and connection weights

II. Show

CNN Experiment CNN

Mi and connection weights

π-flux
states

Fig. 3 | Classifying experimental data. a, The network is trained to 
distinguish snapshots from geometric string theory (blue) and π-flux theory 
(orange) at each doping value. After the training sequence, experimental 
images at the same doping are shown to the network. b, The average of 
the resulting classification of the experimental data at the corresponding 
doping value. The inset shows the precision for the trained classes on 
a subset of data not used for training. The vertical error bars show the 
standard errors of the mean over ten repetitions of the process and are 
smaller than the plot markers. The horizontal error bars for the doping are 
obtained as described in the Supplementary Information.

NATURE PHYSICS | www.nature.com/naturephysics

LETTERSNATURE PHYSICS

the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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error bars (see Supplementary Information for details).
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to m
ake a wrong classification of the entire sam
ple 

decays exponentially with the num
ber of snapshots. Therefore, the 

entire experim
ental dataset at any doping value below ~15%
 would 

be classified as geom
etric string theory data with alm
ost 100%
 prob -

ability (see Supplem
entary Inform
ation). W
hen the input to the 

network consists of four snapshots from
 the sam
e category, the pre -

cision is already above 80%
 and the fraction of experim
ental im
ages 

classified as string theory at low dopings increases significantly (see 

Supplem
entary Inform
ation).

M
oreover, our algorithm
 also classifies the low-tem
perature 

experim
ental snapshots to geom
etric string theory rather than 

experim
ental high-tem
perature data, again up to doping values of 

about 15%
 (see Supplem
entary Inform
ation for details).

In sum
m
ary, we have dem
onstrated that CN
N
s provide a power -

ful tool to analyse the large am
ount of experim
ental data obtained 

from
 quantum
 gas m
icroscopes. Individual snapshots can be classi -

fied to theoretical predictions and we can thereby determ
ine which 

theory fits best. W
e apply this m
ethod to the Ferm
i–H
ubbard m
odel 

on a square lattice and find that on a m
icroscopic level the experi -

m
ental data m
ore closely resem
ble the geom
etric string theory with 

short-range hidden order than the π-flux RVB theory in the regim
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of low doping. O
ur analysis suggests a qualitative change of this 

behaviour between 15 to 20%
 doping.

Conventional observables, such as the staggered m
agnetization 

or two-point spin correlation functions, hardly allow for a distinc -

tion between the theories under consideration and it depends on 

the chosen observable which theory will be favoured
15 . By contrast, 

the CN
N
 searches for patterns in the collection of snapshots in an 

unbiased way without specifying certain physical observables and 
with that searches for structure in the m
any-body density m
atrix. 

Turning this argum
ent around, it rem
ains an interesting open chal -

lenge to understand how the CN
N
 classifies the snapshots, which 

we plan to address in a future work.

In this work, we com
pared two theories out of m
any potential 

candidates to the experim
ental data. In future work, the investigation 

of a larger class of theories will provide us with further inform
ation 

about the structure of the quantum
 state of the 2D
 Ferm
i–H
ubbard 

m
odel. Straightforward extensions include the com
parison of snap -

shots from
 the Ferm
i–H
ubbard m
odel to different RVB states or 

predictions by quantum
 dim
er m
odels38 . Exam
ining com
pletely 

different param
eter regim
es or even m
odels could reveal additional 

insights. Current experim
ents have been perform
ed at com
para -

bly high tem
peratures, where no d-wave pairing or charge order is 

expected. O
nce colder tem
peratures are achievable, it will be inter -

esting to com
pare geom
etric string theory to theoretical m
odels 

with different types of order param
eter built.

The analysis of snapshots from
 quantum
 gas m
icroscopy with 

m
achine-learning techniques has the capability to reveal m
icroscopic 

m
echanism
s and hidden order in the considerable am
ount of avail -

able data. M
achine learning of quantum
 m
any-body states, perhaps 

possible through experim
ental snapshots, offers prospects to find the 

m
ost predictive theory am
ong a m
ultitude of com
peting theories.
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aries, source data, statem
ents of code and data availability and 
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.

a

c

π-flux
states

Geometric
strings

I. Teach

Mi and connection weights

CNN

Experiment

II. Show

Mi and connection weights

Experiment

π-flux
states

π-flux
states

Geometric
strings

Geometric
strings

Experiment

CNN

b

π
-fl

u
x
 s

ta
te

s
G

e
o
m

e
tr

ic
 s

tr
in

g
s

E
x
p
e
ri
m

e
n
t

Experiment Strings π-flux
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it
y

π-flux

Strings

Experiment

π-flux

Strings

Experiment

π-flux

Strings

Experiment

Fig. 2 | Classifying single snapshots of the many-body density matrix.  
a, Randomly chosen snapshots from the experiment and the two theories. 
Coloured sites are occupied by one spin species; grey sites represent 
the other spin species, holes and doublons. b, The CNN is trained to 
identify to which dataset category any given snapshot belongs. Here, we 
consider experimental data, geometric strings and snapshots from π-flux 
theory, all at 9% doping. c, The probabilities show how a sample of 400 
snapshots that have not been used during training is classified. While the 
π-flux theory is recognized comparably well, a clear separation between 
experimental data and geometric strings is not possible. The standard 
errors of the mean over ten repetitions of the process are shown by the 
error bars (see Supplementary Information for details).

0.0 0.1 0.2 0.3

Doping

0.0

0.2

0.4

0.6

0.8

1.0

D
e
te

c
te

d
 f
ra

c
ti
o
n

Geometric strings
π-flux states

0.0 0.3Doping
0

50

100

P
re

c
is

io
n

(%
)

a

b

π-flux
states

Geometric
strings

Geometric
strings

I. Teach

Mi and connection weights

II. Show

CNN Experiment CNN

Mi and connection weights

π-flux
states

Fig. 3 | Classifying experimental data. a, The network is trained to 
distinguish snapshots from geometric string theory (blue) and π-flux theory 
(orange) at each doping value. After the training sequence, experimental 
images at the same doping are shown to the network. b, The average of 
the resulting classification of the experimental data at the corresponding 
doping value. The inset shows the precision for the trained classes on 
a subset of data not used for training. The vertical error bars show the 
standard errors of the mean over ten repetitions of the process and are 
smaller than the plot markers. The horizontal error bars for the doping are 
obtained as described in the Supplementary Information.

NATURE PHYSICS | www.nature.com/naturephysics

LETTERSNATURE PHYSICS

the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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Fig. 2 | Classifying single snapshots of the many-body density matrix.  
a, Randomly chosen snapshots from the experiment and the two theories. 
Coloured sites are occupied by one spin species; grey sites represent 
the other spin species, holes and doublons. b, The CNN is trained to 
identify to which dataset category any given snapshot belongs. Here, we 
consider experimental data, geometric strings and snapshots from π-flux 
theory, all at 9% doping. c, The probabilities show how a sample of 400 
snapshots that have not been used during training is classified. While the 
π-flux theory is recognized comparably well, a clear separation between 
experimental data and geometric strings is not possible. The standard 
errors of the mean over ten repetitions of the process are shown by the 
error bars (see Supplementary Information for details).
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standard errors of the mean over ten repetitions of the process and are 
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obtained as described in the Supplementary Information.
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structure is described by a fluctuating geometric string
of displaced spins connecting the spinon to the chargon
[32, 33]. In order to derive the properties of this string,
the frozen spin approximation is assumed, in which the
spin background does not change with doping but the
anti-ferromagnetic order is hidden by the hole motion.
Each hole displaces the spins along the string by one site,
which leads to an increase in spin interaction energy pro-
portional to the spin correlations in the undoped system
and a decrease of the overall staggered magnetization.
The distribution of the geometric string length is ob-
tained from a microscopic calculation of the motion of
a single hole at a given temperature and Hubbard pa-
rameter U/t [11].
To generate snapshots for the geometric string theory,
we start from the experimental data at half-filling and
for each doping value place the corresponding number of
holes independently into the snapshots. The holes are
then moved indepenently from one another in random
directions through the anti-ferromagnet for a number of
sites which is sampled from the theoretical string length
distribution.
The experimental images only contain information about
one spin species, while the other spin species as well as
doublons and holes are detected as empty sites. Hence,
before comparing our theoretical images to experimental
results, the second spin species and doubly occupied sites
are converted to empty sites in the theoretical data. All
data used in this analysis is obtained for a temperature
of T = 0.6J ± 0.1J , which corresponds to the currently
lowest temperatures available in the experiment.

Classifying snapshots.– We now train a convolutional
neural network to distinguish snapshots from the follow-
ing classes: (i) experimental data, (ii) geometric string
theory and (iii) ⇡-flux theory, all at 9% doping.
The performance of our neural network is visualized in
Fig. 2. In this plot, the x-axis displays the actual class
of a snapshot and the y-axis shows the probability for
the neural network to sort it into the di↵erent classes.
The accuracy for the classification of images, which cor-
responds to the weighted average of the diagonal entries,
is 47%. This indicates that a classification of the ex-
perimental snapshots as one of the theories is in princi-
ple possible, since otherwise the CNN would be able to
distinguish experimental data from either theory with a
high accuracy. The main source of confusion for the CNN
is the similarity between the experimental and the geo-
metric string theory data, while a di↵erentiation of the
⇡-flux theory snapshots is more successful. Taking the
first two categories together, the accuracy of the classi-
fication increases to 69%. This is a first indication that
the geometric string theory resembles the experimental
data at 9% doping more closely than ⇡-flux theory.

Sorting experimental data into theory categories.–

One of the most powerful features of neural networks is
their ability to generalize to new situations not encoun-
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FIG. 3. Classifying experimental data. (a) The network
is trained to distinguish snapshots from geometric string the-
ory (blue) and ⇡-flux theory (orange) at each doping value.
After the training sequence, experimental images at the same
doping are shown to the network. (b) The average of the
resulting classification of the experimental data at the corre-
sponding doping value. The inset shows the precision for the
trained classes on a subset of data not used for training. The
vertical errorbars show the standard errors of the mean over
ten repetitions of the process and are smaller than the plot
markers. The horizontal errorbars for the doping are obtained
as in Ref. [11].

tered during training. We make use of this property by
first training a CNN to distinguish between snapshots
from ⇡-flux and geometric string theory at a fixed dop-
ing value; a task for which the CNN achieves a precision
above 70%. The precision of the CNN can be further
improved by increasing the system size, detecting holes,
and increasing the size of the training set, see supplemen-
tary material [34]. Subsequently we show experimental
data to the CNN to sort it into one of the two theory
categories. The classification of experimental data then
reveals how similar these snapshots are to the theoreti-
cally simulated data.
As shown in Fig. 3, the neural network classifies a ma-
jority of the experimental snapshots as geometric string
theory over a broad range of doping values up to about
15%, even though conventional spin and charge corre-
lation functions coincide equally well with experimental
results in that regime for both theories [11]. For larger
dopings, the experimental data cannot be unambiguously
classified, see also supplementary material [34].
The ability of the neural network to distinguish ⇡-flux
from geometric string theory on the level of individual im-
ages indicates that the physical structure of these states
is di↵erent. We can further improve the accuracy of our
classification by taking into account the information that
an entire set of measurements belongs to the same phys-
ical state. When the CNN sorts each snapshot into one
of the two categories with probabilities p and 1 � p, the

Classify Output
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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error bars (see Supplementary Information for details).
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Fig. 18. Network performance in the classification of 1D t � J model data. (a) The mean accuracy of networks trained
on the two classes of Monte Carlo data (upper lines) and on all three classes (lower lines) is plotted as a function
of the doping for different kernel sizes k. For the same kernel sizes there is a difference in accuracy of about 10% to
20% between the two cases. Therefore, the networks cannot distinguish the DMRG, SQ and MF classes as accurately as
just the two Monte Carlo classes. (b) The average percentage of snapshots of each class classified as MF is plotted. With
increasing doping the DMRG data for larger values for t/J are more similar to the SQ snapshots according to the networks
classification. For t/J = 1.0 neither of the two Monte Carlo approaches is favored.

for distinguishing squeezed space and projected mean-field snapshots are the spin–spin and the
hole–hole correlations, see Appendix A.1.

