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Figure 4.3: Averaged displacement and velocity of the cell sheet’s leading edge. a) The average cell
front displacement over time is shown for different channel widths. The fronts displacement
increases linearly with no apparent trend visible for different channel widths. Fluctuations
between different measurements at the same widths (insert, all 300 µm channels) are as large
as fluctuations between different channel widths. b) Averaged velocity depending on channel
width. Velocities are obtained as the slopes of lines fitted to displacement curves of individual
channels and averaged over all measurements of the same width. The velocity appears to be
independent of the channel width in this range. Error bars indicate standard errors.

PIV Analysis

While examination of the front displacement is already a good start for investigating cell
sheets, this only provides information about the behavior of the leading edge. Anything
that happens in the bulk of the cells following it is still neglected. Since this makes up a
great deal of the cells’ mass, studying it is of interest as well. In particular, in this work,
the questions of whether a constant flow profile exists and if so what shape it takes are
of interest. For this purpose, particle image velocimetry (PIV) analysis was performed
on the cell sheet. PIV analysis is a technique used to visualize the flow in fluids and has
recently been used to study movement in epithelial cell sheets ([61, 47, 5, 54]). Pixel by
pixel cross-correlation of overlapping subwindows determines local displacement between
frames (for details, see Section 3.2.1), which together with the known time step between
images yields a discrete velocity field (see Fig. 4.4). Here, PIV analysis was performed on
both the brightfield and the fluorescence images, though no advantage was found in using
the nuclei images. Initially, this velocity field in our experiment is very noisy, with quite
a few outlying vectors that are significantly larger or smaller than the ones surrounding
them, or point in completely different directions. Filtering and interpolation (see Section
3.2.1) removes most of the drastic outliers that do not describe the sheet’s motion correctly.
Following this, the velocity field displays hardly any outliers and seems to reasonably de-
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The	velocity	of	cell	invasion
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Figure 4.6: Variance of the vy component of a velocity field in dependence on degree of averaging. The
variance of vy is calculated after averaging over different temporal and spatial lengths and
plotted against these values. Exponential decays can be fitted to calculate the correlation
time τcor = 1.2 h and length ξcor = 70 µm over which averaging has to be performed to
decrease the variance of the field in y-direction to 1/e.
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Figure 4.7: Profile of the velocity component vx along the channel. A clear trend is visible with vx

increasing towards the front of the cell sheet. While the profile for one time point of one
measurement is very noisy, the averaged profile is a lot smoother and shows a clear, seemingly
linear increase in the velocity as the distance to the front is reduced. Further averaging over
all measurements confirms this trend and makes it more distinct. The slight decrease at the
very edge of the front is most likely caused by finger formation at the leading edge. Error
bars indicate standard errors.
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Figure 4.9: Velocity profile of vx component across the channel. a) Over almost the entire width of the
channel, a constant velocity is found, depending on the distance to the front. Cells flowing
in 3D channels clearly exhibit a plug-flow behavior. A small drop in velocities is visible at
the outer edge however. b) The outer two cell layers close to the channel wall are examined
by skipping the coarse graining step and just averaging over time and measurements of the
same channel width. Clearly, the decay in velocities is more distinct than the coarse grained
image indicated. Despite this however, the velocity does not drop to zero for the outermost
cells, indicating that the boundary condition is neither entirely ’slip’ nor ’no-slip’.

Flux Analysis in Analogy to Fick’s Law

Since the velocity profile is now known, a logical next step is to try and analyze the flux in
the cell sheet. As the flux is defined as J = −v·ρ, this means that in addition to the velocity,
the local density must be known. While the PIV analysis used the recorded brightfield
images, fluorescence images of the nuclei were recorded at each time point as well, allowing
the number of cells to be easily counted. Since it is much easier to distinguish cells from
each other in these images as compared to the brightfield case, this determination of the
cell number can be automated using ImageJ (for details see Section 3.2.5). The resulting
cell numbers are grouped into bins in the same manner the grid points for the velocity
profiles (see above) were grouped. Division by the area of one such bin (50 µm× channel
width) directly yields the cell density in this two dimensional case. The resulting density
profiles show the existence of a gradient with low cell densities towards the front and
higher densities in the bulk, towards the back. With the confirmed presence of what is
effectively a concentration gradient opposing the direction of the flow, we consider whether
it is possible to form an analogy to Fick’s law (see Section 2.2.2 for details) and calculate a
diffusion coefficient. Doing so would allow investigation of the question whether diffusion-
like motion alone is sufficient to explain the observed invasion behavior of the cell sheets.

correla?on		
length

persistence	
?me	 	ξ	≈	70	µm

	τ	≈	1,2	h

σ = vy
2

Cell	flow	field	shows	plug-flow	like	profile



by Vedula et al. (29), who observed only a weak dependence
of the front velocity on strip widths.

Flow-field analysis

As shown in Fig. 2 A, the flow field of the invading cell sheet
obtained from the PIV analysis exhibited strong spatial and
temporal fluctuations. Nevertheless, a net flux along the

direction of the trench could be discerned (top-left corner
image of Fig. 2 A), and successive application of spatial
coarse graining and time averaging revealed a smooth direc-
tional flow. The homogeneous flow field exhibited an in-
crease in flow velocity from the rear to the front of the
invading cell sheet (Fig. 3 C). Simultaneously, a flat flow
profile across the width of the channel was observed
(Fig. 3 A). A steep velocity gradient across approximately
two cell columns separated this plug-like flow from the
channel walls (Fig. 3 B). To determine how fluctuations
were averaged out as a function of length scale and time-
scale, we plotted the variance of the vertical flow component
against the coarse-graining length and averaging time,
respectively (Fig. 2 B). Within the limits of accuracy of
the measurement, this flow component was found to fluc-
tuate around a mean value negligibly close to zero. Plots
of the dependence of the variance of vertical flow on tempo-
ral and spatial averaging were fitted to exponential decay
curves, yielding average values of lc ¼ 80 5 10 mm for
the length scale and a characteristic averaging time of
tc ¼ 1.1 5 0.1 h, over which the amplitudes dropped to
1/e of their original values (Fig. 2 B). Note that the
coarse-graining length scale is of the same order as the
80–100 mm correlation length determined for coordinated
cell movement at comparable cell density (13). The charac-
teristic time tc can be interpreted as the corresponding cor-
relation time of the fluctuations in the cellular migration
patterns and to our knowledge has not been reported so
far. Note that this timescale is considerably shorter than
the doubling time, td ¼ 25.2 5 4.2 h, which represents
another characteristic timescale in systems of cells.

Cell-flux density and diffusion

The average cell flow was directed toward the tip of the
invading cell sheet and hence toward regions of lower cell
density, i.e., along an established cell-density gradient. We
therefore tested whether the cell flux follows a linear Ons-
ager relation equivalent to Fick’s first law of diffusion,
which states that the flux J is proportional to the slope of
the density gradient:

J¼ "Dc
dc

dx
þ J0 (1)

Here, Dc is the collective diffusion coefficient and dc/dx is
the density gradient, whereas J0 describes a possible under-
lying, density-independent (and spatially uniform) drift. The
cell-flux density J was determined by measuring the cell
density c and the flow velocity v according to J¼ c,v. To
this end, the channel area was dissected into 50-mm-wide
observation windows starting at the position of the front.
Cell density was measured by automated counting of stained
nuclei (Fig. 4 A). The flow velocity was assessed by PIV
analysis and the x components were averaged for each strip
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FIGURE 1 Migration of MDCK cells expressing fluorescence-labeled
nuclear H2B in PEG-DMA microstructures. (A) Once they are within the
microstructures, the cells’ migration is constrained by the channel walls,
as indicated in the schematic drawing (the scale bar corresponds to
100 mm). (B) The progression of stably transfected MDCK cells with fluo-
rescently labeled nuclei along the channels was monitored by time-lapse
microscopy (scale bar: 50 mm). (C) The velocity field was mapped by
PIV analysis using bright-field images. Fluorescence images taken at the
same time point were used to determine the cell density by locating individ-
ual cell nuclei. (D) The tip of the cell front is detected by the summed in-
tensity spectrum along the y direction of the bright-field images. The sharp
drop in intensity corresponds to the moving cell front. (E) Linear front
displacement for channels of varying widths. The invading fronts advance
at a constant velocity that is essentially independent of the channel width. In
the main plot, channel width is indicated on a grayscale from light gray
(100 mm) to black (300 mm). Average velocities over all channels of the
same width are plotted in the inset.
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4.1 Cell Migration in 3D Channels 63

Individual Cell Motion

While the formation and decay of vortexes is the first concrete manifestation of the ob-
served short-scale fluctuations, it is still a behavior of several cells migrating collectively.
It is interesting however, to also study the individual motion of cells within the layer.
Specifically, in the context of this work, the effect of a collective flow on the individual
cell motion was investigated. As the collective flow was shown to decrease vorticity in the
previous section, its presence can clearly have an effect on short-scale noise. Determining
whether an influence can also be seen on the individual cell behavior is the subject of this
section.
To this end, the motion of individual cells within the resting cell sheet is examined as
a point of reference. Here, although on long scales there is no directed migration, this
does not mean that the whole cell layer is frozen and the cells do not move move at all.
Instead, they migrate on very short scales in a seemingly random fashion. Individual cells

Figure 4.25: Individual cell tracking within the confluent cell sheet. Individual cells are tracked by means
of their fluorescent nuclei which allows easy distinction between different cells.

are tracked by means of the fluorescent nuclei (see Fig. 4.25) that allow easy distinction
between separate cells and perform a seemingly random motion (see Fig. 4.26). In con-
trast, in the case with flow present, individual cells show tracks that are long and stretched
(see Fig. 4.27) due to the collective sheet migration into the channel. Examining the
y-component however already indicates the presence of a seemingly random component.
It thus seems reasonable that the observed motion here is a superposition of the directed
collective migration of the cell sheet and the motion of the individual cell. To compare this
individual component to the resting case in order to study the influence of the collective
flow, the fraction of motion caused by collective flow needs to be removed. To this end,
all cell tracks from the flowing case must undergo a coordinate transformation into a coor-
dinate system moving along with the cell sheet. Given the available tools and the results
from the previous chapter (see Section 4.1.2), there are, in principal, two ways in which this
transformation can be attempted. For one, it is possible that the collective flow might be
described by the PIV analysis and subtracting the resulting velocities from the velocities at

10 2. Basics

example of such a random walk that has recently received attention is the Lévy flight. Here,
the step size distribution is heavy-tailed, meaning the occasional long step is included with
the much more frequent short steps. Though Lévy flights have been used to successfully
describe animal search patterns [63], this is still subject to some controversy, leaving their
applicability unclear [20, 9].
Persistent random walks have been successfully used to describe the migration of cells
[42, 58], so it makes sense to use them as a model in this thesis as well. With no directions
preferred over others, the mean location of such a walk should be zero, whereas the MSD,
giving the area covered by a random walk in a certain time span, serves as a better
parameter to characterize the system. It is obtained (as a function of the time interval ∆t)
by measuring the distance from the position at any starting point x0 on the cell track to
the position of the cell ∆t later, and then averaging over all possible starting points (see
Eq. 2.3).

⟨x2⟩ = ⟨(x(t + ∆t) − x0(t))
2⟩ (2.3)

For a persistent random walk, Fürth’s formula (see Eq. 2.4) gives the relation between the
MSD and the diffusion constant [42].

⟨x2⟩ = 4D · (t − Tp · (1 − e
− t

Tp )) (2.4)

Here, ⟨x2⟩ is the MSD and D is the diffusion coefficient, while t and Tp stand for the time
and the persistence time (the time scale on which the correlation in the step’s direction
is preserved), respectively. Though, strictly speaking, only holding true for t ≫ Tp, when
calculating diffusion constants from MSD data, this formula can be approximated [58] with
Eq. 2.5, which is reasonable if persistence times are short (see Fig. 2.3).

⟨x2⟩ = 4Dt (2.5)

In either case, as long as the MSD (along with the corresponding time steps) can be
determined from the experiment, the diffusion constant becomes empirically accessible.

the	mean	squared	displacement	(MSD)	 
grows	linear	with	?me

DS		≈20	µm2/h

DC		≈	ξ2/	4τ	

Collec?ve	diffusion	is	determined  
by	the	correla?on	length	ξ	and	?me	τ

by Vedula et al. (29), who observed only a weak dependence
of the front velocity on strip widths.

Flow-field analysis

As shown in Fig. 2 A, the flow field of the invading cell sheet
obtained from the PIV analysis exhibited strong spatial and
temporal fluctuations. Nevertheless, a net flux along the

direction of the trench could be discerned (top-left corner
image of Fig. 2 A), and successive application of spatial
coarse graining and time averaging revealed a smooth direc-
tional flow. The homogeneous flow field exhibited an in-
crease in flow velocity from the rear to the front of the
invading cell sheet (Fig. 3 C). Simultaneously, a flat flow
profile across the width of the channel was observed
(Fig. 3 A). A steep velocity gradient across approximately
two cell columns separated this plug-like flow from the
channel walls (Fig. 3 B). To determine how fluctuations
were averaged out as a function of length scale and time-
scale, we plotted the variance of the vertical flow component
against the coarse-graining length and averaging time,
respectively (Fig. 2 B). Within the limits of accuracy of
the measurement, this flow component was found to fluc-
tuate around a mean value negligibly close to zero. Plots
of the dependence of the variance of vertical flow on tempo-
ral and spatial averaging were fitted to exponential decay
curves, yielding average values of lc ¼ 80 5 10 mm for
the length scale and a characteristic averaging time of
tc ¼ 1.1 5 0.1 h, over which the amplitudes dropped to
1/e of their original values (Fig. 2 B). Note that the
coarse-graining length scale is of the same order as the
80–100 mm correlation length determined for coordinated
cell movement at comparable cell density (13). The charac-
teristic time tc can be interpreted as the corresponding cor-
relation time of the fluctuations in the cellular migration
patterns and to our knowledge has not been reported so
far. Note that this timescale is considerably shorter than
the doubling time, td ¼ 25.2 5 4.2 h, which represents
another characteristic timescale in systems of cells.

Cell-flux density and diffusion

The average cell flow was directed toward the tip of the
invading cell sheet and hence toward regions of lower cell
density, i.e., along an established cell-density gradient. We
therefore tested whether the cell flux follows a linear Ons-
ager relation equivalent to Fick’s first law of diffusion,
which states that the flux J is proportional to the slope of
the density gradient:

J¼ "Dc
dc

dx
þ J0 (1)

Here, Dc is the collective diffusion coefficient and dc/dx is
the density gradient, whereas J0 describes a possible under-
lying, density-independent (and spatially uniform) drift. The
cell-flux density J was determined by measuring the cell
density c and the flow velocity v according to J¼ c,v. To
this end, the channel area was dissected into 50-mm-wide
observation windows starting at the position of the front.
Cell density was measured by automated counting of stained
nuclei (Fig. 4 A). The flow velocity was assessed by PIV
analysis and the x components were averaged for each strip
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FIGURE 1 Migration of MDCK cells expressing fluorescence-labeled
nuclear H2B in PEG-DMA microstructures. (A) Once they are within the
microstructures, the cells’ migration is constrained by the channel walls,
as indicated in the schematic drawing (the scale bar corresponds to
100 mm). (B) The progression of stably transfected MDCK cells with fluo-
rescently labeled nuclei along the channels was monitored by time-lapse
microscopy (scale bar: 50 mm). (C) The velocity field was mapped by
PIV analysis using bright-field images. Fluorescence images taken at the
same time point were used to determine the cell density by locating individ-
ual cell nuclei. (D) The tip of the cell front is detected by the summed in-
tensity spectrum along the y direction of the bright-field images. The sharp
drop in intensity corresponds to the moving cell front. (E) Linear front
displacement for channels of varying widths. The invading fronts advance
at a constant velocity that is essentially independent of the channel width. In
the main plot, channel width is indicated on a grayscale from light gray
(100 mm) to black (300 mm). Average velocities over all channels of the
same width are plotted in the inset.
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Fig. 1: A 120µm thick cross-section through the microparticle
cloud. The whole cloud consists of about 25 · 106 particles.
The illuminating laser light comes from the right. The main
elements are clearly recognizable: the void (I), the stagnation
zone (II) below the void, and the vortex (III). A superposition
of 20 images is shown to emphasize the particle trajectories.
The black arrows indicate the direction of the particle flux.
The region of interest used in the analysis is indicated by
a rectangle. The insert shows the contact angle Θ= 20◦± 5◦
between the two fluids (inverted region).

A 120µm thick slice of the complex plasma was illumi-
nated by a green (532 nm) laser diode. The light scattered
by the particles was recorded with a CCD camera at a
frame rate of 90Hz with a resolution of 13.6µm (15.6µm)
in horizontal (vertical) direction.

Tracking. – To study the cloud dynamics we determine
the particle positions in every frame (ri = xiex+ yiey,
i= 1, . . . , N , where N is the number of particles, ex,y are
the unit vectors). A Gauss fitting method was used for
the particle position calculation. This procedure allows to
avoid pixel locking that can occur in other methods [20].
Then we track single particles in consecutive frames to
form trajectories (see fig. 2). The resting (streaming)
particles were tracked for an average of 41 (28) frames.
From the particle trajectories we extract velocities (vi)
accurate to the order of ∆t2, ∆t= 1/90 s.
High-quality tracking data allowed us to derive higher

derivatives such as the divergence and vorticity of
the velocity field. For the calculation of vorticity and
divergence from the discrete particle trajectories the
following algorithm was developed: First, Delaunay
triangulation was used to obtain the nearest-neighbor
vectors (ri,j = rj − ri, where j = 1, . . . ,nni, nni is the
number of the nearest neighbors). Second, to calculate the
divergence, the projections ri,j ·vi,jri,j

of the relative veloc-

ities vi,j = vj −vi on the nearest-neighbor vectors were
calculated and divided by the distance ri,j = |ri,j |,
resulting in di,j =

ri,j ·vi,j
r2i,j

. The vorticity was

(a) (b)

Fig. 2: The spatial distribution of the microparticles at the
interface. (a) A single image with exposure time ∆t= 1/90 s.
(b) Four superimposed consecutive images: the elongated
particle tracks in the left part indicate the flow. The mean flow
velocity is V = 3.3± 0.5mm/s. The average particle distance
is ∆r = 109µm for the resting particles (right), while it is
∆s = 113µm for the streaming particles (left).

calculated analogously: The projections ci,j =
r⊥i,j ·vi,j
r2i,j

were performed onto the vectors r⊥i,j = ez × ri,j orthog-
onal to ri,j , here ez = ex× ey. Note that with this
definition vorticity is positive for counter–clockwise
rotation. Third, the obtained results were averaged over
all neighbors, resulting in

(divv)i =
1

nni

nni∑

j=1

di,j , (1)

Ωi = ez · (curl v)i =
1

nni

nni∑

j=1

ci,j . (2)

To validate the values of the discrete (divv)i and Ωi we
also calculated divergence and vorticity using a regular
gridded velocity field (vk,l) in the cell (k, l) via binning.
Binning of the discrete results (1), (2) with the same
regular grid shows very good agreement.
The discrete algorithm gives an optimal spatial resolu-

tion. This is important because the flow interface is narrow
with a width of the order of the inter-particle separation.

Topology of the particle cloud. – The particle
cloud in our experiment is almost cylindrical with slightly
rounded edges. Its height and radius are approximately
20mm. Figure 1 shows a cross-section through the parti-
cle cloud. On the symmetry axis of the cloud slightly
above the center there is a “void”, a particle free region,
with a radius ≈ 5mm. In the outer region of the cloud
convecting particles form a toroidal vortex with poloidal
flow. The angular velocity of convection Ωc ≈ 0.3 s−1. This
makes up the largest part of the cloud. The “circulation

15001-p2

Swirls	in	collec?ve	flow	
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Fig. 1: A 120µm thick cross-section through the microparticle
cloud. The whole cloud consists of about 25 · 106 particles.
The illuminating laser light comes from the right. The main
elements are clearly recognizable: the void (I), the stagnation
zone (II) below the void, and the vortex (III). A superposition
of 20 images is shown to emphasize the particle trajectories.
The black arrows indicate the direction of the particle flux.
The region of interest used in the analysis is indicated by
a rectangle. The insert shows the contact angle Θ= 20◦± 5◦
between the two fluids (inverted region).

A 120µm thick slice of the complex plasma was illumi-
nated by a green (532 nm) laser diode. The light scattered
by the particles was recorded with a CCD camera at a
frame rate of 90Hz with a resolution of 13.6µm (15.6µm)
in horizontal (vertical) direction.

