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Why microbes? coli

 We can learn fundamental biology — applicable to higher organisms —
by the quantitative study of microbes.

“

"Anything found to be true of E. coli must also be true of elephants.
Jacques Monod, 1954

Example I: establishing the role of mutations in evolution.
Example II: Quantifying evolutionary dynamics and the processes involved in it.
e Additional lesson:

Quantitative analysis of the data can lead to novel,
qualitative insights

MICrocosm

and the new science of life

e So far... no physical forces etc., but a physicist’s approach

carl
zimmer




Refs (for lecture |)

e Original paper:

Luria and Delbruck, Genetics 28(6), 491 (1943)

S| of Guo, Vucelja and AA, Science Advances, 5(7), eaav3842 (2019)

p(s) «<s

e Growth, branching processes: recursion!

* Details always in S|

Jie Lin, Michael Manhart and AA:
Yipei Guo Serial dilution with lag times and yield
Biorxiv:??

s X A%log (D) — AAL Proof?



Outline

(Lecture 1)

 Why study microbes? Luria-Delbruck experiment, Evolution experiments
(Lecture Il)

* Introduction to microbial growth, with focus on cell size regulation

* Size control and correlations across different domains of life

* Going from single-cell variability to the population growth

(Lecture 1ll)
* Bet-hedging

e Optimal partitioning of cellular resources



What does a (microbial) cell need?

B. subtilis cells
A. Chastanet et al., Front Biosci (2012)

K. Young (2006)

 What determines growth at the single-cell level ?
* How do microbes maintain their shape/size?
* How are the cellular processes coordinated?

(DNA replication, transcription , protein synthesis, division...)



ASPEN
CENTER FOR PHYSICS
2020 WINTER CONFERENCE
NEW PHYSICAL MODELS FOR
CELL GROWTH

January 5 through 10, 2020
Sunday evening welcome reception
Meetings Monday through Friday evening

In recent years, our quantitative understanding of cellular growth - across all domains of life
- has seen a “renaissance”, with a large number of both theoretical and experimental studies
coming together to unravel and elucidate a plethora of novel phenomenon. Technological
advances in both genetic manipulations, microscopy techniques and data acquisition and
analysis have allowed us to generate datasets of unprecedented accuracy and size, providing
a fertile ground for mathematical modeling.

Studying specific genes in isolation, via genetic and other types of perturbations, appears to be
ill suited for understanding many growth-related problems, likely due to the strong interactions
between the large number of cellular components, and interdisciplinary approaches are called
for. In such an approach the theory would guide experiments in identifying the key variables,
thus bridging the gap between the molecular details and the emergent behavior. Indeed, in
many cases simple and universal “growth laws” are discovered, which appear to be robust
and often shared across evolutionary divergent organisms.

This conference will bring together scientists pursuing the state-of-the-art in mathematical
maodeling of cellular growth, aspiring to find broadly applicable mechanisms and answer
fundamental questions in biology through the lens of physics and mathematics, developing
new and exciting models.

Application deadline is October 31, 2019

Please complete your application at:

http://www.aspenphys.org/physicists/winter/winterapps.html
Conference Website: https://amir.seas.harvard.edu/aspen

ORGANIZERS:
*Ariel Amir, Harvard University
Meriem EI Karoui, University of Edinburgh
*Denotes physicist in charge of diverstly
Proposals for the 2021 Winter Conferences are invited and must ba submitted by January 15, 2020
The Aspen Center for Physics is committed to a significant participation
of women and under-represented groups in all of its programs.
Aspen Center for Physics -
700 West Gillespie Street
Aspen, CO B1611 4]

phone: 970.925.2585  email: acp@aspenphys.org

The Aspen Center for Physics is supported by the Mational Science Foundation Grant Mo. PHY-1607611




Bacterial form and growth

N

Bacteria have diverse
shapes, given to them by
their rigid cell walls

Escherichia coli Streptococcus pyogenes ——— 2ym
Campylobacter jejuni
“How does a bacterium construct a cell having -7 RN
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a defined length, diameter, and overall geometry?” I A’ S y o NG
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* How do bacteria maintain their cylindrical growth? Nl *t‘;, D(\\

 How are the different processes coordinated?

(cell wall growth, DNA replication, division etc.)

K. Young (2006)



Peptidoglycan (PG)

Bacterial growth

* Doubling time ~ typically tens of minutes

* Remarkable precision in growth

* All done under huge internal pressure!

