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Microbial growth

Doubling time

~ tens of minutes to several hours

Escherichia coli

25μm

Halobacterium salinarum

Stewart et al., 
PLoS Biol (2005),

Eun et al., 
Nat. Micro (2018)

Saccharomyces cerevisiae

Soifer al., 
Current Biology (2016)



(credit: wikipedia)
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(Lecture I)

• Why study microbes? Luria-Delbruck experiment, Evolution experiments

• Introduction to microbial growth, with focus on cell size regulation

(Lecture II)

• Size control and correlations across different domains of life 

• Going from single-cell variability to the population growth

(Lecture III)

• Bet-hedging

• Optimal partitioning of cellular resources



Why study microbes? Luria-Delbruck experiment

Protocol

• Grow culture to ~108 cells.

• Expose to bacteriophage.

• Count survivors (plating).

Luria and Delbruck (1943)

What to do when the experiment
is not reproducible?

(variance, standard deviation >> mean) 



Why study microbes? Luria-Delbruck experiment

Model 1: adaptation

• Survivors# must be follow Poisson distribution

→ Variance = Mean

Model 2: Random mutations lead to resistance

• Leads to broad (“jackpot”) distribution since

mutations can occur early/late

• Mathematically non-trivial: Landau distribution (Levy stable)

• Simulation straightforward (as is variance:mean estimate)

(Wikipedia)



Why microbes? Luria-Delbruck experiment
mutant_rate=6*10^-8;

trial_num=10000;

for k=1:trial_num

Mutant_num=0;

Non_mutant=10;

for j=1:20

Total_1=2*Non_mutant;

Total_2=2*Mutant_num;

tmp1=poissrnd(mutant_rate*Total_1); %new mutants        

Mutant_num= Total_2+tmp1;

Non_mutant = (Total_1-tmp1);

end;

Res(k)=Mutant_num;

end;

q=hist(Res);

• In case of large number of generations:
Convergence to a Levy-stable distribution
(Mandelbrot, Journal of Applied Probability, 1974)

See also: Kessler and Levine, PNAS 2013

# of generations

# of Experiments



Quantitative evolution

From: Lenski and Travisano, PNAS (1994)

Imagine that you have discovered a well-preserved and clearly stratified fossil bed that 
provides a record of evolution extending thousands of generations for the particular 
organism that you study….

And the fantasy continues. Imagine that you could resurrect these organisms (not 
merely bits of fossil DNA but the entire living organisms) and reconstruct their 
environment exactly as it was during the thousands of generations preserved in the 
fossil bed….



Why microbial evolution?

From: Lenski and Travisano, PNAS (1994)

• “Replaying the tape of life”

• Fast doubling time

• Physiology better understood

Yet this fantasy is not fiction; it is fact. We have many such "fossil beds" preserved, and 

we have "traveled in time" to manipulate populations with respect to their history and 

environment. The fossil beds are preserved in a freezer and contain populations of the 

bacterium Escherichia coli. Our time travel thus far extends over 5 years, representing 

>10,000 generations in this system, and we have manipulated many populations each 

comprising millions of individual organisms. In essence, our approach might be called 

experimental paleontology.



Evolution in the lab

• Since 1988 Lenski et al. grow bacteria in culture tube, 

X100 fold diluting into new media every day.

• Surprisingly, growth-rate (“fitness”) keeps increasing without saturation!

Credit: E. coli long-term 
evolution experiment, wikipedia

Wiser, Ribek and Lenski, Science (2013)

Generation

Fitness (~Growth rate)



Evolution in the lab

• If beneficial mutations along genomes are independent: 

this maps (more or less) to “coupon collector problem”

• Then fitness should rapidly plateau as power-law

→ 𝐹 𝑡 ~𝐹𝑚𝑎𝑥 − 𝐶/𝑡2

• Slow relaxations hint at role of epistasis: interactions between genes

𝐹 = ∑𝑎𝑖𝑆𝑖

→ 𝐹 𝑡 ~𝑎 + 𝑏𝑙𝑜𝑔(𝑡)

Yipei Guo, Marija Vucelja and AA, 
Stochastic tunneling across fitness valleys can give rise 
to a logarithmic long-term fitness trajectory (Science Advances, 2019)

𝐹 = ∑𝑎𝑖𝑆𝑖 + ∑𝐼𝑖𝑗𝑆𝑖𝑆𝑗

• Adding random interactions between genes (similar to spin-glass model)

slows down dynamics and can give rise to logarithmic trajectories.