Tracking. – To study the cloud dynamics we determine
the particle positions in every frame (ri = xiex+ yiey,
i= 1, . . . , N , where N is the number of particles, ex,y are
the unit vectors). A Gauss fitting method was used for
the particle position calculation. This procedure allows to
avoid pixel locking that can occur in other methods [20].
Then we track single particles in consecutive frames to
form trajectories (see fig. 2). The resting (streaming)
particles were tracked for an average of 41 (28) frames.
From the particle trajectories we extract velocities (vi)
accurate to the order of ∆t2, ∆t= 1/90 s.
High-quality tracking data allowed us to derive higher

derivatives such as the divergence and vorticity of
the velocity field. For the calculation of vorticity and
divergence from the discrete particle trajectories the
following algorithm was developed: First, Delaunay
triangulation was used to obtain the nearest-neighbor
vectors (ri,j = rj − ri, where j = 1, . . . ,nni, nni is the
number of the nearest neighbors). Second, to calculate the
divergence, the projections ri,j ·vi,jri,j

of the relative veloc-

ities vi,j = vj −vi on the nearest-neighbor vectors were
calculated and divided by the distance ri,j = |ri,j |,
resulting in di,j =

ri,j ·vi,j
r2i,j

. The vorticity was

(a) (b)

Fig. 2: The spatial distribution of the microparticles at the
interface. (a) A single image with exposure time ∆t= 1/90 s.
(b) Four superimposed consecutive images: the elongated
particle tracks in the left part indicate the flow. The mean flow
velocity is V = 3.3± 0.5mm/s. The average particle distance
is ∆r = 109µm for the resting particles (right), while it is
∆s = 113µm for the streaming particles (left).

calculated analogously: The projections ci,j =
r⊥i,j ·vi,j
r2i,j

were performed onto the vectors r⊥i,j = ez × ri,j orthog-
onal to ri,j , here ez = ex× ey. Note that with this
definition vorticity is positive for counter–clockwise
rotation. Third, the obtained results were averaged over
all neighbors, resulting in

(divv)i =
1

nni

nni∑

j=1

di,j , (1)

Ωi = ez · (curl v)i =
1

nni

nni∑

j=1

ci,j . (2)

To validate the values of the discrete (divv)i and Ωi we
also calculated divergence and vorticity using a regular
gridded velocity field (vk,l) in the cell (k, l) via binning.
Binning of the discrete results (1), (2) with the same
regular grid shows very good agreement.
The discrete algorithm gives an optimal spatial resolu-

tion. This is important because the flow interface is narrow
with a width of the order of the inter-particle separation.

Topology of the particle cloud. – The particle
cloud in our experiment is almost cylindrical with slightly
rounded edges. Its height and radius are approximately
20mm. Figure 1 shows a cross-section through the parti-
cle cloud. On the symmetry axis of the cloud slightly
above the center there is a “void”, a particle free region,
with a radius ≈ 5mm. In the outer region of the cloud
convecting particles form a toroidal vortex with poloidal
flow. The angular velocity of convection Ωc ≈ 0.3 s−1. This
makes up the largest part of the cloud. The “circulation

15001-p2

Swirls	in	collec?ve	flow	



62 4. Experiments and Results

0 50 100 150
0

0.2

0.4

0.6

0.8

1

τ  [min]

(τ
) 

G

Figure 4.24: Decay time of vortices in confluent cell layers. The normalized correlation function of Ω2 is
calculated on individual grid points of the vorticity map (gray curves). While the individual
curves show large fluctuations, the average curve appears to be very smooth (black circles).
The decay is quantified temporally by fitting of an exponential decay (dashed red line) to
the mean values and retrieving the time τdecay = 15 min necessary for the original amplitude
to drop to 1/e.
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Dependence on Density and Flow The resulting, now intuitive heatmaps with a clear
relation between color scale and rotation can be used to gain insights into the actual be-
havior of formed vortices. Observing the confluent scenario quickly shows (see Fig. 4.21
a) the already expected density dependence, as the activity clearly goes down for higher
cell densities. This result can be quantified by examining the distribution of magnitudes
of vorticity across the whole grid for an early time point, when the cell density is low, and
for a late time point, when cell density has increased (see Fig. 4.21 b). For low densities,
there is a broad distribution, with frequent occurrences of high |Ω|-values. As the density
increases however, the distribution narrows and high vorticity values become much more
uncommon. Instead, almost the entire grid is found at the lowest values close to zero.
Now that the influence of cell density on the vorticity is known, it becomes possible to
analyze the effect a flow has on it. Due to the density gradient present in the flowing cell
sheets, only small subwindows (92 µm × 292 µm in the confluent case, 108 µm × 247 µm in
the case with flow) are chosen for this analysis, so that the cells under presence of flow
are in an area of relatively constant density. The average squared vorticity values ⟨Ω2⟩ as
well as the densities ρ are determined in this subwindow at each time point. The confluent
case does not suffer from the problem of developing density gradients. There are however
distinct local fluctuations. To achieve less error-prone results, for this case six subwindows
are taken spread equally over the length of the channel and the resulting values of ρ and
⟨Ω2⟩ averaged. After repeating this analysis for every time point of the measurement, the
resulting pairs of values are plotted (see Fig. 4.22). Examination of the areas where the
densities overlap shows that while in the confluent case ⟨Ω2⟩ decreases as already shown,
under flow the overall value seems to remain relatively constant. More importantly, at low
densities, the obtained values are significantly smaller than for the confluent case. This
indicates that the presence of flow suppresses the formation of vortices. Eventually, for
higher densities, both curves seem to settle at a base value of vorticity and seemingly no
longer decrease significantly after this point. For these high densities, there does not appear
to be a clear effect of the presence or absence of flow, indicating that rotation has already
been mostly suppressed. These findings are confirmed by examination of the heatmaps for
different densities (see Fig. 4.23), with no activities in the heatmaps for the flowing case
at the densities corresponding to the confluent case. Due to the density gradient however,
the density towards the front is significantly lower, showing that some vortex formation
under flow seems possible as long as one reaches sufficiently low densities.
After the strength of rotation has been quantified, the transient vortices’ evolution over
time is investigated. While ideally each vortex would be identified and observed individ-
ually, this is not only hard to do, but more importantly would require a lot of definitions
and thresholds to be set arbitrarily, such as what value of Ω2 needs to be overcome for
something to still be considered a vortex. As it is far preferable to not set anything arbi-
trarily, instead of examining individual vortices, the entire vorticity map is analyzed via
correlation. For each grid point, the standardized correlation G(τ) of Ω2 is calculated via
Eq. 4.8.

G(τ) =
⟨Ω2(t)⟩ · ⟨Ω2(t + τ)⟩

Ω(t)4
(4.8)

τvortex = 15 min

vor?ces	are	short-lived	!
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This effect is also demonstrated in a quantitative fashion in the Supporting Material (see Fig. S5). The 

 

Fig. 6. Vortex formation in representative confluent resting and flowing cell sheets. (A) There is no 
preference for formed vortices to rotate clockwise (negative vorticity values) or counter-clockwise 
(positive vorticity values), irrespective of whether cells are under flow or not. (B) Squared vorticity as 
a function of cell density for both the confluent case (red) and the case with flow (blue). The vorticity 
decreases with increasing density. At low cell densities, the values for the vorticity with flow are 
lower than those observed at the same densities when flow is absent. This indicates that both, a flow 
and an increasing density, suppress vortex formation (lines are guides to the eye). (C) Heatmaps of 
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Fig. 1: A 120µm thick cross-section through the microparticle
cloud. The whole cloud consists of about 25 · 106 particles.
The illuminating laser light comes from the right. The main
elements are clearly recognizable: the void (I), the stagnation
zone (II) below the void, and the vortex (III). A superposition
of 20 images is shown to emphasize the particle trajectories.
The black arrows indicate the direction of the particle flux.
The region of interest used in the analysis is indicated by
a rectangle. The insert shows the contact angle Θ= 20◦± 5◦
between the two fluids (inverted region).

A 120µm thick slice of the complex plasma was illumi-
nated by a green (532 nm) laser diode. The light scattered
by the particles was recorded with a CCD camera at a
frame rate of 90Hz with a resolution of 13.6µm (15.6µm)
in horizontal (vertical) direction.

Tracking. – To study the cloud dynamics we determine
the particle positions in every frame (ri = xiex+ yiey,
i= 1, . . . , N , where N is the number of particles, ex,y are
the unit vectors). A Gauss fitting method was used for
the particle position calculation. This procedure allows to
avoid pixel locking that can occur in other methods [20].
Then we track single particles in consecutive frames to
form trajectories (see fig. 2). The resting (streaming)
particles were tracked for an average of 41 (28) frames.
From the particle trajectories we extract velocities (vi)
accurate to the order of ∆t2, ∆t= 1/90 s.
High-quality tracking data allowed us to derive higher

derivatives such as the divergence and vorticity of
the velocity field. For the calculation of vorticity and
divergence from the discrete particle trajectories the
following algorithm was developed: First, Delaunay
triangulation was used to obtain the nearest-neighbor
vectors (ri,j = rj − ri, where j = 1, . . . ,nni, nni is the
number of the nearest neighbors). Second, to calculate the
divergence, the projections ri,j ·vi,jri,j

of the relative veloc-

ities vi,j = vj −vi on the nearest-neighbor vectors were
calculated and divided by the distance ri,j = |ri,j |,
resulting in di,j =

ri,j ·vi,j
r2i,j

. The vorticity was

(a) (b)

Fig. 2: The spatial distribution of the microparticles at the
interface. (a) A single image with exposure time ∆t= 1/90 s.
(b) Four superimposed consecutive images: the elongated
particle tracks in the left part indicate the flow. The mean flow
velocity is V = 3.3± 0.5mm/s. The average particle distance
is ∆r = 109µm for the resting particles (right), while it is
∆s = 113µm for the streaming particles (left).

calculated analogously: The projections ci,j =
r⊥i,j ·vi,j
r2i,j

were performed onto the vectors r⊥i,j = ez × ri,j orthog-
onal to ri,j , here ez = ex× ey. Note that with this
definition vorticity is positive for counter–clockwise
rotation. Third, the obtained results were averaged over
all neighbors, resulting in

(divv)i =
1

nni

nni∑

j=1

di,j , (1)

Ωi = ez · (curl v)i =
1

nni

nni∑

j=1

ci,j . (2)

To validate the values of the discrete (divv)i and Ωi we
also calculated divergence and vorticity using a regular
gridded velocity field (vk,l) in the cell (k, l) via binning.
Binning of the discrete results (1), (2) with the same
regular grid shows very good agreement.
The discrete algorithm gives an optimal spatial resolu-

tion. This is important because the flow interface is narrow
with a width of the order of the inter-particle separation.

Topology of the particle cloud. – The particle
cloud in our experiment is almost cylindrical with slightly
rounded edges. Its height and radius are approximately
20mm. Figure 1 shows a cross-section through the parti-
cle cloud. On the symmetry axis of the cloud slightly
above the center there is a “void”, a particle free region,
with a radius ≈ 5mm. In the outer region of the cloud
convecting particles form a toroidal vortex with poloidal
flow. The angular velocity of convection Ωc ≈ 0.3 s−1. This
makes up the largest part of the cloud. The “circulation
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I. INTRODUCTION

The goal of this article is to introduce the reader to a
general framework and viewpoint for the study of the me-
chanical and statistical properties of living matter and of
some remarkable non-living imitations, on length scales
from sub-cellular to oceanic. The ubiquitous nonequilib-
rium condensed systems that this review is concerned
with (Joanny and Prost, 2009; Jülicher et al., 2007;
Toner et al., 2005; Vicsek and Zafeiris, 2012) have come
to be known as active matter (Ramaswamy, 2010). Their
unifying characteristic is that they are composed of self-
driven units – active particles – each capable of convert-
ing stored or ambient free energy into systematic move-
ment (Schweitzer, 2003). The interaction of active par-
ticles with each other and with the medium they live
in gives rise to highly correlated collective motion and
mechanical stress. Active particles are generally elon-
gated and their direction of self-propulsion is set by their
own anisotropy, rather than fixed by an external field.
Orientational order is thus a theme that runs through
much of the active-matter narrative, as can be seen for
instance in the image of a swarm of myxobacteria, shown
in Fig. 1. The biological systems of our interest in-
clude in vitro mixtures of cell extracts with bio-filaments
and associated motor proteins (Fig. 2), the whole cy-
toskeleton of living cells, bacterial suspensions (Fig. 3),
cell layers (Fig. 4), and terrestrial, aquatic (Fig. 5) and
aerial flocks. Non-living active matter arises in layers of
vibrated granular rods, colloidal or nanoscale particles
propelled through a fluid by catalytic activity at their
surface (Fig. 6), and collections of robots. A distinctive
– indeed, defining – feature of active systems compared
to more familiar nonequilibrium systems is the fact that
the energy input that drives the system out of equilib-
rium is local, at the level of each particle, rather than at
the system’s boundaries as in a shear flow, for example.
Each active particle consumes and dissipates energy go-
ing through a cycle that fuels internal changes, generally
leading to motion. Active systems exhibit a wealth of
intriguing nonequilibrium properties, including emergent
structures with collective behavior qualitatively di↵erent
from that of the individual constituents, bizarre fluctua-
tion statistics, nonequilibrium order-disorder transitions,
pattern formation on mesoscopic scales, unusual mechan-
ical and rheological properties, and wave propagation and
sustained oscillations even in the absence of inertia in the

FIG. 1 (color online) Liquid-crystalline order in a myxobacte-
rial flock. Image courtesy of Gregory Velicer (Indiana Univer-
sity Bloomington) and Juergen Bergen (Max-Planck Institute
for Developmental Biology).

FIG. 2 Patterns organized in vitro by the action of mul-
timeric kinesin complexes on microtubules, imaged by dark
field microscopy. The concentration of motor proteins in-
creases from left to right. Image (a) shows a disordered array
of microtubules. The other two images display motor-induced
organization in spiral (b) and aster (c) patterns. The bright
spots in the images correspond to the minus end of micro-
tubules. These remarkable experiments from Surrey et al.

(2001) led the way to the study of pattern formation in active
systems. Adapted with permission from Surrey et al. (2001).

strict sense.
Living systems of course provide the preeminent exam-

ple of active matter, exhibiting extraordinary properties
such as reproduction, adaptation, spontaneous motion,
and dynamical organization including the ability to gen-
erate and to respond in a calibrated manner to forces.

A theoretical description of the general properties of
living matter is not currently achievable because of its
overall complexity, with the detailed state of a cell deter-
mined by a hopelessly large number of variables. How-
ever, in a given living organism there are at most 300
di↵erent cell types, which an optimist could view as a
very small number given the immensity of the accessible
parameter space. Perhaps, therefore, global principles
such as conservation laws and symmetries constrain the
possible dynamical behaviors of cells or, indeed, of organ-
isms and populations, such as collections of bacteria (Fig.
3), fish schools (Fig. 5) and bird flocks. Quantifying the
spontaneous dynamical organization and motion of living

Leonardo	da	Vinci
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and	you	will	understand	 
the	birds	in	the	air
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I. INTRODUCTION

The goal of this article is to introduce the reader to a
general framework and viewpoint for the study of the me-
chanical and statistical properties of living matter and of
some remarkable non-living imitations, on length scales
from sub-cellular to oceanic. The ubiquitous nonequilib-
rium condensed systems that this review is concerned
with (Joanny and Prost, 2009; Jülicher et al., 2007;
Toner et al., 2005; Vicsek and Zafeiris, 2012) have come
to be known as active matter (Ramaswamy, 2010). Their
unifying characteristic is that they are composed of self-
driven units – active particles – each capable of convert-
ing stored or ambient free energy into systematic move-
ment (Schweitzer, 2003). The interaction of active par-
ticles with each other and with the medium they live
in gives rise to highly correlated collective motion and
mechanical stress. Active particles are generally elon-
gated and their direction of self-propulsion is set by their
own anisotropy, rather than fixed by an external field.
Orientational order is thus a theme that runs through
much of the active-matter narrative, as can be seen for
instance in the image of a swarm of myxobacteria, shown
in Fig. 1. The biological systems of our interest in-
clude in vitro mixtures of cell extracts with bio-filaments
and associated motor proteins (Fig. 2), the whole cy-
toskeleton of living cells, bacterial suspensions (Fig. 3),
cell layers (Fig. 4), and terrestrial, aquatic (Fig. 5) and
aerial flocks. Non-living active matter arises in layers of
vibrated granular rods, colloidal or nanoscale particles
propelled through a fluid by catalytic activity at their
surface (Fig. 6), and collections of robots. A distinctive
– indeed, defining – feature of active systems compared
to more familiar nonequilibrium systems is the fact that
the energy input that drives the system out of equilib-
rium is local, at the level of each particle, rather than at
the system’s boundaries as in a shear flow, for example.
Each active particle consumes and dissipates energy go-
ing through a cycle that fuels internal changes, generally
leading to motion. Active systems exhibit a wealth of
intriguing nonequilibrium properties, including emergent
structures with collective behavior qualitatively di↵erent
from that of the individual constituents, bizarre fluctua-
tion statistics, nonequilibrium order-disorder transitions,
pattern formation on mesoscopic scales, unusual mechan-
ical and rheological properties, and wave propagation and
sustained oscillations even in the absence of inertia in the

FIG. 1 (color online) Liquid-crystalline order in a myxobacte-
rial flock. Image courtesy of Gregory Velicer (Indiana Univer-
sity Bloomington) and Juergen Bergen (Max-Planck Institute
for Developmental Biology).

FIG. 2 Patterns organized in vitro by the action of mul-
timeric kinesin complexes on microtubules, imaged by dark
field microscopy. The concentration of motor proteins in-
creases from left to right. Image (a) shows a disordered array
of microtubules. The other two images display motor-induced
organization in spiral (b) and aster (c) patterns. The bright
spots in the images correspond to the minus end of micro-
tubules. These remarkable experiments from Surrey et al.

(2001) led the way to the study of pattern formation in active
systems. Adapted with permission from Surrey et al. (2001).
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ple of active matter, exhibiting extraordinary properties
such as reproduction, adaptation, spontaneous motion,
and dynamical organization including the ability to gen-
erate and to respond in a calibrated manner to forces.

A theoretical description of the general properties of
living matter is not currently achievable because of its
overall complexity, with the detailed state of a cell deter-
mined by a hopelessly large number of variables. How-
ever, in a given living organism there are at most 300
di↵erent cell types, which an optimist could view as a
very small number given the immensity of the accessible
parameter space. Perhaps, therefore, global principles
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The actual simulations were carried out in a square
shaped cell of linear size L with periodic boundary
conditions. The particles were represented by points
moving continuously (off lattice) on the plane. We
used the interaction radius r as the unit to measure
distances (r = 1), while the time unit At = 1 was the
time interval between two updatings of the directions
and positions. In most of our simulations we used the
simplest initial conditions: (i) at time t = 0, N particles
were randomly distributed in the cell and (ii) had the
same absolute velocity v and (iii) randomly distributed
directions 0. the velocities (v;) of the particles were
determined simultaneously at each time step, and the
position of the ith particle updated according to

(a) ~ p q~&. ~ "„~ (b)

Here the velocity of a particle v; (r + 1) was constructed
to have an absolute value v and a direction given by
the angle 0(t + 1). This angle was obtained from the
expression

where (0(t))„denotes the average direction of the
velocities of particles (including particle i) being
within a circle of radius r surrounding the given par-
ticle. The average direction was given by the angle
arctan[(sin (0(t))„/(cos (0(t)))„]. In Eq. (2) 50 is a
random number chosen with a uniform probability from
the interval [—rI/2, g/2]. Thus the term 50 represents
noise, which we shall use as a temperaturelike variable.
Correspondingly, there are three free parameters for a
given system size: g, p, and v, where v is the distance
a particle makes between two updatings.
We have chosen this realization because of its simplic-

ity, however, there may be several more interesting alter-
natives of implementing the main rules of the model. In
particular, the absolute value of the velocities does not
have to be fixed, one can introduce further kinds of parti-
cle interactions and or consider lattice alternatives of the
model. In the rest of this paper we shall concentrate on
the simplest version, described above, and investigate the
nontrivial behavior of the transport properties as the two
basic parameters of the model, the noise g and the density
p = N/L, are varied. We used v = 0.03 in the simula-
tions we report on for the following reasons. In the limit
v ~ 0 the particles do not move and the model becomes
an analog of the well-known XY model. For v ~ ~ the
particles become completely mixed between two updates,
and this limit corresponds to the so-called mean-field be-
havior of a ferromagnet. We use v = 0.03 for which the
particles always interact with their actual neighbors and
move fast enough to change the configuration after a few
updates of the directions. According to our simulations,
in a wide range of the velocities (0.003 & v & 0.3), the
actual value of v does not affect the results.

FIG. l. In this figure the velocities of the particles are
displayed for varying values of the density and the noise. The
actual velocity of a particle is indicated by a small arrow, while
their trajectory for the last 20 time steps is shown by a short
continuous curve. The number of particles is N = 300 in each
case. (a) t = 0, L = 7, rj = 2.0. (b) For small densities and
noise the particles tend to form groups moving coherently in
random directions, here L = 25, ri = 0.1. (c) After some
time at higher densities and noise (L = 7, 71 = 2.0) the
particles move randomly with some correlation. (d) For higher
density and small noise (L = 5, rl = 0.1) the motion becomes
ordered. All of our results shown in Figs. 1—3 were obtained
from simulations in which v was set to be equal to 0.03.

