
Chapter 1

Langevin and Fokker-Planck equations and

their applications

“Probability theory is nothing but common sense reduced to calculation.” (Pierre
Simon Laplace)

In our previous discussion of random walks (say in 1d), we worked with the discrete equation:

xi+1 = xi + ξ. (1.1)

Let’s now consider the continuous version, where:

dx

dt
= ξ(t), (1.2)

with ξ(t) is a noise with vanishing mean and correlation function 〈ξ(t′)ξ(t)〉 = f(t−t′) (typically, 〈; 〉 brackets

will denote averaging over all noise realizations – i.e., ensemble-averaging). This is a simple example of a

Langevin equation.

In many cases we want to describe the system on timescales much larger than the correlation time of the

noise – which means we can replace f(t) by a δ-function, f(t) = Cδ(t). Keep in mind that for certain

applications, the noise correlation time could be relevant (see Problem 3.1 for an example).

Consider now the time derivative of 〈x2〉. For a particular realization we may express:

x(t) = x0 +

∫ t

0
ξ(t′)dt′. (1.3)

Therefore we find:
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d〈x2〉
dt

= 2〈x(t)ξ(t)〉 = 〈2
[
x0 +

∫ t

0
ξ(t′)dt′

]
ξ(t)〉. (1.4)

Since at every t the mean of ξ vanishes, the first term vanishes and we are left with:

d〈x2〉
dt

= 2

∫ t

0
〈ξ(t′)ξ(t)〉dt′ = 2

∫ t

0
f(t− t′)dt′. (1.5)

Since we are integrating over half of the δ function, we find that:

d〈x2〉
dt

= C, (1.6)

hence Ct = 2Dt, and we obtain diffusion with a constant D = C/2.

How can we describe the random process in the δ function limit? It turns out that this can be done in

several ways, which may lead to different results occasionally – two common methods used are the Itô and

Stratonovich versions of stochastic calculus. The issue is that in these descriptions there are two timescales

which vanish – the discretization time and the correlation time – and the order in which we send them to

zero matters. We will not go deeply into this subtle issue, but for our purposes we will work mostly within

the Itô formalism.

Itô vs. Stratonovich formalisms for stochastic calculus The issue of interpretation of the stochastic

equations arises when dealing with the Langevin equation. Shortly we will derive the so-called Fokker-

Planck equation, which describes the deterministic evolution of the probability distribution in time – since it

is “just” a PDE, there is no ambiguity of interpretation once the Fokker-Planck equation is written. For most

applications we will see, both Itô and Stratonovich lead to the same Fokker-Planck equation. In particular,

this is true when the noise is additive. However, for cases involving multiplicative noise (i.e., where the noise

term multiplies a term associated with the variable x rather than being added to it) the resulting PDE takes

a different form. In such cases, the correct stochastic interpretation depends on the particular application

at hand and the relevant order of limits.

Within the Itô formalism, the correlation time is shorter than the discretization time, so we can think of our

continuous random walker as driven by a set of independent, random kicks. It is often useful to think how

one would simulate such a process. To do this, we can make time discrete, with small timesteps ∆t (defining

our time resolution), and for each timestep we would like to choose the noise as a Gaussian, independent

random variable (we will see shortly why it should be Gaussian), with magnitude W . This recovers Eq.

(1.1). After time t, we would have taken t
∆t steps, hence:

〈x2〉 =
t

∆t
W 2. (1.7)
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To get the correct scaling, we must therefore choose: W = C
√

∆t. In fact, this simple scheme to simulate

stochastic processes is known as the Euler-Maruyama method. The discrete Langevin equation corresponding

to this scheme in this situation of a simple random walk is:

xt+∆t = xt + C
√

∆t. (1.8)

(for an interesting pedagogical paper elaborating on the utility of this discrete approach, see Ref. [1]). What

would have happened if we would have chosen a non-Gaussian distribution? In that case, if we decrease

our time resolution, i.e., make the step size larger, the effective noise in each step would be the sum of

a large number of variables, and would therefore converge to a Gaussian (assuming that the distribution

has finite variance). On the other hand, Gaussian distributions are infinitely divisible – we can always write

ξ = ξ1 + ξ2, where ξ1 and ξ2 are also Gaussian variables, with half the variance. So we can think of our

Gaussian variable as resulting from a large sum of independent Gaussian variables.

Divisibility: can a random variable be expressed as a sum of two independent random variables?

Problem 3.9 deals with the lack of divisibility of the uniform distribution – a uniformly chosen random

variable cannot be represented as the sum of two other (independent) random variables! In Chapter 6 we

will find the most general family of distributions which have the much stronger property which the Gaussian

distribution exhibits – whereby the sum of two (or more) variables drawn from the distribution results in a

variable corresponding to a probability distribution identical in shape to the original (i.e., the two are equal

upon appropriate shifting and scaling).

Eq. (1.2) is the simplest instance of a Langevin equation, first introduced by Langevin to model diffusion of

particles in a liquid or gas. We have seen before that the probability distribution is described by the diffusion

equation, which is the simplest instance of a Fokker-Planck equation. Next, we will study more general

Langevin equations, of the form:

dx

dt
= −µV ′(x) + ξ. (1.9)

The function f(x) = −V ′(x) can be associated with a physical force being applied to the diffusing particles,

but in other scenarios it will be associated with a feedback in the system (we will study a biological example

of this sort). Moreover, many times the Langevin equation will be defined in a higher dimension, as we shall

study when we deal with certain “escape-over-a-barrier” problems.

Example I: particle in a potential driven by random noise

Consider a particle in a potential V (x) driven by random kicks due to its interaction with a thermal bath.

For simplicity, let’s consider the 1d case. The Langevin equation reads:

m
dv

dt
= −γv + ζ(t)− V ′(x), (1.10)
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where ζ is the noise and γ the dissipation. In fact, the two originate from the same physical mechanism

(interactions with the environment) and so are physically related – as we shall shortly see.

The Ornstein-Uhlenbeck process In the case V = 0, Eq. 1.10 is known as the Ornstein-Uhlenbeck

process. It’s properties are explored within problem 3.3.

One commonly relevant limit is the overdamped case, in which the particle’s inertia is irrelevant. In this

case we can ignore the LHS, and write:

dx

dt
= µf(x) + ξ, (1.11)

where f(x) = −V ′(x), ξ = ζ/γ and µ = 1/γ. This is precisely Eq. (1.9).

In the case where inertia is relevant, it is convenient sometimes to think of the dynamics in a two-dimensional

space, by defining a vector ~x with x1 ≡ x, x2 ≡ mv. Therefore:

d~x

dt
= −µ∇Ṽ (~x) + ~ψ, (1.12)

where in this case µ is a matrix :

µ =

(
0 −1

1 γ

)
, (1.13)

Ṽ = 1
2mv

2 + V (x), and the noise term is given by ~ψ = (0, γξ). This is a generalization of Eq. (1.9) which

we shall use later in the course.

We shall now understand how to go from this Langevin equation to the so-called Fokker-Planck equation,

which generalizes our derivation of the diffusion equation. We shall then use the Langevin equation to study

a contemporary problem in biology, and will see how analogous equations to the Langevin and Fokker-Planck

equations arise in the context of economics. In Chapter 4 we will study a more involved physical problem

using Fokker-Planck equations known as “escape-over-a-barrier”.