Why microbes?

• We can learn fundamental biology – applicable to higher organisms –
by the quantitative study of microbes.

Example I: establishing the role of mutations in evolution.

Example II: Quantifying evolutionary dynamics and the processes involved in it.

• Additional lesson:

Quantitative analysis of the data can lead to novel, 
qualitative insights

• So far… no physical forces etc., but a physicist’s approach



Why microbes?

• We can learn fundamental biology – applicable to higher organisms –
by the quantitative study of microbes.

Example I: establishing the role of mutations in evolution.

Example II: Quantifying evolutionary dynamics and the processes involved in it.

• Additional lesson:

Quantitative analysis of the data can lead to novel, 
qualitative insights

• So far… no physical forces etc., but a physicist’s approach

"Anything found to be true of E. coli must also be true of elephants.“
Jacques Monod, 1954 



Chapter 3

Delbruck-Luria experiment: learning from
stochasticity

Imagine doing an experiment a large number of times, and finding a completely different outcome on every run. How would
you respond to such scenario? Most likely you will discard the data, and attempt to improve the experimental setup – perhaps
attempt to get a more precise measurement setup, or try to ensure that the initial conditions are identical in all runs. In
this chapter, we will describe a classical experiment in biology, where this happened. Specifically, the standard deviation of
the measurement far exceeded the mean. Instead of being a nuisance or an unwanted result, this observation by itself led to
the most important results of the experiments. Delbruck and Luria were examining how many bacteria in a culture survive a
viral attack. The combined work of Luria – who did the experiment – and the modeling work of Delbruck, led the pair to an
understanding that it is mutations (rather than adaptation) that provide bacteria with resistance to bacteriophages, a finding
for which they were awarded the Nobel prize. You are encouraged to read their original paper on this from 1943 [1], which is a
beautiful case of modeling and simple maths leading to profound results.

3.1 The experimental setup and results

The experiment done by Luria is simple to define: we start with a few E. coli bacteria (50-500 in the original experiment), and
let them grow. They reproduce by asexual reproduction, with each one growing and dividing into two daughter cells within
about τd = 20 minutes, i.e., at time t the number of cells will be:

N(t) = N0 · 2t/τd . (3.1)

After getting about 109 cells, Luria exposed the bacteria to a virus (a bacteriophage), that killed nearly all of the cells.
Nevertheless, several bacteria survived in most of the experiments. By plating the cells and counting the number of individual
colonies that emerged, he could know approximately how many cells managed to survive the viral attack. This number was the
main result of his experiment. Annoyingly, this number varied enormously from experiment to experiment, no matter how hard
Luria tried to control things!

We also note that once the cells developed resistance to the virus, all of their offspring would also be resistant: to prove this,
Luria showed that exposing the progeny of cells from the surviving colonies to the virus does not kill them.

3.2 What’s going on?

As of 1943, there were two possible hypotheses as to the mechanism through which bacteria develop resistance to viruses: in the
first, “Lamarckian” approach, the cells attempt to adapt to the virus, after exposure. The majority do not succeed in adapting,
and die, but a small fraction adapts and survives. Note that in this scenario, the cells only start to adapt in the final generation,
once they are exposed to the virus.

14



Chapter 3. Delbruck-Luria experiment: learning from stochasticity 15

In the second hypothesis, resistance comes from a beneficial mutation that provides the cell with immunity against the virus.
In this case, if the mutation happened early on in the experiment, all of the progeny of that cell will also be resistant.

In the next section we will show that if the Lamarckian adaptation hypothesis is correct, the probability distribution of the number
of surviving cells approximately follows a Poisson distribution – since every cell has some finite probability p to adapt, and the
adaptation of every cell is an independent process. We will also show that the variance to mean ratio of the number of survivors
over many trials would be 1, and hence this model cannot account for the high variance:mean ratio observed experimentally.
Because of this, the adaptation hypothesis can be ruled out!

In the mutation hypothesis, the crucial thing to note is that the final survivor population is exponentially sensitive to the
generation in which the mutation occurred - in the unlikely event that it happened early on, we will have a huge number of
resistent cells at the end; while if it happened very late in the experiment only a handful of cells will survive. Therefore the
distribution of the number of survivors is very broad, with an enormous variance:mean ratio, which we will quantify in the next
section.