Va
1

Nv Pv, (3)

Figures 1(a)—1(d) demonstrate the velocity fields dur-
ing runs with various selections for the value of the pa-
rameters p and g. The actual velocity of a particle is in-
dicated by a small arrow, while their trajectory for the last
20 time steps is shown by a short continuous curve. (a) At
t = 0 the positions and the direction of velocities are dis-
tributed randomly. (b) For small densities and noise the
particles tend to form groups moving coherently in ran-
dom directions. (c) At higher densities and noise the par-
ticles move randomly with some correlation. (d) Perhaps
the most interesting case is when the density is large and
the noise is small; in this case the motion becomes or-
dered on a macroscopic scale and all of the particles tend
to move in the same spontaneously selected direction.
This kinetic phase transition is due to the fact that

the particles are driven with a constant absolute velocity;
thus, unlike standard physical systems in our case, the net
momentum of the interacting particles is not conserved
during collision. We have studied in detail the nature of
this transition by determining the absolute value of the
average normalized velocity
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The actual simulations were carried out in a square
shaped cell of linear size L with periodic boundary
conditions. The particles were represented by points
moving continuously (off lattice) on the plane. We
used the interaction radius r as the unit to measure
distances (r = 1), while the time unit At = 1 was the
time interval between two updatings of the directions
and positions. In most of our simulations we used the
simplest initial conditions: (i) at time t = 0, N particles
were randomly distributed in the cell and (ii) had the
same absolute velocity v and (iii) randomly distributed
directions 0. the velocities (v;) of the particles were
determined simultaneously at each time step, and the
position of the ith particle updated according to

(a) ~ p q~&. ~ "„~ (b)

Here the velocity of a particle v; (r + 1) was constructed
to have an absolute value v and a direction given by
the angle 0(t + 1). This angle was obtained from the
expression

where (0(t))„denotes the average direction of the
velocities of particles (including particle i) being
within a circle of radius r surrounding the given par-
ticle. The average direction was given by the angle
arctan[(sin (0(t))„/(cos (0(t)))„]. In Eq. (2) 50 is a
random number chosen with a uniform probability from
the interval [—rI/2, g/2]. Thus the term 50 represents
noise, which we shall use as a temperaturelike variable.
Correspondingly, there are three free parameters for a
given system size: g, p, and v, where v is the distance
a particle makes between two updatings.
We have chosen this realization because of its simplic-

ity, however, there may be several more interesting alter-
natives of implementing the main rules of the model. In
particular, the absolute value of the velocities does not
have to be fixed, one can introduce further kinds of parti-
cle interactions and or consider lattice alternatives of the
model. In the rest of this paper we shall concentrate on
the simplest version, described above, and investigate the
nontrivial behavior of the transport properties as the two
basic parameters of the model, the noise g and the density
p = N/L, are varied. We used v = 0.03 in the simula-
tions we report on for the following reasons. In the limit
v ~ 0 the particles do not move and the model becomes
an analog of the well-known XY model. For v ~ ~ the
particles become completely mixed between two updates,
and this limit corresponds to the so-called mean-field be-
havior of a ferromagnet. We use v = 0.03 for which the
particles always interact with their actual neighbors and
move fast enough to change the configuration after a few
updates of the directions. According to our simulations,
in a wide range of the velocities (0.003 & v & 0.3), the
actual value of v does not affect the results.

FIG. l. In this figure the velocities of the particles are
displayed for varying values of the density and the noise. The
actual velocity of a particle is indicated by a small arrow, while
their trajectory for the last 20 time steps is shown by a short
continuous curve. The number of particles is N = 300 in each
case. (a) t = 0, L = 7, rj = 2.0. (b) For small densities and
noise the particles tend to form groups moving coherently in
random directions, here L = 25, ri = 0.1. (c) After some
time at higher densities and noise (L = 7, 71 = 2.0) the
particles move randomly with some correlation. (d) For higher
density and small noise (L = 5, rl = 0.1) the motion becomes
ordered. All of our results shown in Figs. 1—3 were obtained
from simulations in which v was set to be equal to 0.03.
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Figures 1(a)—1(d) demonstrate the velocity fields dur-
ing runs with various selections for the value of the pa-
rameters p and g. The actual velocity of a particle is in-
dicated by a small arrow, while their trajectory for the last
20 time steps is shown by a short continuous curve. (a) At
t = 0 the positions and the direction of velocities are dis-
tributed randomly. (b) For small densities and noise the
particles tend to form groups moving coherently in ran-
dom directions. (c) At higher densities and noise the par-
ticles move randomly with some correlation. (d) Perhaps
the most interesting case is when the density is large and
the noise is small; in this case the motion becomes or-
dered on a macroscopic scale and all of the particles tend
to move in the same spontaneously selected direction.
This kinetic phase transition is due to the fact that

the particles are driven with a constant absolute velocity;
thus, unlike standard physical systems in our case, the net
momentum of the interacting particles is not conserved
during collision. We have studied in detail the nature of
this transition by determining the absolute value of the
average normalized velocity
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The actual simulations were carried out in a square
shaped cell of linear size L with periodic boundary
conditions. The particles were represented by points
moving continuously (off lattice) on the plane. We
used the interaction radius r as the unit to measure
distances (r = 1), while the time unit At = 1 was the
time interval between two updatings of the directions
and positions. In most of our simulations we used the
simplest initial conditions: (i) at time t = 0, N particles
were randomly distributed in the cell and (ii) had the
same absolute velocity v and (iii) randomly distributed
directions 0. the velocities (v;) of the particles were
determined simultaneously at each time step, and the
position of the ith particle updated according to

(a) ~ p q~&. ~ "„~ (b)

Here the velocity of a particle v; (r + 1) was constructed
to have an absolute value v and a direction given by
the angle 0(t + 1). This angle was obtained from the
expression

where (0(t))„denotes the average direction of the
velocities of particles (including particle i) being
within a circle of radius r surrounding the given par-
ticle. The average direction was given by the angle
arctan[(sin (0(t))„/(cos (0(t)))„]. In Eq. (2) 50 is a
random number chosen with a uniform probability from
the interval [—rI/2, g/2]. Thus the term 50 represents
noise, which we shall use as a temperaturelike variable.
Correspondingly, there are three free parameters for a
given system size: g, p, and v, where v is the distance
a particle makes between two updatings.
We have chosen this realization because of its simplic-

ity, however, there may be several more interesting alter-
natives of implementing the main rules of the model. In
particular, the absolute value of the velocities does not
have to be fixed, one can introduce further kinds of parti-
cle interactions and or consider lattice alternatives of the
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used the interaction radius r as the unit to measure
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A simple model with a novel type of dynamics is introduced in order to investigate the emergence

of self-ordered motion in systems of particles with biologically motivated interaction. In our model
particles are driven with a constant absolute velocity and at each time step assume the average direction
of motion of the particles in their neighborhood with some random perturbation (g) added. We present
numerical evidence that this model results in a kinetic phase transition from no transport (zero average
velocity, ~v, ( = 0) to finite net transport through spontaneous symmetry breaking of the rotational
symmetry. The transition is continuous, since ~v, ~

is found to scale as (71, —g)t with p = 0.45.
PACS numbers: 87.10.+e, 64.60.—i

One of the most interesting aspects of many particle
systems is that they exhibit a complex cooperative behav-
ior during phase transition [1]. This remarkable feature
of equilibrium systems has been studied in great detail for
the last couple of decades leading to a deeper understand-
ing of processes which may take place in an assembly of
interacting particles. Concepts like scaling, universality,
and renormalization have resulted in a systematic picture
of a wide range of systems in physics [1,2].
Recently, there has been an increasing interest in the

rich behavior of systems which are far from equilibrium.
Processes such as aggregation, viscous fIows, or biologi-
cal pattern formation have been shown to involve scaling
of the related geometrical and dynamic quantities char-
acterizing these phenomena [3,4]. As a further similarity
with equilibrium systems, the existence of phase transition
type behavior has also been demonstrated in several inves-
tigations of growth processes [5—8]. These analogies with
the basic features of equilibrium systems have represented
a particularly important contribution to the understanding
of the complex behavior of nonequilibrium processes.
In this work we introduce a model with a novel type

of dynamics in order to investigate clustering, transport,
and phase transition in nonequilibrium systems where the
velocity of the particles is determined by a simple rule
and random fluctuations. The only rule of the model
is at each time step a given particle driven with a
constant absolute velocity assumes the average direction
of motion of the particles in its neighborhood of radius r
with some random perturbation added. We show using
simulations that, in spite of its simplicity, this model
results in a rich, realistic dynamics, including a kinetic
phase transition from no transport to finite net transport
through spontaneous symmetry breaking of the rotational
symmetry.
In this sense our model is a transport related, nonequi-

librium analog of the ferromagnetic type of models, with
the important difference that it is inherently dynamic: The

elementary event is the motion of a particle between two
time steps. Thus the analogy can be formulated as fol-
lows: The rule corresponding to the ferromagnetic inter-
action tending to align the spins in the same direction, in
the case of equilibrium models, is replaced by the rule of
aligning the direction of motion of particles in our model
of cooperative motion. The level of random perturbations
we apply are in analogy with the temperature.
Beyond the above aspects, the proposed model

is interesting because of possible applications in a
wide range of biological systems involving clus-
tering and migration. Biological subjects have the
tendency to move as other subjects do in their neigh-
borhood [9]. In addition to such trivial examples as
schools of fish, herds of quadrupeds, or Rocks of Hying
birds, our model can be applied to the less known phe-
nomena during bacterial colony growth [10]. There are
bacteria (e.g., a strain of Bacillus Subtilis) which exhibit
cooperative motion in order to survive under unfavorable
conditions. The present model, with some modifications,
is already capable of reproducing the main observed
features of the motion (collective rotation and llocking)
of bacteria [10]. Other biologically motivated, recent
theoretical investigations of clustering, aggregation, and
orientational order in systems with diffusing directed
objects have concentrated on the possible spatial patterns
arising from an integro-differential equation approach and
from cellular automata type models [11].
Furthermore, we expect that our model can be used

to interpret the results of experiments on clustering and
convection in a system of disks floating on air table
[12]. These experiments represent a physically motivated
possible application of the present model, since they
are being carried out in order to understand the How
of granular materials under specific conditions. We are
aware that two groups are working on developing models
similar to ours in order to interpret these air table
experiments [13].
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The actual simulations were carried out in a square
shaped cell of linear size L with periodic boundary
conditions. The particles were represented by points
moving continuously (off lattice) on the plane. We
used the interaction radius r as the unit to measure
distances (r = 1), while the time unit At = 1 was the
time interval between two updatings of the directions
and positions. In most of our simulations we used the
simplest initial conditions: (i) at time t = 0, N particles
were randomly distributed in the cell and (ii) had the
same absolute velocity v and (iii) randomly distributed
directions 0. the velocities (v;) of the particles were
determined simultaneously at each time step, and the
position of the ith particle updated according to

(a) ~ p q~&. ~ "„~ (b)

Here the velocity of a particle v; (r + 1) was constructed
to have an absolute value v and a direction given by
the angle 0(t + 1). This angle was obtained from the
expression

where (0(t))„denotes the average direction of the
velocities of particles (including particle i) being
within a circle of radius r surrounding the given par-
ticle. The average direction was given by the angle
arctan[(sin (0(t))„/(cos (0(t)))„]. In Eq. (2) 50 is a
random number chosen with a uniform probability from
the interval [—rI/2, g/2]. Thus the term 50 represents
noise, which we shall use as a temperaturelike variable.
Correspondingly, there are three free parameters for a
given system size: g, p, and v, where v is the distance
a particle makes between two updatings.
We have chosen this realization because of its simplic-

ity, however, there may be several more interesting alter-
natives of implementing the main rules of the model. In
particular, the absolute value of the velocities does not
have to be fixed, one can introduce further kinds of parti-
cle interactions and or consider lattice alternatives of the
model. In the rest of this paper we shall concentrate on
the simplest version, described above, and investigate the
nontrivial behavior of the transport properties as the two
basic parameters of the model, the noise g and the density
p = N/L, are varied. We used v = 0.03 in the simula-
tions we report on for the following reasons. In the limit
v ~ 0 the particles do not move and the model becomes
an analog of the well-known XY model. For v ~ ~ the
particles become completely mixed between two updates,
and this limit corresponds to the so-called mean-field be-
havior of a ferromagnet. We use v = 0.03 for which the
particles always interact with their actual neighbors and
move fast enough to change the configuration after a few
updates of the directions. According to our simulations,
in a wide range of the velocities (0.003 & v & 0.3), the
actual value of v does not affect the results.

FIG. l. In this figure the velocities of the particles are
displayed for varying values of the density and the noise. The
actual velocity of a particle is indicated by a small arrow, while
their trajectory for the last 20 time steps is shown by a short
continuous curve. The number of particles is N = 300 in each
case. (a) t = 0, L = 7, rj = 2.0. (b) For small densities and
noise the particles tend to form groups moving coherently in
random directions, here L = 25, ri = 0.1. (c) After some
time at higher densities and noise (L = 7, 71 = 2.0) the
particles move randomly with some correlation. (d) For higher
density and small noise (L = 5, rl = 0.1) the motion becomes
ordered. All of our results shown in Figs. 1—3 were obtained
from simulations in which v was set to be equal to 0.03.
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Figures 1(a)—1(d) demonstrate the velocity fields dur-
ing runs with various selections for the value of the pa-
rameters p and g. The actual velocity of a particle is in-
dicated by a small arrow, while their trajectory for the last
20 time steps is shown by a short continuous curve. (a) At
t = 0 the positions and the direction of velocities are dis-
tributed randomly. (b) For small densities and noise the
particles tend to form groups moving coherently in ran-
dom directions. (c) At higher densities and noise the par-
ticles move randomly with some correlation. (d) Perhaps
the most interesting case is when the density is large and
the noise is small; in this case the motion becomes or-
dered on a macroscopic scale and all of the particles tend
to move in the same spontaneously selected direction.
This kinetic phase transition is due to the fact that

the particles are driven with a constant absolute velocity;
thus, unlike standard physical systems in our case, the net
momentum of the interacting particles is not conserved
during collision. We have studied in detail the nature of
this transition by determining the absolute value of the
average normalized velocity
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of the entire system of particles as the noise and the
density were changed. This velocity is approximately
zero if the direction of the motion of the individual
particles is distributed randomly, while for the coherently
moving phase (with ordered direction of velocities) v, =
1 so that we can consider the average velocity as an order
parameter.
First we gradually decreased the amount of noise g in

cells of various sizes for a fixed density p and observed
a transition from a disorderly moving phase to a phase
with a coherent motion of the particles [Fig. 2(a)]. The
uncertainty of the data points is within the range of the
symbols except for runs carried out with 4000 and 10000
particles close to the transition. For these g values the
statistical errors estimated from five runs with different
initial conditions are in the range of 5% (resulting in an
overlap of the results for a limited number of zI values)
due to the slow convergence and large fluctuations. In
Fig. 2(b) we show how v, changes if the noise is kept
constant and the density is increased.
Quite remarkably, the behavior of the kinetic order pa-

rameter Ij, is very similar to that of the order parameter
of some equilibrium systems close to their critical point.
The strongest indication of a transition in our nonequilib-
rium model is the fact that as we go to larger system sizes
the region over which the data show scaling is increas-

ing [see Fig. 3(a)]. Only an extremely unusual crossover
could change this tendency. A plausible physical picture
behind our finding is the following: Since the particles
are diffusing, there is mixing in the system resulting in an
effective (long range) interaction radius.
Thus we can assume that in the thermodynamic limit

our model exhibits a kinetic phase transition analogous
to the continuous phase transition in equilibrium systems,
i.e.,

and

(4)
where P and 6 are critical exponents and rI, (p) and
p, (rI) are the critical noise and density (for L ~ ~),
respectively. We can determine p and 6 corresponding
to the rate of vanishing of the order parameter from
plotting ln v, as a function of ln([rI, (L) —rI]/zj, (L))
and ln([p —p, (L)]/p, (L)) for some fixed values
of p and ri, respectively (Fig. 3). For finite sizes
rj, (L) and p, (L) are L dependent; thus we used such
values of quantities for which the plots in Fig. 3 were
the straightest in the relevant region of noise or density
values. The slope of the lines fitted to the data can
be associated with the critical exponents for which we
obtained p = 0.45 ~ 0.07 and 6 = 0.35 ~ 0.06. The
errors in determining P and 6 are due to the uncertainties
in the (i) v, and the (ii) rI, (L) and p, (L) values. Since
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FIG. 2. (a) The absolute value of the average velocity
(v, ) versus the noise 7I in cells of various sizes for
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(16) investigated temporal stress patterns in spreading tissues,
using a similar model and including sequential fronts of cyto-
skeletal reinforcement and fluidization. Bulk motility effects
such as the spontaneous swirls observed by Angelini et al. (8, 9)
were investigated using a particle-based model by Henkes et al.
(17), based on earlier studies of collective motion (18, 19).
Pressure-based spreading dynamics of monolayered tissues were
studied in detail using particle-based models by Drasdo et al. and
Galle et al. (20, 21).

Mechanism of Motility Coordination
In this work, we show that a very simple class of models that does
not invoke cell signaling, planar cell polarity, or direct inter-
actions between the polarization of neighboring cells can explain
a large number of observations related to wound healing and the
spreading of epithelial colonies.
We propose that the central property underlying the co-

ordination of motility forces is the tendency of a single cell to
align its motility force with its velocity. From a biological per-
spective this type of interaction can easily be imagined. Motility
forces are generated by lamellipodia, thin protrusive sheets filled
with actin filaments, that can be hidden beneath neighboring
cells (22) and a lamellipodium exerting a force in a direction
other than the cell’s velocity will be quickly realigned with the
cell’s direction. In fact, it is well known that the orientation of
lamellipodia of motile cells is highly sensitive to physical influ-
ences like gradients in substrate elasticity, substrate friction, or
the location of the nucleus (23–25). Therefore, we propose that
the motility forces of cells in the tissue tend to align with the
flow. Spontaneous flow patterns arise if a group of cells begins to
move in a given direction, dragging other cells along, which in
turn align their motility forces with the flow.
This mechanism can lead to an enhanced spreading speed of

colonies and give rise to tension within them: Outwardly oriented
motility forces contributing to the expansion of the colony are
favored, as the tissue readily expands under tension and cell
density is constantly replenished via cell division. On the other
hand, flows resulting from motility forces pointing inward are
resisted by increases in cell density. In this picture, cell division
gives rise to a ratchet-like mechanism where expansion is followed
by cell division that, in turn, prevents a reversal of flow direction.
This leads to a long-range bias in the orientation of motility forces,
which thereby contribute to the expansion of the colony.
Note that the mechanism we suggest is part of a general class

of models used to study collective motility like flocking of birds,
herding of wildebeest, or microorganism vortices (26–28). Thus
far, however, the effectiveness of this simple mechanism as the
driving force of wound healing and spreading of cohesive epi-
thelial tissues has not been studied.

Particle-Based Simulations
To demonstrate the effectiveness of such a mechanism, we use
a mechanical simulation of an epithelial sheet. The specifics of
our simulation are described in ref. 29. In previous studies, this
type of simulation was used to study the properties of 3D tissue
aggregates like their growth, competition, rheology, surface
tension, cell sorting, and the diffusion of cells within the tissue
(29–31). Here, to study monolayered epithelial tissues, we use
a 2D version of this simulation. In our simulation model, in-
dividual cells are represented by two particles that interact via
a repulsive force ~Fexp =−B=ðr+1Þ2 r̂, giving the cell the tendency
to expand in size. Here, r̂ is the unit vector pointing toward the
other particle constituting the cell and r is the distance between
the two particles, whereas B is the expansion parameter. If the
cell size represented by the distance between these two particles
surpasses a threshold Rdiv, the cell divides at a rate kdiv. The
details of this division process are also described in previous
work (29); in brief, two new spheres are placed a small distance

rdiv away from the spheres constituting the old cell. In addition to
friction with the substrate and hydrodynamic dissipation between
cells, intracellular dissipation between the particles constituting
a cell is implemented as a resistance to abrupt changes in cell
volume with a friction coefficient ξint. As the rate of cell death is
usually very low in the experiments we aim to explain, it is set to
zero in our simulations.
Galilean invariance is broken by the presence of a friction force

proportional to the cell velocity ~FB = − ξB~v, which represents
the interaction of cells with the substrate. (The main results of
ref. 11 are independent of substrate elasticity as shown in their
work. Therefore, we do not model the substrate explicitly in our
simulation.) Volume exclusion and adhesion of cells are described
via a radial force of the form ~Frep=ad = − ðf0ð1=r− 1Þ− f1Þ̂r, which
is repulsive at short and attractive at intermediate distances and
acts between particles constituting different cells. Here, once
again r is the distance between the interacting particles and r̂ is
the unit vector pointing from the particle on which the force is
acting toward the interacting neighboring particle, whereas f0, f1
are coefficients. The interacting particle feels a force of the same
magnitude in the opposite direction. Note that the interaction
radius of a particle is normalized to 1 and the force vanishes
outside a range RCC. Dissipative particle dynamics (DPD), which
locally conserve momentum (32), are used to model friction and
fluctuations within the tissue. In this framework, friction forces
oppose the relative motion of particles within a range RCC of
each other with a friction coefficient ξdf . Details about DPD are
readily available in the literature (32) and our implementation is
described in detail in ref. 29.
In addition to friction forces with the substrate, cells in our

simulation exert active motility forces against the substrate to
propel them in a given direction. We use a simple stochastic
model to describe the orientation of the motility force and the
influence of the cell velocity on this orientation (Fig. 1): We
assume that each cell switches between a motile and a nonmotile
state. The cell switches from the nonmotile to the motile state at

Fig. 1. Illustration of the motility–velocity alignment mechanism used in the
simulations. Each cell can either be in a nonmotile state, in which it exerts no
motility force, or in a motile state, in which it exerts a motility force of a fixed
magnitude m. The rate at which cells go from the nonmotile into a motile
state kmot is constant and the direction of the motility force is chosen randomly
when the cell transitions into the motile state. However, the stability of the
motile state depends on the alignment of the motility force ~m with the cell
velocity~v. If the motility force has a positive component along the cell velocity
ð~m ·~v > 0Þ, the transition rate into the nonmotile state is given by k+. Other-
wise, the rate is given by k− ð~m ·~v < 0Þ. Hence, for k+ < k− there is a positive
coupling between cell velocity and the orientation of the motility force,
whereas for k+ = k− the motility force is oriented randomly.
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Recent experiments have shown that spreading epithelial sheets
exhibit a long-range coordination of motility forces that leads to
a buildup of tension in the tissue, which may enhance cell division
and the speed of wound healing. Furthermore, the edges of these
epithelial sheets commonly show finger-like protrusions whereas the
bulk often displays spontaneous swirls of motile cells. To explain
these experimental observations, we propose a simple flocking-type
mechanism, in which cells tend to align their motility forces with their
velocity. Implementing this idea in amechanical tissue simulation, the
proposed model gives rise to efficient spreading and can explain the
experimentally observed long-range alignment of motility forces in
highly disordered patterns, as well as the buildup of tensile stress
throughout the tissue. Our model also qualitatively reproduces the
dependence of swirl size and swirl velocity on cell density reported in
experiments and exhibits an undulation instability at the edge of the
spreading tissue commonly observed in vivo. Finally, we study the
dependence of colony spreading speed on important physical and
biological parameters and derive simple scaling relations that show
that coordination of motility forces leads to an improvement of the
wound healing process for realistic tissue parameters.