Example II: the isothermal atmosphere, thermal equilibrium arising from superimposing diffusion

and drift

This may at first seem off-topic, but will end up helping us develop intuition for deriving the Fokker-Planck

equation. Consider a column of gas molecules with molecular mass m, assumed to be at thermal equilibrium

at temperature T . According to the Boltzmann distribution, the density of air will depend on the altitude

as:

n(h) ∝ e−
mgh
kT , (1.14)
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with k the Boltzmann constant. Note: this is not a good approximation for the Earth’s atmosphere!

Note that the above equation is for the spatial dependence of particle density. We could have written

the same equation for the probability distribution of particle position – the two quantities only differ by a

normalization constant.

We will now understand how this comes about from the “molecular” picture of Eq. (1.9). The gas molecules

are subject to the force of gravity, which, if the density were to be constant, would lead to a constant current of

particles downward – in the overdamped limit the particles would move at constant velocity v = µF = µmg.

However, this initial drift would lead to a higher concentration of molecules at lower altitude. The gradient

of density implies that the random walk of the molecules would lead to an effective current upward. This

current is proportional to the gradient of density (and opposite in sign), a result known as Fick’s law. To

illustrate this, let us temporarily assume that no external forces are acting on the molecules (i.e., we switched

gravity “off” for now). Consider the relation:

~j = −D∇n, (1.15)

From the continuity equation we have:

∇ ·~j +
∂n

∂t
= 0, (1.16)

where ∇· is the divergence of the current ~j (which is – in the general case – a vector field). Hence:

∂n

∂t
= D∇2n, (1.17)

and we see that the diffusion equation we previously derived indeed arises from Fick’s law.

Going back to the “isothermal atmosphere”, at steady-state all time derivatives vanish, hence the divergence

of the current must vanish. In this effectively one-dimensional problem this implies the current must be

constant. Since there can be no flux at the surface, this implies the current must vanish everywhere. In

other words, the current due to diffusion (upward) would cancel that of gravity:

−Dn′ = mgnµ. (1.18)

The solution is indeed that of Eq. (1.14), provided that: D = kTµ. This relation is known as the Einstein

relation , and is extremely useful. It implies that both diffusion and µ (which is the reciprocal of the drag

coefficient γ) are related – they both arise from the same physical mechanism, collisions with other molecules.

This is an example of a fluctuation–dissipation theorem: it relates the diffusion constant (associated with

the fluctuations) to the mobility (associated with the dissipation due to the viscous drag).

Going from a Langevin to a Fokker-Planck equation Consider a particle performing a 1d random walk

in the overdamped limit – as described by the Langevin equation of Eq. (1.9) (with µ potentially depending

on position). The continuity equation (1.16) is generally true, and the current will have, as in the previous
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example, two contributions: one from the force (~jf ), and the second from the diffusion term (~jd). The

former can be readily understood in the overdamped limit in the absence of stochasticity: the force would

lead the particle to a constant velocity ~v = µ~f , hence the current will be:

~jf = −µp∇V (~r). (1.19)

In the absence of a force, we saw that the diffusion equation arises (following Einstein’s derivation). Further-

more, the example in the previous section showed that it may also be interpreted as the continuity equation

combined with Fick’s law, therefore the diffusive current is:

~jd = −D∇p. (1.20)

Plugging in Eqs. (1.19) and (1.20) into the continuity equation ∂p
∂t +∇·~j = 0, we obtain the Fokker-Planck

equation:

∂p

∂t
= ∇ · [µ∇V (~r)p] +∇[D∇p], (1.21)

where in general D and µ can be space-dependent, and if we are dealing with a statistical mechanics problem

they are related by the Einstein relation. Note that as in Eq. (1.16), ∇· denotes the divergence of the vector

field. This is the general form of the Fokker-Planck equation – and is basically derived by considering the

“probability currents”, just as we have done when deriving the diffusion equation (the derivation can be

done more systematically, within the Itô or Stratonovich stochastic calculus formalism – in this case both

lead to the same equation).

Revisiting Einstein’s derivation in the presence of a potential

Previously, we derived the diffusion equation following Einstein’s insights, while assuming that the particle

is diffusing in a uniform potential. We shall now repeat the derivation for a particle in a one-dimensional

potential V (x), assuming the overdamped limit (where velocity is always proportional to force). Our starting

point will be the discrete Langevin equation (see Eq. (1.8)):

xt+∆t = xt + µf(xt)∆t︸ ︷︷ ︸
Deterministic

+ ξ
√

∆t︸ ︷︷ ︸
Stochastic

, (1.22)

with timestep ∆t and ξ a Gaussian with vanishing mean and standard deviation σ.

Let us assume that the probability distribution at time t is P (x, t). If the particle was at position x̃ at time

t, clearly the probability that it will be at position x at time t+ ∆t is given by the probability that the noise

term equals x− x̃− µf(x̃)∆t; hence it equals:
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G(x|x̃) =
1√

2πσ2∆t
e−

[x−x̃−µf(x̃)∆t]2

2σ2∆t . (1.23)

We can also approximate f(x̃) ≈ f(x) + f ′(x)(x̃−x) (for small ∆t, this first-order Taylor expansion will be

a good approximation). This allows us to write an equation for the time evolution of p(x, t), by considering

all the possibilities of x̃:

p(x, t+ ∆t) =

∫
G(x|x̃)p(x̃, t)dx̃. (1.24)

Following a similar logic to our previous derivation of the diffusion equation, we may now expand p(x̃, t) to

second order (around the point x):

p(x̃, t) ≈ p(x, t) + p′(x, t)(x̃− x) +
p′′(x, t)

2
(x̃− x)2. (1.25)

Plugging this form into Eq. (1.24), we may readily perform the Gaussian integrals and find (to order O(∆t)):

p(x, t+ ∆t) =
p(x, t)

1 + µ∆tf ′
− µ∆tfp′(x, t) +

σ2

2
p′′(x, t). (1.26)

Expanding to first order in ∆t we have 1
1+µ∆tf ′ ≈ 1− µ∆tf ′, and taking the continuous limit leads to the

one-dimensional version of Eq. (1.21).

Note that in Eq. (1.22) the force is evaluated at xt. Identical results are obtained when the force is evaluated

at xt+∆t.

Revisiting Einstein’s derivation in higher dimensions Try to repeat the derivation for a particle in a

potential V (~r), assuming the overdamped limit. You should recover Eq. (1.21)
.

1.1 Application of a discrete Langevin equation to a biological problem

This section deals with the application of a discrete version of a Langevin equation to a problem in contem-

porary cell biology. It is a problem where the biological data could only be interpreted within the framework

of a mathematical model, and in which the quantitative details actually matter and lead to conceptual

advances.

A little biological background: bacteria, such as the E. coli strains that we all have in our guts, grow such

that they double their volume in several tens of minutes (in good nutrient conditions the doubling time can

be as short as 20 minutes), after which they divide symmetrically. It turns out that during this period the

cell volume grows exponentially. This brings about an interesting problem: if we naively assume that the
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cell cycle relies on a “timer” (i.e., the duration between two division events is set by a clock), then denoting

the cell size at birth by vb, its size at division will be given by:

vd = vb2
t/td , (1.27)

hence the newborn size of the daughter cell is :

log2 v
n+1
b = log2 v

n
b + t/td − 1. (1.28)

If t = td precisely, we have perfect doubling and perfect division every generation, and all would be fine.