As mentioned above, the performance of the neural network significantly increases when
distinguishing only the two Monte Carlo approaches as compared to the case where it is trained on
all three classes of snapshots. Therefore, we conclude that the DMRG snapshots are rather similar to
one of the two Monte Carlo approaches. In order to determine which of the two approaches captures
the exact numerical results best, we classify the DMRG snapshots using the network trained on
the two Monte Carlo classes. While for t/J = 1.0 the two approaches capture the features of
DMRG equally well, for the two larger values of t/J and with increasing doping more snapshots
are classified as squeezed space, see Fig. 18(b).

5.3.2. Doped 2D hubbard model: Classification
Now we return to the 2D doped Hubbard model and experimental data. In [34], the ⇡-flux and

geometric string theory introduced in Section 5.2 were compared to experimental data of the two-
dimensional Fermi–Hubbard model in a doping range of up to 35%. As shown in [26], these theories
both lead to good agreement in terms of a range of observables, as discussed in Sections 5.1 and
5.2 , and thus provide a good starting point for further machine learning analysis.

The experimental images used in [34] contain information about only one spin species. Before
comparing theoretical images to experimental data, the second spin species as well as doubly
occupied sites were therefore converted to empty sites in the theory datasets as well.

Training a neural network to classify both theory as well as the experiment at 9% doping leads
to a poor accuracy of 47%. This indicates that the classification of experimental snapshots as one
of the two theories is in principle meaningful, since otherwise the CNN would be able to clearly
distinguish experimental data from both theories with a high accuracy. As can be seen in Fig. 19(c),
the main source of confusion for the CNN at 9% doping is the similarity between experiment and
geometric string theory, while a differentiation of the ⇡-flux theory is more successful.

Next, a neural network was trained to distinguish only between the two theories at a fixed
doping value, yielding a significantly higher precision. Subsequently, the experimental data was
used as an input to the neural network, see Fig. 19(d). The resulting classification reveals which
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servables. While this means richer information is present
in a full dataset, little is known about how to e�ciently
extract all the information. When it comes to the ques-
tions regarding the enigmatic underdoped region of the
fermionic Hubbard model, the challenge is magnified by
the fact that fundamentally di↵erent theories can pre-
dict QGM data with seemingly subtle di↵erences within
standard approaches [19, 20].

In this letter, we develop Correlator Convolutional
Neural Networks (CCNNs), a novel architecture with a
set of nonlinearities designed to produce features that are
directly interpretable in terms of correlation functions in
image-like data (see Figure 1). Following training of this
architecture, we employ regularization path analysis [21]
to rigorously identify the features that are critical in the
CCNN’s performance. We apply this powerful combina-
tion of CCNNs and regularization path analysis to sim-
ulated and experimental QGM data of the under-doped
Fermi Hubbard model. Following this, we discuss the
new insights we gain regarding the hidden signatures of
two theories, geometric string theory [22] and ⇡-flux the-
ory [23, 24], as well as application to non-spin-resolved
experimental data.

The Hubbard model of fermionic particles on a lat-
tice is a famous model that bears many open questions
and is closely linked to quantum materials such as high-
temperature superconductors. The model Hamiltonian
is given by

H = �t
X

�=",#

X

hi,ji

(ĉ†i,� ĉj,� + h.c.) + U
X

i

n̂i,"n̂i,# (1)

where the first term describes the kinetic energy associ-
ated to electrons hopping between lattice sites, and the
second term describes an on-site repulsion between elec-
trons. At half-filling, and in the limit U � t, the re-
pulsive Hubbard model maps to the Heisenberg antifer-
romagnet [25]. However, the behavior of the model as
the system is doped away from half-filling is not as well-
understood. Several candidate theories exist which at-
tempt to describe this regime, including geometric string
theory [22] and ⇡-flux theory [23, 24]. These theories are
conceptually very distinct, but at low dopings measure-
ments in the occupation basis do not di↵er enough in
simple conventional observables such as staggered mag-
netization or two-point correlation functions to fully ex-
plain previous ML success [9] in discrimination (see SM
Sec. S.IV). Nevertheless, there are more subtle hidden
structures involving more than two sites [20] which are
noticeable. In the “frozen spin approximation” [26], geo-
metric string theory predicts that the motion of the holes
simply displaces spins backwards along the path the hole
takes. Hence the propagation of the doped hole will tend
to produce a “wake” of parallel line segments of aligned
spins in its trail (see Fig. 2(a)). Meanwhile, the ⇡-flux
theory describes a spin liquid of singlet pairs, where it is

more di�cult to conceive of characteristic structures (see
Fig. 2(b)).
Current QGM experiments are able to directly sim-

ulate the Fermi-Hubbard model, obtaining one or two-
dimensional occupation snapshots sampled from the ther-
mal density matrix ⇢ ⇠ e��H prescribed by the model
[2]. However, currently our experiment can only resolve
a single spin species at a time, leaving all other sites ap-
pearing as empty. This is not a fundamental limitation
of QGM experiments and in principle, complete spin and
charge readout is possible [27, 28]. As we aim to learn
true spin correlations, in this work we use primarily sim-
ulated snapshots at doping � = 0.09 sampled from the
geometric string and ⇡-flux theories using Monte Carlo
sampling techniques under periodic boundary conditions
(see SM Sec. S.I).
We point out that in the context of this paper, when

referring to two models as di↵erent, we do not imply that
they are fundamentally distinct, in the sense that they
can not be connected smoothly without encountering a
singularity in the partition function. Rather, this is a
practical question: we have two or more mathematical
procedures for generating many-body snapshots based
on variational wavefunctions, Monte-Carlo sampling, or
any other theoretical approach. Our goal is to develop a
ML algorithm that separates snapshots based on which
procedure they are more likely to come from and, most
importantly, the algorithm should provide information
about which correlation functions are most important for
making these assignments.
To learn how to distinguish these two theories we

propose a novel neural network architecture, Correla-
tion Convolutional Neural Networks (CCNNs), schemat-
ically shown in Fig. 1. The input to the network is
an image-like map with 3-channels {Sk(~x)|k = 1, 2, 3},
where S1(~x) = n"(~x), S2(~x) = n#(~x), S3(~x) = nhole(~x).
Since the models we consider are restricted to the singly-
occupied Hilbert space, this input only takes on values 0
or 1. From this input, the CCNN constructs nonlinear
“correlation maps” containing information of local spin-
hole correlations up to some order N across the snapshot.
This operation is parameterized by a set of learnable 3-
channel filters, {f↵,k|↵=1, · · · ,M} where M is the num-
ber of filters in the model. The maps for the given filter
↵ are defined as:

C(1)
↵ (~x) =

X

~a,k

f↵,k(~a)Sk(~x+ ~a)

C(2)
↵ (~x) =

X

(~a,k) 6=(~b,k0)

f↵,k(~a)f↵,k0(~b)Sk(~x+ ~a)Sk0(~x+~b)

... (2)

C(N)
↵ (~x) =

X

(~a1,k1) 6=... 6=(~aN ,kN )

NY

j=1

f↵,kj (~aj)Skj (~x+ ~aj).

3

FIG. 1. The construction of our Correlation Convolutional Neural Network, shown here with two learnable filters (M = 2). The
input is a three-channel image: S1(~x) = n"(~x), S2(~x) = n#(~x), S3(~x) = nhole(~x). The image is first convolved with learned filters

f↵ to produce a set of convolutional maps C(1)
↵ (~x). Maps containing information about higher-order local correlations can then

be recursively constructed using the lower-order maps, truncating at some order N . Spatially averaging these maps produces
features c(n)

↵ which in expectation are equal to weighted sums of correlators found within the corresponding convolutional filter.
These features are normalized to zero mean and unit variance by a BatchNorm layer, then used by a logistic classifier with
coe�cients �(n)

↵ to produce the final output ŷ.

(a) (b)

FIG. 2. A cartoon depicting the features of two candidate
theories approximating the low-T , low-doping limit of the
Fermi-Hubbard model. (a) Geometric string theory, showing
two geometric strings in the presence of an antiferromagnetic
background. Note that the propagation of the doped holes
creates parallel line segments of aligned spins, perpendicular
to the direction of the hole propagation. (b) ⇡-flux theory,
which describes a spin liquid of singlet pairs.

Here ~a runs over the convolutional window of the fil-
ter ↵. Traditional convolutional neural networks employ
only the first of these operations, alternating with some
nonlinear activation function such as tanh or ReLU(x) =
max(0, x). The issue with these typical nonlinear func-
tions is that they mix all orders of correlations into the
output features, making it di�cult to disentangle what
exactly traditional networks measure. In contrast, each

order of our nonlinear convolutions C(n)
↵ (~x) are specifi-

cally designed to learn n-site semi-local correlations in
the vicinity of the site ~x, which appear as patterns in the
convolutional filters f↵. Note that the sums in Eq. 2 ex-
clude any self-correlations to aid interpretability. During
training, a CCNN tunes the filters f↵,k(~a) such that cor-
relators characteristic of the labeled theory are amplified
while others are suppressed. To aid interpretation, we
force all filters to be positive f↵,k(~a) � 0 by taking the
absolute value before use on each forward pass.
A direct computation of the nonlinear convolutions fol-

lowing Eq. 2 up to order N requires O((KP )N ) opera-
tions per site, where P is the number of pixels in the
window of the filter and K is the number of species of
particles. However, we can use the following recursive
formula which we prove in the Supplement, Section S.II:

C(n)
↵ (~x) =

1

n

nX

l=1

(�1)l�1

0

@
X

~a,k

f↵,k(~a)
lSk(~x+ ~a)l

1

AC(n�l)
↵ (~x),

(3)

where all powers are done pixelwise [29], and we define

C(0)
↵ (~x) = 1. This improves the computational complex-

ity to O(N2KP ) while also allowing us to leverage exist-
ing highly-optimized GPU convolution implementations.
Use of this formula leads to a “cascading” structure to
our model similar to [30], as seen in Fig. 1. First, the
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(a) Learned filter. (b) Associated regularization path.