BciIIus subtilis o ) Wang et al., Robust Growth of Escherichia coli
A. Chastanet et al., Front Biosci (2012) Current Biology (2010)



Exponential growth at single-cell level

Buoyant mass (pg) dm/dt
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Weigh cell repeatedly

# Exponential growth (with small fluctuations) is a good approximation



Exponential growth at single-cell level

"Anything found to be true of E. coli must also be true of elephants.”

Jacques Monod, 1954
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# Exponential growth (with small fluctuations) is a good approximation



Peptidoglycan (PG)
cell wall

Symmetry of division

e E. colicells are very good in dividing symmetrically!

Lan et al. (2007)

k(p) |
.-20 /\ —
2]
-15 "E
-
(o]
o
=10
-5 NI
5
/
O.:l:." CT;.;‘:TJ 0.55 Vdaughteerother
Marr, Harvey and Trentini (1966) Mannik et al., PNAS (2011)
0~0.018 0~0.037

m)  Small effect on size distribution



Symmetry of division
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* Remarkably, cells divide symmetrically even when severely deformed mechanically



Min oscillations

. 56

Position —>

Meinhardt and de Boer, PNAS (2001)

“What | cannot create, | do not understand”
R. Feynman

For recent modeling work:
Jonas et al. PNAS (2018)

Zieske and Schwille, eLife (2014)



Dealing with noise: single-cell size variability:

d

Focus now on control of
Division timing,

e.g., Following size at birth
across lineage

* |f generation time is stochastic (and assuming symmetric division):

1

Vpy1 = Evne’“ - log(v) does a random walk [no size control]

- Generation times must be correlated (“timer” doesn’t work in regulating size)



Generic model for cell size control  AA, PRL (2014)

Vg = f(Vnp) Determinstic “strategy” which the cell will attempt to implement
\ Definitions:
/ v,=average newborn size
Vg = 2V 7= mass doubling time
“Perfect” size control A=In(2)/ T
Vg = 2vnb

No size control (“timer” model)

* If the noise is small: only f'(vy) = 2(1 — a) matters,
(Taylor expand around typical size)

- Two models with the same derivative are equivalent!

* A convenient choice: f(Vnp)=2V, % 1 4
a=1

“Perfect” size control

No size control

See also: Brenner, Newman, Osmanovic¢, Rabin, Salman, and Stein, PRE 2015



Generic model for cell size control
a=1/2

fmp)=2vo* ' ™ o) f (V)= Voptyg

(Incremental Model , Sompayrac and Maalge, 1973)

Within this model, a cell attempts to add a (constant) volume before division.

Adding noise...

Generically we will assume: t =t, +t,

tg =7 +% Infvy/v,,]

tn = Noise (random variable with standard deviation OT)




Generic model for cell size control

d k 0.4
d_’: =—7x + oé (Ornstein-Uhlenbeck process) 02

Xpt1 = (1 — a)xy, + AE (Discrete stochastic map/ autoregressive process)
Xn' log, (Size at n’th birth)

Slope = 2(1 — )

Timer, a=0 s AA, elife (2017)
g (p) N Ho, Lin and Amir,
C ) Annual Reviews of
Adder, a=1/2 Biophysics (2018)
A s, @D=07D)
( )
A Sizer, a=1
GO
Unstable (w>8) o 3
]

A Up
Cmd: Pearson correlation coefficient between the
mother and daughter cells' generation times

Po-Yi Ho (Harvard—> Stanford)



Solving the model

1.5

© Numerics, a = (.1
Numerics, a = (.5
0 Numerics, a =1

% Incremental model
= = =Theory

log,[Va/Vo] = (1 — a)log,[Vin/Vo] + Aty

But V,; and V., must have the same distribution! B nl
- Size distribution is log-normal (right skewed),
and we can find its variance. "

— P(an) = V2min[2]o, Vo , Op = m,cvz ln(2) Oy




Solving the model 0.1

© Numerics, a = (.1
Numerics, a = 0.5
Numerics, a = 1

t =1+ aln[Vy/V,,] + At,

Incremental model
.
8 - = =Theory

- Time distribution is Gaussian, we can a

calculate its variance in the same way

(t ‘L')Z . 4-":“. Wy .
P(t) = \/_Gt 20t , 0 = O ’2 — 0 10 20 30 40 50

t (mins)

* Both size and time distributions controlled by the same noise!