However, nothing is perfect, and there must be fluctuations in t around td. Defining ξ = t/td−1, Eq. (1.28)

shows that the logarithm of size would perform a random walk. Hence size will be unbounded, with some

cells becoming very small while others very large – which is not what happens in reality.

This goes to show that there must be a feedback mechanism, that (potentially among other functions)

controls size. The goal of this section would be to derive a phenomenological description of this feedback, in

the spirit of the Langevin equation. Such a model would go beyond the “timer” described above, converging

to a stable size distribution in the same way that the restoring force in the Ornstein-Uhlenbeck process of Eq.

1.10 leads to a stationary velocity distribution (and without it, as we have seen, the velocity will perform a

random walk – analogous to the random walks of the logarithm of cell size discussed above). Such a model

can make predictions regarding the statistics of the model variables (namely, cell size and time), including

correlations between cells in the same lineage and distributions of these variables. These relations can then

be empirically tested, to validate or falsify the model.

Formally, we can describe this using a discrete version of the Langevin equation. The notation for the

discussion that follows is summarized in the following table.
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Table 1: Notations for cell size regulation problem

Variable Definition

vb Size at birth (stochastic variable)

vd Size at division (stochastic variable)

v0 Average size at birth

f(x) Size regulation (deterministic) strategy

td Volume doubling time (assumed constant)

ξ Time-additive noise

ta Deterministic generation time given a size at birth

tn Noise added to deterministic generation time

σn Standard deviation of tn

x log2[vb/v0], see Eq. (1.34)

σv Standard deviation of x for the stationary solution

σt Standard deviation of generation time t for the stationary

solution

Cxy Pearson correlation coefficient between variables x and y

We will assume that the cell controls size by attempting to divide at a size:

vd = f(vb). (1.29)

The choice of function f determines the regulation strategy used by the cell. For example, the (failed) timer

strategy we described above corresponds to f(vb) = 2vb. An a-priori reasonable strategy is f(vb) = const,

in which the cell attempts to divide when reaching a critical size (this thresholding strategy is known as

a “sizer”). Clearly this will have strong size control (i.e., size distributions will be as narrow as possible),

but we shall later claim it is also not consistent with experimental data on E. coli. In order to implement a

strategy described by a function f , the cell must attempt to grow for a time:

ta = td log2(f(vb)/vb). (1.30)

To this “deterministic” component we will add a stochastic term tn such that the actual generation time t

will be given by:

t = ta + tn. (1.31)

This is precisely the philosophy which Langevin used in writing his equation, where the force due to collisions

with the molecules was decoupled into a deterministic component (leading to the viscous drag) and a noise

term. We will assume the noise tn to be Gaussian with vanishing mean and standard deviation σn (though
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this assumption can be relaxed without affecting the main conclusions). This concludes the definition of the

model (for now). To make further progress, we will assume that the cell size distribution will ultimately be

narrow (an assumption which can be verified experimentally, and also self-consistently within our model).

Hence we don’t actually care about the behavior of f(x) for any x, but really only for a narrow range around

the typical newborn cell size v0. This implies that we can Taylor expand f around v0 to find that:

f(vb) ≈ 2v0 + f ′|v0(vb − v0), (1.32)

where we utilized the fact that for the typical newborn size v0 we should have f(v0) = 2v0, such that cells

double in volume.

It will be useful to denote f ′|v0 = 2(1− α). In this notation the “timer” strategy corresponds to a slope of

2 and hence α = 0, while the thresholding “sizer” strategy corresponds to vanishing slope and hence α = 1.

For any f , we can find the relevant value of α by evaluating its derivative – for example, if f(vb) = vb + v0,

then α = 1
2 .

All models with the same value of α will follow approximately the same behavior, since their Taylor expansion

agrees to first order. To solve the model, it will be useful to choose a particular function f(vb) = 2v1−α
b vα0 .

You can check that its derivative at v0 gives 2(1−α), hence the α appearing in this definition of f is indeed

consistent with our previous definition of α. This function of f was chosen such that the “attempted”

generation time will take a particularly simple expression:

ta = td − tdα log2[vb/v0] (1.33)

Defining x ≡ log2[vb/v0], our stochastic equation becomes:

xn+1 = xn(1− α) + ξ, (1.34)

with ξ a Gaussian noise with standard deviation σn/td. This is a discrete version of the Langevin equation

we had before. If α = 0, we are back to the random walk scenario. α > 0 corresponds to a feedback, which

might be able to correct the random drift due to the noise term ξ.

It is very easy to simulate this equation – which Problem 3.5 deals with. But it is also easy to guess a

solution – since ξ is a Gaussian variable with vanishing mean, if xn is Gaussian with vanishing mean xn+1

will also be such, so we would have a stationary solution if the variances will also be consistent. Denoting

the variance of xn by σ2
v , we obtain the self-consistent equation:

σ2
v = (1− α)2σ2

v + (σn/td)
2. (1.35)
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Note that we relied on the fact that the noise term is uncorrelated with the size at the beginning of that

generation (xn), but it will be correlated with the size at the end of that generation (xn+1), and the two

variables xn, xn+1 may also be correlated.

Solving Eq. 1.35, we find that:

σ2
v = (σn/td)

2/[α(2− α)]. (1.36)

Hence we see that as α → 0, the size distribution becomes infinitely broad, as we expect from our consid-

eration of the case α = 0. Less obvious a-priori is that as α → 2 the same happens. Therefore the regime

of stable size distributions is 0 < α < 2, and it is easy to see that the distribution is narrowest for α = 1,

which is also intuitive, since that corresponds to the size-thresholding case.

Furthermore, since the logarithm of size was found to be a Gaussian variable, the size distribution will be

log-normal :

p(vb) ∝ e− log2(vb/v0)2/σ2
v/vb. (1.37)

Similarly, we can find the time distribution. Since the time is given by:

t = ta + tdξ, (1.38)

and ta was found to be Gaussian, the time distribution will also be Gaussian, with a variance of:

σ2
t = α2t2dσ

2
v + σ2

n = σ2
n(1 + α2/[α(2− α)]) = 2σ2

n/(2− α). (1.39)

As we might expect, the time distribution is narrowest for α = 0 (the “timer” is good at controlling time!),

and monotonically increases with α. It is important to note that one stochastic noise term, σn, determines

the width of both size and time distributions. It is useful to quantify the relative width of distributions by

their coefficient of variation (CV), which is the ratio of their standard deviation to their mean. Using Eqs.

(1.37) and (1.39) it is easy to see that the CV of the size distribution is log(2)/
√

2α times that of the time

distribution.

Armed with this machinery, we can now quantify correlations between various variables. A useful entity is

the Pearson correlation coefficient, which is defined as:

Cxy ≡
E[(x− x̄)(y − ȳ)]

σxσy
, (1.40)

where x̄, ȳ are the averages of the variables, and σx, σy their standard deviations.