Supplementary Figure 5: Trained model for the AFM versus random test case. The filter and regularization
paths for a model trained to discriminate between AFM Heisenberg and random snapshots, with filter regularization

strength � = 10.0.

(a) Learned filter. (b) Associated regularization path.

Supplementary Figure 6: Trained model for the stripe versus random test case. The filter and regularization
paths for a model trained to discriminate between stripe and random snapshots, with filter regularization strength

� = 10.0.

To break this redundancy, one can modify the loss in Supplementary Eq. 4 to slightly penalize the use of higher-order
correlators by making the regularization strength depend on order, � ! �(n):

L̃path(y, ŷ) ⌘ �
X

i

yi log ŷi +
X

↵,n

�(n)|�(n)
↵ | (6)

In practice, to break redundancies we only need to make �(n) slightly vary with n. For example, we have found the
choice [�(1),�(2),�(3),�(4)] = [�, 1.1�, 1.2�, 1.3�] for each fixed � to be su�cient for all problems tested. We note that

41

correlators from these correlation maps by simple spatial averages
to produce cðnÞα ¼ 1

Nsites
∑xC

ðnÞ
α ðxÞ. In addition, we employ an

explicit symmetrization procedure to enforce that the model’s
predictions are invariant to arbitrary rotations and flips of the
input, detailed in Supplementary Note 1. Concatenating these
correlator estimates results in an NM-dimensional feature vector
c ¼ fcðnÞα g.

In the back portion of a CCNN (see Fig. 1), the feature vector c
is normalized using a BatchNorm layer32, then used by a logistic
classifier which produces the classification output ŷðc; β; ϵÞ ¼
½1þ expð&β ' cþ ϵÞ(&1 where β ¼ fβðnÞα g and ϵ are trainable
parameters. If ŷ<0:5, the snapshot is classified as π-flux, and
otherwise it is classified as geometric string theory. The βðnÞα
coefficients are central to the interpretation of the final archi-
tecture, as they directly couple the normalized correlator features
cðnÞα to the output. For training, we use L1 loss in addition to the
standard cross-entropy loss, i.e.,

Ltrainðy; ŷÞ ) &ylog ŷ & ð1& yÞlog ð1& ŷÞ þ γ ∑
α;k;a

f α;kðaÞ; ð4Þ

where y= {0, 1} is the label of the snapshot, and γ is the L1
regularization strength. The role of the L1 loss is to promote
sparsity in the filter patterns by turning off pixels which are
unnecessary10,11.

We fix the number of filters M and the maximum order of the
nonlinear convolutions N, a hyper-parameter specific to CCNN,
by systematically observing the training performance. We found
that two filters gives sufficient performance while allowing for
simple interpretation. Hence we consider two filters, i.e., M= 2 in
the rest of the paper. For the maximum order of nonlinear
convolution N we found the performance to rapidly increase with
increase in N up to N= 4, past which performance plateaus.
Hence we fix N= 4 in the rest of the paper. In addition, we limit
our investigation to 3 × 3 convolutional filters. With the archi-
tecture of the CCNN so-fixed we found the performance of this
minimalistic model to be comparable with a more complex tra-
ditional CNN architecture3 (see Supplementary Note 1 for these
performance results).

After a CCNN is trained, we fix the convolutional filters fα and
move on to a second phase to interpret what it has learned. We
first determine which features are the most relevant to the
model’s performance by constructing and analyzing regulariza-
tion paths33 to examine the role of the logistic coefficients βðnÞα .
We apply an L1 regularization loss to these βðnÞα and re-train the
back portion of the model (see Fig. 1) using a new loss function:

Lpathðy; ŷÞ ) &ylog ŷ & ð1& yÞlog ð1& ŷÞ þ λ∑
α;n

jβðnÞα j; ð5Þ

where λ is the regularization strength. Again, the L1 loss plays a
special role in promoting sparsity in the model parameters, but
we are now penalizing the use of coefficients βðnÞα and hence the
corresponding features cðnÞα . This results in an optimization trade-
off between minimizing the classification loss and attempting to
keep βðnÞα at zero, where the relative importance of these terms is
tuned by λ. At large λ, the loss is minimized by keeping all βðnÞα at
zero, resulting in a 50% classification accuracy due to the model
always predicting a single class. As λ is slowly ramped down,
eventually the “most important” coefficient βðnÞα will begin to
activate, due to the decrease in classification loss surpassing the
increase in the activation loss. As these coefficients couple the
correlator features cðnÞα to the prediction output, this process offers
clear insight into which features are the most relevant.

We show a typical regularization path analysis in Fig. 3, where
the filters fα of a trained model are shown in the inset. The
activation of each coefficient βðnÞα is tracked while tuning down the
regularization strength λ (increasing 1/λ). The resulting

trajectories in Fig. 3(a) show that the 4th order correlator features,
cð4Þ1 and cð4Þ2 are most significant for the CCNN’s decision making
since βð4Þ1 and βð4Þ2 are the two first coefficients to activate. Fur-
thermore, parallel tracking of the accuracy in Fig. 3(b) shows that
the activation of these features results in large jumps in the
classification accuracy, comprising almost all of the network’s
predictive power. While the details of the paths vary between
training runs, we find robust dominance of fourth-order corre-
lations as the first features to be activated to give the majority of
the network’s performance.

The regularization path distinguishing the geometric string and
π-flux ansatzes shown in Fig. 3 is in stark contrast to what
happens when the identical architecture is trained to discriminate
between a thermally excited antiferromagnetic Heisenberg state
and a state with purely random spins (see Supplementary Note 2).
In that scenario, the network learns that two-point correlations
cð2Þα carry the key information for near-perfect classification. In
Supplementary Fig. 5, the regularization path shows only βð2Þ1
activating to achieve full performance, and the learned filter
obviously resembles the AFM pattern. Meanwhile, the behavior
seen in Fig. 3 evidences that the subtle differences between π-flux
and geometric string theory instead hinges on fourth-order
correlations.

Now that we know fourth-order correlations are the important
features, we look at which physical correlators are being measured
by the features cð4Þα by simply inspecting 4-pixel patterns made
from high-intensity pixels from each channel of the learned fil-
ters, as we show in Fig. 4. Comparing these patterns with the
depiction of the two candidate theories, we can understand why
these correlators measured by the two filters are indeed promi-
nent motifs. Specifically, the 2 × 2 correlators in the fourth-order
feature of the filter associated to the geometric string theory
(Fig. 4(a)) are easily recognizable in the “wake” and the termi-
nation of a string. These discovered correlations are in agreement

Fig. 3 Regularization path analysis of a learned fourth-order model. a The
regularization path of βðnÞα coefficient values traced out by two learned filters
as a function of the inverse regularization strength 1/λ. Positive and
negative signs of βðnÞα are associated with geometric string and π-flux labels
respectively. b The accuracies of the model at each point of the
regularization path in (a) on both the training dataset, as well a validation
dataset unseen by the model during training and a test dataset unseen by
us until final evaluation. We use the standard definition of accuracy as the
fraction of the snapshots correctly assigned.
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(a) Learned filter. (b) Associated regularization path.

Supplementary Figure 5: Trained model for the AFM versus random test case. The filter and regularization
paths for a model trained to discriminate between AFM Heisenberg and random snapshots, with filter regularization

strength � = 10.0.

(a) Learned filter. (b) Associated regularization path.

Supplementary Figure 6: Trained model for the stripe versus random test case. The filter and regularization
paths for a model trained to discriminate between stripe and random snapshots, with filter regularization strength

� = 10.0.

To break this redundancy, one can modify the loss in Supplementary Eq. 4 to slightly penalize the use of higher-order
correlators by making the regularization strength depend on order, � ! �(n):

L̃path(y, ŷ) ⌘ �
X

i

yi log ŷi +
X

↵,n

�(n)|�(n)
↵ | (6)

In practice, to break redundancies we only need to make �(n) slightly vary with n. For example, we have found the
choice [�(1),�(2),�(3),�(4)] = [�, 1.1�, 1.2�, 1.3�] for each fixed � to be su�cient for all problems tested. We note that
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correlators from these correlation maps by simple spatial averages
to produce cðnÞα ¼ 1

Nsites
∑xC

ðnÞ
α ðxÞ. In addition, we employ an

explicit symmetrization procedure to enforce that the model’s
predictions are invariant to arbitrary rotations and flips of the
input, detailed in Supplementary Note 1. Concatenating these
correlator estimates results in an NM-dimensional feature vector
c ¼ fcðnÞα g.

In the back portion of a CCNN (see Fig. 1), the feature vector c
is normalized using a BatchNorm layer32, then used by a logistic
classifier which produces the classification output ŷðc; β; ϵÞ ¼
½1þ expð&β ' cþ ϵÞ(&1 where β ¼ fβðnÞα g and ϵ are trainable
parameters. If ŷ<0:5, the snapshot is classified as π-flux, and
otherwise it is classified as geometric string theory. The βðnÞα
coefficients are central to the interpretation of the final archi-
tecture, as they directly couple the normalized correlator features
cðnÞα to the output. For training, we use L1 loss in addition to the
standard cross-entropy loss, i.e.,

Ltrainðy; ŷÞ ) &ylog ŷ & ð1& yÞlog ð1& ŷÞ þ γ ∑
α;k;a

f α;kðaÞ; ð4Þ

where y= {0, 1} is the label of the snapshot, and γ is the L1
regularization strength. The role of the L1 loss is to promote
sparsity in the filter patterns by turning off pixels which are
unnecessary10,11.

We fix the number of filters M and the maximum order of the
nonlinear convolutions N, a hyper-parameter specific to CCNN,
by systematically observing the training performance. We found
that two filters gives sufficient performance while allowing for
simple interpretation. Hence we consider two filters, i.e., M= 2 in
the rest of the paper. For the maximum order of nonlinear
convolution N we found the performance to rapidly increase with
increase in N up to N= 4, past which performance plateaus.
Hence we fix N= 4 in the rest of the paper. In addition, we limit
our investigation to 3 × 3 convolutional filters. With the archi-
tecture of the CCNN so-fixed we found the performance of this
minimalistic model to be comparable with a more complex tra-
ditional CNN architecture3 (see Supplementary Note 1 for these
performance results).