One of the many remarkable properties of multicellular tissues
is their ability to regenerate, even from severe damage, to

a state very similar to their original form. This wound healing
process is not only crucial for regaining basic tissue functionality,
but also critical for restoring protection from infection, for ex-
ample, by bacteria that can invade the organism via breaches in
surface tissues. Depending on the severity of damage to the tissue,
wound healing can involve several stages, including inflammation,
angiogenesis, the regeneration of extracellular matrix and base-
ment membranes, and reepithelialization (1–3). During the latter
process, the surrounding epithelium covers the wound by cell di-
vision and migration. Epithelial tissues are confluent arrange-
ments of tightly adhesive cells in single or multiple layers that
present the foremost barrier of the body against invasion.
In recent years, the epithelialization phase of wound healing has

been studied in the laboratory, using a variety of in vitro models.
Typically, epithelial cells are grown on a substrate to form a co-
hesive, monolayered sheet and a wound is created by scratching,
by laser ablation, or by removing agarose blocks (4). It was dis-
covered that the leading edge of the epithelial tissue often does
not move uniformly when spreading over the substrate but exhibits
long finger-like protrusions that move faster than the surrounding
epithelial cells (4–6). Furthermore, these fingers give rise to large-
scale flow patterns within the tissue (7). Large-scale flows were
also observed away from the tissue edge by Angelini et al. (8, 9).
They observed that at low cell densities before forming mature
epithelial sheets, cells in the bulk of the tissue exhibit spontaneous,
large-scale, swirl-like flow patterns. These swirls have a complex
dependence on cell density: Their typical size increases with in-
creasing cell density, whereas their velocity decreases.
Further insight into the spontaneous motility of epithelial cells

has been gained from traction force measurements of cohesive

colonies (10, 11). In a seminal work, Trepat et al. (11) studied
the spreading of large monolayered colonies of epithelial cells
several millimeters in diameter and constructed 2D force maps
of the tissue by averaging the forces exerted by cells at different
distances from the edge. Surprisingly, they discovered that even
cells in the middle of the epithelial sheet, many cell diameters
away from the boundary, exert active motility forces. This finding
is in sharp contrast to the standard picture of wound healing in
which only the cells adjacent to the edge of the tissue exert
motility forces due to their loss of contact inhibition and pull the
rest of the sheet behind them. By integrating the forces from the
tissue edge over the colony, Trepat et al. determined the tension
in the sheet generated by the motility forces. Over 80% of
this tension originated from cells more than 50 μm from the
boundary of the sheet. Therefore, bulk motility forces are rele-
vant from a biological perspective, as they constitute the major
driving force for the spreading process of the epithelial sheet.
These experimental studies raise several important questions:

How do cells in the center of the tissue know the direction of the
edge and what is the mechanism for the orientation of motility
forces in general? Can the mechanical properties of spreading
epithelial sheets such as the high tensile stress, in combination
with cohesive expansion and cell division, be understood from
a simple model? How does the speed of spreading depend on
fundamental properties of the system, including the magnitude
of motility forces and their level of stochasticity, the expansion
pressure of the cells within the sheet, and the friction with the
underlying substrate? In what regime do spontaneous swirls oc-
cur and what leads to the formation of finger-like protrusions at
the tissue edge? And to what extent does alignment of motility
forces improve the process of wound healing?
A number of studies have addressed these questions. Gov (12)

suggested a coupling between motility forces of neighboring cells
as an explanation for the coordination of motility forces. In this
picture, each cell has a planar cell polarity, which has a tendency
to align with the polarity of its neighbors. Lee and Wolgemuth
studied the same mechanism in a continuum model (13, 14). In
a one-dimensional model, Puliafito et al. (15) studied mechanics
and cell proliferation in spreading colonies. In their model, cells
are described by springs with a preferred length with friction and
active motility forces with the substrate. Cells grow when they are
stretched beyond their preferred length and division is imple-
mented as a function of cell size. In their model, cell motility is
described by a Gaussian random noise with an imposed outward
bias close to the tissue edges. More recently, Serra-Picamal et al.
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a buildup of tension in the tissue, which may enhance cell division
and the speed of wound healing. Furthermore, the edges of these
epithelial sheets commonly show finger-like protrusions whereas the
bulk often displays spontaneous swirls of motile cells. To explain
these experimental observations, we propose a simple flocking-type
mechanism, in which cells tend to align their motility forces with their
velocity. Implementing this idea in amechanical tissue simulation, the
proposed model gives rise to efficient spreading and can explain the
experimentally observed long-range alignment of motility forces in
highly disordered patterns, as well as the buildup of tensile stress
throughout the tissue. Our model also qualitatively reproduces the
dependence of swirl size and swirl velocity on cell density reported in
experiments and exhibits an undulation instability at the edge of the
spreading tissue commonly observed in vivo. Finally, we study the
dependence of colony spreading speed on important physical and
biological parameters and derive simple scaling relations that show
that coordination of motility forces leads to an improvement of the
wound healing process for realistic tissue parameters.

One of the many remarkable properties of multicellular tissues
is their ability to regenerate, even from severe damage, to

a state very similar to their original form. This wound healing
process is not only crucial for regaining basic tissue functionality,
but also critical for restoring protection from infection, for ex-
ample, by bacteria that can invade the organism via breaches in
surface tissues. Depending on the severity of damage to the tissue,
wound healing can involve several stages, including inflammation,
angiogenesis, the regeneration of extracellular matrix and base-
ment membranes, and reepithelialization (1–3). During the latter
process, the surrounding epithelium covers the wound by cell di-
vision and migration. Epithelial tissues are confluent arrange-
ments of tightly adhesive cells in single or multiple layers that
present the foremost barrier of the body against invasion.
In recent years, the epithelialization phase of wound healing has

been studied in the laboratory, using a variety of in vitro models.
Typically, epithelial cells are grown on a substrate to form a co-
hesive, monolayered sheet and a wound is created by scratching,
by laser ablation, or by removing agarose blocks (4). It was dis-
covered that the leading edge of the epithelial tissue often does
not move uniformly when spreading over the substrate but exhibits
long finger-like protrusions that move faster than the surrounding
epithelial cells (4–6). Furthermore, these fingers give rise to large-
scale flow patterns within the tissue (7). Large-scale flows were
also observed away from the tissue edge by Angelini et al. (8, 9).
They observed that at low cell densities before forming mature
epithelial sheets, cells in the bulk of the tissue exhibit spontaneous,
large-scale, swirl-like flow patterns. These swirls have a complex
dependence on cell density: Their typical size increases with in-
creasing cell density, whereas their velocity decreases.
Further insight into the spontaneous motility of epithelial cells

has been gained from traction force measurements of cohesive

colonies (10, 11). In a seminal work, Trepat et al. (11) studied
the spreading of large monolayered colonies of epithelial cells
several millimeters in diameter and constructed 2D force maps
of the tissue by averaging the forces exerted by cells at different
distances from the edge. Surprisingly, they discovered that even
cells in the middle of the epithelial sheet, many cell diameters
away from the boundary, exert active motility forces. This finding
is in sharp contrast to the standard picture of wound healing in
which only the cells adjacent to the edge of the tissue exert
motility forces due to their loss of contact inhibition and pull the
rest of the sheet behind them. By integrating the forces from the
tissue edge over the colony, Trepat et al. determined the tension
in the sheet generated by the motility forces. Over 80% of
this tension originated from cells more than 50 μm from the
boundary of the sheet. Therefore, bulk motility forces are rele-
vant from a biological perspective, as they constitute the major
driving force for the spreading process of the epithelial sheet.
These experimental studies raise several important questions:

How do cells in the center of the tissue know the direction of the
edge and what is the mechanism for the orientation of motility
forces in general? Can the mechanical properties of spreading
epithelial sheets such as the high tensile stress, in combination
with cohesive expansion and cell division, be understood from
a simple model? How does the speed of spreading depend on
fundamental properties of the system, including the magnitude
of motility forces and their level of stochasticity, the expansion
pressure of the cells within the sheet, and the friction with the
underlying substrate? In what regime do spontaneous swirls oc-
cur and what leads to the formation of finger-like protrusions at
the tissue edge? And to what extent does alignment of motility
forces improve the process of wound healing?
A number of studies have addressed these questions. Gov (12)

suggested a coupling between motility forces of neighboring cells
as an explanation for the coordination of motility forces. In this
picture, each cell has a planar cell polarity, which has a tendency
to align with the polarity of its neighbors. Lee and Wolgemuth
studied the same mechanism in a continuum model (13, 14). In
a one-dimensional model, Puliafito et al. (15) studied mechanics
and cell proliferation in spreading colonies. In their model, cells
are described by springs with a preferred length with friction and
active motility forces with the substrate. Cells grow when they are
stretched beyond their preferred length and division is imple-
mented as a function of cell size. In their model, cell motility is
described by a Gaussian random noise with an imposed outward
bias close to the tissue edges. More recently, Serra-Picamal et al.
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a constant rate kmot. In the motile state, the cell exerts a motility
force of a fixed magnitude m, in a randomly chosen direction.
The rate of switching from the motile to the nonmotile state, on
the other hand, depends on the orientation of the motility force
relative to the cell velocity. In general, this dependence can be
a complex function of the velocity~v and the motility force ~m. As
a minimalistic model, we choose just two rates k− and k+,
depending on whether ~m and~v are parallel or antiparallel, where
typically k− > k+. In other words, if the component of the motility
force along the cell velocity is positive, the reorientation rate is
given by k+, which is smaller than the reorientation rate when the
component is negative, k−. Note that in the simulation, both
particles constituting a cell have the same motility force and the
reorientation rate is determined from their averaged velocity. (In
our simulation, the effective cell velocity relaxes toward the in-
stantaneous cell velocity with a relaxation time τ, averaging out
fast velocity fluctuations on timescales much shorter than τ that
can occur in DPD dynamics.) Schematically, the equation of
motion of a particle in our simulation can be summarized as

dp
dt

= ~m+~Fexp +~Fint +~FB +
X

r≤RCC

!
~Frep=ad +~Fdf +~η

"
; [1]

where ~Fint is the intracellular friction force between particles
constituting the same cell (coefficient ξint) and ~Fdf represents
the friction forces between neighboring particles constituting dif-
ferent cells (coefficient ξdf). Furthermore,~η is a momentum-con-
serving noise force between particles.
To facilitate a systematic analysis of the parameters, we de-

fine a standard parameter set and explore parameter space by
varying this set. Parameter values are presented relative to this
standard set and are denoted by an asterisk; e.g., m* = 2:0 means
m= 2:0 mstd. Further details and the parameters used can be
found in Supporting Information and Table S1. All results are
presented in simulation units.

Results
Mechanics of Spreading Colonies.We begin our analysis by studying
the spreading dynamics and the mechanical properties of the tis-
sue in situations that closely correspond to the experimental
configuration in refs. 11 and 15. Namely, we simulate the growth
of colonies in an unbounded geometry on a substrate, initialized
either from a single cell or from a group of cells located in a small
region of the substrate. Fig. 2 and Movie S1 show snapshots of

a colony grown from an initial 50 cells, spreading over the sub-
strate. The colony spreads cohesively and assumes the shape of
a disk. Fig. 3A shows the cell density and the velocity field for this
simulation. Simulations initialized from a single cell and from 500
cells are presented in Movies S2 and S3, respectively, and show
similar qualitative behavior.
To probe the mechanical state inside the tissue, we use a similar

approach to that used in refs. 11 and 33. Using the traction forces
exerted on the substrate, we reconstruct the stress field in the
tissue. In Fig. 3B, the traction force map of the colony is shown at
a time point corresponding to Fig. 3A. The traction forces felt by
the substrate are computed as the vector sum of the motility forces
and background friction forces, as both the motility forces and the
background friction imposed in our simulation are balanced by
the substrate in reality. From Fig. 3B, it is apparent that although
the traction force field is highly disordered, velocity–motility cou-
pling leads to global alignment of motility forces with the cell
velocity. As a result, the y component of the traction force has
predominantly negative values in the upper half of the colony and
predominantly positive values in the lower half of the colony. This,
in turn, gives rise to tension in the center of the colony.
In general, it is not possible to reconstruct all three components

of the stress tensor in two dimensions from the traction force field
without making detailed assumptions on the rheology of the tissue.
However, the 1D stress map can be determined by averaging the
traction forces in the colony in one direction. Fig. 4 shows
the temporal evolution of this 1D pressure field in the tissue, as
the colony expands. The stress determined in this manner is in-
dependent of tissue rheology and can be compared directly with
the experimental results obtained by Trepat et al. (11). The cor-
responding profiles for different initializations are presented in
Figs. S1 and S2. Note that by averaging over a finite segment
through the tissue in the x direction as in ref. 11, rather than over
the entire colony, the tension profile presented in Fig. 4 is en-
hanced and exhibits large regions of tension even for very large
colony sizes, as shown in Fig. S3. This is because parts of the
colony close to the edge that are under pressure do not contribute
to the stress in the center. However, the integral of the traction
forces over the entire y direction is guaranteed to vanish only if the
whole colony in the x direction is taken into account.
The result presented in Fig. 4 is representative of the generic

picture for the evolution of the stress field within the model
tissue. It can be categorized as follows: After a short-lived
transient phase where the colony is small and where motility
forces are oriented in random directions, the velocity field aligns

t=50, N=347 t=250, N=3438 t=650, N=20363

Fig. 2. Snapshots of a growing colony at different time points, representative of the different regimes of spreading dynamics, with the simulation time and
the number of cells indicated. The large tension in the tissue can lead to holes, which form and subsequently close again (Movie S1).
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the motility forces radially and gives rise to tension throughout
the colony. This phase is similar to the experimentally observed
stress profile reported in ref. 11. As the colony continues to grow,
cells in regions close to the edge collectively move at the maxi-
mum velocity possible from the motility force. This results in
a small velocity gradient close to the edge of the colony and in
turn leads to a buildup of pressure in peripheral regions of the
tissue, as cells continue to divide. In the subsequent phase, as cell
division dominates over expansion, it eventually leads to a pres-
sure-limited, high cell density state in the bulk of the tissue.
The collective motility of cells and the tension it generates can

lead to an inversion of the density profile, where cell density
becomes lowest in the center of the tissue as recently reported

experimentally (34). Very large tension can even lead to the
formation of holes in the colony. Whether this is a physiological
parameter regime can be told only by experiments. Holes ap-
pearing in some published material (15) suggest that this is
possible. Movies S4 and S5 present simulations with an increased
division rate k*div = 2:0. In these simulations, holes do not arise in
the tissue and the tension profile in the colony is somewhat less
pronounced (Fig. S4).
Note that the mechanism of velocity–motility coupling we sug-

gest here does not always give rise to tension within spreading
colonies. Rather, we find tension in a parameter regime, where
growth pressure is small compared with motility forces. Never-
theless, even for parameters where the entire colony is under
pressure, coordinated motility can enhance spreading speed if the
cell division rate is low and the friction with the substrate is high.

Determinants of Spreading Speed and Wound Healing Efficiency. To
obtain a better understanding of colony expansion, we analyze
the spreading process after perturbing important model param-
eters. In particular, we are interested in the role of the global
coordination of motility forces. In Fig. 5, the square root of the
area covered by the colony is plotted as a function of time for
different parameters. Whereas small colonies expand exponen-
tially in time, limited by cell division, for large colonies a con-
stant speed of expansion arises from friction with the substrate,
which balances the combination of motility and expansion forces
in the tissue. For large colonies, cell division is no longer limiting
for colony growth, but the maximum spreading speed is the main
indicator of spreading efficiency.
Fig. 5A shows the effect of coupling between cell velocity and

motility forces, as given by the ratio k−=k+. Indeed, we find that
a positive coupling given by k−=k+ > 1 significantly enhances the
asymptotic spreading velocity. This can be understood as follows:
In the absence of velocity–motility coupling, cellular motility
forces point in random directions and contribute to the pressure
in the tissue. Cells in the bulk can divide only by pushing layers of
cells at the edge over the substrate. The balance of bulk pressure

Fig. 3. (A) Cell density (color coded) and cell velocity (vectors) in the spreading colony at t = 240. (B) Traction force map in the colony at t = 240. The vector field
represents the local traction forces exerted on the substrate, whereas the color code represents the y component of this force. The traction forces are computed
by calculating the vector sum of the friction forces and motility forces. Motility forces align with the velocity field and dominate over substrate friction forces at
the time point presented. This leads to tension in the colony. Movie S6 shows the evolution of traction forces in the spreading colony with time.
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Fig. 4. One-dimensional pressure field in the simulation presented in Fig. 2 as
a function of time. Positive values (red) represent pressure and negative values
(blue) correspond to tension. The temporal evolution of the stress field is
characterized by a phase during which the tissue is under tension due to radial
motility forces followed by a final phase where the colony is under pressure.
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Recent experiments have shown that spreading epithelial sheets
exhibit a long-range coordination of motility forces that leads to
a buildup of tension in the tissue, which may enhance cell division
and the speed of wound healing. Furthermore, the edges of these
epithelial sheets commonly show finger-like protrusions whereas the
bulk often displays spontaneous swirls of motile cells. To explain
these experimental observations, we propose a simple flocking-type
mechanism, in which cells tend to align their motility forces with their
velocity. Implementing this idea in amechanical tissue simulation, the
proposed model gives rise to efficient spreading and can explain the
experimentally observed long-range alignment of motility forces in
highly disordered patterns, as well as the buildup of tensile stress
throughout the tissue. Our model also qualitatively reproduces the
dependence of swirl size and swirl velocity on cell density reported in
experiments and exhibits an undulation instability at the edge of the
spreading tissue commonly observed in vivo. Finally, we study the
dependence of colony spreading speed on important physical and
biological parameters and derive simple scaling relations that show
that coordination of motility forces leads to an improvement of the
wound healing process for realistic tissue parameters.