Clearly, the Pearson correlation coefficient of a variable with itself is 1, and with its negative is −1. Addi-

tionally, the correlation coefficient vanishes for two independent variables. Therefore, its value between -1
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and 1 is a measure of how correlated or anti-correlated two variables are. Furthermore, it is clear that this

definition is insensitive to adding a constant to the variables, or scaling by a positive factor.

Consider now the size of a cell at birth, and its size at division, Cvbvd . According to our assumption of

perfectly symmetric division, the correlation coefficient between these two variables would be the same as

that between size at birth and the size of the daughter cell at birth. Plugging into the definition we have:

Cvbvd ≡
E[(vnb − v0)(vn+1

b − v0)]

σ2
, (1.41)

with σ2 the variance of the birth size. To simplify things, it is useful to note that by Taylor expanding

x = log2(vb/v0) around v0, the correlation coefficient would be nearly the same for the variables xn and

xn+1, hence:

Cvbvd ≈
E[xnxn+1]

σ2
v

. (1.42)

Using Eq. (1.34), and the fact that the noise is uncorrelated with xn, we find that:

Cvbvd ≈
E[x2

n(1− α)]

σ2
v

= 1− α. (1.43)

For α = 1, the vanishing of the correlation coefficient is very plausible: since in this case thresholding washes

away the memory of the initial size. In the case α = 0, which has no size control, the cell attempts to double

its size, which is why we get a perfect correlation coefficient.

In 1980, this correlation coefficient was experimentally measured [3], and found to be approximately 1/2,

suggesting that α = 1/2. As mentioned earlier, this is what we would get if f(vb) = vb + v0, i.e., the cell

attempts to add a relative volume to its volume at birth. But note that this can only be interpreted within a

quantitative model such as the one we described above, which is the reason for which this “interpretation”

of the measurement was not provided until 2014, several decades after the experimental work [4]. We can

now calculate additional correlation coefficients to further test the theory, for example, that between the

size at birth and the time to division. As before, it is useful to replace vb by x, which hardly affects the

coefficient. Thus:

Cvbt ≈
E[x(t− td)]

σvσt
=

E[x(ta − td)]
σvσt

. (1.44)

Using ta − td = −tdαx, we find that:

Cvbt ≈ −α
tdE[x2]

σvσt
= −ασvtd

σt
. (1.45)
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Figure 1.1: Data collapse of the scaled size distribution (blue) and generation time distribution (red) for
the bacterium E. coli, without any fitting parameters. From Ref. [6].

Using Eqs. (1.36) and (1.39) we find that:

Cvbt ≈ −αtd

√
(σn/td)2/[α(2− α)]

2σ2
n/(2− α)

. (1.46)

Hence:

Cvbt ≈ −
√
α/2, (1.47)

and for α = 1/2 we expect it to be about −1/2. Precisely this value was reported in 2014 [5], corroborating

this model. Finally, the fact that one source of stochasticity determines both the size and time distributions

allows us to scale both distributions without using any fitting parameters: from Eqs. (1.36) and (1.39), we

find that for α = 1/2, the distribution of the scaled size variable log2(vb/v0) and the scaled time variable

(t− τ)/τ both have vanishing mean and identical variance. This is shown in Fig. 1.1, from Ref. [6]. As a

corollary of this, CV of the size distribution is log(2) smaller than that of the time distribution, which was

also corroborated experimentally in Ref. [6].

In fact, the story is more involved, and there are other models which are not “birth-centric” which would give

the same correlations, but that is outside the scope of this course. Interested readers may refer to [7] for a

recent discussion and more biological insights into this problem, and [8] for further details of mathematical

models of cell size control in microbes.
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1.2 The Black-Scholes equation: pricing options

Next, we introduce some basic ideas of option pricing in finance, and present a derivation of the Black-

Scholes equation as the continuous limit of a discrete-time model. This chapter is inspired by the notes of

Terence Tao.1

We focus on two primary options, the call and put options, which are in a sense inverse to each other.

We also only study European options, which may only be exercised at the expiration time, denoted t1 (an

American option, on the other hand, allows the owner to exercise at any time prior to the expiration time).

Throughout, we consider some underlying asset S, with price St at time t.

1. Call option: Right to purchase S at price P (strike price) from the seller of the option at time t1.

2. Put option: Right to sell S at price P to the seller of the option at time t1.

The central option pricing problem is as follows: at time t0 < t1, what is the appropriate price to assign to

an option with expiration date t1 with strike price P?

To solve this problem, we make a number of simplifying assumptions:

1. No arbitrage: This is the central assumption we will rely on the computing prices; essentially, it

means that we can’t make “easy money” – say by buying in euros and selling in dollars etc.

2. Infinite liquidity: Cash is not a constraint; participants can buy and sell options at any time and

price.

3. No market power: The buying/selling of an asset has no effect on its price.

4. No transaction costs.

5. Infinite credit: Participants can borrow or lend as much as desired at a given interest rate r.

6. Infinite divisibility: The asset and option can be sold in as small an increment as desired.

7. Short-selling. We can sell stocks that we don’t have, and later on purchase them to cover this. In a

sense, it will allow us to work with negative stock values.

The price of an option within this model will depend on our assumptions regarding the (stochastic) time

dynamics of the stocks – as will be discussed below. The following table summarizes the notation we will

be using throughout the chapter.

1T. Tao, “The Black-Scholes Equation.” https://terrytao.wordpress.com/2008/07/01/

the-black-scholes-equation.

https://terrytao.wordpress.com/2008/07/01/the-black-scholes-equation
https://terrytao.wordpress.com/2008/07/01/the-black-scholes-equation
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Table 2: Notations for Black-Scholes problem

Variable Definition

r Interest rate

St Stock price at time t

µ Drift of stocks, see Eq. (1.50)

σ Volatility of stock dynamics, see Eq. (1.50)

V (t, S) Option price at a given time and given the current stock

price (for Call or Put option)

t1 Expiration time, at which Call/Put option are exercised

P Strike price (for Call or Put option)

1.2.1 Time is money: the time value of money

Our assumption of an interest rate r, together with the assumption of no arbitrage, allows us to find (for

example) how much a bond that would pay us 1 dollar at a future time t1 would be worth today, at time

t0 = t1 − t: Let’s call this value X. We could always borrow an amount of money X today, and buy such

a bond, getting back 1 dollar in the future and pay off the debt then (an amount Xert, due to interest) –

since we can’t make money with this strategy (no arbitrage), it means that 1 −Xert ≤ 0, i.e., X ≥ e−rt.

On the other hand, If X > e−rt, then I can create such a bond today and sell it, getting X units of cash,

and pay a dollar to the buyers at time t1. This way I made Xert − 1 amount of cash, which is positive by

assumption – hence X = e−rt.

1.2.2 Bounding the price of a put option

Let Vt(St) denote the price of an option of asset S at time t. For example, consider a put option on S at

strike price P with expiration time t1. To avoid an arbitrage opportunity, the price of the option must reflect

both the price of the asset and the time-discounted strike price. If the strike price is high and the option is

cheap, we could make money from buying the option and selling the stock – in contrast to the no arbitrage

assumption. Let us quantify this:

We would be buying a unit of stock and the option, at the present. The amount of money we would be

making is P , but this is at a future time t1, hence when comparing it to the money we pay now we have to

multiply by e−r(t1−t0) (taking into account the time value of money).