Together, the modeling of Delbruck and Luria allowed them to rule out the adaptation hypothesis and accept the mutation
hypothesis. Remarkably, it is the stochasticity and fluctuations in the results of these experiments which proved to be the
“smoking gun” of the model. Only via their quantitative analysis could they support their biologically relevant conclusion.

Note: also today the question of how bacteria develop resistance (to antibiotics rather than bacteriophages) is highly relevant
to society, with exciting ongoing research unravelling some surprising strategies used by the cells. In the next chapter we will
discuss how “gambling” may help the bacteria be more resistant, a phenomenon known as “bet hedging”.

3.3 Quantitative analysis

Adaptation Consider first the adaptation model. A single cell present when the virus is applied either adapts and survives with
some small probability p (hence contributing xi = 1 to the number of surviving cells) or dies (and contributes xi = 0 to the
total number of surviving cells). This is also known as a Bernoulli process, or coin-flipping. Therefore, to find the probability of
having X survivors out of the entire population of N cells, we have to consider N “coin-flips” with a probability of success p
for every flip. Hence:

P (X) =

(
N

X

)
pX(1− p)N−X , (3.2)

i.e., it is a binomial distribution. When p is very small, which is the case in the Delbruck-Luria experiments, we can approximate
the distribution for X � N as:

P (X) ≈ 1

X!
NXpX(1− p)N , (3.3)

where we used
(
N
X

)
= N(N − 1)...(N −X + 1)/X! ≈ NX/X!. Note that using the Taylor expansion we previously used for

log(1 + ε), we have:

N log(1−X/N) ≈ −X → (1−X/N)N ≈ e−X . (3.4)

Therefore we find:

(1− p)N = (1− Np

N
)N ≈ e−Np, (3.5)

Defining λ ≡ Np we find that:

P (X) ≈ λX

X!
e−λ. (3.6)

This is the Poisson distribution. It is easy to check that the distribution is indeed normalized, using the following Taylor expansion
formula to sum over the X’s:
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eλ = 1 + λ+ λ2/2!.... (3.7)

Note that in our example from week 1 where we consider buses being dispatched randomly from the station, this distribution
would describe the number of buses arriving in a large time interval T – also there, there is a constant probability p for a bus
to arrive at every time interval.

Consider a single cell present when the virus is applied, corresponding to a single “coin-flip”. The expectation value of its
contribution to the number of living cells at the end of the experiment, X, is clearly E(xi) = p, and the variance (for the single
cell contribution) is:

V ar[xi] = p(1− p)2 + (1− p)(0− p)2 = (1− p)p((1− p) + p) = p(1− p) ≈ p = E[xi]. (3.8)

Therefore, for a single coin-flip, the variance and mean are approximately the same for small p!

Furthermore, the total number of survivors X is simply the sum of N such independent variables, each having approximately
the same variance and mean. Thus we find:

E[X] = Np ≈ V ar[x], (3.9)

as we have asserted previously. In fact, since the Poisson distribution arises from the binomial one in the limit where p→ 0, this
relation then becomes exact for the Poisson distribution. This can also be verified directly by calculating its two first moments.

Mutation

Let us now assume that the mutation hypothesis is correct, and consider the cells of the nth generation. Their number is N0 ·2n,
so the expected number of mutations occurring in that generation is:

〈Mn〉 = N0 · 2n · p, (3.10)

where the 〈〉 denotes averaging over many trials.

Since the probability of mutation is small, the probability of two mutations occurring in a single experiment is small, and the
expected number of survivors originating from a mutation in the nth generation is:

〈Sn〉 = N0 · 2n · p · 2g−n = N0 · 2g · p, (3.11)

where g is the total number of generations. The fact that this number is independent of n is crucial for our understanding of the
DL experiment. It means that the survivors are equally likely to come from early or late generation, since although the odds are
small for the mutation to occur earlier (due to the much smaller number of cells), this rare event will result in a huge number
of survivors.

To see this more formally, let us calculate the mean and variance of the number of survivors. We have:

Stotal =

g∑
j=1

Sj . (3.12)

From Eq. (3.11) we can write:

〈Stotal〉 =

g∑
n=1

N0 · 2np
(
2g−n

)
= Ntotal · g · p, (3.13)

where Ntotal = N0 · 2g, the growth of the initial population over g generations. Since mutations are rare, we can write the
variance as a sum of the square number of survivors arising from each particular mutant. Pooling these together by generation
leads to:
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〈S2
total〉 ≈

g∑
n=1

N0 · 2np
(
2g−n

)2
, (3.14)

where N0 · 2np is the expected number of mutations in the nth generation and
(
2g−n

)2
is their contribution to the variance.