One of the many remarkable properties of multicellular tissues
is their ability to regenerate, even from severe damage, to

a state very similar to their original form. This wound healing
process is not only crucial for regaining basic tissue functionality,
but also critical for restoring protection from infection, for ex-
ample, by bacteria that can invade the organism via breaches in
surface tissues. Depending on the severity of damage to the tissue,
wound healing can involve several stages, including inflammation,
angiogenesis, the regeneration of extracellular matrix and base-
ment membranes, and reepithelialization (1–3). During the latter
process, the surrounding epithelium covers the wound by cell di-
vision and migration. Epithelial tissues are confluent arrange-
ments of tightly adhesive cells in single or multiple layers that
present the foremost barrier of the body against invasion.
In recent years, the epithelialization phase of wound healing has

been studied in the laboratory, using a variety of in vitro models.
Typically, epithelial cells are grown on a substrate to form a co-
hesive, monolayered sheet and a wound is created by scratching,
by laser ablation, or by removing agarose blocks (4). It was dis-
covered that the leading edge of the epithelial tissue often does
not move uniformly when spreading over the substrate but exhibits
long finger-like protrusions that move faster than the surrounding
epithelial cells (4–6). Furthermore, these fingers give rise to large-
scale flow patterns within the tissue (7). Large-scale flows were
also observed away from the tissue edge by Angelini et al. (8, 9).
They observed that at low cell densities before forming mature
epithelial sheets, cells in the bulk of the tissue exhibit spontaneous,
large-scale, swirl-like flow patterns. These swirls have a complex
dependence on cell density: Their typical size increases with in-
creasing cell density, whereas their velocity decreases.
Further insight into the spontaneous motility of epithelial cells

has been gained from traction force measurements of cohesive

colonies (10, 11). In a seminal work, Trepat et al. (11) studied
the spreading of large monolayered colonies of epithelial cells
several millimeters in diameter and constructed 2D force maps
of the tissue by averaging the forces exerted by cells at different
distances from the edge. Surprisingly, they discovered that even
cells in the middle of the epithelial sheet, many cell diameters
away from the boundary, exert active motility forces. This finding
is in sharp contrast to the standard picture of wound healing in
which only the cells adjacent to the edge of the tissue exert
motility forces due to their loss of contact inhibition and pull the
rest of the sheet behind them. By integrating the forces from the
tissue edge over the colony, Trepat et al. determined the tension
in the sheet generated by the motility forces. Over 80% of
this tension originated from cells more than 50 μm from the
boundary of the sheet. Therefore, bulk motility forces are rele-
vant from a biological perspective, as they constitute the major
driving force for the spreading process of the epithelial sheet.
These experimental studies raise several important questions:

How do cells in the center of the tissue know the direction of the
edge and what is the mechanism for the orientation of motility
forces in general? Can the mechanical properties of spreading
epithelial sheets such as the high tensile stress, in combination
with cohesive expansion and cell division, be understood from
a simple model? How does the speed of spreading depend on
fundamental properties of the system, including the magnitude
of motility forces and their level of stochasticity, the expansion
pressure of the cells within the sheet, and the friction with the
underlying substrate? In what regime do spontaneous swirls oc-
cur and what leads to the formation of finger-like protrusions at
the tissue edge? And to what extent does alignment of motility
forces improve the process of wound healing?
A number of studies have addressed these questions. Gov (12)

suggested a coupling between motility forces of neighboring cells
as an explanation for the coordination of motility forces. In this
picture, each cell has a planar cell polarity, which has a tendency
to align with the polarity of its neighbors. Lee and Wolgemuth
studied the same mechanism in a continuum model (13, 14). In
a one-dimensional model, Puliafito et al. (15) studied mechanics
and cell proliferation in spreading colonies. In their model, cells
are described by springs with a preferred length with friction and
active motility forces with the substrate. Cells grow when they are
stretched beyond their preferred length and division is imple-
mented as a function of cell size. In their model, cell motility is
described by a Gaussian random noise with an imposed outward
bias close to the tissue edges. More recently, Serra-Picamal et al.
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and the substrate friction force determines the spreading veloc-
ity. The presence of velocity–motility coupling alleviates this
problem. Instead of being passively pushed over the substrate by
expansion pressure and hindering growth of the colony, cells
close to the tissue edge collectively move toward the edge and

thereby create the space required for cell division and reducing
pressure in the sheet. On the other hand for k−=k+ < 1, velocity–
motility coupling counteracts the expansion of the colony (Fig. 5A).
The effect of substrate friction on spreading is illustrated in

Fig. 5B. It is apparent that friction with the substrate plays an
important role in the speed of the wound healing process. For
fixed motility forces, substrate friction determines the maximum
spreading velocity. Finally, in Fig. 5C, the division rate kdiv for
cells surpassing the size threshold is varied. Increasing this rate
leads to faster spreading of small colonies, where expansion is
limited by the rate of cell division. On the other hand, the as-
ymptotic spreading velocity for large colonies in the motility-
dominated regime remains unchanged.

Analysis of Spreading Dynamics. As shown in our simulation, ve-
locity–motility coupling can enhance the spreading velocity of
monolayered tissues and give rise to tension within much of the
expanding colonies. In this section, we address two questions re-
lated to these dynamics: First, in which parameter regime does
coordination of motility forces provide an advantage for spreading
tissues and is this the case for real monolayered epithelial sheets?
Second, our simulation shows a transition from large-scale tension
to pressure in the bulk of spreading colonies as the colony expands.
At what size does this transition take place and at what colony
radius do we expect this transition for biological tissues?
For the first of these questions, we study a simple one-di-

mensional model and compare the spreading speed of a colony
spreading purely due to tissue expansion pressure with that of
a colony spreading via optimally aligned motility forces. By
comparing the respective spreading velocities for large colo-
nies, we obtain a condition that gives the parameter regime in
which motility-based spreading is advantageous compared with
pressure-based expansion. We first consider purely pressure-
based spreading: As a simplification, we assume incompressi-
bility and a dependence of cell division on pressure that can be
described by a first-order expansion (30, 35). Hence, the con-
tinuity equation is given by ∇ ·~v= − κðp− p0Þ, where κ and p0
are expansion parameters. Furthermore, we neglect effects due
to the internal viscosity of the tissue, assuming that the domi-
nant mode of dissipation is friction with the substrate, in which
case the force balance condition is given by ~∇ p= − ξ~v, where ξ
is a friction coefficient. With the edges of the tissue located at
x= ±L=2, the boundary conditions impose a vanishing stress at
the tissue edges pjx=±L=2 = 0. For symmetry reasons the velocity
vanishes at the origin vjx=0 = 0. The spreading velocity of the
colony is given by the cell velocity at the tissue edge vjx=L=2 =
p0

ffiffiffiffiffiffiffi
κ=ξ

p
 tanhð

ffiffiffiffiffi
ξκ

p
L=2Þ. For large colonies L→∞, the spread-

ing velocity converges to p0
ffiffiffiffiffiffiffi
κ=ξ

p
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Fig. 5. Square root of the area covered by the colony as a function of time. Large colonies radially expand at a constant velocity, which leads to a quadratic
dependence of the covered area on time. The parameters varied in the subplots with the rest of the parameters identical to the standard tissue, from the fastest
to the slowest spreading speed, are given by (A) the degree of coupling between cell velocity and motility given by the ratios k−=k+ = 100:0, 10.0, 1.0, and 0.1,
with k− fixed; (B) substrate frictions ξB*= 0:2, 1.0, 4.0, and 10.0; and (C) rates of division for cells surpassing the size threshold, kdiv* = 2:0, 1.0, 0.2, and 0.1.
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Fig. 6. Evolution of the edge of spreading tissues at different time points
after removal of a hard wall in the y direction that was in place during
initialization. Both tissues have identical parameters except that the adhe-
sion force is set to zero in the tissue on the right-hand side, f1 = 0. Whereas
the adhesive tissue shows pronounced finger-like protrusions, the tissue
without adhesion spreads much more uniformly, consistent with our analysis
(Movies S7 and S8). The parameters deviating from the standard tissue are
given by ðk±Þ* = 0:1, kmot* = 0:025, m*= 0:83, kdiv* = 0:5, and ξint* = 0:2.
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Recent experiments have shown that spreading epithelial sheets
exhibit a long-range coordination of motility forces that leads to
a buildup of tension in the tissue, which may enhance cell division
and the speed of wound healing. Furthermore, the edges of these
epithelial sheets commonly show finger-like protrusions whereas the
bulk often displays spontaneous swirls of motile cells. To explain
these experimental observations, we propose a simple flocking-type
mechanism, in which cells tend to align their motility forces with their
velocity. Implementing this idea in amechanical tissue simulation, the
proposed model gives rise to efficient spreading and can explain the
experimentally observed long-range alignment of motility forces in
highly disordered patterns, as well as the buildup of tensile stress
throughout the tissue. Our model also qualitatively reproduces the
dependence of swirl size and swirl velocity on cell density reported in
experiments and exhibits an undulation instability at the edge of the
spreading tissue commonly observed in vivo. Finally, we study the
dependence of colony spreading speed on important physical and
biological parameters and derive simple scaling relations that show
that coordination of motility forces leads to an improvement of the
wound healing process for realistic tissue parameters.

One of the many remarkable properties of multicellular tissues
is their ability to regenerate, even from severe damage, to

a state very similar to their original form. This wound healing
process is not only crucial for regaining basic tissue functionality,
but also critical for restoring protection from infection, for ex-
ample, by bacteria that can invade the organism via breaches in
surface tissues. Depending on the severity of damage to the tissue,
wound healing can involve several stages, including inflammation,
angiogenesis, the regeneration of extracellular matrix and base-
ment membranes, and reepithelialization (1–3). During the latter
process, the surrounding epithelium covers the wound by cell di-
vision and migration. Epithelial tissues are confluent arrange-
ments of tightly adhesive cells in single or multiple layers that
present the foremost barrier of the body against invasion.
In recent years, the epithelialization phase of wound healing has

been studied in the laboratory, using a variety of in vitro models.
Typically, epithelial cells are grown on a substrate to form a co-
hesive, monolayered sheet and a wound is created by scratching,
by laser ablation, or by removing agarose blocks (4). It was dis-
covered that the leading edge of the epithelial tissue often does
not move uniformly when spreading over the substrate but exhibits
long finger-like protrusions that move faster than the surrounding
epithelial cells (4–6). Furthermore, these fingers give rise to large-
scale flow patterns within the tissue (7). Large-scale flows were
also observed away from the tissue edge by Angelini et al. (8, 9).
They observed that at low cell densities before forming mature
epithelial sheets, cells in the bulk of the tissue exhibit spontaneous,
large-scale, swirl-like flow patterns. These swirls have a complex
dependence on cell density: Their typical size increases with in-
creasing cell density, whereas their velocity decreases.
Further insight into the spontaneous motility of epithelial cells

has been gained from traction force measurements of cohesive

colonies (10, 11). In a seminal work, Trepat et al. (11) studied
the spreading of large monolayered colonies of epithelial cells
several millimeters in diameter and constructed 2D force maps
of the tissue by averaging the forces exerted by cells at different
distances from the edge. Surprisingly, they discovered that even
cells in the middle of the epithelial sheet, many cell diameters
away from the boundary, exert active motility forces. This finding
is in sharp contrast to the standard picture of wound healing in
which only the cells adjacent to the edge of the tissue exert
motility forces due to their loss of contact inhibition and pull the
rest of the sheet behind them. By integrating the forces from the
tissue edge over the colony, Trepat et al. determined the tension
in the sheet generated by the motility forces. Over 80% of
this tension originated from cells more than 50 μm from the
boundary of the sheet. Therefore, bulk motility forces are rele-
vant from a biological perspective, as they constitute the major
driving force for the spreading process of the epithelial sheet.
These experimental studies raise several important questions:

How do cells in the center of the tissue know the direction of the
edge and what is the mechanism for the orientation of motility
forces in general? Can the mechanical properties of spreading
epithelial sheets such as the high tensile stress, in combination
with cohesive expansion and cell division, be understood from
a simple model? How does the speed of spreading depend on
fundamental properties of the system, including the magnitude
of motility forces and their level of stochasticity, the expansion
pressure of the cells within the sheet, and the friction with the
underlying substrate? In what regime do spontaneous swirls oc-
cur and what leads to the formation of finger-like protrusions at
the tissue edge? And to what extent does alignment of motility
forces improve the process of wound healing?
A number of studies have addressed these questions. Gov (12)

suggested a coupling between motility forces of neighboring cells
as an explanation for the coordination of motility forces. In this
picture, each cell has a planar cell polarity, which has a tendency
to align with the polarity of its neighbors. Lee and Wolgemuth
studied the same mechanism in a continuum model (13, 14). In
a one-dimensional model, Puliafito et al. (15) studied mechanics
and cell proliferation in spreading colonies. In their model, cells
are described by springs with a preferred length with friction and
active motility forces with the substrate. Cells grow when they are
stretched beyond their preferred length and division is imple-
mented as a function of cell size. In their model, cell motility is
described by a Gaussian random noise with an imposed outward
bias close to the tissue edges. More recently, Serra-Picamal et al.
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2.2. Orientation of the cell division axis

The question we asked is to what extent cell division events are affected by the emergent flow in
the expanding cell sheets. The axes of individual cell divisions are determined by identifying
the position of the two daughter cells directly after division. The angle between the division axis
and the x-direction of the channel is denoted with θ as described in figure 1(c). The orientation
of the cell division is represented by a unit vector d. Due to mirror symmetry, it is best
described by the nematic order tensor

δ= −Q d d2 , (1)ij i j ij

which is often used in the context of liquid crystals. The indices i and j represent the spatial
directions. The order of one orientation relative to another, however, can be described by a
simple scalar quantity:

= −a bS 2( · ) 1 (2)b
a 2

Figure 2. Velocity profiles and density distribution in invading cell sheets. (a) Cellular
velocity vx as a function of the distance s to the front, as determined by PIV. The speed
maximum is behind the front. Note, however, that the PIV analysis has a higher error
closer to the interface. (b) Velocity profiles as a function of distance from the wall y for
different distances from the front s. (c) Sketch of the velocity profiles at different
distances from the front for an invading cell sheet. (d) Cell density ρ as a function of the
distance s to the front. All plots result from averages over ten experiments.
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velocity profile density profile

DPD	modeling	of	channel	flow

profile shape as well as the constant invasion velocity suggest these quantities as units of
measure to rescale the simulation results to physical units (for detailed information see
Materials and methods).

In order to get good statistics, we averaged over the different experiments of channel sizes
between μ200 m and μ300 m. We chose a bin size of μ50 m ( μ42 m) along the x- or s-axis for
the experiments (simulations) and averaged over the whole channel width, several individual
experiments and time (60–210 frames per experiment). Cross channel profiles, like the velocity
profile in figure 2(b), are not averaged over the channel width but instead binned in y-direction
with a size of μ8 m ( μ8.4 m).

Figure 1. Cell sheets invading channels in experiment and simulation. (a) Growing cell
monolayers are confined by three-dimensional PEG-DMA microchannels. MDCK cells
expand into channels of different widths. The x-coordinate runs along the channel from
the entrance towards the front, s measures the distance from the front, while y is the
distance from the wall. See also supplementary movies. (Scale bar corresponds to
200 μm.) (b) Computer simulation of cell proliferation and invasion into a narrow
channel. (Scale bar corresponds to 200 μm.) (c) The cell division axis d is defined as the
vector between the nuclei of the two daughter cells. The angle Θ denotes the deviation
between the division axis and the x-direction of the channel.

4

New J. Phys. 16 (2014) 115005 A-K Marel et al



profile shape as well as the constant invasion velocity suggest these quantities as units of
measure to rescale the simulation results to physical units (for detailed information see
Materials and methods).

In order to get good statistics, we averaged over the different experiments of channel sizes
between μ200 m and μ300 m. We chose a bin size of μ50 m ( μ42 m) along the x- or s-axis for
the experiments (simulations) and averaged over the whole channel width, several individual
experiments and time (60–210 frames per experiment). Cross channel profiles, like the velocity
profile in figure 2(b), are not averaged over the channel width but instead binned in y-direction
with a size of μ8 m ( μ8.4 m).

Figure 1. Cell sheets invading channels in experiment and simulation. (a) Growing cell
monolayers are confined by three-dimensional PEG-DMA microchannels. MDCK cells
expand into channels of different widths. The x-coordinate runs along the channel from
the entrance towards the front, s measures the distance from the front, while y is the
distance from the wall. See also supplementary movies. (Scale bar corresponds to
200 μm.) (b) Computer simulation of cell proliferation and invasion into a narrow
channel. (Scale bar corresponds to 200 μm.) (c) The cell division axis d is defined as the
vector between the nuclei of the two daughter cells. The angle Θ denotes the deviation
between the division axis and the x-direction of the channel.

4

New J. Phys. 16 (2014) 115005 A-K Marel et al

Alignment	of	cell	division	axes	in	directed	migra?on	

profile shape as well as the constant invasion velocity suggest these quantities as units of
measure to rescale the simulation results to physical units (for detailed information see
Materials and methods).

In order to get good statistics, we averaged over the different experiments of channel sizes
between μ200 m and μ300 m. We chose a bin size of μ50 m ( μ42 m) along the x- or s-axis for
the experiments (simulations) and averaged over the whole channel width, several individual
experiments and time (60–210 frames per experiment). Cross channel profiles, like the velocity
profile in figure 2(b), are not averaged over the channel width but instead binned in y-direction
with a size of μ8 m ( μ8.4 m).

Figure 1. Cell sheets invading channels in experiment and simulation. (a) Growing cell
monolayers are confined by three-dimensional PEG-DMA microchannels. MDCK cells
expand into channels of different widths. The x-coordinate runs along the channel from
the entrance towards the front, s measures the distance from the front, while y is the
distance from the wall. See also supplementary movies. (Scale bar corresponds to
200 μm.) (b) Computer simulation of cell proliferation and invasion into a narrow
channel. (Scale bar corresponds to 200 μm.) (c) The cell division axis d is defined as the
vector between the nuclei of the two daughter cells. The angle Θ denotes the deviation
between the division axis and the x-direction of the channel.

4

New J. Phys. 16 (2014) 115005 A-K Marel et al

A.	Marel,	N.	Podewitz,	M.	Zorn,	  
J.	Rädler	and	Jens	Elge?	

New	Journal	of	Physics	16	(2014)  



with the unit vectors a b, for the two directions. Here, we define divisional order relative to the
x-axis of the channel

θ= = < > −S e Qe 2 cos 1. (3)x
d

x x
2

=S 0x
d characterizes isotropy, while =S 1x

d reflects perfect alignment of the cell division axis
with the x-axis as illustrated in figure 3(a).

We find a significant alignment of the cell division axis in the bulk of the invading cell
sheet, displaying order in the range of =S 0.2x

d to 0.5 (see figure 3(b)). The bulk of the
invading cell sheet is defined as the part of the layer that is not affected by border instabilities at
the front. Petitjean et al [13] reported a velocity correlation length in fingers of approximately

μ200 m, thus we assume that cells μ200 m behind the front act as bulk cells (see also
figures 2(a) and (d)). Towards the leading edge, however, the order parameter drops to negative
values, indicating an orientation of the axis perpendicular to the channel. This phenomenon of
division axis alignment perpendicular to the expansion direction (i.e. in the plane of the front),
can also be seen in the videos of the experiments (see supporting information). Cells tend to be
more elongated at the front and, furthermore, show alignment with it, which could be due to
surface tension.

Figure 3. The order of division axis in flowing cell sheets. (a) Visualization of the order
parameter. =S 0x

d is isotropic, while =S 1x
d is perfect alignment of the cell division

axis with the x-axis. (b) Orientation of division axis with respect to the x-axis Sx
d as a

function of the front distance s; ‘sim, no walls’ displays the order in the simulations if
particles closer than 42 μm to the walls are excluded from the evaluation. (c) Orientation
of the eigenvector of the greatest eigenvalue of the velocity gradient tensor λSx with
respect to the x-axis, as a function of the front distance s at division sites and as average
over all positions. All plots result from averages over ten experiments.

6

New J. Phys. 16 (2014) 115005 A-K Marel et al

Marel	et	al.	New	Journal	of	Physics	16	(2014)	115005  

alignment	of	cell	division	axis		
in	the	bulk	of	the	invading	sheet,		

but	not	at	leading	edge	

Alignment	of	cell	division	axes	in	directed	migra?on	



small	system	size	

defined	boundary	condi?ons

F.	Segerer,	F.	Thüroff,	A.	Piera	Alberola	E.	Frey	and	J.O.	Rädler,	PRL	114,	228102	(2015)

Emergence	and	Persistence	of	 
Collec?ve	Cell	Migra?on	 
on	Small	Circular	Micropa+erns		



Peter Röttgermann, Soft Matter (2014)

Plasma	-	Induced	Pa+erning
1) Photolithography

2) PDMS stamp on substrate

3) Plasma-induced patterning

4) PLL-g-PEG backfill and

     incubation with ECM 

F.	Segerer,	P.	Rö+germann,	S.	Schuster,	A	Alberola,	S.	Zahler,	and	J	Rädler.	Biointerphases	11(1)	(2016)	011005.



Peter	Rö+germann,	So#	Ma+er	(2014)



Live	Cell	Imaging	on	Single	Cell	Arrays

structured	substrates

channel	-	chambers

A549	cells
Huh7

Cells	are	seeded	out	&	se+le	
->		transfec?on automated	

?me-lapse	movie	
acquisi?on  
scanning



States	of	Coherent	Angular	Mo?on	(CAMo)

Individual	 
angular	traces

F.	Segerer,	F.	Thüroff,	A.	Piera	Alberola	E.	Frey	and	J.O.	Rädler,	PRL	114,	228102	(2015)



States	of	Coherent	Angular	Mo?on	(CAMo)

Individual	 
angular	traces

coherent	state	

disordered	state



Collec?ve	migra?on	as	a	func?on	of	system	size

F.	Segerer,	F.	Thüroff,	A.	Piera	Alberola	E.	Frey	and	J.O.	Rädler,	PRL	114,	228102	(2015)



The	migra?on	„states“	exhibit	a	defined	life	?me	

discontinuity

persistence time grows as a 
function of system size (i.e. 
number of cells)

5

S3. ALTERNATIVE DISMO-CAMO CLASSIFICATION SCHEME

We have also tested an alternative way [4] to discriminate collective behavior from disordered motion than that
described in the main text. This alternative approach is only based on an analysis of the correlation of cell orientation
and is therefore independent of the individual cell velocities. For each cell i, we introduce a cell orientation γi which
is defined as the smaller angle between the moving vector of a nucleus in two successive frames and a line from the
system center to the position of the nucleus in the first frame (Fig. S3(a)). For clockwise rotation γi is defined negative
whereas for counterclockwise rotation γi is defined as a positive angle. The overall alignment of motion is calculated
for each time step as