Hence our gain is:

X = e−r(t1−t0)P − St0 − Vt0(St0). (1.48)

This cannot be positive – otherwise we have arbitrage! Thus we conclude:
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Vt0(St0) ≥ e−r(t1−t0)P − St0 . (1.49)

We found a lower-bound for the option price, but can we find a precise equation for the option price?

Remarkably, the answer is yes – after we make some assumptions regarding the dynamics of the stocks.

1.2.3 Stocks make a multiplicative random walk

For simplicity, let’s assume that time is discrete, and call the unit of time dt. To derive the Black-Scholes

equation, we will assume that:

St+dt = Ste
µdt+ξ, (1.50)

where µ is a constant describing the drift of the random walk, and ξ a noise term (e.g.: Gaussian), with

standard deviation ξ0 and vanishing mean. For a given dt, the logarithm of the stock will do a random walk.

The size of each step has a variance ξ2
0 , and the number of steps until time t is t/dt. Therefore the standard

deviation of the logarithm of the stock will be ξ0

√
t/dt. As we have seen before, in order for the limit of

dt → 0 to make sense, we need to scale the noise appropriately: ξ0 ∝
√
dt. For this scaling, the standard

deviation of log(S) will be proportional to
√
t. We will denote the proportionality constant by σ, which is

called the volatility of the stock.

Note that the noise plus drift term multiplies the current value of the stock – hence the noise is multiplicative

rather than additive. One benefit of this formulation is that the stock price will always remain positive (since

we are always multiplying it by a constant close to 1). This is also known as geometric Brownian motion

or geometric random walk.

We can readily generate a random instance of such dynamics by running the following MATLAB code:

dt=0.01; mu=0.1; sigma=1; t=10;

S=1;

for indx=1:(t/dt)

S(indx+1)=S(indx)*exp(mu*dt+randn*sigma*sqrt(dt));

end;

Fig. 1.2 shows the result of this code.

In fact, for the derivation below it will be easier to assume that at each discrete time step the stock price

follows one of two discrete options, i.e., the noise will be bimodal ±σ
√
dt. We can always “coarse-grain”

this model by pooling together N � 1 steps, leading to a Gaussian noise with the same volatility, so we will

not miss much by following this (simpler) route.
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Figure 1.2: Stock price is assumed to follow a multiplicative random walk.

1.2.4 Pricing a call option

Suppose we are now at time t1, and the call option (the right to purchase S at price P ) is still available

(i.e. suppose we are at 11:59 PM before the date of the option). If Vt1(St1) > St1 − P > 0, then anyone

can buy S at price St1 , sell such an option at Vt1(St1), and sell S back at P (this hinges on the assumption

P < St1 , otherwise we won’t be able to sell S back). Thus, for the case P < St1 this arbitrageur ends up

with:

Vt1(St1)− St1 + P > 0 (1.51)

so we must have Vt1(St1) ≤ St1 − P by the no-arbitrage condition. But looking at it from the opposite

point of view (i.e. short-sell S, buy an option, buy S back at P ), we see that Vt1(St1) ≥ St1 − P . Thus, in

fact we must have: Vt1(St1) = St1 − P in the case that St1 > P . But if on the other hand St1 ≤ P , then

no one would buy the option at any positive price (and option prices must be nonnegative), and so the price

of the option must be 0 (trivially). Thus, for a call option:

V call
t1 (St1) = max(St1 − P, 0), (1.52)

and analogous logic shows that for a put option:

V put
t1

(St1) = max(P − St1 , 0). (1.53)
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1.2.5 Deriving the Black-Scholes equation

Consider a call option to buy a unit of S at price P at time t1. We will denote the price of the option by

V(t,S). The time t can be any time ranging from the present to t1, and S will be the price of the stock at

that time. Our goal will be to show that under our assumptions we can find a unique formula for V . First,

consider V(t1,S). That’s precisely the exercise we did in the previous section. Hence:

V (t1, S) = max(S − P, 0). (1.54)

We considered above the case when we could buy and exercise an option on the same time, but the more

realistic and interesting case is when we purchase an option at some earlier time t0 and have the right to

exercise it at a later time t1. We will do this recursively by considering one discrete time step back, i.e. by

dt; that is, we consider buying the option at t− dt, assuming that we know how to price the option at time

t. Eq. (1.54) will provide the necessary boundary condition to solve the recursive equations we will derive.

Assume that at time t− dt, the stock has price St−dt. According to our random walk formulation, at time

t the stock can have one of two prices:

St
St−dt

= eµdt±σdt
1/2
. (1.55)

Thus, let us define:

S+ = St−dte
µdt+σdt1/2] ≈ St−dt[1 + µ̃dt+ σdt1/2], (1.56)

and:

S− = St−dte
µdt−σdt1/2] ≈ St−dt[1 + µ̃dt− σdt1/2], (1.57)

where we expanded the exponential retaining terms of order up to dt, and defined µ̃ ≡ µ+σ2/2. According

to our assumptions, we know that at time t the option will be worth either V (t, S+) or V (t, S−) – but we

can’t be sure which one it will be (and usually, these two will different). Is it possible to take action at time

t − dt in a risk-free fashion? i.e., that our financial fate will be the same regardless of whether the stock

goes up or down? For the call option under consideration, if we buy the option at t − dt it is in our best

interest to have the stock go up in value (since we have the option to buy it at the strike price, regardless

of the stock price). How can we “hedge-away” the risk associated with the scenario in which the stock

goes down? The solution is simple: we need to buy a negative amount of stock (this is possible, since we

can short-sell). Let’s find out how many negative units of stock we should buy, which we denote by x, to

counter-act the price change of one unit of options (we are creating a “portfolio”). If the stock goes down,

we lose V (t− dt, S)(1 + rdt)− V (t, S−), and we gain x(S(1 + rdt)− S−), where r is the interest rate.

Hence our total gain in case that the stock goes down is:

G− = x(S(1 + rdt)− S−)− (V (t− dt, S)(1 + rdt)− V (t, S−)). (1.58)
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Similarly, if the stock goes up our gain will be:

G+ = x(S(1 + rdt)− S+)− (V (t− dt, S)(1 + rdt)− V (t, S+)). (1.59)

Equating the two implies that we have hedged-away the risk: no matter what the stock does, our gain will

be G+ = G− ≡ G! We can easily see that this amounts to choosing x obeying the equation:

x(S+ − S−) = V (t− dt, S)(1 + rdt)− V (t, S−)− V (t− dt, S)(1 + rdt) + V (t, S+). (1.60)

Clearly, G cannot be positive – since then we violate the no arbitrage condition since we can deterministically

make profit. On the other hand, if G < 0 we can buy −x amount of stock, and short-sell an option at time

t − dt, thereby making a positive profit of −G. The conclusion is that the no arbitrage condition implies

that G = 0. Since we found x, this allows us to connect V (t− dt, S) to V (t, S+) and V (t, S−)!