After a CCNN is trained, we fix the convolutional filters fα and
move on to a second phase to interpret what it has learned. We
first determine which features are the most relevant to the
model’s performance by constructing and analyzing regulariza-
tion paths33 to examine the role of the logistic coefficients βðnÞα .
We apply an L1 regularization loss to these βðnÞα and re-train the
back portion of the model (see Fig. 1) using a new loss function:

Lpathðy; ŷÞ ) &ylog ŷ & ð1& yÞlog ð1& ŷÞ þ λ∑
α;n

jβðnÞα j; ð5Þ

where λ is the regularization strength. Again, the L1 loss plays a
special role in promoting sparsity in the model parameters, but
we are now penalizing the use of coefficients βðnÞα and hence the
corresponding features cðnÞα . This results in an optimization trade-
off between minimizing the classification loss and attempting to
keep βðnÞα at zero, where the relative importance of these terms is
tuned by λ. At large λ, the loss is minimized by keeping all βðnÞα at
zero, resulting in a 50% classification accuracy due to the model
always predicting a single class. As λ is slowly ramped down,
eventually the “most important” coefficient βðnÞα will begin to
activate, due to the decrease in classification loss surpassing the
increase in the activation loss. As these coefficients couple the
correlator features cðnÞα to the prediction output, this process offers
clear insight into which features are the most relevant.

We show a typical regularization path analysis in Fig. 3, where
the filters fα of a trained model are shown in the inset. The
activation of each coefficient βðnÞα is tracked while tuning down the
regularization strength λ (increasing 1/λ). The resulting

trajectories in Fig. 3(a) show that the 4th order correlator features,
cð4Þ1 and cð4Þ2 are most significant for the CCNN’s decision making
since βð4Þ1 and βð4Þ2 are the two first coefficients to activate. Fur-
thermore, parallel tracking of the accuracy in Fig. 3(b) shows that
the activation of these features results in large jumps in the
classification accuracy, comprising almost all of the network’s
predictive power. While the details of the paths vary between
training runs, we find robust dominance of fourth-order corre-
lations as the first features to be activated to give the majority of
the network’s performance.

The regularization path distinguishing the geometric string and
π-flux ansatzes shown in Fig. 3 is in stark contrast to what
happens when the identical architecture is trained to discriminate
between a thermally excited antiferromagnetic Heisenberg state
and a state with purely random spins (see Supplementary Note 2).
In that scenario, the network learns that two-point correlations
cð2Þα carry the key information for near-perfect classification. In
Supplementary Fig. 5, the regularization path shows only βð2Þ1
activating to achieve full performance, and the learned filter
obviously resembles the AFM pattern. Meanwhile, the behavior
seen in Fig. 3 evidences that the subtle differences between π-flux
and geometric string theory instead hinges on fourth-order
correlations.

Now that we know fourth-order correlations are the important
features, we look at which physical correlators are being measured
by the features cð4Þα by simply inspecting 4-pixel patterns made
from high-intensity pixels from each channel of the learned fil-
ters, as we show in Fig. 4. Comparing these patterns with the
depiction of the two candidate theories, we can understand why
these correlators measured by the two filters are indeed promi-
nent motifs. Specifically, the 2 × 2 correlators in the fourth-order
feature of the filter associated to the geometric string theory
(Fig. 4(a)) are easily recognizable in the “wake” and the termi-
nation of a string. These discovered correlations are in agreement

Fig. 3 Regularization path analysis of a learned fourth-order model. a The
regularization path of βðnÞα coefficient values traced out by two learned filters
as a function of the inverse regularization strength 1/λ. Positive and
negative signs of βðnÞα are associated with geometric string and π-flux labels
respectively. b The accuracies of the model at each point of the
regularization path in (a) on both the training dataset, as well a validation
dataset unseen by the model during training and a test dataset unseen by
us until final evaluation. We use the standard definition of accuracy as the
fraction of the snapshots correctly assigned.
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f α;kðaÞ; ð4Þ
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biasing the higher-order networks, the models shown here are not trained with the L1 regularization on the filter
weights. See, for example, Supplementary Fig. 11(c) for training curve comparisons.

(a) Running-max performance of our architecture
compared at di↵erent orders we construct the model.
We compare against a traditional CNN architecture
using ReLU as the nonlinear function. The solid lines
indicate the median of five independently-trained

models, while the shaded regions show the min-max
spread across these models.

(b) Performance of a fourth-order architecture
containing di↵erent numbers of convolutional filters.

Supplementary Figure 2: CCNN performance results.

We see that the performance of the architecture rapidly increases as a function of the order to which the model
is constructed, plateauing past fourth order. At this order, we consistently match performance with traditional
CNN architectures, even with only two convolutional filters and dramatically fewer learnable parameters. We find
performance plateauing past fourth order to be a general behavior, independent of the number of filters, regularization
strength, etc. This indicates that fifth-order and higher correlations provide no new statistically significant information
between the two datasets, at least at the snapshot sizes we use.

In Supplementary Fig. 2b, we show the final trained performance of our architecture as a function of the number of
filters used. For these measurements, L1 regularization is turned o↵, as it may prevent additional filters from being
used at all. Interestingly, we find that we can get close to optimal performance with just a single convolutional filter,
with performance quickly plateauing past this.

We find that the parallel spin and L-shaped patterns shown in the main text are generally robust features learned
by the architecture. The “interlocking-L” pattern is extremely robust, with some variant occurring in nearly every
trained model. While the parallel spin pattern does not appear in every trained model, it does seem to be the second
most common pattern. In Supplementary Fig. 3, we show examples of models trained on the same data with di↵erent
random seeds controlling the initialization. We note that while the exact filter pattern varies between training runs,
the dominant subpatterns tend to match between all of runs, with some alternate local minima.

e. Duplicate Snapshots In principle, finite-size snapshots do not have a “true” assignment to either of the mod-
els, as there is a finite probability to sample the snapshot from either distribution. While we do not find any
duplicate snapshots between our two model datasets, it is interesting to consider the implications of models whose
supports significantly overlap. Consider a collection of models which define probability distributions over the snap-
shots {pi(x)|i = 1, . . . , n}. If the dataset consists of an equal number of samples from each class, one can show that
the model which minimizes the expected cross-entropy loss in Supplementary Eq. 3 (neglecting the regularization
term) then predicts the relative probability to sample x from each pi:

ŷi(x) =
pi(x)P
j pj(x)

. (5)

For each sample, predicting the class to be argmaxi ŷi then makes this model into the Bayes optimal classifier,
which achieves the maximum possible classification accuracy over all possible classifiers [14]. Accuracy here is defined
to be the probability of making the correct decision. It is clear that this maximum accuracy is less than 100%, so we
can never hope for a perfect classifier, and in practice we can only hope that our training procedure gets us close to
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S.VII Further Explanation of the CCNN operation

In Fig. S.10, we explicitly write out the terms of Eq. 2 for an example filter. We can see that for the feature C(n),
to find all the terms one draws all patterns which can be made by choosing n pixels from across the channels. As the
Hilbert space of each of our models is restricted to the singly-occupied subspace, we do not need to consider patterns
with more than one pixel at the same site. Each of these terms is weighted by the product of the intensities of the
pixels which constitute the pattern.

Example
Filter

○

↓

↑

FIG. S.10. An explanation of the nonlinear features c(n) in terms of multi-site correlators for an example filter. White pixels in
the filter are zero weight. Each term in the expansion can be understood as counting the number of occurrences of the shown
pattern in the snapshot, weighted by the product of the intensities of the pixels comprising the pattern.
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ing since �(4)
1 and �(4)

2 are the two first coe�cients to
activate. Furthermore, parallel tracking of the accu-
racy in Fig. 3(b) shows that the activation of these fea-
tures results in large jumps in the classification accuracy,
comprising almost all of the network’s predictive power.
While the details of the paths vary between training runs,
we find robust dominance of fourth-order correlations as
the first features to be activated to give the majority of
the network’s performance.

Now that we know the fourth-order correlations are
the important features, we look at which physical corre-

lators are being measured by the features c(4)↵ by simply
inspecting 4-pixel patterns made from high-intensity pix-
els from each channel of the learned filters, as we show
in Fig. 4. Comparing these patterns with the depiction
of the two candidate theories, we can understand why
these correlators measured by the two filters are indeed
prominent motifs. Specifically, the 2 ⇥ 2 correlators in
the fourth-order feature of the filter associated to the ge-
ometric string theory (Fig. 4(a)) are easily recognizable
in the “wake” and the termination of a string. These
discovered correlations are in agreement with those ex-
amined in Ref. [28], which found pronounced spin anti-
correlations induced on the spins located on the diagonal
adjacent to a mobile chargon. Meanwhile, the 2⇥ 2 mo-
tifs in the filter learned to represent the ⇡-flux theory
(Fig. 4(b)) are either a single spin-flip or a simple place-
ment of a hole into an AFM background. It is evident
that this CCNN is learning the fingerprint correlations
of geometric string theory, recognizing the ⇡-flux theory
instead from fluctuations which are uncharacteristic of
the string picture. Furthermore, a subset of learned pat-
terns that are not obvious from the simple cartoons can
be used as additional markers to detect the states born
out of the two theoretical hypotheses in experiment (see
SM Sec. S.IV for more detail).

It is important to note that the above insights relied
on the fact that our CCNN’s structure can be under-
stood as measured collections of correlators. Although
the regularization path analysis can be applied to any
architecture, the typical non-linear structures of o↵-the-
shelf CNNs inhibit direct connections between the dom-
inant filters and physically meaningful information [33].
In SM Sec S.VI we present how interpretation of the ar-
chitecture of Ref. [9] can be attempted following similar
steps as above. Since the fully connected layer contains
tens of thousands of parameters, after training we show
that we can reduce this layer to a simple spatial aver-
aging to attempt interpretation, with no loss in perfor-
mance (see SM Sec. S.V). The reduced architecture with
a single “feature” per convolutional filter, similar to the
architecture of Ref. [33], is trained, after which we fix the
filters for the regularization path analysis. We can clearly
determine which filters produce the important features,
but it is unclear what these features are actually mea-
suring due to the ReLU nonlinearity. However, without

FIG. 4. The highest-weight terms of Eq. 2 when constructing
correlator features c(4)1 , c(4)2 from the discovered convolutional

filter patterns f1, f2. Each feature c(4)↵ measures a weighted
sum of the correlators drawn on the right-hand side. Weights
shown here are normalized such that the largest correlator
from each filter has weight 1.0.

any nonlinearity the architecture only achieves close to
50% performance. This failure to enforce simplicity on
traditional architectures shows the importance of design-
ing an architecture which measures physically meaningful
information from the outset.

The ML method presented in this paper considers
short-range multi-point correlations functions (up to 3
lattice sites in both x and y directions), but does not in-
clude long-range two-point correlations needed for iden-
tifying spontaneous symmetry breaking. Two considera-
tions motivate this choice: i) Current experiments with
the Fermi-Hubbard model are done in the regime where
correlations involving charge degrees of freedom are not
expected to exceed a few lattice constants due to thermal
fluctuations. ii) The energy of systems with local inter-
actions, such as the Fermi-Hubbard model, is primarily
determined by short-range correlations. We note, how-
ever, that the current method can be extended to include
longer range correlations either by expanding the size of
the filters used in Eq. 2, or by using dilated convolutions.