ΓN (t) =
2

π ·N

N∑

i=1

γi(t), (S8)

where N denotes the number of cells within the pattern. Defined like this, a value of Γ(t) = ±1 would correspond
to a perfect circular alignment of the motion of all cells within a pattern, whereas Γ(t) = 0 would correspond to
no alignment in azimuthal direction or no motion at all. The distribution P (ΓN ) shows a clear bimodal character
consisting of states corresponding to clockwise and counterclockwise rotation as it can be seen in Fig. S3(c). We define
a threshold of Γc = ±0.3 where a state of |ΓN(t)| < |Γc| a migration state is classified as DisMo and for |ΓN (t)| ≥ |Γc|
as CAMo respectively. Note that the choice of Γc = ±0.3 is heuristically estimated from the distribution P (Γ)
(Fig. S3(c)). A choice of Γc = ±0.2 and Γc = ±0.4, respectively, had only little influence on the results though (data
not shown). A typical time course of ΓN (t) for a system consisting of seven cells is shown in Fig. S3(b). It can
be seen that the classification via ΓN results in very similar intervals of CAMo and DisMo as the method via ξN .
Also the survival frequencies of ΓN exhibit an exponential distribution (data not shown). For the dependence of the
mean persistence time τΓ on the cell number N we find the same characteristics as for the mean persistence time τξ
calculated via ξN (Fig. S2(c)).
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FIG. S3. (a) False-colored fluorescence image of the nuclei of seven cells confined in a circular micro-pattern. We define γi
as the smaller angle between the moving vector of a nucleus in two successive frames and a line from the system center to
the position of the nucleus in the first frame. (b) Angular positions ϕi(t) of each cell (marked in color of the corresponding
nuclei in (a)) and the average orientation ΓN (Eq. S8). The classification threshold of Γc = ±0.3 is indicated by the red dashed
lines. Periods of DisMo are highlighted by gray shaded areas. (c) Probability distribution of ΓN for systems containing from
2 to 8 cells. Γc = 0.3 is indicated by the red dashed line. (d) Persistence times τ obtained by exponential fits of the survival
frequencies of CAMo calculated via ξN and ΓN . Error bars indicate confidence bounds of 99 % within the fits.
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S4. FULL DATA SET OF ANGULAR MEAN SQUARED DISPLACEMENT

In the main text we calculated the angular mean squared displacement (MSD) according to

MSD(t) = ⟨[⟨ϕ(t)⟩N − ⟨ϕ(0)⟩N ]2⟩states (S9)

(Eq. 2 of the main text) for each cell number separately. Here t = 0 indicates the starting point of an interval, ⟨⟩N
indicates the mean over all N cells within a system, and ⟨⟩states indicates the mean over all observed intervals of
CAMo or DisMo respectively. Due to restricted space, we only showed the MSD-plot for systems containing N = 8
cells. The MSD-plots for N = 2...8 are shown in Fig. S4.
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FIG. S4. Log-log plot of the angular MSD and its error calculated separately for each number of cells and periods of CAMo and
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S5. FULL DATA SET OF DISMO/CAMO SURVIVAL FUNCTIONS

In the main text we analyzed the life time of states of CAMo and DisMo in terms of their survival function
SN (t) = PN (T > t), where T denotes the time a state persists. Due to restricted space, we only showed the survival
functions for systems containing N = 2, 5, 8 cells. The survival functions for all analyzed cell numbers are shown in
Fig. S5.
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5.6. Interplay of Cellular Arrangement and Coupling of Polarization

is observed in experiment for N D 5 : : : 8. (In fact, the heatmaps of N D 8 indicate a contri-
bution of arrangements in which two cells are located close to the system center, which might
result in the slight drop in ⌧CAMo.N / between N D 7 and N D 8.) However, with higher cell
numbers, the possible topological arrangements within the system increase (as e.g. indicated
by the more “smeared out” maxima), which is likely to result in the fact that ⌧CAMo.N / shows
no clear trend in the simulation runs for N � 5.

2 cells 3 cells 4 cells 5 cells

FIGURE 5.17.: Alignment of internal cell polarization axes during CAMo. Schematic of possible polarization
alignments for systems containing two to five cells. For five cell systems in which a cell is located in the system
center, the centered cell is not able to align its axis of polarization to the axes of its neighbors. Figure adapted
with permission from Reference [38]. Copyrighted by the American Physical Society.

In order to check whether a correlation between polarization of a cell and its position along
the radial direction of the system exists, we evaluated the mean magnitude of the front-rear
polarization of the confined cells in the simulation runs. In Figure 5.18, the average cell
polarization is plotted as a function of the radial position, r , of the corresponding cell with
respect to the system center at r D 0. In general, the magnitude of polarization increases with
r until it reaches a maximum near the outermost positions cells are located at. This maximum
corresponds to the (half of) the typical cell width in the simulation. The only exception to this
rule is observed for systems of three cells, which exhibit a high average polarization around
r D 0. The data indicates, however, that for N D 3, conformations in which a cell is located
near the system center are rather rare. Hence, the increased polarization of such cells is more
likely to resemble the transient event of a single cell migrating through the system center than
a stable cell conformation. Taken together, these findings support the suggestion that a cell
located near the center of the pattern is unable to establish a stable axis of polarization and
hence destabilizes collective behavior throughout the system.

The observations for the trend of ⌧DisMo.N / with cell number are more difficult to interpret.
On the one hand, this is because they are less obvious than the trends of ⌧CAMo.N /. On
the other hand, the deadlocked conformation observed in the simulations make it difficult to
compare theoretical with experimental results. In experiment, the values for N D 2 : : : 4

might indicate that an odd number of cells polarizes faster into CAMo than an even number.
Such an observation could be supported by the fact that “draw” conformations in which the
polarization directions within a system are roughly balanced are less likely to occur for odd cell
numbers (Figure 5.19). The polarization signal of a cell located in the system center might help
to overcome such balanced situations, possibly explaining the drop-off in ⌧DisMo.N / between
four and five cell systems and the increasing trend for N D 5 : : : 8. This trend might indicate
that for systems composed of a larger amount of cells, it needs more time until the polarization
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maximum, Ω̄N , as well as the standard deviation σN
decreased with increasing cell number, displaying an
almost constant coefficient of variation σN=Ω̄N ¼
0.74" 0.13. At ΩN ¼ 0, PðjΩN jÞ exhibits a weak second
maximum, indicating a state of disordered, i.e., non-
rotating, motion. Introducing a normalized variable
ξNðtÞ≔ jΩNðtÞ=Ω̄N j, we defined a common threshold for
all N at ξc ¼ 1=4, so that for ξNðtÞ < ξc a migration state is
classified as DisMo and for ξNðtÞ ≥ ξc as CAMo, respec-
tively (Fig. S2 of the Supplemental Material [36]). (As
discussed in Sec. S3 of the Supplemental Material [36], an
alternative approach to identify collective motion gave the
same results). To verify that these two states are distinct
in their migrational behavior we calculated the angular
mean squared displacement (MSD) during each state,
MSDðtÞ ¼ h½hφðtÞiN − hφð0ÞiN &2istates, where t ¼ 0 signi-
fies the starting point of an interval. Averages were taken
over all N cells within a given system as well as over all
observed intervals of CAMo or DisMo, denoted by h' ' 'iN
and h' ' 'istates, respectively. Consistently, the MSD of
CAMo shows a slope 2 in a log-log plot, indicating ballistic
angular motion for all cell numbers, while the MSD of
DisMo exhibited diffusive behavior [Fig. 2(d)].
Next, we evaluated the lifetimes of the CAMo and

DisMo states. Figure 3(a) shows the survival probability

SNðtÞ ¼ PNðT > tÞ, i.e., the fraction of CAMo or DisMo
time periods T exceeding t, based on a sample size of over
600 systems (see Table S2 of the Supplemental Material
[36]). We found that the survival probabilities of both states
decay exponentially, SNðtÞ ∝ e−t=τ, suggesting that the
stochastic process underlying the emergence and collapse
of both states is Poissonian. The persistence time τ of the
coherent state increases with increasing cell number but
exhibits a pronounced discontinuity between systems con-
taining four and five cells [Fig. 3(b)].
To further explore the mechanism underlying the dis-

continuity in persistence time, we monitored the spatial
arrangement of cells within the pattern. Figure 4(a) shows
the relative positions of cells with respect to a reference
cell. In systems containing up to four cells, the cells are
predominantly arranged in topologically equivalent posi-
tions in the outer regions of the circle. In this configuration,
cells in the state of CAMo follow each other in a closed
circle. As the number of cells increases to 5, the packing
geometry changes abruptly to a conformation in which a
single cell is located at the system center. To connect this
topological transition to the observed decrease in the
persistence of the CAMo state, intrinsic cell properties
have to be accounted for. It is generally assumed that a
migrating cell is highly polarized with respect to protein
distribution and cytoskeletal organization [19,41]. In addi-
tion, since neighboring cells are coupled mechanically by
cell-cell adhesion, a cell obtains directional guidance cues
from adjacent cells. This coupling suggests that adjacent
cells tend to align their direction of internal front-rear
polarization. Hence, a ringlike arrangement, as seen for
two-, three-, and four-cell systems, naturally provides a
stable conformation during a period of CAMo [Fig. 4(b)].
If, however, a cell is located in a central position, as in the
case of five cells, this cell cannot establish a stable axis of
internal polarization. It seems likely that this lack of
orientation leads to the elevated instability we observed
for CAMo states of such systems.
To test these heuristic ideas we have developed a

computational model [35] generalizing the CPM [28,29]
to account for both internal cellular polarization and
intercellular coupling. In the CPM, a cell is represented
as a simply connected set of grid sites on a two-dimensional
lattice, and thereby cell shape is explicitly represented. The
model accounts for mechanical properties of cells and cell-
cell adhesion. Previous generalizations of the CPM have
implemented cell polarity and the ensuing cell migration in
a global fashion [31,32] upon adapting ideas from flocking
models [18]: the overall polarity of a cell is described by a
polarity vector, and it is assumed that there is a positive
feedback between a cell’s displacement and polarity. While
these assumptions provide a simple and efficient way to
model interactions between a cell and its mechanical
environment, they do not resolve internal polarization
mechanisms. In fact, there are complex biochemical
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FIG. 3 (color online). (a) Survival function SNðtÞ ¼ PNðT > tÞ
of CAMo and DisMo states. Insets show corresponding log-lin
plots. Exponential fits are indicated by dashed lines (for other cell
numbers see Fig. S5 of the Supplemental Material [36]).
(b) Persistence time τ as a function of cell number, derived from
experiment and theory. Error bars indicate confidence bounds of
99% within the fits. (c) Peak positions Ω̄N of the distribution of
the angular velocity PðΩNÞ from experimental data and theory.
Error bars indicate the standard deviation.
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5. Collective Cell Migration in Circular Micropatterns
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FIGURE 5.9.: Distribution of the absolute mean angular velocity, j�N j, for systems containing two to eight
cells for the data obtained from the CPM. The distributions, PN .j�N j/, are fitted by a single Gaussian function
(blue) and a mixture of two Gaussian functions (dashed red). Note that for N D 2, the y-scale was chosen such
that the maximum at � D 0 is well above the field of view of the graph in order to provide visibility of the peak
corresponding to CAMo at around j�j D 0:2. Figure adapted with permission from Reference [38]. Copyrighted
by the American Physical Society.

each were performed. We found periods of CAMo as well as periods of DisMo represented
in the motion patterns within the simulation runs. The resulting tracks of the centers of mass
of the individual cells were evaluated and analyzed analogously to the cell tracks obtained in
experiment. In agreement to the experimental data, the distribution of the absolute system an-
gular velocity, j�N j, shows two peaks corresponding to CAMo and DisMo (Fig. 5.9). Again,
the peak position corresponding to CAMo shifts to slower angular velocities with increasing
number of cells in the system. In contrast to the experiment, no clear trend is observed for the
width of the CAMo peak. Furthermore, for systems containing but a small number of cells
(N D 2; 3) the peak at � D 0, corresponding to DisMo, seems strongly pronounced. Closer
examination of the simulation runs of such systems revealed that this increased representation
of the DisMo state is due to a deadlocked configuration appearing in some of the runs. In these
configurations, all cells within the system are polarized in the radial direction, pointing away
from the system center, leading to an overall arrest of cell motion [[SEE MOVIE??]].

Adjustment of the MCSs of the model to real time was performed such as to achieve the best
match for the peak positions corresponding to CAMo, x�N , between numerical simulations and
experiment. As illustrated in Figure 5.10, this matching resulted in a conversion of 1 MCS ⌘

1:85 min.

Next, we dissected states of CAMo from states of DisMo by applying the same threshold
of ⇠th D 1=4 as used for the experimental data. To check whether this classification scheme
results in states of distinct motion patterns, the angular MSD was evaluated according to Equa-
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5.2. Classification of Motion Patterns
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FIGURE 5.4.: Distribution of the absolute mean angular velocity, j�N j, for systems containing two to eight
cells. The distributions, PN .j�N j/, are fitted by a single Gaussian function (blue) and a mixture of two Gaussian
functions (dashed red). The deviation between the two curves reveals a second maximum at �N D 0 for most
cell numbers. Figure adapted with permission from Reference [38]. Copyrighted by the American Physical
Society.

as CAMo (Fig. 5.3(b)).2

In order to verify that the two states obtained via the threshold, ⇠th, are truly distinct with
regards to the migration behavior of the cells, we calculated the angular MSD within each
state as:

MSD.t/ D hŒh'i.t/iN � h'i.0/iN ç2iint: (5.3)

Here, t D 0 signifies the starting point of the corresponding interval, while the averages,
h: : :iN and h: : :iint, were taken over all N cells within a system and over all observed intervals
of CAMo or DisMo, respectively. In Figure 5.5, the time evolution of MSD.t/ within periods
of CAMo and DisMo is shown in log-log representation. It can be seen that within periods
of CAMo, MSD.t/ / t2 holds true for all cell numbers, indicating “ballistic”, and hence
persistent, angular motion. In contrast, within periods of DisMo, MSD.t/ /

⇠ t , indicating
rather “diffusive”, and hence erratic, motion in azimuthal direction. Together, these findings
illustrate that the CAMo/DisMo classification scheme as described above is suitable to dissect
the different migration patterns within a system (rather than just dissecting periods of slow
rotation from periods of faster rotation).

2As this classification scheme via a threshold in ⇠N .t/ is rather heuristic, an alternative approach to dissect
periods of CAMo from periods of DisMo was also tested to diminish the risk of drawing wrong conclusions
due to artifacts of the algorithm. This alternative approach and its results, which are in agreement with the
results of the classification via ⇠th shown in this chapter, are shown in Section A.5.4 of the supplement.
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5.5. Comparison to Numerical Modeling
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FIGURE 5.10.: Adjustment of MCS to real time. The positions of the peaks corresponding to CAMo, x�N ,
in the distribution of the system angular velocity, PN .j�N j/, plotted against the number of cells, N D 2 : : : 8,
in the system for experiment and CPM. Error bars indicate the standard deviation. The translation of MCSs to
real time was performed so that the best match for all peak positions was achieved. This matching resulted in
a conversion of 1 MCS ⌘ 1:85 min. Figure adapted with permission from Reference [38]. Copyrighted by the
American Physical Society.

tion 5.3 for each state. In Figure 5.11, the corresponding curves of the MSD are presented in
log-log representation. Consistently, a slope corresponding to persistent rotational motion is
observed for the MSD.t/ within the CAMo state, while the MSD.t/ within states of DisMo
exhibits a slope corresponding to diffusive to sub-diffusive motion in azimuthal direction. In-
terestingly, the MSD of CAMo indicates a super-ballistic regime at around t ä 100 min for all
cell numbers. This characteristic shape of the MSD function might indicate a period of accel-
eration in the rotational motion, which can be explained by the dynamics of the cell internal
polarization field. At timescales prior to the acceleration period, cells within the system are al-
ready aligned with regards to their internal polarization fields (resulting in CAMo) but have not
yet reached their maximal degree of polarization. As CAMo goes on, the feedback between
physical motion and intracellular polarization results in an increase in the degree of polariza-
tion of each cell and hence in the overall rotation velocity. This trend ceases when all cells in
the system reach their maximal degree of polarization and the overall rotation consequently
stabilizes at a constant angular velocity (since following a circular path, each cell adapts the
direction of its internal polarization axis dynamically and hence this maximal degree of po-
larization does not necessarily correspond to a polarization to the implemented limit of q=Q

(see Section A.6) for the polarization field at the cells rear/front, but might as well be limited
by the speed of the adjustment to the direction of motion). For the MSD.t/ of DisMo, the
cease of motion resulting from deadlocked configurations manifests in a sub-diffusive regime
at longer timescales for systems of small cell numbers.

Next, the rotation direction as well as the lifetimes of the migrational states were evaluated.
As to be expected, no significant left-right asymmetry manifesting in a bias towards cw or ccw
direction was observed for the CAMo states of the simulations. The survival functions, SN .t/,
of both states are shown in Figure 5.12. In agreement with the experimental data, the lifetime
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FIGURE 5.9.: Distribution of the absolute mean angular velocity, j�N j, for systems containing two to eight
cells for the data obtained from the CPM. The distributions, PN .j�N j/, are fitted by a single Gaussian function
(blue) and a mixture of two Gaussian functions (dashed red). Note that for N D 2, the y-scale was chosen such
that the maximum at � D 0 is well above the field of view of the graph in order to provide visibility of the peak
corresponding to CAMo at around j�j D 0:2. Figure adapted with permission from Reference [38]. Copyrighted
by the American Physical Society.

each were performed. We found periods of CAMo as well as periods of DisMo represented
in the motion patterns within the simulation runs. The resulting tracks of the centers of mass
of the individual cells were evaluated and analyzed analogously to the cell tracks obtained in
experiment. In agreement to the experimental data, the distribution of the absolute system an-
gular velocity, j�N j, shows two peaks corresponding to CAMo and DisMo (Fig. 5.9). Again,
the peak position corresponding to CAMo shifts to slower angular velocities with increasing
number of cells in the system. In contrast to the experiment, no clear trend is observed for the
width of the CAMo peak. Furthermore, for systems containing but a small number of cells
(N D 2; 3) the peak at � D 0, corresponding to DisMo, seems strongly pronounced. Closer
examination of the simulation runs of such systems revealed that this increased representation
of the DisMo state is due to a deadlocked configuration appearing in some of the runs. In these
configurations, all cells within the system are polarized in the radial direction, pointing away
from the system center, leading to an overall arrest of cell motion [[SEE MOVIE??]].

Adjustment of the MCSs of the model to real time was performed such as to achieve the best
match for the peak positions corresponding to CAMo, x�N , between numerical simulations and
experiment. As illustrated in Figure 5.10, this matching resulted in a conversion of 1 MCS ⌘

1:85 min.

Next, we dissected states of CAMo from states of DisMo by applying the same threshold
of ⇠th D 1=4 as used for the experimental data. To check whether this classification scheme
results in states of distinct motion patterns, the angular MSD was evaluated according to Equa-
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1Faculty of Physics and Center for NanoScience,
Ludwig-Maximilans-Universität München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany

2Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Faculty of Physics,
Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany

S1. OUTLINE OF THE COMPUTATIONAL MODEL

In this section we present, for the readers convenience, a concise outline of a computational model which was
recently introduced by some of the authors of this work, and which will be published in more detail in a forthcoming
publication [1]. The model is a generalization of the cellular Potts model (CPM) [2, 3], where each cell is represented
by a simply connected set of lattice sites D(α) =

{
x⃗k

∣∣ c(x⃗k) = α
}
(referred to as the domain of cell α). The indicator

function c(x⃗k) gives the index of the cell occupying grid site x⃗k. Each grid site, x⃗k, can be occupied by at most one
cell, i.e. one does not allow for overlapping cell domains. The time evolution of a cell’s domain D(α) proceeds via
a succession of protrusion events and retraction events, which will be collectively referred to as “elementary events”
T . During a protrusion event, cell α (“source cell”) incorporates one grid site x⃗t ∈ N (α) (“target grid site”) from its
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FIG. S1. (a) Illustration of the sets defined in the computational model. Grid sites occupied by cells α and β are indicated
by red and blue hexagons, respectively. For cell α, the membrane sites, B(α), are indicated by grayish red color, the cell’s
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The actual simulation proceeds via a succession of Monte-Carlo steps (MCS). Each MCS consists of a series of
attempts to perform elementary events, originating from randomly chosen membrane grid sites of randomly chosen
cells. Similar to the standard cellular Potts model [2, 3], the acceptance probability p(T ) of an elementary event T is
determined by a “Hamiltonian”, H = Hcont +Hadh +Hcyto, which takes into account the effects of cell contractility
(Hcont), cell-cell adhesion (Hadh), and cytoskeletal remodeling (Hcyto). It reads

p(T ) = min{1, exp[−∆Hcont(T )−∆Hadh(T )−∆Hcyto(T )]}. (S1)

In the generalized CPM [1], cell contractility is modeled by assigning a contractile “energy”

Hcont =
∑

α

[
mP 2

α + aA2
α

]
, (S2)
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FIG. S1. (a) Illustration of the sets defined in the computational model. Grid sites occupied by cells α and β are indicated
by red and blue hexagons, respectively. For cell α, the membrane sites, B(α), are indicated by grayish red color, the cell’s
immediate neighborhood N (α) is indicated by a dashed black line. (b) Elementary events of protrusion and retraction. For
grid sites within range R of an accepted elementary event the regulatory factors F (x⃗n) are incremented or decremented. These
sites are indicated by a + or −, respectively.