Hence we have:

x =
V (t, S+)− V (t, S−)

S+ − S−
, (1.61)

and:

V (t− dt, S)(1 + rdt) = V (t, S−) + x(S(1 + rdt)− S−). (1.62)

The last two equations are already sufficient to recursively find V at an earlier time – and hence we have

essentially solved the problem. Here is a short piece of code which computes this, by filling in a full “column”

of the matrix V (t, s) based on the previous one (this is, essentially, dynamical programming). Note that for

simplicity we chose r = 0.

dt=0.01; t=0:dt:1; sigma=1; mu=0;

p=1; %stock strike price

s_vec=0:0.01:50; %possible values of stock price

v=zeros(length(t),length(s_vec));

v(1,:)=max(0,s_vec-p); %boundary conditions for solving the backwards recursive relation

for indx=2:length(t)

for s_indx=1:length(s_vec)

s=s_vec(s_indx);

s_p=s*exp(mu*dt+sigma*sqrt(dt)); %if the market goes up

s_m=s*exp(mu*dt-sigma*sqrt(dt)); %and down
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Figure 1.3: Option pricing as found using Eqs. (1.54), (1.61) and (1.62)

.

[tmp,indx_p]=min(abs(s_p-s_vec)); %used to round s_p to value in s_vec

[tmp,indx_m]=min(abs(s_m-s_vec));

x=(v(indx-1,indx_p)-v(indx-1,indx_m))/(s_p-s_m);

v(indx,s_indx)=v(indx-1,indx_p)-x*(s_p-s); %option pricing for earlier time

end;

end;

range=1:200;

imagesc(s_vec(range),t,v(:,range));

ylabel(’Time’); xlabel(’Stock price’);

figure;

plot(s_vec(range),v(1,range),s_vec(range),v(end,range),’linewidth’,2);

xlabel(’Stock price’); ylabel(’Option price’); legend(’t=0’, ’t=1’);

Figs. 1.3 and 1.4 illustrate the behavior of the option pricing according to these equations, for some arbitrary

choice of parameters. Note that we are only plotting a subset of the output matrix – one needs to be careful

to use only values for which the results are independent of the cutoff used for the vector of stock price and

the time step used. This is why the plots in the above code restrict the range of the stock variable.

We see that as we go back in time, the sharp bilinear behavior that is encapsulated in Eq. (1.54) gets

“smeared out”. We will shortly understand why this is the case, based on the results of Chapter 2. Plugging

Eq. (1.61) into Eq. (1.62) we find that:
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Figure 1.4: “Cuts” through the heatmap of Fig. 1.4 showing the pricing of this option at the strike time
and 1 unit of time beforehand.

V (t− dt, S) ≈ V (t, S−)− rdtV (t, S−) +
V (t, S+)− V (t, S−)

S+ − S−
[S − S−/(1 + rdt)]. (1.63)

Hence, defining dS = S
√
dtσ and retaining terms to order O(dt):

V (t−dt, S) ≈ V (t, S)+ [Sµ̃dt− dS]
∂V

∂S

∣∣∣
S−dS/2

− rdtV (t, S)+
2dS ∂V∂S

∣∣∣
S

2dS
[Srdt+ dS−Sµ̃dt]. (1.64)

Note that the derivative is evaluated a the mid-point between S and S − dS, making the approximation

correct to higher order. This is essential here, since the prefactor of this term is of order
√
dt. Also, note

that the two terms corresponding to ±µ̃dtS ∂V∂S cancel each other – so that the drift term µ̃ dropped out

(can you see why the fact that they are evaluated at slightly different stock prices does not matter for this

cancelation?).

This leads to:

V (t− dt, S) ≈ V (t, S)− dS ∂V
∂S

∣∣∣
S−dS/2

− rdtV (t, S) +
∂V

∂S

∣∣∣
S
dS +

∂V

∂S

∣∣∣
S
Srdt. (1.65)

We can replace:
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∂V

∂S
|SdS − dS

∂V

∂S

∣∣∣
S−dS/2

≈ dS ∂
2V

∂S2

∣∣∣
S

dS

2
= σ2dt

S2

2

∂2V

∂S2

∣∣∣
S
, (1.66)

Leading to:

− ∂V (t, S)

∂t
= −rV (t, S) +

∂V

∂S

∣∣∣
S
Sr +

σ2S2

2

∂2V

∂S2

∣∣∣
S
. (1.67)

This is the celebrated Black-Scholes equation [9]. It is rather counter-intuitive that the drift term µ does

not appear here – only the volatility is important for pricing the option within this framework!

1.2.6 Solving the Black-Scholes equation using the Green’s function of the diffusion

equation

As shown above, it is straightforward to solve the equation numerically. Having cast it as a PDE, however,

allows us to obtain explicit solutions. We would like to make a change of variables to cancel the interest

rate r and get rid of the multiplicative nature of the random walk.

We will attempt to make a transformation of the form:

s = log(S); t̃ = −t;V (t, S)→ v(t̃, s). (1.68)

Computing the partial derivatives we find that:

∂v

∂s
=
∂V

∂S
S, (1.69)

and:

∂2v

∂s2
=
∂2V

∂S2
S2 + S

∂V

∂S
. (1.70)

The time derivative is:

∂v

∂t̃
= −∂V

∂t
. (1.71)

Putting it together we find:

− ∂V (t, S)

∂t
=
∂v

∂t̃
= −rv +

∂v

∂s
r +

σ2

2
[
∂2v

∂s2
− ∂v

∂s
]. (1.72)
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This already is a simplification since all the coefficients are now constant.

The second step will be in replacing v → ṽ = ert̃v. This gives:

∂ṽ

∂t̃
= ert̃

∂v

∂t̃
+ rṽ, (1.73)

hence:

ert̃
∂v

∂t̃
=
∂ṽ

∂t̃
− rṽ = −rṽ +

∂ṽ

∂s
r +

σ2

2
[
∂2ṽ

∂s2
− ∂ṽ

∂s
]. (1.74)

So we succeeded in eliminating the rv term:

∂ṽ

∂t̃
= [r − σ2/2]

∂ṽ

∂s
+
σ2

2

∂2ṽ

∂s2
. (1.75)

Finally, to eliminate the first derivative term, we need to make a less intuitive substitution that will mix the

time and stock variables, defining: x ≡ s+At̃, with A ≡ r − σ2/2, ṽ(t̃, s)→ v̂(t̃, x), we find:

∂ṽ(t̃, s)

∂t̃

∣∣∣∣
s

=
∂v̂(t̃, x)

∂t̃

∣∣∣∣
x

∂t̃

∂t̃

∣∣∣∣
s

+
∂v̂(t̃, x)

∂x

∣∣∣∣
t̃

∂x

∂t̃

∣∣∣∣
s

=
∂v̂(t̃, x)

∂t̃
+A

∂v̂

∂x
, (1.76)

and similarly:
∂ṽ(t̃, s)

∂s

∣∣∣∣
t̃

=
∂v̂(t̃, x)

∂x

∣∣∣∣
t̃

∂x

∂s

∣∣∣∣
t̃

+
∂v̂(t̃, x)

∂t̃

∣∣∣∣
t̃

∂t̃

∂s

∣∣∣∣
t̃

=
∂v̂(t̃, x)

∂x
. (1.77)

A note on notation: in the above two equations

∣∣∣∣
a

implies keeping the variable a fixed while taking the partial

derivative with respect to the other variable – not to be confused with the notation used in our derivation

of the Black-Scholes equation where this implied evaluating the partial derivative at a particular value.