To summarize, we proposed a new neural network ar-
chitecture that is inherently interpretable as measuring
sets of multi-site correlators. We then applied this ar-
chitecture to the supervised learning problem of distin-
guishing two theoretical hypotheses for the doped Hub-
bard model: ⇡-flux theory and geometric string theory.
Employing a regularization path analysis technique on
these trained CCNN architectures, we found that four-
site correlators deriving from the learned filters hold the
key fingerprints of geometric string theory. A subset of
these four-site motifs fit into what is expected from the
wake of a propagating hole in an antiferromagnetic back-
ground. The remaining four-site motifs which go beyond
our existing intuition o↵er new insight into the problem.

The broad implications of CCNN-based machine learn-
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FIG. 3. Breakdown of polaronic correlations. A, Relation between bare and connected spin correlations in the vicinity of
a hole. B, Connected correlation (represented as bonds) of spins on NN and diagonal lattice sites (grey dots) in the presence
of a single hole (white central dot) for di↵erent dopings. C, Connected correlations as a function of bond distance r from
the hole, where we flip the sign of correlations with bond length d =

p
2. Thus a positive correlation indicates a connected

signal opposing the two-point correlations at half filling. Error bars denote one s.e.m. and are smaller than the point size.
The full width of doping bins for B, C is 0.1. D, Doping dependence of the NN and diagonal bonds closest to the hole (see
insets). Square (circular) datapoints were extracted from a dataset with 52.0(1) (91.3(1)) average number of particles. Solid
lines represent numerical calculations (see legend) and shaded bands indicate (where visible) their statistical s.e.m. This figure
is based on 18 107 experimental realizations at kBT = 0.52(5) t and U/t = 7.4(8).

best captured by TPSC calculations. However, below
�FL the susceptibility �s stops increasing for weaker dop-
ings. This behavior is reminiscent of the pseudogap phe-
nomenon as well as anomalous with respect to our FL
calculations, and supported by QMC results [41]. This
indicates, that the metallic regime below �FL is of a dif-
ferent nature than the conventional Fermi liquid found
at higher dopings (for convergence of structure factors in
FL see [33]).

The weakly doped metallic regime hosts magnetic po-
larons, whose dressing cloud can be measured with a
three-point correlator of two spins around a hole [16, 29].
For spin-balanced systems hŜz

ri
i = 0, the connected part

simplifies to [33]
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and measures how the bond is perturbed away from the
background two-point correlation by post-selecting on a
hole at a third position r3, c.f. Fig. 1C. The distance of
the bond center to the hole is given by r = (r1+r2)/2�
r3.

For � around 10%, a hole perturbs all bonds in its
vicinity with a sign opposite to the antiferromagnetic
background, such that NN spins (d = 1) align more ferro-
magnetically (parallel) and diagonal spins (d =

p
2) more

antiferromagnetically (antiparallel), see Fig. 3. Doublon-
hole fluctuations cause a similar connected signal already
at half-filling, but play a minor role at 10% doping [33].
When measuring the strength of this e↵ect versus bond
distance from the hole, the radial dependence of the po-
laronic dressing is obtained (see Fig. 3B).

In the Fermi-liquid regime at large doping, the Pauli
exclusion principle prevents fermions with the same spins
to occupy sites in a small volume [25]. This causes an
enhanced antiferromagnetic alignment of all bonds (also
d = 1) in the presence of a hole and in fact is expected to
cause small amplitude oscillations of that alignment with
larger distance from the hole, akin to Friedel oscillations
around a static hole.
Therefore, a useful indicator for the transition between

the two metals is the NN bond (d = 1) closest to the hole,
whose connected correlation continuously evolves from
ferromagnetic to antiferromagnetic across the regimes,
see Fig. 3C. An intial drop of the connected signal is
expected from the higher concentration of polarons, as
their dressing clouds start to overlap. Around 20% dop-
ing, the closest NN bond becomes uncorrelated with the
presence of the hole and builds up an antiferromagnetic
alignment towards �FL, consistent with ED. At a similar
doping � ⇠ �FL, the closest distance connected diagonal
correlations are maximally antiferromagnetic.
String and RVB predictions for Cc

�
are very distinguish-

able at weak dopings. Only the polaron model (string)
reproduces the experimental ferromagnetic alignment of
the closest NN bond, while RVB states show strong dis-
crepancies to experiment. Uniform RVB is a prime ex-
ample of how a theoretical approach can show excel-
lent agreement with experiment in two-point correlations
at low doping, but reveal strong deviations at higher-
order correlators. At large dopings, uniform RVB and
free fermions start to capture the correlations driven by
fermionic statistics.
QMC studies of Fermi-Hubbard systems found the
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best captured by TPSC calculations. However, below
�FL the susceptibility �s stops increasing for weaker dop-
ings. This behavior is reminiscent of the pseudogap phe-
nomenon as well as anomalous with respect to our FL
calculations, and supported by QMC results [41]. This
indicates, that the metallic regime below �FL is of a dif-
ferent nature than the conventional Fermi liquid found
at higher dopings (for convergence of structure factors in
FL see [33]).
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larons, whose dressing cloud can be measured with a
three-point correlator of two spins around a hole [16, 29].
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and measures how the bond is perturbed away from the
background two-point correlation by post-selecting on a
hole at a third position r3, c.f. Fig. 1C. The distance of
the bond center to the hole is given by r = (r1+r2)/2�
r3.

For � around 10%, a hole perturbs all bonds in its
vicinity with a sign opposite to the antiferromagnetic
background, such that NN spins (d = 1) align more ferro-
magnetically (parallel) and diagonal spins (d =
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2) more

antiferromagnetically (antiparallel), see Fig. 3. Doublon-
hole fluctuations cause a similar connected signal already
at half-filling, but play a minor role at 10% doping [33].
When measuring the strength of this e↵ect versus bond
distance from the hole, the radial dependence of the po-
laronic dressing is obtained (see Fig. 3B).

In the Fermi-liquid regime at large doping, the Pauli
exclusion principle prevents fermions with the same spins
to occupy sites in a small volume [25]. This causes an
enhanced antiferromagnetic alignment of all bonds (also
d = 1) in the presence of a hole and in fact is expected to
cause small amplitude oscillations of that alignment with
larger distance from the hole, akin to Friedel oscillations
around a static hole.
Therefore, a useful indicator for the transition between

the two metals is the NN bond (d = 1) closest to the hole,
whose connected correlation continuously evolves from
ferromagnetic to antiferromagnetic across the regimes,
see Fig. 3C. An intial drop of the connected signal is
expected from the higher concentration of polarons, as
their dressing clouds start to overlap. Around 20% dop-
ing, the closest NN bond becomes uncorrelated with the
presence of the hole and builds up an antiferromagnetic
alignment towards �FL, consistent with ED. At a similar
doping � ⇠ �FL, the closest distance connected diagonal
correlations are maximally antiferromagnetic.
String and RVB predictions for Cc

�
are very distinguish-

able at weak dopings. Only the polaron model (string)
reproduces the experimental ferromagnetic alignment of
the closest NN bond, while RVB states show strong dis-
crepancies to experiment. Uniform RVB is a prime ex-
ample of how a theoretical approach can show excel-
lent agreement with experiment in two-point correlations
at low doping, but reveal strong deviations at higher-
order correlators. At large dopings, uniform RVB and
free fermions start to capture the correlations driven by
fermionic statistics.
QMC studies of Fermi-Hubbard systems found the

Koepsell et al., Science 374 (2021) 
Miles et al., Nature Comm. 12 (2021) 
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and the sign-corrected nearest neighbor spin-spin correlator,

Cs(1) = �
✓
hsi,jsi+1,ji+ hsi,jsi,j+1i � hsi,jihsi+1,ji � hsi,jihsi,j+1i

2

◆
, (15)

with results shown in Supplementary Fig. 8.

(a) Staggered magnetization. (b) Nearest-neighbor sign-corrected correlator.

Supplementary Figure 8: Histograms of “simple” observables measured from single snapshots of each

theory. Each histogram is scaled to integrate to one. Vertical lines denote the mean of each distribution.

We see that the staggered magnetization is nearly indistinguishable, though the nearest-neighbor spin correlator
does show some minor deviation between the theories. However, this discrepancy is hardly enough to explain the
> 80% classification accuracy of ours and previous [1] ML models. Indeed, our 2nd-order CCNN can pick up this
correlation, and only manages to achieve ⇡ 63% classification accuracy.

We now turn to the fourth-order correlations discovered by the CCNN. In Supplementary Fig. 9, we show histograms
of correlator estimates obtained from single snapshots contained within the two datasets. Due to the D4 symmetry of
the models, we average over all symmetry-equivalent versions of each correlator for each estimate as the symmetrization
of our ML models would. From the figure, we can see that the patterns which are the dominant subpatterns of the
learned CCNN filters are indeed biased towards the theory in alignment with what the model predicts, with many
distributions being more clearly separated than the two-point NN correlator distributions from Supplementary Fig. 8b.
We can also see from the figure that some subpatterns contained in the filters actually show no significant di↵erence
between the two theories; our interpretation of this is that these patterns emerge as “connections” when the CCNN
attempts to include multiple significant patterns within a single filter. Since these connecting patterns are statistically
identical between the two theories, including them is a “free” action to the network which will not hamper performance.

In Supplementary Fig. 10, we plot measured fourth-order correlators obtained from the two datasets as a function
of hole doping. While all models in this work are trained on data at 9% doping, this plot shows an interesting trend.
We note that at 0% doping, the “parallel spin” correlator (red) is nearly identical between the two theories. It is
only once a finite hole doping is introduced that these correlators begin to deviate from each other. This agrees
with our explanation of strings leaving a “wake” of parallel spins, increasing this four-site correlator relative to the
⇡-flux theory. While the current network cannot see the connected components of these correlations, we can see in
Supplementary Fig. 10(b) that the finite-doping connected component has opposite sign to the zero-doping value,
indicating the key role mobile holes play in modifying this purely-spin correlator. All connected correlation functions
are computed using the standard formula for the Ursell function of four variables:

12

Supplementary Figure 9: Explicit statistical measurements of various fourth-order bare correlators.

Correlator values are averaged across all patterns symmetry-equivalent under rotations, spatial flips, and spin-flips.
Histogrammed are normalized counts of each pattern (and its symmetry equivalents) obtained from single snapshots
of each theory, with each histogram scaled to integrate to one. Vertical lines denote the mean of each distribution.

12

Supplementary Figure 9: Explicit statistical measurements of various fourth-order bare correlators.