For extended discussion of the mathematical problem (including asymmetric division):

Stochastic modeling of cell growth with symmetric or asymmetric division
Marantan and Amir, Phys. Rev. E. (2016)



Correlation between mother and daughter size

For a narrow size distribution, we can expand:

Vab—Vo

In [an/VO]z Vo

—>Therefore it is equivalent to calculate the correlation coefficient of log(size)

E[ln[Vmother/VO]ln[Vdaughter/VO]]

Cma= 2
Using: In[V;/Vo] = (1 — ao)In[V,,/V,] + At,
- Cphgq=(1-a) A robust way of finding the size control strategy!

Measured value of 0.55 = suggests the incremental model

1
@=3 S [(Vnp)™ VopVy



Correlations!
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Stewart et al., Plos Biology (2005).
20 30 40 o0 60 70

Vb (a.u.)
Soifer, Robert and Amir, Current Biology (2016)

See also: Campos et al, Cell (2014)
Taheri-Araghi et al, Current Biology (2014)

Slope of best fit very close to 1 = Incremental Model



Correlations!
Similarly, there will be a negative correlation of size and time:
a

* Similarly: Cyt = — >

* Size-time correlation coefficient measured recently found to be -%:
Robert et al., BMC (2014) = Consistent with incremental model!

For the incremental model:

Vd:Vb+A—> 10

At = 10g[1 +vo/V,,] 20 30 40 50 60 70

Vb (a.u.)

Soifer, Robert and Amir, Current Biology (2016)
see also: Osella et al, PNAS 2014



Connecting time and size distributions

Using the previous formulas:

_ 2 _ or?
Ot = Or ’ Iv= 2(2-)

t (mins)

Y = CVsize /CVeime = In(2) /V2a =~ 0.69

0.4

Data from three different experiments 03
o

on agarose gels: 0.2 t

y = 0.72,0.67, 0.63 (average 0.67) 0.1

0.0

-2 0 2 4
scaled V}, and ty4

Soifer, Robert and Amir, Current Biology (2016)



“Adders” in Nature

E. coli wsm |ocal density S. cerevisiae vd=Vvp+A H. salinarum
i A fitting parameter
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Size at birth, v, (au)

Soifer et al., Current Biology (2016)
Eun et al., Nature Microbiology (2018)
Logsdon et al., Current Biology (2017)

Bree Aldridge llya Soifer Yejin Eun Ethan Garner
(Tufts) (CalicoLabs) (Harvard) (Harvard)



Phylogenetic Tree of Life

Bacteria Archaea Eukaryota “ ”
Y Are “adders
G . o o
Filamentous si opt/m 1zing
Spirochetes bacteria Entamoebae (;?:12 Animals
Gram Methanosarcina Fungi ]
.\ Positives|  prathanobacterium Halophiles pOpUlatlon
Proteobacteria Methanococous Plants t h ?
Cyanobacteria ¢ Ciliates grOW °

Planctomyces

Bacteroides
Cytophaga

Thermotoga

Thermoproteus

Flagellates
Pyrodicticum

Trichomonads

Microsporidia

Aquifex

By now 6 species of bacteria

Diplomonads




How do variability&size control affect population growth?

Are “adders”
optimizing
population

growth?

N x efrt

* Assume here a constant environment, and will not consider “bet-hedging” scenarios
e.qg., Balaban et al., Science (2004)



How do variability&size control affect population growth?

Are “adders”
optimizing
population

growth?

Jie Lin Ethan Levien



Single-cell variability: Gaining from noise?

2 independent generation time model
= | > Powell
| 2[ e_Apr(T)dT =1 M(i)(\:/\rlgbiology,
0 1956
ey T Key Assumption: o
no correlation in mother-daughter generation time

Result: variability enhances the population growth

Noise-driven growth rate gain in clonal pnas, 2016
cellular populations

Mikihiro Hashimoto?, Takashi Nozoe®, Hidenori Nakaoka?®, Reiko Okura?, Sayo Akiyoshi®, Kunihiko Kaneko®®,
Edo Kussell“®, and Yuichi Wakamoto®"'

Noise and Epigenetic Inheritance of Single-Cell Current Biology, 2016

Division Times Influence Population Fitness

Bram Cerulus, Aaron M. New,
Ksenia Pougach, Kevin J. Verstrepen