Hence:

∂v̂(t̃, x)

∂t̃
+A

∂v̂

∂x
= [r − σ2/2]

∂v̂

∂x
+
σ2

2

∂2v̂

∂x2
. (1.78)

So we end up with the standard diffusion equation:

∂v̂(t̃, x)

∂t̃
=
σ2

2

∂2v̂

∂x2
. (1.79)

This allows us to use our knowledge and intuition from studying random walks also for this problem! Previ-

ously, we solved this equation for a δ-function boundary condition (i.e., the Green’s function or propagator).

We can easily recast our initial conditions for V (t1, S) to one in terms of x, Ṽ , which will denote V0(x).
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The solution for v̂ can now be readily expressed in terms of the Green-function:

G(t, t′, x, x′) =
1√

4πD|t− t′|
e
− |x−x

′|2
4D|t−t′| . (1.80)

Thus:

v̂(t̃, x) =

∫
G(t̃, 0, x, x′)V0(x′)dx′. (1.81)

The integrals can be evaluated in terms of the error function, and the solution is known as the Black—

Merton–Scholes formula [9, 10].

1.3 Another example: the “well function” in hydrology

A mathematically similar example where a diffusion equation is solved using the Green’s function is found

in the field of hydrology [11]: Consider pumping from a deep well, connected to an underwater reservoir,

which is (approximately) two-dimensional (i.e., it is thin compared to its lateral extent). Moreover, it turns

out that the porous nature of the soil implies that to a good approximation the velocity is proportional to

the pressure gradient (this is known as “Darcy’s law”). This helps us establish an analogy with the diffusion

equation: we saw that we can derive the diffusion equation from the continuity equation supplemented

with Fick’s law, ~j = −D∇n. In this example, the current is proportional to the pressure gradient, hence

~j ∝ −∇p. The density of the water is constant, and the height of the water column is what compensates for

the non-uniform currents. The height of the column is also proportional to the pressure (up to an additive

constant, which is inconsequential since only pressure gradients matter here). We therefore find:

∂h

∂t
= D∇2h, (1.82)

where D is a constant (not to be confused with actual diffusion! we nevertheless use this notation to

emphasize the formal analogy). If we don’t pump water into or out of the well, its level will equilibrate.

What happens if we continuously pump water out of the reservoir?

The solution can be written in terms of the Green’s function of two-dimensional diffusion, as:

H(r, T ) ∝ −
∫ T

0

e−
r2

4Dt′

4πDt′
dt′, (1.83)

where the minus sign accounts for the fact that we are pumping water out of the well. To proceed, let us

define u ≡ r2

4Dt′ →
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H(r, T ) ∝ − 1

4πD

∫ ∞
r2

4DT

e−u

u
du. (1.84)

This can be expressed using the exponential integral function:

E1(x) =

∫ ∞
x

e−u

u
du. (1.85)

For small, positive arguments, this function diverges logarithmically. This can be seen by integrating by

parts:

E1(x) = log(u)e−u|∞x +

∫ ∞
x

e−u log(u)du. (1.86)

The integral in Eq. (1.86) converges also when we set its lower limit as 0, and the result is known as the

Euler-Mascheroni constant, γE . Thus we find:

E1(x) ≈ −γE − log(x). (1.87)

This function in fact pops up in numerous applications in physics and maths (and we will see this integral

again later on in Chapter 6).

So close to the well (how close?) the height obeys:

H ∝ γE + log(
r2

4DT
). (1.88)

Fig. 1.5(a), taken from Ref. [11], shows the excellent agreement of this prediction with the measurements.

In fact, this is mathematically analogous to a recent application in the context of quantum optics, see Ref.

[12] and Fig. 1.5(b).

1.4 Summary

In this chapter, we first generalized the random walker of Chapter 2 to the case where a force can act on

the particle, thereby biasing the random motion in a space-dependent manner – described by the Langevin

equation. We introduced an important discretization procedure that allows us to simulate such equations,

and is also helpful conceptually. We next derived a PDE describing the time evolution of the probability

distribution, the Fokker-Planck equation. In the case of particles diffusing in a potential due to thermal

fluctuations, we derived a relation between the diffusion constant and the mobility of the particles, known
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Figure 1.5: (a) The “well function” of Eq. (1.84), and the measurements of water height near a well
during constant pumping. From Ref. [11]. (b) The same mathematics applies in the context of quantum
optics. Figure adapted from Ref. [12].

as the Einstein relation. We next illustrated the philosophy behind the Langevin equation by discussing a

discrete version of it, recently utilized in the context of cell size regulation. Similarly, we derived a PDE

for the temporal evolution of the prices of options – the Black-Scholes equation – which resembled the

Fokker-Planck equation of a freely diffusing particle. Finally, we showed how a similar diffusion equation

arises in a very different context – pumping water out of a well – and how the Green’s function we derived

in the context of the random walk problem can solve this problem and lead to interesting physical insights.

For further reading Refs. [13, 14] discuss Langevin and Fokker-Planck in a far more comprehensive way

than that outlined in this chapter, including numerous additional applications. Ref. [15] has an extended

discussion of applications to finance going well beyond the discussion in this chapter.



Bibliography

[1] Gillespie, D.T., 1996. The mathematics of Brownian motion and Johnson noise. American Journal of

Physics, 64(3), pp.225-240.

[2] Amir, A., 2017. Is cell size a spandrel?. Elife, 6.

[3] Koppes, L. J., et al. ”Correlation between size and age at different events in the cell division cycle of

Escherichia coli.” Journal of bacteriology 143.3 (1980): 1241-1252.

[4] Amir, Ariel. ”Cell size regulation in bacteria.” Physical Review Letters 112.20 (2014): 208102.

[5] Robert, Lydia, et al. ”Division in Escherichia coli is triggered by a size-sensing rather than a timing

mechanism.” BMC biology 12.1 (2014): 17.

[6] Soifer, Ilya, Lydia Robert, and Ariel Amir. ”Single-cell analysis of growth in budding yeast and bacteria

reveals a common size regulation strategy.” Current Biology 26.3 (2016): 356-361.

[7] Ho, Po-Yi, and Ariel Amir. ”Simultaneous regulation of cell size and chromosome replication in bacte-

ria.” Frontiers in microbiology 6 (2015).

[8] Ho, P.Y., Lin, J. and Amir, A., 2018. Modeling cell size regulation: From single-cell level statistics to

molecular mechanisms and population level effects, Annual Reviews of Biophysics 47, 251 (2018).

[9] Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of Political

Economy 81, 637–654.

[10] Merton, R.C., 1973. Theory of rational option pricing. The Bell Journal of economics and management

science, pp.141-183.

[11] Theis, C. V. The relation between the lowering of the piezometric surface and the rate and duration

of discharge of a well using ground water storage. Washington, DC: US Department of the Interior,

Geological Survey, Water Resources Division, Ground Water Branch, 1935.

[12] Pugatch, R. et al. ”Anomalous symmetry breaking in classical two-dimensional diffusion of coherent

atoms.” Physical Review A 89.3 (2014): 033807.