This sum can readily be evaluated:

〈S2
total〉 ≈ pNtotal

g∑
i=1

2g−n ≈ pNtotal2g. (3.15)

It is easy to see that the second moment is much larger than the mean squared, and hence it is also approximately equal to the
variance:

V ar[X] = E[X2]− (E[X])2 ≈ 〈S2
total〉. (3.16)

We therefore conclude that the variance:mean ratio is ridiculously high. In fact, the mean and variance calculation reflect
the expected result if we repeat the experiments an enormous – and impractical – number of times. In order to find typical
variance:mean ratio for the experiments, we have to consider the finite number Q of experiments performed. In your problem
set you will simulate the experiment, which can be used to provide precisely this estimate.
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Our findings also hold for the case where cells are grown in batch culture (subject to the stan-

dard dilution protocol), after making the corresponding changes to the expression for fixation

probabilities derived below.

Average fixation probabilities

Single mutants For a standard dilution protocol, we assume there are N0 cells at the start of

the day, Nf cells at the end of the day, after which a dilution of D =
Nf
N0

fold is performed.

The probability pext,k of k single mutants with fitness effect s at the start of a day eventually

going extinct over many dilutions can be found from requiring that all daughter mutants in the

next day must eventually go extinct. This can be represented by the following equation:

pext,k =

min(Nm,k,N0)∑
j=0

Hyge(j,Nm,k, Nf , N0)pext,j (S7)

where Nm,k ≈ kD1+s is the number of mutants at the end of the day if we started the day

with k mutants, and Hyge(j,Nm, Nf , N0) =
(Nmj )(Nf−NmN0−j

)

(NfN0
)

is the distribution for the number of

mutants drawn during the dilution process. We also demand the boundary conditions pext,0 = 1

and pext,N0 = 0. Solving this set of linear equations, the fixation probability of a single mutant

emerging at the start of a day can be obtained from pf = 1− pext,1. For s = 0, this would give

pf = 1/N0.

To obtain analytical expressions for the fixation probability, we assume that pext,k ≈ pkext,1,

which is a good approximation for the typical case where k � N0 since in this regime the

mutant cells can be considered to behave independently from one another. In the limit where

Nm, Nf , N0 � 1, Hyge(j,Nm, Nf , N0) can be approximated by the Poisson distribution with

mean Λ = N0
Nm
Nf

. Therefore, pf can be found approximately from the following self-consistent

Section SF. Batch culture



equation (45):

pf = 1−
∑
j=0

e−ΛΛj

j!
(1− pf )j

= 1− e−Λpf

(S8)

For |s| log(D)� 1, which is typically the case, this gives pf ≈ 2log(D)max(s, 0).

However, in general the mutation can occur after some fraction of the day t̃ has passed.

Given that a mutation has occurred, the probability that it emerged at t̃ is given by the probability

density

P (t̃) =
Dt̃log(D)

D − 1
(S9)

For t̃ > 0, there is a reduction in the number of mutants at the end of the first day, such that

Nm(t̃) = D(1+s)(1−t̃), and following the same argument as in Eqn.S8,

pf (s, t̃) = 1−
∑
j=0

e−Λ̃Λ̃j

j!
(1− pf (s, 0))j

= 1− e−Λ̃pf (s,0)

(S10)

where Λ̃(t̃) = N0
Nm(t̃)
Nf
≈ D−t̃ for |s| � 1. This gives pf (s, t̃) = 2log(D)D−t̃ max(s, 0) for

Λ(t̃)pf (s, 0)� 1 (45).

Given that a mutation of selection coefficient s arises, its average fixation probability is then

the average over all possible times within a day the mutation could have occurred:

pf (s) =

∫ 1

0

pf (s, t̃)P (t̃)dt̃

= 2
(log(D))2

D − 1
max(s, 0)

(S11)

Probability of successful double mutants In the large population limit, pf (s ≤ 0) = 0 (Eqn.

S11), which implies that the population can only successfully accumulate beneficial mutations.

For the population to escape a metastable state through beneficial double mutations, the first

mutant (with a single deleterious mutation) must gain a second mutation before going extinct,

and the effective mutant (with two mutations) must fix in the population.
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