Correlator values are averaged across all patterns symmetry-equivalent under rotations, spatial flips, and spin-flips.
Histogrammed are normalized counts of each pattern (and its symmetry equivalents) obtained from single snapshots
of each theory, with each histogram scaled to integrate to one. Vertical lines denote the mean of each distribution.
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FIG. 2. Site-resolved measurement of thermalization breakdown. (A) One-dimensional Aubry-André model with
particle tunneling at rate J/~, on-site interaction energy U and quasi-periodic potential with amplitude W . (B) We prepare
the initial state of eight unentangled atoms by projecting tailored optical potentials on a two-dimensional Mott insulator at
45Er lattice depth, where Er/h = 1.24 kHz is the recoil energy. (C) We create a non-equilibrium system by abruptly enabling
tunneling dynamics. Following a variable evolution time, we project the many-body state back onto the number basis by
increasing the lattice depth, and obtain the site-resolved atom number from a fluorescence image (SI). (D) We compute the

single-site von Neumann entropy S(1)
vN from the site-resolved atom number statistics (inset) after di↵erent evolution times (scaled

with tunneling time ⌧ = ~/J) in the presence of weak and strong disorder. (E) Probability p1 to retrieve the initial state

(inset) and S(1)
vN for di↵erent W , measured after 100⌧ evolution. The deviation from the thermal ensemble prediction for strong

disorder signals the breakdown of thermalization in the system. All lines in (C-D) show the prediction of exact diagonalization
calculations without any free parameters. Each data point is sampled from 197 disorder realizations (SI). Error bars denote
the s.e.m.

entanglement changes in the presence or absence of in-
teractions and disorder in the system (Fig. 1B). In ther-
mal systems without disorder, interacting particles de-
localize and rapidly create both types of entanglement
throughout the entire system. Contrarily, for Anderson
localization, number entanglement builds up only locally
at the boundary between the two subsystems. Here the
lack of interactions prevents the substantial formation of
configurational entanglement. In MBL systems, number
entanglement builds up in a similarly local way as for
Anderson localization. However, notably, the presence
of interactions additionally enables the slow formation of
configurational entanglement throughout the entire sys-
tem.

In this work, we realize an MBL system and character-
ize these key properties: breakdown of quantum thermal-
ization, finite localization length of the particles, area-law
scaling of the number entanglement, and slow growth of
the configurational entanglement that ultimately results
in a volume-law scaling. Each property shows a contrast-
ing behavior when the system is prepared at weak disor-
der in a thermalizing state. While the former three prop-
erties are also present for an Anderson localized state,
the slowly growing configurational entanglement qualita-
tively distinguishes our system from a non-interacting,

localized state.

EXPERIMENTAL SYSTEM

In our experiments, we study MBL in the interacting
Aubry-André model for bosons in one dimension [31, 32],
which is described by the Hamiltonian

Ĥ =� J
X

i

⇣
â†i âi+1 + h.c.

⌘

+
U

2

X

i

n̂i (n̂i � 1) +W
X

i

hin̂i,
(1)

where â†i (âi) is the creation (annihilation) operator for

a boson on site i, and n̂i = â†i âi is the particle number op-
erator on that site. The first term describes the tunneling
between neighboring lattice sites with the rate J/~, where
~ is the reduced Planck constant. The second term rep-
resents the energy shift U when multiple particles occupy
the same site. The last term introduces a site-resolved
potential o↵set, which is created with an incommensurate
lattice hi = cos (2⇡�i+ �) of period � ⇡ 1.618 lattice
sites, phase �, and amplitude W . In our experiment, we
achieve independent control over J , W , and � (Fig. 2A).

Lukin et al., Science 364 (2019)
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FIG. 6. Unsupervised learning of a phase transition.

Snapshots of the many-body quantum state of a system with
6, 8, and 12 sites, U/J = 2.9, and various disorder strengths
W/J are analyzed using the unsupervised learning scheme
introduced in [36, 37]. A neural network is trained to la-
bel a given snapshot with the corresponding value of W/J .
If a qualitative change in the data occurs, the derivative
�Wpred/�Wlabel will exhibit a maximum. The plot shows
Wpred as a function of Wlabel. Shaded bands are exact di-
agonalization and symbols experimental data. The results
are averaged over 25 independent runs and the error bars cor-
responds to one s.e.m. .

FIG. 7. E↵ective temperatures. E↵ective inverse temper-
atures �e↵ for U/J = 2.9, W/J = 4.5 as a function of � for a
system with L = 6 sites and a density of one particle per site.

by Ei = h 0|Ĥ| 0i. The e↵ective temperature Te↵ is

then determined such that the density matrix of the sys-

tem, ⇢̂� =
1
Z exp(��e↵Ĥ), with the inverse temperature

�e↵ = 1/Te↵ and Z = tr(exp(��e↵Ĥ)) fufills

Ei = tr

⇣
Ĥ ⇢̂�

⌘
. (7)

The energy density E(�) = tr(Ĥ ⇢̂�) is calculated for a

range of values � until the e↵ective temperature is deter-

FIG. 8. Learning thermalization. The system is initial-
ized in a uniform state (|111111111111i) and the ensuing time
evolution is investigated. In each time step, the neural net-
work is trained to distinguish snapshots from the current time
step from snapshots from the long-time limit. The plots show
the resulting accuracy for W/J = 6.4, U/J = 2.9.

mined such that Eq. 7 is fulfilled. Due to the disorder

potential, this e↵ective temperature varies for di↵erent

values of �, where � determines the disorder realization.

In Fig. 7, the e↵ective inverse temperature is shown as a

function of � for a system with L = 6 sites at unity filling

for interaction strength U/J = 2.9 and disorder strength

W/J = 4.5.

Learning thermalization - distinguish from long-time

limit

In order to study the dynamics of the quantum many-

body system, we here compare snapshots from the cur-

rent time step to the long-time limit. In a thermaliz-

ing system, the long-time limit corresponds to a thermal

equilibrium state and the scheme is thus basically the

same as the thermalization learning scheme introduced

in the main text. This is, however, not the case for the

MBL phase. In Fig. 8, the accuracy achieved on a test set

not used during training is shown as a function of time.

In each time step, the neural network parameters are op-

timized to enable the classification of snapshots into the

categories current timestep versus long-time limit. This

procedure has the advantage that the features used to

make the classification can vary for di↵erent time steps

and in particular, the network specifically searches for

di↵erences between the current time and the long-time

limit. It is therefore in principle capable of identifying

specific observables that have not yet reached their long-

time value.

In Fig. 9, the accuracy achieved on a test set not used

during training is shown as a function of time when start-
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Ĥ ⇢̂�

⌘
. (7)

The energy density E(�) = tr(Ĥ ⇢̂�) is calculated for a

range of values � until the e↵ective temperature is deter-

FIG. 8. Learning thermalization. The system is initial-
ized in a uniform state (|111111111111i) and the ensuing time
evolution is investigated. In each time step, the neural net-
work is trained to distinguish snapshots from the current time
step from snapshots from the long-time limit. The plots show
the resulting accuracy for W/J = 6.4, U/J = 2.9.

mined such that Eq. 7 is fulfilled. Due to the disorder

potential, this e↵ective temperature varies for di↵erent

values of �, where � determines the disorder realization.

In Fig. 7, the e↵ective inverse temperature is shown as a

function of � for a system with L = 6 sites at unity filling

for interaction strength U/J = 2.9 and disorder strength

W/J = 4.5.

Learning thermalization - distinguish from long-time

limit

In order to study the dynamics of the quantum many-

body system, we here compare snapshots from the cur-

rent time step to the long-time limit. In a thermaliz-

ing system, the long-time limit corresponds to a thermal

equilibrium state and the scheme is thus basically the

same as the thermalization learning scheme introduced

in the main text. This is, however, not the case for the

MBL phase. In Fig. 8, the accuracy achieved on a test set

not used during training is shown as a function of time.

In each time step, the neural network parameters are op-

timized to enable the classification of snapshots into the

categories current timestep versus long-time limit. This

procedure has the advantage that the features used to

make the classification can vary for di↵erent time steps

and in particular, the network specifically searches for

di↵erences between the current time and the long-time

limit. It is therefore in principle capable of identifying

specific observables that have not yet reached their long-

time value.

In Fig. 9, the accuracy achieved on a test set not used

during training is shown as a function of time when start-

8

FIG. 6. Unsupervised learning of a phase transition.

Snapshots of the many-body quantum state of a system with
6, 8, and 12 sites, U/J = 2.9, and various disorder strengths
W/J are analyzed using the unsupervised learning scheme
introduced in [36, 37]. A neural network is trained to la-
bel a given snapshot with the corresponding value of W/J .
If a qualitative change in the data occurs, the derivative
�Wpred/�Wlabel will exhibit a maximum. The plot shows
Wpred as a function of Wlabel. Shaded bands are exact di-
agonalization and symbols experimental data. The results
are averaged over 25 independent runs and the error bars cor-
responds to one s.e.m. .

FIG. 7. E↵ective temperatures. E↵ective inverse temper-
atures �e↵ for U/J = 2.9, W/J = 4.5 as a function of � for a
system with L = 6 sites and a density of one particle per site.
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FIG. 2. Site-resolved measurement of thermalization breakdown. (A) One-dimensional Aubry-André model with
particle tunneling at rate J/~, on-site interaction energy U and quasi-periodic potential with amplitude W . (B) We prepare
the initial state of eight unentangled atoms by projecting tailored optical potentials on a two-dimensional Mott insulator at
45Er lattice depth, where Er/h = 1.24 kHz is the recoil energy. (C) We create a non-equilibrium system by abruptly enabling
tunneling dynamics. Following a variable evolution time, we project the many-body state back onto the number basis by
increasing the lattice depth, and obtain the site-resolved atom number from a fluorescence image (SI). (D) We compute the

single-site von Neumann entropy S(1)
vN from the site-resolved atom number statistics (inset) after di↵erent evolution times (scaled

with tunneling time ⌧ = ~/J) in the presence of weak and strong disorder. (E) Probability p1 to retrieve the initial state

(inset) and S(1)
vN for di↵erent W , measured after 100⌧ evolution. The deviation from the thermal ensemble prediction for strong

disorder signals the breakdown of thermalization in the system. All lines in (C-D) show the prediction of exact diagonalization
calculations without any free parameters. Each data point is sampled from 197 disorder realizations (SI). Error bars denote
the s.e.m.

entanglement changes in the presence or absence of in-
teractions and disorder in the system (Fig. 1B). In ther-
mal systems without disorder, interacting particles de-
localize and rapidly create both types of entanglement
throughout the entire system. Contrarily, for Anderson
localization, number entanglement builds up only locally
at the boundary between the two subsystems. Here the
lack of interactions prevents the substantial formation of
configurational entanglement. In MBL systems, number
entanglement builds up in a similarly local way as for
Anderson localization. However, notably, the presence
of interactions additionally enables the slow formation of
configurational entanglement throughout the entire sys-
tem.