The actual simulation proceeds via a succession of Monte-Carlo steps (MCS). Each MCS consists of a series of
attempts to perform elementary events, originating from randomly chosen membrane grid sites of randomly chosen
cells. Similar to the standard cellular Potts model [2, 3], the acceptance probability p(T ) of an elementary event T is
determined by a “Hamiltonian”, H = Hcont +Hadh +Hcyto, which takes into account the effects of cell contractility
(Hcont), cell-cell adhesion (Hadh), and cytoskeletal remodeling (Hcyto). It reads

p(T ) = min{1, exp[−∆Hcont(T )−∆Hadh(T )−∆Hcyto(T )]}. (S1)

In the generalized CPM [1], cell contractility is modeled by assigning a contractile “energy”

Hcont =
∑

α

[
mP 2

α + aA2
α

]
, (S2)
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Felix J. Segerer,1 Florian Thüroff,2 Alicia Piera Alberola,1 Erwin Frey,2 and Joachim O. Rädler1

1Faculty of Physics and Center for NanoScience,
Ludwig-Maximilans-Universität München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany

2Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Faculty of Physics,
Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany

S1. OUTLINE OF THE COMPUTATIONAL MODEL

In this section we present, for the readers convenience, a concise outline of a computational model which was
recently introduced by some of the authors of this work, and which will be published in more detail in a forthcoming
publication [1]. The model is a generalization of the cellular Potts model (CPM) [2, 3], where each cell is represented
by a simply connected set of lattice sites D(α) =

{
x⃗k

∣∣ c(x⃗k) = α
}
(referred to as the domain of cell α). The indicator

function c(x⃗k) gives the index of the cell occupying grid site x⃗k. Each grid site, x⃗k, can be occupied by at most one
cell, i.e. one does not allow for overlapping cell domains. The time evolution of a cell’s domain D(α) proceeds via
a succession of protrusion events and retraction events, which will be collectively referred to as “elementary events”
T . During a protrusion event, cell α (“source cell”) incorporates one grid site x⃗t ∈ N (α) (“target grid site”) from its

neighborhood N (α): D(α)
old → D(α)

new = D(α)
old ∪ {x⃗t}. During a retraction event, source cell α expels one of its membrane

grid sites x⃗s ∈ B(α): D(α)
old → D(α)

new = D(α)
old \ {x⃗s}. For an illustration see Fig. S1.

(a) (b) protrusion

retraction

FIG. S1. (a) Illustration of the sets defined in the computational model. Grid sites occupied by cells α and β are indicated
by red and blue hexagons, respectively. For cell α, the membrane sites, B(α), are indicated by grayish red color, the cell’s
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The actual simulation proceeds via a succession of Monte-Carlo steps (MCS). Each MCS consists of a series of
attempts to perform elementary events, originating from randomly chosen membrane grid sites of randomly chosen
cells. Similar to the standard cellular Potts model [2, 3], the acceptance probability p(T ) of an elementary event T is
determined by a “Hamiltonian”, H = Hcont +Hadh +Hcyto, which takes into account the effects of cell contractility
(Hcont), cell-cell adhesion (Hadh), and cytoskeletal remodeling (Hcyto). It reads

p(T ) = min{1, exp[−∆Hcont(T )−∆Hadh(T )−∆Hcyto(T )]}. (S1)

In the generalized CPM [1], cell contractility is modeled by assigning a contractile “energy”

Hcont =
∑

α
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α
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, (S2)
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FIG. S1. (a) Illustration of the sets defined in the computational model. Grid sites occupied by cells α and β are indicated
by red and blue hexagons, respectively. For cell α, the membrane sites, B(α), are indicated by grayish red color, the cell’s
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The actual simulation proceeds via a succession of Monte-Carlo steps (MCS). Each MCS consists of a series of
attempts to perform elementary events, originating from randomly chosen membrane grid sites of randomly chosen
cells. Similar to the standard cellular Potts model [2, 3], the acceptance probability p(T ) of an elementary event T is
determined by a “Hamiltonian”, H = Hcont +Hadh +Hcyto, which takes into account the effects of cell contractility
(Hcont), cell-cell adhesion (Hadh), and cytoskeletal remodeling (Hcyto). It reads

p(T ) = min{1, exp[−∆Hcont(T )−∆Hadh(T )−∆Hcyto(T )]}. (S1)

In the generalized CPM [1], cell contractility is modeled by assigning a contractile “energy”

Hcont =
∑

α
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, (S2)
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investigate the dynamics of tissues in the context of a typical
wound-healing assay [13, 6, 27], and show that the morphology
of the advancing cell front depends on whether the dynamics
is driven primarily by the growth of peripheral cells, or by
active cell migration throughout the entire tissue.

Computational model
We consider a cell ↵ as a set of simply connected grid sites
D(↵) = {x↵

j } on a two-dimensional (2D) lattice (Fig. 1). Cell
motion and cell shape changes correspond to the annexation
or loss of grid sites, and, as for actual cells, involve protru-
sions (retractions) of cell boundaries [28, 29]: In the computa-
tional model, these processes are implemented as elementary
protrusion and retraction events, Tpro and Tret, corresponding
to the increase and decrease, respectively, of the number of
lattice elements within D(↵) by takeover (surrender) of indi-
vidual grid sites at the cell’s boundary B(↵). The outcome of
takover attempts is determined on the basis of their associ-
ated cost or payo↵ in some configuration energy assigned by a
Monte Carlo scheme. The key mechanical structures driving
all these processes include branched actin networks and actin
bundles, acto-myosin networks, adherens junctions, and focal
adhesions. In our formalism, we model the e↵ects of these
structures in a coarse-grained manner as follows.
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Fig. 1. Illustration of the computational model with the
pertinent simulation steps. The scheme depicts three cells (bounded by
the red lines), each comprising a contiguous set of grid sites (hexagons). Top left:
The upper right corner of the lower left cell (source cell) initiates a protrusion event
against a neighboring element in the right cell (target cell), as indicated by the ar-
row, in an attempt to displace it. The success of each such attempted elementary
event depends on the balance between contractile forces (Hcont), cytoskeletal forces
(Hcyto), and cell adhesion (Hadh). Top right: If the protrusion event is suc-
cessful, the levels of regulatory factors are increased (decreased) in integer steps at
all grid sides inside the source (target) cell, that lie within a radius R of the accepted
protrusion event (as indicated by the plus and minus signs). Bottom right: Dur-
ing the course of one MCS, di↵erent levels of regulatory factors accumulate locally
within each cell, with positive levels of regulatory factors (green plus signs) promoting
a build-up of cytoskeletal structures, and non-positive levels of regulatory factors (red
minus signs) causing degradation of cytoskeletal structures, as indicated in the lower
left image. The color code indicates local levels of cytoskeletal structures, ⇢.

As in the CPM, we assume that deformations of a cell’s
membrane and cortex are constrained by the elastic energy

Hcont = mP 2
↵(t) + aA2

↵(t) , [1]

where m and a are cell-type specific sti↵ness parameters for
the perimeter P↵(t) and the area A↵(t) of a cell ↵ at time t,
respectively. The ensuing contractile forces are counteracted

by outward pushing forces generated by assembling and dis-
assembling cytoskeletal structures [28, 14]. To model these
dynamic processes we generalize the CPM by introducing a
time-dependent and spatially resolved internal concentration
field for each cell: ⇢↵(xn, t), which is intended to represent the
density of force-generating cytoskeletal structures. We assume
that for an elementary protrusion event the energy change is
given by the di↵erence in this density between target site xt

and source site xs,

Hcyto = ⇢�(xt, t)� ⇢↵(xs, t) , [2]

where the amplitude of ⇢↵ encodes for the energy scale; an
analogous expression holds for elementary retraction events.

Assembly and disassembly of cytoskeletal structures are con-
trolled by a myriad of accessory proteins [29, 1]. Since there
are several biological factors which limit the local density of
actin filaments, we introduce cell-type specific bounds for the
cytoskeletal field: q  ⇢(xn, t)  Q. While the upper bound
Q mainly reflects the limited availability of proteins, the lower
bound q serves to prevent cells from collapsing. Moreover, cy-
toskeletal structures are known to respond to external mechan-
ical stimuli through feedback mechanisms involving regulatory
cytoskeletal proteins[15, 16]. In our computational model, we
greatly simplify these complex processes by subsuming them
into a single integer variable F (xn, t) which we will refer to
as “regulatory factors”. If a protrusion or retraction event
has been accepted at some source site, then, in a process that
could be called a mechanotransduction mechanism, F (xn, t) is
within some radius R accordingly altered up or down for the
protruding and the retracting cell, respectively. These regula-
tory factors in turn modulate the assembly and disassembly of
cytoskeletal structures. Specifically, we assume that positive
levels, F (xn, t) > 0, promote assembly

⇢(xn, t+�t) = ⇢(xn, t) + µ [Q� ⇢(xn, t)] , [3a]

while negative values, F (xn, t)  0, favor disassembly

⇢(xn, t+�t) = ⇢(xn, t) + µ [q � ⇢(xn, t)] . [3b]

The parameter µ signifies the rate at which cytoskeletal struc-
tures respond to the regulatory factors.
In addition to internal remodeling of the cytoskeleton, ad-

hesion of cells to neighboring cells and to the substrate plays
a key role in explaining migratory phenotypes [14, 2]. From
a mechanical point of view, the implications of cell adhesion
are two-fold. First, cell adhesion supports growth of cell-cell
and cell-matrix contacts and may thus be described in terms
of e↵ective surface energies. Secondly, once formed, adhesive
bonds anchor the cell to the substrate and to neighboring cells.
During cell migration, these anchoring points must continu-
ously be broken up and reassembled [30, 31] and, hence, pro-
vide a constant source of dissipation. In our computational
model, we account for the dissipative nature of these mechan-
ical processes by distinguishing between the formation of new
cell-cell contacts and the rupture of existing cell-cell contacts
in terms of two distinct parameters A and B, respectively.
To model cell-substrate adhesion, we introduce a second

scalar field '(x) whose value is taken to reflect the density of
substrate sites at which focal adhesions between cell and sub-
strate can be formed. By allowing '(x) to take negative val-
ues, we can, moreover, define lattice areas with cell-repelling
properties, thus providing a natural means of implementing
arbitrary substrate micropatterns. Finally, we have also incor-
porated cell growth and cell division. We distinguish between
three phases in the cell cycle: a quiescent phase, an interphase
during which cells grow in size, and mitosis, the process of cell
division. An individual cell is assumed to leave the quiescent
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of cell migration even in the limiting case of solitary cells, and
is compatible with a wealth of experimental evidence both, in
the context of small cell groups and in larger tissues made up
of several thousand cells. Specifically, studying the character-
istics of single cellular trajectories and of small cell groups in
circular confinement, we demonstrate that cell persistency is
significantly impacted by cell contractility and cell polarizabil-
ity. Moreover, we investigate the dynamics of tissues in the
context of a typical wound healing assay [16, 17, 18], and show
that the morphology of the progressing cell front depends on
whether the dynamics is driven primarily by the growth of
peripheral cells, or by active cell migration across the entire
tissue.

Computational model
We considers a cell ↵ as a set of simply connected grid
sites D↵ = {x↵

j } (domain) on a two-dimensional (2d) lattice
(Fig. 1). Cell motion and cell shape changes correspond to
rearrangement of these grid sites, and, as for actual cells, in-
volve protrusion and retraction processes of the cell’s bound-
ary [19, 20]: In the computational model, cell movement is
implemented as elementary protrusion and retraction events,
Tpro and Tret, corresponding to the respective increase and de-
crease of D↵ by individual grid sites at the cell’s boundary B↵.
The simulation then follows a standard Monte-Carlo scheme,
where attempted elementary events are being accepted and
rejected on the basis their associated cost or gain in elastic
energy as well as various kinds of dissipative processes. The
key mechanical structures driving all these processes include
branched actin networks and actin bundles, acto-moysin net-
works, adherens junctions, and focal adhesions. In our com-
putational model we account for those structures in a coarse-
grained manner as follows.

We assume similar to the CPM that deformations of a cell’s
membrane and cortex are constrained by the elastic energy

H↵
cont = mP 2

↵(t) + aA2
↵(t) , [1]

where m and a are cell-type specific sti↵ness parameters for
the perimeter P↵(t) and area A↵(t) of a cell ↵ at time t, re-
spectively. The ensuing contractile elastic forces are coun-
teracted by outward pushing forces generated by assembling
and disassembling cytoskeletal structures [?]. To model these
dynamic processes we generalize the CPM by introducing a
time-dependent concentration fields for each cell: ⇢↵(x, t). It
is supposed to represent the overall density of force-generating
cytoskeletal structures. We assume that for an elementary
protrusion event the energy gain or loss is given by the di↵er-
ence in the cytoskeletal density of the target site xt and the
source site xs,

Hcyto = ⇢�(xt, t)� ⇢↵(xs, t) , [2]

where the amplitude of ⇢↵ encodes for the energy scale; an
analogous expression holds for elementary retraction events.

Cytoskeletal structures are constantly remodeled [19, 8],
with the assembly and disassembly processes being controlled
by a myriad of accessory proteins [20, 1]. There are several
biological factors which keep the local density of actin fila-
ments bounded [?]. We, therefore, introduce cell-type specific
bounds for the cytoskeletal field: q  ⇢(xn, t)  Q. While the
upper bound Q mainly reflects the limited availability of pro-
tein resources, the lower bound q serves to prevent cells from
collapsing. Moreover, cytoskeletal structures are known to re-
spond to external mechanical stimuli through feedback mech-
anisms involving regulatory cytoskeletal proteins [?]. In our
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Fig. 1. Survey over the pertinent simulation steps. Top left: The corner pixel
of the bottom left cell (source cell) attempts a protrusion event against a neighboring
pixel in the right cell (target cell), as indicated by the arrow. The success of each such
attempted elementary event is controlled by contractile forces (Hcont), cytoskele-
tal forces (Hcyto), and cell adhesion (Hadhesion). Top right: If the protrusion
event is accepted (probabilitymin{1, exp[�(Hcont+Hcyto+Hadhesion)]}),
the levels of regulatory factors are increased (decreased) in integer steps at all grid
sides inside the source (target) cell, lying in the vicinity of the accepted protrusion
event (as indicated by the plus and minus signs). Bottom right: During the course
of one MCS, di↵erent levels of regulatory factors accumulate locally within each cell,
with positive levels of regulatory factors (green plus signs) promoting a build-up of
cytoskeletal structures, and non-positive levels of regulatory factors (red minus signs)
causing degradation of cytoskeletal structures, as indicated in the lower left image.
The color code (given on the right) indicates local levels of cytoskeletal structures, ⇢.

computational model, we greatly simplify these complex pro-
cesses by resorting to a single integer variable F (xn, t) which
we will refer to as “regulatory factors”. If a protrusion or re-
traction events has been accepted at some source site, then, in
a process that could be called a mechanotransduction mecha-
nism, F (xn, t) at all sites within some “signaling radius” R is
incremented up or down for the protruding and the retracting
cell, respectively. These regulatory factors in turn a↵ect the
assembly and disassembly of cytoskeletal structures. Specif-
ically, we assume that positive levels, F (xn, t) > 0, promote
assembly of cytoskeletal structures

⇢(xn, t+�t) = ⇢(xn, t) + µ [Q� ⇢(xn, t)] , [3a]

while negative values, F (xn, t)  0, favor disassembly

⇢(xn, t+�t) = ⇢(xn, t) + µ [q � ⇢(xn, t)] . [3b]

The parameter µ signifies the rate at which cytoskeletal struc-
tures respond to the regulatory factors.
In addition to cell internal remodeling events of the cy-

toskeleton, adhesion of cells to neighboring cells as well as
to the substrate plays a key role in explaining observed mi-
gratory phenotypes [8, 3]. From a mechanical point of view,
the implications of cell adhesion are two-fold. First, cell ad-
hesions support growth of cell-cell and cell-matrix interfaces
and may thus be modeled in terms of e↵ective surface ener-
gies. Secondly, once formed, adhesive bonds anchor the cell
to the substrate and to neighboring cells. During the process
of cell migration, these anchoring points must continuously be
broken up and reassembled [21, 22] and, hence, provide a con-
stant source of dissipation. Our computational model captures
both of these mechanical aspects of cell adhesion. For each el-
ementary protrusion or retraction event, interfaces between
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of cell migration even in the limiting case of solitary cells, and
is compatible with a wealth of experimental evidence both, in
the context of small cell groups and in larger tissues made up
of several thousand cells. Specifically, studying the character-
istics of single cellular trajectories and of small cell groups in
circular confinement, we demonstrate that cell persistency is
significantly impacted by cell contractility and cell polarizabil-
ity. Moreover, we investigate the dynamics of tissues in the
context of a typical wound healing assay [15, 16, 17], and show
that the morphology of the progressing cell front depends on
whether the dynamics is driven primarily by the growth of
peripheral cells, or by active cell migration across the entire
tissue.

Computational model
We considers a cell ↵ as a set of simply connected grid
sites D↵ = {x↵

j } (domain) on a two-dimensional (2d) lattice
(Fig. 1). Cell motion and cell shape changes correspond to
rearrangement of these grid sites, and, as for actual cells, in-
volve protrusion and retraction processes of the cell’s bound-
ary [18, 19]: In the computational model, cell movement is
implemented as elementary protrusion and retraction events,
Tpro and Tret, corresponding to the respective increase and de-
crease of D↵ by individual grid sites at the cell’s boundary
B↵.
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Fig. 1. Survey over the pertinent simulation steps. Top left: The corner pixel
of the bottom left cell (source cell) attempts a protrusion event against a neighboring
pixel in the right cell (target cell), as indicated by the arrow. The success of each such
attempted elementary event is controlled by contractile forces (Hcont), cytoskele-
tal forces (Hcyto), and cell adhesion (Hadhesion). Top right: If the protrusion
event is accepted (probabilitymin{1, exp[�(Hcont+Hcyto+Hadhesion)]}),
the levels of regulatory factors are increased (decreased) in integer steps at all grid
sides inside the source (target) cell, lying in the vicinity of the accepted protrusion
event (as indicated by the plus and minus signs). Bottom right: During the course
of one MCS, di↵erent levels of regulatory factors accumulate locally within each cell,
with positive levels of regulatory factors (green plus signs) promoting a build-up of
cytoskeletal structures, and non-positive levels of regulatory factors (red minus signs)
causing degradation of cytoskeletal structures, as indicated in the lower left image.
The color code (given on the right) indicates local levels of cytoskeletal structures, ⇢.

The simulation then follows a standard Monte-Carlo
scheme, where attempted elementary events are being ac-
cepted and rejected on the basis their associated cost or gain in
elastic energy as well as various kinds of dissipative processes.
The key mechanical structures driving all these processes in-
clude branched actin networks and actin bundles, acto-moysin

networks, adherens junctions, and focal adhesions. In our
computational model we account for those structures in a
coarse-grained manner as follows.
We assume similar to the CPM that deformations of a cell’s

membrane and cortex are constrained by the elastic energy

H↵
cont = mP 2

↵(t) + aA2
↵(t) , [1]

where m and a are cell-type specific sti↵ness parameters for
the perimeter P↵(t) and area A↵(t) of a cell ↵ at time t, re-
spectively. The ensuing contractile elastic forces are coun-
teracted by outward pushing forces generated by assembling
and disassembling cytoskeletal structures [?]. To model these
dynamic processes we generalize the CPM by introducing a
time-dependent concentration fields for each cell: ⇢↵(x, t). It
is supposed to represent the overall density of force-generating
cytoskeletal structures. We assume that for an elementary
protrusion event the energy gain or loss is given by the di↵er-
ence in the cytoskeletal density of the target site xt and the
source site xs,

Hcyto = ⇢�(xt, t)� ⇢↵(xs, t) , [2]

where the amplitude of ⇢↵ encodes for the energy scale; an
analogous expression holds for elementary retraction events.
Cytoskeletal structures are constantly remodeled [18, 7],

with the assembly and disassembly processes being controlled
by a myriad of accessory proteins [19, 1]. There are several
biological factors which keep the local density of actin fila-
ments bounded [?]. We, therefore, introduce cell-type specific
bounds for the cytoskeletal field: q  ⇢(xn, t)  Q. While the
upper bound Q mainly reflects the limited availability of pro-
tein resources, the lower bound q serves to prevent cells from
collapsing. Moreover, cytoskeletal structures are known to re-
spond to external mechanical stimuli through feedback mech-
anisms involving regulatory cytoskeletal proteins [?]. In our
computational model, we greatly simplify these complex pro-
cesses by resorting to a single integer variable F (xn, t) which
we will refer to as “regulatory factors”. If a protrusion or re-
traction events has been accepted at some source site, then, in
a process that could be called a mechanotransduction mecha-
nism, F (xn, t) at all sites within some “signaling radius” R is
incremented up or down for the protruding and the retracting
cell, respectively. These regulatory factors in turn a↵ect the
assembly and disassembly of cytoskeletal structures. Specif-
ically, we assume that positive levels, F (xn, t) > 0, promote
assembly of cytoskeletal structures

⇢(xn, t+�t) = ⇢(xn, t) + µ [Q� ⇢(xn, t)] , [3a]

while negative values, F (xn, t)  0, favor disassembly

⇢(xn, t+�t) = ⇢(xn, t) + µ [q � ⇢(xn, t)] . [3b]

The parameter µ signifies the rate at which cytoskeletal struc-
tures respond to the regulatory factors.
In addition to cell internal remodeling events of the cy-

toskeleton, adhesion of cells to neighboring cells as well as
to the substrate plays a key role in explaining observed mi-
gratory phenotypes [7, 3]. From a mechanical point of view,
the implications of cell adhesion are two-fold. First, cell ad-
hesions support growth of cell-cell and cell-matrix interfaces
and may thus be modeled in terms of e↵ective surface ener-
gies. Secondly, once formed, adhesive bonds anchor the cell
to the substrate and to neighboring cells. During the process
of cell migration, these anchoring points must continuously be
broken up and reassembled [20, 21] and, hence, provide a con-
stant source of dissipation. Our computational model captures
both of these mechanical aspects of cell adhesion. For each el-
ementary protrusion or retraction event, interfaces between
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instantaneous speed. Data from the First World

Cell Race, refers to the original article (Maiuri et al.,

2012) for the cell-type color code. Linear fit (solid

line) and 0.95 confidence interval (gray).