[13] Gardiner, C., 2009. Stochastic methods (Vol. 4). Berlin: Springer.

29



Chapter 3. Langevin and Fokker-Planck equations and their applications 30

[14] Schuss, Z., 2009. Theory and applications of stochastic processes: an analytical approach (Vol. 170).

Springer Science and Business Media.

[15] Paul, W. and Baschnagel, J., 2013. Stochastic processes (Vol. 1). Springer.

1.5 Exercises

3.1 Dephasing in Nuclear Magnetic Resonance (NMR)

A nuclear spin in a constant magnetic field B is described by Hamiltonian H = −

(
ω0 0

0 −ω0

)
where

ω0 ∝ B is half the Larmor frequency, and we set ~ = 1. The Schrodinger equation iΨ̇ = HΨ for the

time evolution of wavefunction Ψ = c1 〈↑〉 + c2 〈↓〉 =

(
c1

c2

)
yields the differential equations ċ1 = iω0c1,

ċ2 = −iω0c2.

To account for fluctuations δB of the magnetic field due to coupling with other spins, the differential

equations are modified by a noise term δω: ċ1 = i (ω0 + δω) c1, ċ2 = −i (ω0 + δω) c2 and the solutions by

a phase factor: c1 = c1 (t0) ei(ω0t+ϕ(t)), c2 = c2 (t0) e−i(ω0t+ϕ(t)). The modified differential equations and

solutions equation yield a Langevin equation for the time evolution of the phase: ϕ̇ = δω (that is, ϕ̇ = δB).

(a) Given the Langevin equation dϕ
dt = ξ where ξ is a Gaussian random variable representing fluctuations of the

magnetic field with autocorrelation function C (t) = W 2e−t/τ , calculate
〈
eiϕ(t)e−iϕ(t′)

〉
which determines

the spin relaxation.

(b) What happens for short and long correlation times of the noise?

3.2 Boltzmann distribution

Show that the Boltzmann distribution is a stationary solution of the Fokker-Planck equation for a general

V (x), D (x), and µ (x) under the assumption of the Einstein relation between D and µ.

3.3 Fokker-Planck equation for an Ornstein-Uhlenbeck process

Consider the Langevin equation:
dv

dt
=
−v
τ

+ ξ

with ξ as white noise 〈ξ (t) ξ (t′)〉 = Aδ (t− t′).

(a) What is the corresponding Fokker-Planck equation?



Chapter 3. Langevin and Fokker-Planck equations and their applications 31

(b) If v (t = 0) = v0, what is the velocity distribution at time t? Hint: you may find it useful to represent v

at time t given a noise ξ(t′), and rely on the statistics of the noise to infer the distribution.

(c) What happens as t→∞?

(d) What is the thermodynamic interpretation of (c)? How does A depend on temperature?

3.4 Diffusion in a logarithmic potential

Consider diffusion of a particle in a logarithmic potential V (x) = a log(|x|) + U(x), where the correction

U(x) is negligible for large |x| and it ensures that V (x) does not diverge at the origin. Assume that the

temperature is such that kT = 1.

(a) Write the Langevin equation and the corresponding Fokker-Planck equation diffusion in logarithmic

potential, assuming that we are in the over-damped limit and that the diffusion constant is D.

(b) For a > 1, what is the steady-state solution (away from the origin)? What is the issue for a < 1?

(c) For a < 1, guess a scaling solution for the dynamics of the probability distribution: p(x, t) = 1/tbf(x/tc)

Find the value of c for which f obeys a second-order ordinary differential equation. Find b from demanding

that the probability distribution is normalized.

(d) Write the ODE that f obeys. What are the boundary conditions?

We thank Dr. Ori Hirschberg for help in creating this problem.

3.5 Cell size control

(a) Simulate the following discrete map in MATLAB or the software of your choice:

xn+1 = (1− α)xn + ξ,

where ξ is a random variable drawn from a Gaussian distribution, with mean 0 and standard deviation of

0.1, and for values of α of 0, 0.1, 0.5 and 1. (b) For each instance, run the map for 100,000 steps, and plot

the distribution of x. (c) Calculate numerically the Pearson correlation coefficient between the variables xn

and xn+1.

Hint: the MATLAB commands randn and corrcoeff could be useful.

(d) Scientists in a laboratory at Harvard have discovered two new bacterial species, species A and species

B, and they are trying to understand the how each species regulates its size. In particular, they assume that

bacteria born at size vb grow until they reaches a size f(vb) = 2v1−α
b vα0 , where the parameter α depends
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on the species. Note that for the logarithmic of size, x, this dependence implies the discrete map of part

(a). They also assume that the bacteria have a doubling time of 20 minutes, with some timing error σn

that depends on the species. For each species, the scientists have (i) measured the distribution of sizes in a

population of 10,000 bacteria, and (ii) made a scatter plot of the size of mother at birth versus the size of

the subsequent daughter at birth. Figure 1.6 shows the plots for species A and B. One species has α = 0.99;

the other has α = 0.01. One species has σn = 5 minutes; the other species has σn = 1
2 minutes. What are

the values of α and σn for species A and for species B?

Figure 1.6: Histograms and correlations for two fictitious species of bacteria.

3.6 Cell size control*

In the notes, we derived the Pearson correlation coefficient (i) between the volume of the mother at birth

and the volume of the daughter at birth, and (ii) between the volume at birth and the interdivision time

(the time from birth to division).
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(a) Simulate the incremental model (α = 1/2) for 10,000 bacteria for one division cycle, and computationally

estimate these two Pearson correlation coefficients (i) and (ii).

(b) Analytically derive the Pearson correlation coefficients (iii) between the interdivision times of mothers and

daughters, and (iv) between the interdivision times of two cousins. What are the correlations for arbitrary α,

and for α = 1/2? Compare your results to recent experiments on human HeLa cells [Sandler et al. Nature

(2015)] that obtained a Pearson correlation coefficient ≈ 0.04 for mother-daughter interdivision times, and

≈ 0.63 for cousin-cousin interdivision times (and ≈ 0.76 for sister-sister interdivision times). Are the model

and experiment consistent?

3.7 Black-Scholes when stocks do a normal random walk

(a) For the case of a multiplicative random walk (done in class), if the volatility is σ = 1√
day

, and the current

value of a stock is 10$, how much would a “call option” be worth to buy that stock at a price of 5$ in 1, 5

and 10 days from now? Assume that interest rate r = 0.

(b) Make the (unrealistic) assumption that the stock market does a random walk rather than a multiplicative

random walk. Repeat the derivation of the Black-Scholes equation we did in class. What is the (discrete)

backwards recursive relation?

(c) By Taylor expanding the equation to the appropriate order, derive the PDE corresponding to the discrete

equation you solved in part (b).

3.8 Price of options within Black-Scholes

Prove that the option price increases as the time difference between now (t0) and the exercising time (t1,

t1 > t0) increases, for a given strike price at t1 and stock price S, and under the assumption that the interest

rate is positive.

3.9 Divisibility**

Prove that a random variable uniformly distributed in [0, 1] cannot be written as the sum of two independent

and identically distributed (i.i.d.) random variables.