In this work, we realize an MBL system and character-
ize these key properties: breakdown of quantum thermal-
ization, finite localization length of the particles, area-law
scaling of the number entanglement, and slow growth of
the configurational entanglement that ultimately results
in a volume-law scaling. Each property shows a contrast-
ing behavior when the system is prepared at weak disor-
der in a thermalizing state. While the former three prop-
erties are also present for an Anderson localized state,
the slowly growing configurational entanglement qualita-
tively distinguishes our system from a non-interacting,

localized state.

EXPERIMENTAL SYSTEM

In our experiments, we study MBL in the interacting
Aubry-André model for bosons in one dimension [31, 32],
which is described by the Hamiltonian

Ĥ =� J
X

i

⇣
â†i âi+1 + h.c.

⌘

+
U

2

X

i

n̂i (n̂i � 1) +W
X

i

hin̂i,
(1)

where â†i (âi) is the creation (annihilation) operator for

a boson on site i, and n̂i = â†i âi is the particle number op-
erator on that site. The first term describes the tunneling
between neighboring lattice sites with the rate J/~, where
~ is the reduced Planck constant. The second term rep-
resents the energy shift U when multiple particles occupy
the same site. The last term introduces a site-resolved
potential o↵set, which is created with an incommensurate
lattice hi = cos (2⇡�i+ �) of period � ⇡ 1.618 lattice
sites, phase �, and amplitude W . In our experiment, we
achieve independent control over J , W , and � (Fig. 2A).

Initial state: Thermal density matrix:
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FIG. 6. Unsupervised learning of a phase transition.

Snapshots of the many-body quantum state of a system with
6, 8, and 12 sites, U/J = 2.9, and various disorder strengths
W/J are analyzed using the unsupervised learning scheme
introduced in [36, 37]. A neural network is trained to la-
bel a given snapshot with the corresponding value of W/J .
If a qualitative change in the data occurs, the derivative
�Wpred/�Wlabel will exhibit a maximum. The plot shows
Wpred as a function of Wlabel. Shaded bands are exact di-
agonalization and symbols experimental data. The results
are averaged over 25 independent runs and the error bars cor-
responds to one s.e.m. .

FIG. 7. E↵ective temperatures. E↵ective inverse temper-
atures �e↵ for U/J = 2.9, W/J = 4.5 as a function of � for a
system with L = 6 sites and a density of one particle per site.

by Ei = h 0|Ĥ| 0i. The e↵ective temperature Te↵ is

then determined such that the density matrix of the sys-

tem, ⇢̂� =
1
Z exp(��e↵Ĥ), with the inverse temperature

�e↵ = 1/Te↵ and Z = tr(exp(��e↵Ĥ)) fufills

Ei = tr

⇣
Ĥ ⇢̂�

⌘
. (7)

The energy density E(�) = tr(Ĥ ⇢̂�) is calculated for a

range of values � until the e↵ective temperature is deter-

FIG. 8. Learning thermalization. The system is initial-
ized in a uniform state (|111111111111i) and the ensuing time
evolution is investigated. In each time step, the neural net-
work is trained to distinguish snapshots from the current time
step from snapshots from the long-time limit. The plots show
the resulting accuracy for W/J = 6.4, U/J = 2.9.

mined such that Eq. 7 is fulfilled. Due to the disorder

potential, this e↵ective temperature varies for di↵erent

values of �, where � determines the disorder realization.

In Fig. 7, the e↵ective inverse temperature is shown as a

function of � for a system with L = 6 sites at unity filling

for interaction strength U/J = 2.9 and disorder strength

W/J = 4.5.

Learning thermalization - distinguish from long-time

limit

In order to study the dynamics of the quantum many-

body system, we here compare snapshots from the cur-

rent time step to the long-time limit. In a thermaliz-

ing system, the long-time limit corresponds to a thermal

equilibrium state and the scheme is thus basically the

same as the thermalization learning scheme introduced

in the main text. This is, however, not the case for the

MBL phase. In Fig. 8, the accuracy achieved on a test set

not used during training is shown as a function of time.

In each time step, the neural network parameters are op-

timized to enable the classification of snapshots into the

categories current timestep versus long-time limit. This

procedure has the advantage that the features used to

make the classification can vary for di↵erent time steps

and in particular, the network specifically searches for

di↵erences between the current time and the long-time

limit. It is therefore in principle capable of identifying

specific observables that have not yet reached their long-

time value.

In Fig. 9, the accuracy achieved on a test set not used

during training is shown as a function of time when start-
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Quantum critical behavior at the many-body-localization transition
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Phase transitions are driven by collective fluc-
tuations of a system’s constituents that emerge
at a critical point [1]. This mechanism has been
extensively explored for classical and quantum
systems in equilibrium, whose critical behavior
is described by a general theory of phase transi-
tions. Recently, however, fundamentally distinct
phase transitions have been discovered for out-of-
equilibrium quantum systems, which can exhibit
critical behavior that defies this description and
is not well understood [1]. A paradigmatic ex-
ample is the many-body-localization (MBL) tran-
sition, which marks the breakdown of quantum
thermalization [2–11]. Characterizing quantum
critical behavior in an MBL system requires the
measurement of its entanglement properties over
space and time [4, 5, 7], which has proven ex-
perimentally challenging due to stringent require-
ments on quantum state preparation and system
isolation. Here, we observe quantum critical be-
havior at the MBL transition in a disordered
Bose-Hubbard system and characterize its entan-
glement properties via its quantum correlations.
We observe strong correlations, whose emergence
is accompanied by the onset of anomalous di↵u-
sive transport throughout the system, and verify
their critical nature by measuring their system-
size dependence. The correlations extend to high
orders in the quantum critical regime and appear
to form via a sparse network of many-body reso-
nances that spans the entire system [12, 13]. Our
results unify the system’s microscopic structure
with its macroscopic quantum critical behavior,
and they provide an essential step towards un-
derstanding criticality and universality in non-
equilibrium systems [1, 7, 13].

The many-body-localization (MBL) transition de-
scribes the breakdown of thermalization in an isolated
quantum many-body system as disorder is increased be-
yond a critical value [8–11]. It represents a novel type
of quantum phase transition that fundamentally di↵ers
from both its classical and quantum ground-state coun-
terparts [2, 3, 7]. Instead of being characterized by an
instantaneous thermodynamic signature, it is identified
by the system’s inherent dynamic behavior. In particu-
lar, the MBL transition manifests itself through a change
in entanglement dynamics [11]. Recent years have seen
tremendous progress in our understanding of both the

thermal and the MBL phases within the frameworks of
quantum thermalization [6, 14, 15] and emergent integra-
bility [4, 5, 8–11], respectively.
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FIG. 1. Microscopy of the many-body localization
transition. a, The quantum state at the critical point takes
on a complex pattern of strong multi-particle correlations at
all length scales, visualized by shaded links between di↵erent
lattice sites. In contrast, it simplifies in the thermal and the
MBL phases to maximal entanglement and predominantly lo-
cal correlations, respectively. A consequence is a change in the
transport properties from di↵usive to anomalous before ceas-
ing completely in MBL. b, We initialize the system as a pure
product state of up to twelve lattice sites at unity filling. The
system becomes entangled under the unitary, non-equilibrium
dynamics of the bosonic, interacting Aubry-André model with
on-site interaction energy U , particle tunneling at rate J/~
(with the reduced Planck constant ~), and quasi-periodic po-
tential with amplitude W . After a variable evolution time, we
obtain the full atom-number distribution from site-resolved
fluorescence imaging after expansion (see Methods).
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FIG. 2. Quantum critical dynamics at the MBL transition. a, The initially uncorrelated system develops two-point
density correlations under its transport dynamics. Short-range correlations emerge within one tunneling time ⌧ = ~/J , whereas
the di↵usion exponent ↵ determines the time scale over which correlations form across the system size L. b, Particle transport
slows down at intermediate disorder, consistent with a power-law evolution with exponent ↵ < 0.5, demonstrating subdi↵usive
dynamics (inset). These data were taken on an eight-site system. c, The critical nature of these dynamics is determined from
the behavior of on-site density fluctuations F and transport distance �x (lower left inset) for both considered system sizes.
The thermal regime is determined by the agreement of the measured F with the prediction from a thermal ensemble (dashed
grey). The system-size dependence at intermediate disorder is consistent with the reduced size of a quantum critical cone

(upper right inset). d, We obtain the genuine many-body processes of order n from connected correlations G(n)
c by subtracting

all lower order contributions G(n)
dis from the total correlation function G(n)

tot . e, In the quantum critical regime, we find enhanced

collective fluctuations at all measured orders by computing the mean absolute value of G(n)
c for di↵erent disorder strengths.

The solid lines (b,c) and bars (e) denote the prediction of exact diagonalization calculations without any free parameters (see
Methods). The errorbars are the s.e.m. and are below the marker size in b.

The quantum critical behavior at this transition, how-
ever, has remained largely unresolved [7]. In particular,
it is unclear whether the traditional association of collec-
tive fluctuations with static and dynamic critical behav-
ior can be applied to this transition. The high amount
of entanglement found at the MBL transition limits nu-
merical studies due to the required computational power
[16, 17]. Several theoretical approaches, despite using dis-
parate microscopic structures, suggest anomalous trans-
port as the macroscopic behavior at the quantum criti-
cal point [12, 18–20]. Experimental studies indeed indi-

cate a slowdown of the dynamics at intermediate disor-
der [21, 22]. However, identifying anomalous transport as
quantum critical dynamics is experimentally challenging,
since similar behavior can also originate from stochastic
e↵ects: rare regions in the disorder potential [23–25], in-
homogeneities in the initial state [26], or the coupling
to a classical bath [27, 28]. Our experimental protocol
overcomes these challenges by using a quasi-periodic po-
tential, which is rare-region free, as well as by evolving a
pure, homogeneous initial state under unitary dynamics.
Using this protocol, we observe quantum critical dynam-

Rispoli et al., Nature 573 (2019)
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FIG. 1. (a) Defect-free square lattices of neutral atoms undergo coherent quantum evolution for di↵erent values of blockade
extent Rb/a and linear detuning sweeps’ endpoints �/⌦, followed by projective readout in which atoms excited to the Rydberg
state are detected as loss (red circles). (b–e) Idealized real-space patterns corresponding to phases predicted to be present
at various regions of parameter space. Dark pink and white sites indicate |ri and |gi states, respectively, while the light pink
sites in the striated phase are in a quantum superposition of |ri and |gi. (f) A diagram outlining the Hybrid-CCNN approach.
First, an unsupervised technique is used to generate a rough first-pass phase diagram. Here, we choose to measure average
Fourier amplitudes |n(k)|2 at each (�, Rb), perform a dimensionality reduction using principal component analysis, and finally
cluster using a Gaussian mixture model. The resulting phase diagram informs the starting “seeds” in the parameter space, from
which snapshots are sampled in a second supervised stage. We then learn to distinguish these snapshots using interpretable
classifiers, from which we can extract refined phase boundaries and key identifying features.

longitudinal field � corresponds to the laser detuning,
and Vij ⌘ V0/|xi � xj |6 is the long-range van der Waals
interactions between Rydberg excitations at xi and xj .