(B) Definition of mean persistence time and mean

instantaneous speed in 1D. Cell contour color

shows the time progression. Scale bar, 50 mm.

(C–F) Persistence time, binned for the corre-

sponding instantaneous speed, versus instanta-

neous speed. (C) RPE1 cells on micropatterned

lines of 9-mm width coated with fibronectin. (D)

BMDCs in fibronectin-treated channels with a 7 3

5 mm2 square section. (E–F) The persistence time in

2D is defined here as the time needed for a cell to

change its original direction of motion by 90!. (E)

Data of RPE1 cells on 2D surface uniformly treated

with fibronectin. (F) BMDCs confined between two

parallel, fibronectin-treated planes, 5 mm apart

from each other.

(G) BMDCs embedded in bovine collagen gel and

confined between two planes 5 mm apart from

each other.

(H) Myeloid cells imaged in live Medaka fish.

Red curves represent the exponential fit of the

experimental data. Black dots and gray lines are

mean and SE for the binned data on both axis.

See also Figures S1 and S2 and Movie S1.
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mean-squared	displacement	
(MSD)	

Æd(t)2æ=2tpv
2(t2tp(12exp(2t/tp))) [15], where v=5.460.1 mm/

min is a characteristic speed and tp=8.860.1 min is a persistence
time (Fig. 3B, yellow curve). Note that a cell displaces itself
approximately 3 full cell diameters (,50 mm) in 8.8 min. This
transition from directed to random walk is characteristic of the
entire time record of more than 10 hr, and the persistent time is
independent of where on the trajectory we begin our analysis.
We calculated cell velocities as ~vv tð Þ~ ~rr tð Þ{~rr t{tð Þð Þ=t for

different values of t and plotted vx vs vy (Fig. 4). With increasing t,
bigger and bigger gaps appear in the centers of these plots.
At very much larger values of t, greater than 30 min, the distribution
of vx vs vy values again approaches Gaussian behavior, as expected
(Fig. 4). As we show in the discussion, these results essentially
rule out two well-understood models of random motion, worm-like-

chain (WLC) [15] and Ornstein-Uhlenbeck (OU) [16] models for
Dictyostelium cell trajectories.

Angular changes and cell motion
In order to quantify the behavior of a cell we first introduce a

measure of the cell’s instantaneous direction of motion (Fig. 5).
This measure is chosen as the cumulative angle Q, between the cell’s
velocity vector and a fixed direction in space: If, initially
Q(t= 0) =Q0, and the cell at some time t later has moved through
a complete, counter-clockwise, circle, then the new direction of
motion is Q(t) =Q0+2p. That is, the angle Q tracks not only the
instantaneous direction of cell motion, but also the winding
number of the cell trajectory, and thus, to an extent, the history of
the cell’s directional changes.

Figure 2. Cell trajectories and speeds. (A) Three typical 10 hr cell trajectories. Boxed regime, see Fig. 5 caption. (B) Cells do not slow down over
the ten-hour observation time, so we can think of them as being in a stationary (time-independent) state. However, on the time-scale of minutes the
speeds do show fluctuations around their average, time-independent values (see insert). The error bars were obtained by first using a 30 min window
to average each of twelve trajectories, and then, for each 30 min average, calculating the standard error of the twelve averages.
doi:10.1371/journal.pone.0002093.g002

Figure 3. Mean-squared displacement. (A) Log-log plot of the mean-squared displacement vs time interval t. (B) Mean-squared displacement
divided by t plotted as a function of t. Random walk would gives rise to a line with zero slope. Cyan, data from the 3 trajectories showed in Fig. 2;
Red, additional 9 trajectories; Blue, average of all 12 trajectories. Yellow, fit of an exponential cross-over from directed to random walk in the interval t
[10:100] min: Æd(t)2æ= 2tpv

2(t2tp(12exp(2t/tp))), where v=5.460.1 mm/min is a characteristic speed, and tp= 8.860.1 min is a persistence time.
doi:10.1371/journal.pone.0002093.g003

Cells Searching sans Signals

PLoS ONE | www.plosone.org 3 May 2008 | Volume 3 | Issue 5 | e2093

persistent	random	walk	
analysis:

characteris2c	speed:	v				(describes	determinis?c	mo?on)	

persistence	2me:	tp									(describes	randomness,	noise)		

Maiuri,	P.	et	al.	(2012).	Curr.	Biol.	22,	R673–R675.	
Maiuri	et	al.,	2015,	Cell	161,	374–386	
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In Brief
Despite the fact that different cell types

follow distinct migration patterns, the

locomotion of all cellular types follows

one simple universal rule: the

straightness ofmovement (persistence) is

an exponential function of speed. This

general law of cell migration is explained

by a physical model based on the

transport of polarity factors by the actin

retrograde flows and predicts a diagram

of possible cell trajectories.
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• 1D	Cell	migra2on	assays for high 
precision motility measurement

Parameters of Cell Motility

CharaCterizing Cell Motility and 
transMigration on ring shaped

 MiCro patterns

C. Schreiber, F. J. Segerer, J. O. Rädler

Fakultät für Physik & Center for NanoScience, Ludwig-Maximilians-Uni-
versität München, Geschwister-Scholl-Platz 1, 80539 München

Abstract
Cell migration is important in many biological processes such as embryogenesis, wound healing, or cancer metastasis. To understand the forma-
tion of tumors and the effect of drugs, a detailed characterization of the migration behavior is important [1]. Furthermore, the ability to overcome 
barriers like the basement membrane is a key indicator for the aggressiveness of different cancer cells [2]. Therefore, a systematic approach to 
study the transmigration behavior might lead to a better understanding of cancer invasion.
Here, we study single cell migration constrained to a micro-patterned ring-shaped lane. On such tracks, cells perform a 1D persistent random 
walk. Analyzing large arrays in parallel, we evaluate characteristic velocities and persistence times of a cell line with high accuracy. By introdu-
FLQJ�D�JDS�RI�VSHFL¿HG�ZLGWK�DQG�FKHPLFDO�FRPSRVLWLRQ�LQ�WKH�ULQJ�VKDSHG�ODQH��ZH�VWXG\�FHOO�EHKDYLRU�DW�GH¿QHG�FKHPLFDO�LQWHUIDFHV��$W�WKH�FKHPLFDO�ERUGHU��FHOOV�HLWKHU�
WXUQ�DURXQG�RU�WUDQVPLJUDWH�RYHU�WKH�EDUULHU��6WXG\LQJ�WKH�WUDQVPLJUDWLRQ�SUREDELOLW\�V\VWHPDWLFDOO\��ZH�¿QG�D�VWHDG\�GHFUHDVH�RI�WUDQVLWLRQ�SUREDELOLW\�ZLWK�LQFUHDVLQJ�
barrier width. Thus, this system allows the detailed comparison of cell lines with varying invasiveness.

Guiding Cells on Ring Shaped Micro Patterns

Transmigration over chemical barriers

,QWURGXFLQJ�D�JDS�RI�VSHFL¿F�ZLGWK�
in the ring shaped micro pattern, 
ZH�DQDO\]H�FHOO�EHKDYLRU�DW�GH¿-
ned chemical interfaces. 

Conclusion 
We present an assay to assess several parameters that characterize 1D sing-
le cell motility. Furthermore, the interaction with a chemical border is analyzed 
under reproducible conditions. In addition we are able to produce a barrier that 
LV�IXQFWLRQDOL]HG�ZLWK�D�GH¿QHG�FKHPLFDO�DJHQW��7KXV�ZH�SURYLGH�D�WRRO�WR�VWXG\�
FHOO�PRWLOLW\�DV�ZHOO�DV�WUDQVPLJUDWLRQ�EHKDYLRU�RYHU�GH¿QHG�FKHPLFDO�EDUULHUV�

→  With increasing barrier width the
  fraction of long runs decreases.
→  Interestingly, a gap also causes a
 decrase of the short run regime.

$UUD\V�RI�ULQJV�FRQVLVWLQJ�RI�¿ERQHFWLQ�
and passivated sourunding are made by 
micro-contact-printing.
→  many cells can be observed in
 parallel  
→  defined environment
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 exponental distribution
→  Two regimes with different 
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→  With increasing barrier width 
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 decreases.
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→  Assay to measure 1D cell motility on single cell level 
 that is suitable for high throughput.
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mathematical models of cell migration. In future studies, the fingerprint like classification scheme used here can 
be extended by additional parameters describing cellular behavior and morphology. In this regard, the barrier 
setup could be modified using customized interfaces composed of different ECM components. By this means, 
the relationship between the in vitro penetration depth into various kinds of ECM-coated areas and the in vivo 
invasiveness of cells could be scrutinized and used for cell testing. In this respect, ring-shaped microlanes with 
chemical barriers can complement existing migration studies and lead to improved cancer-cell classification and 
more sophisticated drug-screening assays. Additionally, patterning approaches capable to alter the guidance cues 
provided by the confinement dynamically, could be applied to analyze and include the cell response to chang-
ing external stimuli. Hence, migration assays based on micropatterns, in combination with high-throughput 
time-lapse acquisition and automated cell tracking, are likely to be of value as standardized platforms for the 
assessment of single-cell migration and the development of phenotypic descriptors.

Methods
Micropatterning. Production of stamps. To produce stamps for micro-contact printing as a master for 
stamp preparation, silicon wafers were coated with TI Prime adhesion promoter and AZ40XT (MicroChemicals) 
photo-resist. Desired areas were exposed to UV light using laser direct imaging (Protolaser LDI, LPKF). 
The photoresist was then developed (AZ 826 MIF, MicroChemicals) and silanized (Trichloro(1H,1H,2H,
2H-perfluoro-octyl)silane, Sigma-Aldrich). To create the stamp, polydimethylsiloxane (PDMS) monomer and 
crosslinker (DC 184 elastomer kit, Dow Corning) were mixed in a 10:1 ratio, poured onto the stamp master, 
degassed in a desiccator, and cured overnight at 50 °C. (Note that masters for stamp preparation can also be cre-
ated by established protocols, such as those provided by photoresist producers like MicroChem.).

Microcontact printing. Microcontact printing was used to produce fibronectin-coated ring-shaped lanes. PDMS 
stamps were activated with UV light (PSD-UV, novascan) for 5 min. Then, the stamps were incubated for 45 min 
in a solution containing 40 µ g/ml fibronectin (Yo proteins) and 10 µ g/ml fibronectin labeled with Alexa Fluor 
488 (Life Technologies) dissolved in ultrapure water. Next, stamps were washed with ultrapure water, dried and 
placed on a petri dish (µ -Dish, Ibidi), which had been activated with UV light for 15 min. A droplet of a 1 mg/ml 
poly-L-lysine-grafted polyethylene glycol (PLL-PEG) (2 kDa PEG chains, SuSoS) solution (dissolved in 10 mM 
HEPES containing 150 mM NaCl was placed at the edge of the stamps and drawn into the spaces between sur-
face and stamp by capillary action. Stamps were removed and a glass coverslip was placed on the dish surface to 

Figure 4. The migratory fingerprint. (a) Illustration of the parameters that characterize cell migration in our 
assay: run persistence time, τrun, rest persistence time, τrest, run velocity, vrun, and reversal probability, Pturn

dgap, 
which depends on gap width. (b) Migratory fingerprint: When migration parameters are plotted on a radar 
chart a characteristic polygon is formed. Comparison of MDA-MB-436 and HuH7 cells reveals a lower run 
velocity, and a lower run persistence, but higher reversal probability and increased resting time for the HUH-7 
cell line. The higher overall motility of the MDA-MB-436 cells becomes evident from the upward shift of the 
polygon. (c) Comparison of the migratory behavior of MDA-MB-436 cells in the presence or absence of 50 nM 
salinomycin. Mean run velocity and persistence of the run state remain almost constant, while the persistence of 
the rest state is increased. Furthermore, salinomycin increases the reversal probabilities with and without 
barrier. The decrease in overall motility in the presence of salinomycin is revealed by the downward shift of the 
polygon.
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Figure 4. The migratory fingerprint. (a) Illustration of the parameters that characterize cell migration in our 
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The	PLL-PEG	level	ϕ	describes	the	energy	penalty	for	invading	
passivated	grid	sites.		
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Cell	migra?on	in	a	two-state	systems

MDA-MB-231	human	breast	carcinoma	

k21

k12
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Cell migration in a two-state systems
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The position x in this framework 
refers to the centre of area of 

the cell, not the nuclear position!
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• Micropatterning: versatile tool for standardised single cell environments 
• Observed stochastic transitions of MDA-MB-231 human breast cancer cells on dumbbell-shaped structures 
• Dynamics can be modelled as Brownian motion in a potential 
• Occupancy probability is a function of area and perimeter 
• Thus provide a novel approach to parameterise cell dynamics

Introduction

Method: Plasma-Induced Protein Patterning

• Single cells adhere to square 
ends of dumbbells (‚islands‘) 

• Channel acts as a cue for 
random membrane protrusions 
Repeated transitions 

• Stays on islands much longer 
than transitions 
Description as classical two-
state system 

Single Cell Behaviour

 

Channel Length Dictates the Dynamics

1. PDMS stamp covers parts of 
substrate in shape of patterns -  
uncovered areas exposed to O2 
plasma treatment => surface 
activation 

2. PII-PEG binds to activated areas 

3. Stamp is removed, protein binds 
to untreated areas

References: [1] F. J. Segerer et al., Biointerphases 11, 011005 (2016) [2] C. Schreiber et al., Sci. Rep. 6, 26858 (2016)

[1]
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Outlook

• Describe cell as overdamped 
particle in a potential: 

• Energy barrier is placed by the 
elastic deformations required to 
transit between islands 
Prediction: Occupation 
probabilities should depend on 
area and perimeter of islands

Elastic Energy Model

Asymmetric Double-Wells

• Stay time distributions for the 
occupation of the islands are 
approximately exponential 

• Function collapse shows that 
dynamics is controlled by single 
time-scale, the average stay 
time 

• The hopping frequency decays 
exponentially as a function of 
channel length: 

h⌧i

S(t) = e�t/h⌧i

• Area and perimeter of adhesive islands 
varied  

• Find a variation in occupation probabilities 
consistent with a Hamiltonian 

where U and A are perimeter and area of 
the cell 

• Allows quantification of line tension and 
adhesive energy of cells

)

Parameter Extraction
• accurately measure cell elasticity, 

cellular fluctuations 
distinguish different cell lines?

Extension to oriented islands
insights into heterogeneous 
cellular fluctuations

)

[2]
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elas?c	energy „ac?ve“	noise

determinis?c random
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First	order	model	fails		
to	reproduce	transi?on		
dynamics	!
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Inferred	equa?on	of	mo?on	for	confined	cell	migra?on

data-driven	retrieval	of	force	and	noise	field:

F (x, v) = hv̇|x, vi

�2(x, v) = �th[v̇ � F (x, v)]2|x, vi

h⌘(t)⌘(t0)i = �(t� t0)

v̇ = F (x, v) + �(x, v)⌘(t)

accelera?on	=	force	+	noise

white	noise	conditon

Ansatz
second-order	Langevin	equaFon:	



Inferred	equa?on	of	mo?on	for	confined	cell	migra?on

dv

dt
= F (x, v) + �2(x, v)⌘(t)



Model	reproduces	experimental	dynamics
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Determinis?c	component	drives	transi?ons

F (x, v) �(x, v)

F (x, v)



Determinis?c	dynamics	exhibits	a	limit	cycle

Nature	Physics	19	(2019):	1592.



Noise	induced	excita?ons

Nature	Physics	19	(2019):	1592.



Narrow	constric?ons	lead	to	speed	amplifica?on

Nature	Physics	19	(2019):	1592.

MDA-MB-231	with	constric2on MDA-MB-231	without	constric2on

limit	cycle line	of	stable	fixed	points		



Method	detects	subtle	differences	between	cells	
Non-cancerous	(MCF10A)cancerous	(MDA-MB-231)

Nature	Physics	19	(2019):	1592.

bistable  
(two	fixed	points	)

limit	cycle



Two-state	system	with	different	areas
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Pa+ern	with	different	shapes

equal	perimeter



Pa+ern	with	different	shapes
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equal	perimeter



Anisotropic	shapes	affect	transi?on	rates 

Théry,	M.,	J	Cell	Sci	2010	123:	
4201-4213

Static	cell	adhesion: Dynamic	system:

kLR=0.43	h-1

kRL=0.41	h-1

kLR=0.41	h-1

kRL=0.29	h-1



Orienta?on	of	cell	polariza?on	biases	transi?on	rates

l1
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equal	area	&	perimeter	
different	orienta2on
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Guiding 3D cell migration in deformed synthetic hydrogel microstructures 
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To control the hydrogel composition, we vary both the overall
PEG-NB monomer concentration and the cross-linker to mono-
mer ratio. We monitor the movement of the tracer beads inside
the hydrogel throughout the swelling process (see ESI,† Movie S4)
and analyse their trajectories with particle image velocimetry (PIV)
to obtain velocity fields that quantify the swelling behaviour. After
2 h no further bead movement in the gel is detectable, indicating a
stable swelling of the hydrogel structures. The accumulated
velocity fields of tracer beads within the first 2 h is displayed in
Fig. 2B, showing bead movement mostly in the direction along
the short axis of the strip. This anisotropic swelling behaviour
is present in all the gels we tested (ESI,† Fig. S3 and S4). For
smaller cross-linker ratios, we measure higher overall velocities
demonstrating a higher degree of swelling. Hence, by varying
the cross-linker ratio of the hydrogel, we can tune the swelling
and thereby the uniaxial strain induced in the gel.

To quantify the strain in the hydrogel due to the anisotropic
swelling, we compare the width of hydrogel strips with
embedded cells after completed swelling (Wf) with the initial
strip width of 400 mm (W0).

gs ¼
Wf "W0

W0
(1)

We investigate how this swelling strain, gs, is affected by the gel
composition, by varying the PEG-NB monomer concentration
as well as the cross-linker ratio. We observe that the measured
swelling strain increases almost linearly with decreasing cross-
linker ratio, up to high strain values of roughly 1.4 (Fig. 2C).

By contrast, the concentration of monomer in the gel does not
significantly influence the magnitude of swelling. We exclude
hydrogel strips with cross-linker ratios below 0.525 and 0.475,
for 2 mM and 3 mM PEG-NB gels respectively. Such hydrogels
exhibit high strains, but they are not stable over longer time
periods, and are therefore unsuitable for cell migration studies.
Thus, by constructing the gel with high enough cross-linker
ratio in confined microstructures, we are capable of inducing
uniaxial strain in hydrogels with values ranging from 0.4 to 1.4.

To analyse how cells migrate in a uniaxially strained net-
work, we embed HT-1080 cells in hydrogel strips and monitor
their migration for 24 h starting 3 h after encapsulation
(see ESI,† Movies S5 and S6). With increasing cross-linker ratio,
the percentage of migrating cells in the strips decreases to the
point where motility is completely inhibited (ESI,† Fig. S5). To
illustrate the migratory behaviour of cells in hydrogels, we show
a phase-contrast image of the analysed hydrogel area overlaid
with tracked cell trajectories in Fig. 2D. Cells in this gel exhibit
a highly anisotropic migration, with the main migration direc-
tion oriented parallel to the swelling direction. This observation
is consistent with prior experiments showing that fibroblasts
preferentially migrate parallel to an applied static strain inside
3D substrates.31 Interestingly, however, when we compare the
trajectories of cells migrating in hydrogels with different strains
in our experiments, we observe a gradual shift from anisotropic
migration in networks with moderate strains to a more iso-
tropic mode of migration with higher strains (Fig. 2E and ESI,†
Fig. S6). This migration behaviour is surprising, because the

Fig. 1 Experimental set-up of the synthetic hydrogel. (A) Schematic presentation of the synthetic hydrogel and its components. Norbornene
functionalized 4-armed PEG is used as a monomer. For cross-linking, a peptide sequence (displayed in blue) that can be cleaved by cell-secreted
matrix-metalloproteinases is used to create a migratable hydrogel. Substituting the cleavable cross-linker with a bio-inert dithiol-PEG (displayed in black)
renders the gel non-migratable. RGD containing peptide sequences (displayed in yellow) enable cells to interact with the hydrogel through integrins.
(B) Confocal image of a HT-1080 LifeAct-TagGFP2 cell in an isotropically swollen gel, 20 h after encapsulation. The actin structures are displayed in green
and the nucleus is stained in blue. (C) Centred trajectories of HT-1080 cells migrating in hydrogels of different degradability for 24 h.
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Conclusion

Cell	migra?on	on	two-state	micropa+ern  
described	by	inferred	force	and	noise	maps

Collec?ve	Cell	migra?on	in	microchannels 
described	by	flow	and	diffusion

Cell	polariza?on	produces	spontaneous	swirls  
(Cellular	Po+s	Modell)

Single	Cell	migra?on	on	micro-lanes 
allows	for	migratory	fingerprints
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