Density-matrix renormalization group (DMRG) calcu-
lations on the square lattice [10] have predicted a num-
ber of quantum phases of the Hamiltonian (1) arising
from the interplay between coherent laser driving and
the long-range van der Waals interactions [see Fig. 1(b–
e)]. These phases can be understood based on the Ryd-
berg blockade phenomenon [11]: the strong interactions
Vij can prohibit (or “blockade”) the simultaneous exci-
tation of neighboring atoms to the Rydberg state. The
spatial extent of this blockade (or equivalently, the in-
teraction strength) is captured by the blockade radius,
defined as Rb ⌘ (V0/⌦)1/6. The full phase diagram is
thus parametrized by the ratio of the longitudinal to the

transverse field, �/⌦, and Rb/a, where a is the lattice
spacing. For �/⌦> 0, the system energetically favors
maximizing the number of atoms in the Rydberg state.
However, this is subject to the blockade constraint, so
for Rb/a& 1, only one out of every pair of nearest neigh-
bors can be excited; on a square lattice, this leads to
the checkerboard phase with antiferromagnetic ordering
of atoms in ground and Rydberg states. Higher values of
Rb/a result in various new density-wave-ordered phases.
Some of these correspond to classical hard-sphere packing
of Rydberg excitations [10], while others are stabilized
by quantum coherence between the ground and Rydberg
states [5, 10].

Recent experiments [5] have demonstrated three of
these predicted states [Fig. 1(b–d)], namely, the checker-
board, striated, and star phases. In the experiments,
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FIG. 5. (a) The region of support for the rhombic phase as learned by the full CCNN model of Fig. 1(n), with 5 ⇥ 5 filters
and highlighted boxes indicating the training points. (b,c) The two learned 4⇥ 4 convolutional filters for a simplified model

(w(x) = 1,�(n)
↵ � 0) trained to identify the rhombic phase. (d–i) High-weight two- and three-point connected correlators

measured by c
(2)
↵ , c

(3)
↵ resulting from the filters in (a,b). We find �

(2)
2 to be nearly zero, so we omit two-point correlators

stemming from the filter f2. Our CCNN is symmetrized, (see Appendix B) and so measures all correlators symmetry-equivalent
under rotations and flips to those shown. (j) Identification of these two- and three-point motifs in the idealized rhombic ordering
with boundary defects (light blue). (k) Identification of local occurrences of these motifs in experimental snapshots sampled
from the training set.

subsequent onset of bulk order, in the presence of preex-
isting edge order, defines an “extraordinary” boundary
universality class [36]. We highlight that the existence
of this boundary-ordered phase is a new discovery of the
present work since this phase cannot be obtained on ge-
ometries with fully periodic or cylindrical boundary con-
ditions, as was used for earlier DMRG calculations [10].
Critical to the identification of this phase is the real-space
nature of the CCNN analysis as the edge ordering intro-
duces a large number of artifacts into h|n(k)|2i, which
can challenge traditional Fourier-based analysis. Inter-
estingly, a complementary work [37] independently de-
tected this edge ordering in quantum Monte Carlo simu-
lations of the system with open boundary conditions, and
confirmed the first-order nature of several transitions.

3. The rhombic phase

Finally, we examine the other mystery phase identified
by the Hybrid-CCNN: the purple swath in Fig. 5(a). To
identify the defining characteristic of this phase, we re-
strict the CCNN to learn positive correlation functions by

enforcing �(n)
↵ � 0 during training, increase the filter size

to 4⇥4, and fix uniform w(x)= 1 (see Appendices C and
D). The CCNN learns the two filters f1 and f2 shown
in Fig. 5(b,c) and uses a combination of second- and

third-order correlations c(2)↵ , c(3)↵ to recognize this phase

as shown in Fig. 5(d–i). Remarkably, these learned motifs
strongly point towards the rhombic phase from among
the candidate ordering patterns in Fig. 1(b–e).

The rhombic phase is an intricately patterned density-
wave-ordered phase characterized by Fourier peaks at
±(⇡,⇡/4), ±(2⇡/5,⇡) (and their C4-rotated copies) [see
Fig. 1(e)], which was originally predicted by Ref. 10.
However, given its large unit cell comprising 40 sites,
the robustness of this phase in the actual experimental
system of Ebadi et al. [5] is a priori unclear due to both
the long-ranged tails of the van der Waals interactions
and the incompatibility of the ideal ordering pattern with
the dimensions of the lattices used. Our results illustrate
that, interestingly, we can still find characteristic rem-
nants of this phase. In particular, the three-point motif
of Fig. 5(d) provides a unique signature of the rhom-
bic phase as a fragment of a full rhombic crystal while
Fig. 5(g) occurs as an edge defect when the rhombic pat-
tern is embedded in the finite incommensurate system as
shown in Fig. 5(j). Additionally, the shorter-range three-
point motifs of Fig. 5(h) and (i) occur most frequently in
the rhombic phase (see Appendix E). The virtue of these
motifs is that they signify the tendency of fluctuations
towards rhombic ordering even when extended ordered
portions cannot form inside a finite system (due to the
large and incommensurate 6⇥ 5 unit cell). Indeed, these
motifs are ubiquitous in the experimental snapshots sam-
pled from this phase region as we showcase in Fig. 5(k).
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universality class [36]. We highlight that the existence
of this boundary-ordered phase is a new discovery of the
present work since this phase cannot be obtained on ge-
ometries with fully periodic or cylindrical boundary con-
ditions, as was used for earlier DMRG calculations [10].
Critical to the identification of this phase is the real-space
nature of the CCNN analysis as the edge ordering intro-
duces a large number of artifacts into h|n(k)|2i, which
can challenge traditional Fourier-based analysis. Inter-
estingly, a complementary work [37] independently de-
tected this edge ordering in quantum Monte Carlo simu-
lations of the system with open boundary conditions, and
confirmed the first-order nature of several transitions.

3. The rhombic phase

Finally, we examine the other mystery phase identified
by the Hybrid-CCNN: the purple swath in Fig. 5(a). To
identify the defining characteristic of this phase, we re-
strict the CCNN to learn positive correlation functions by

enforcing �(n)
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strongly point towards the rhombic phase from among
the candidate ordering patterns in Fig. 1(b–e).

The rhombic phase is an intricately patterned density-
wave-ordered phase characterized by Fourier peaks at
±(⇡,⇡/4), ±(2⇡/5,⇡) (and their C4-rotated copies) [see
Fig. 1(e)], which was originally predicted by Ref. 10.
However, given its large unit cell comprising 40 sites,
the robustness of this phase in the actual experimental
system of Ebadi et al. [5] is a priori unclear due to both
the long-ranged tails of the van der Waals interactions
and the incompatibility of the ideal ordering pattern with
the dimensions of the lattices used. Our results illustrate
that, interestingly, we can still find characteristic rem-
nants of this phase. In particular, the three-point motif
of Fig. 5(d) provides a unique signature of the rhom-
bic phase as a fragment of a full rhombic crystal while
Fig. 5(g) occurs as an edge defect when the rhombic pat-
tern is embedded in the finite incommensurate system as
shown in Fig. 5(j). Additionally, the shorter-range three-
point motifs of Fig. 5(h) and (i) occur most frequently in
the rhombic phase (see Appendix E). The virtue of these
motifs is that they signify the tendency of fluctuations
towards rhombic ordering even when extended ordered
portions cannot form inside a finite system (due to the
large and incommensurate 6⇥ 5 unit cell). Indeed, these
motifs are ubiquitous in the experimental snapshots sam-
pled from this phase region as we showcase in Fig. 5(k).
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CCNN: symmetric convolutions
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Supplementary Figure 1: A diagram demonstrating D4 symmetric convolutions. This diagram shows how to
construct D4 symmetric convolutions in a traditional CNN architecture. In our CCNN, the interior operations in
this process are replaced with our nonlinear convolution operations, but the initial symmetry-slicing and final

symmetry-pooling are unchanged.

However, there does exist an unintended interaction between L1 regularization and BatchNorm. Due to the normal-
ization process, the architecture is invariant to an overall scaling of the filter weights. Meanwhile, our intended goal
of using L1 was to drive “unimportant” pixels to zero. In a sense, the network can do this for “free” since it can scale
the filter weights without any loss in performance. In practice however, we find that the L1 loss still does bias the
network towards having lower complexity filters while keeping the overall scale reasonable. However the relationship
between the � parameter and the number of pixels activated is not always simple - sometimes increasing � will result
in more pixels activated. While the interaction between L2 regularization and BatchNorm is well understood [12],
the authors of this work are unaware of any similar understanding with L1 regularization. A solution to this issue is
still a desired feature.

c. Symmetrization One factor leading to the overparameterization of standard CNNs is that to reach peak accu-
racy, they need to explicitly learn multiple symmetry-equivalent versions of spin patterns. To achieve the same e↵ect
without requiring the duplication of filters, we use a D4 symmetry-equivariant form of the convolutional operation
as introduced in [13]. A visual explanation of the operation as performed in a standard CNN pipeline can be seen in
Supplementary Fig. 1.

Modification to suit our architecture is simple, following the steps described in [13] to extend this idea to arbitrary
models. Before any operation is applied, a “symmetric slicing” operation is done which stacks extra rotated/flipped
copies of the input into the batch dimension. The rest of the operations in the architecture are applied as usual to the
entire batch. Then, before feeding the final features into the logistic classifier, a “symmetric pooling” operation applies
the correct inverse symmetry operations to each copy of the input, then averages across them. This entire block of
operations then forms features which are equivariant to the desired symmetries of the input. If these features are then
spatially averaged, they instead form invariants (in which case the aforementioned inverse symmetry operations are
not needed). For fair comparison, every model examined in this work had this symmetrization applied.

d. Performance Measurements In Supplementary Fig. 2a, we show the performance of our architecture at various
orders to which the model is constructed, compared against a traditional CNN architecture using ReLU as the
nonlinearity. (For details, see the “reduced architecture” described in Sec S.V). We also have compared to the much
larger architecture of [1], adapted to accept three-channel snapshots as input, though it is di�cult to control the
overfitting even with strong regularization. Meanwhile, our architecture does not show signs of significant overfitting
even in absence of regularization due to its small parameterization. Out of all of our trials, for a fixed number of filters
no tested CNN has outperformed our CCNN models on the validation dataset by more than ⇡ 1%, which disappears
if we restrict the CNN filters to be positive as done in the CCNN.

Each curve shown is labeled with the number of filters that model contains; we increase the number of filters as
the order of the model decreases to keep the total number of features relatively constant, for a fair comparison. The
solid lines show the running-max (over all previous epochs) of the median validation accuracy achieved between five
independent training runs on the same train-val split of the data, but with di↵erent parameter initializations and
batching order, while the shaded regions shown the min-max spread across these models. Note that, to avoid unfairly

Miles et al., Nature Comm. 12 (2021) 


