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Gravity is an attractive force



Gravity is an attractive force

PE = �GMm
r
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By itself, the small mass has an intrinsic energy 

E = mc2

E = mc2 � GMm
r

When it is placed near the larger mass, what energy should we assign ?
Let us start with the Newtonian approximation ...
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E = mc2 � GMm
r

We see that the total energy of       becomes zero at m

r = GM
c2

and for smaller      it is negativer

M

negative net energy



Suppose we keep placing more and more masses 
inside the horizon radius, until the mass comes to 
zero (or close to zero; it may stop at the planck 
mass)

Then we have a low mass object with a lot of internal structure

The problem is that we can make an infinite number of such planck 
mass objects, because we can start with an arbitrarily large mass…

Of course since we have talked about Gravity and Special Relativity, we 
should really use General Relativity



Mass M

General relativity Mass curves spacetime

All the ‘force’ of gravity is encoded
in this curvature of spacetime



Horizon

Star

The black hole

Everything must
keep moving inwards

Density is still 
very low

This region becomes 
a vacuum
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Flat space approximation

We see that as we take bigger and bigger holes, the density at the 
point of horizon formation becomes smaller and smaller

Why is it hard to stop black hole formation?



Repeating our argument properly with general relativity does not change 
our  answer much

r = 2GM
c2

M negative net energy

Q:  Do we have a region where energy is negative? 

Q:  If not, then how do we stop horizon formation? 



Hawking radiation



r = 2GM
c2

M negative net energy

But how should we place the particle inside the hole ?

Hawking:  Quantum mechanics will do this automatically …



M

In quantum mechanics, the vacuum can have fluctuations
which produce a particle-antiparticle pair

�E �t ⇠ ~

But if a fluctuation happens near the horizon, the particles do not have 
to re-annihilate 

�E = 0 ! �t = 1

Thus the negative energy particle gets 
automatically placed in the correct position 
inside the horizon



The outer particle drifts
off to infinity as ‘Hawking 
radiation’

The mass of the hole has 
gone down, so the horizon 
shrinks slightly

The process repeats, and 
another particle pair is 
produced

The energy of the hole 
reduces

But overall energy of hole + 
radiation is conserved



Two possibilities:

(a) Black hole evaporates away completely

vacuum

(b) A planck sized remnant is left

We will see that each of these possibilities presents us 
with problems …



Q:  If we have a horizon, then can we stop or alter the process of
      Hawking evaporation?  If so, how? 

Q: If the evaporation is not stopped or altered, then

      (a) does the hole evaporate away completely?
 or
      (b) Are we left with a planck sized remnant? 



The problem with Hawking evaporation



The crucial issue now has to do with ‘entanglement’

Vacuum fluctuations typically produce entangled states ...

+
electron electronpositron positron

M M
+

So the state of the radiation is entangled with the state of the remnant



The entanglement can come from many sources:

(a) Charge: positive and negative

(b) Spin:  Up and down

(c) Existence or nonexistence of a particle
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iGeneral form of entangled state



The amount of this entanglement is very large ...

If      particles are emitted, then there are         
possible arrangements
N 2N

We can call an electron a 0 and a positron a 1

101100010011+

000000111111
…. ….

111111000000+

Now there are two possibilities: 



(a) Information loss:  The evaporation goes on till the remnant has zero 
mass.   At this point the remnant simply vanishes

vacuum

The radiation cannot be assigned ANY quantum state ... it can only be 
described by a density matrix  ... this is a violation of quantum mechanics 
(Hawking 1975)

101100

000000

….

111111

The radiation is entangled,
but there is nothing
that it is entangled  WITH
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Quantum mechanics:
entangled pairs are created

Cannot be described by 
any quantum state

The black hole information paradox

1p
2
(00 + 11)

vacuum

Star is described by 
a wavefunction  i

 f = e�iHt iContradicts quantum theory



(b) We assume the evaporation stops when we get to a planck sized 
remnant. 

The remnant must have at least         internal states 2N

101100010011+

000000111111

…. ….

111111000000+

Can we hold an unbounded number of states in planck volume with 
energy limited by planck mass?



CFT with finitely many degrees 
of freedom in a finite volume

So CFT has finitely many states 
with energy less than E

The CFT lives on a sphere of radius RCFT

The AdS has a curvature radius RAdS

An excitation of energy                 in the center of AdS has an 
energy                   in the CFT 1/RCFT

1/RAdS

So a planck mass remnant in AdS corresponds to finitely 
many states in the CFT; thus we cannot have remnants

AdS/CFT duality 
(Maldacena 97)

But if we accept AdS/CFT duality then we cannot have remnants



Q:  Does entanglement keep rising between the emitted radiation and 
the remaining hole? If not why not? 

Q:  Does the hole completely evaporate away? If so, is there any 
entanglement left at the point of evaporation? 

1p
2
(00 + 11)

Q: Is a remnant left? If so, do we accept that there is no analogue of
AdS/CFT duality? 

vacuum



Can we prevent the formation of a horizon?



Given how much trouble we are having because of a horizon, let us ask 
if we can prevent the formation of a horizon

1p
2
(00 + 11)

We have already seen that for a large star, the density is very low at
the point of horizon formation
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so it seems hard to stop the collapse. 

But can we quantify 
this difficulty?



This is not easy to get: matter near the horizon is pulled in very 
strongly, and falls in

Buchdahl’s theorem:  If we have a perfect fluid ball with radius 

R <
9

4
M

then the pressure will have to diverge somewhere

??



ds2 = �e2↵(r)dt2 + e2�(r)dr2 + r2(d✓2 + sin2 ✓d�2)

Tµ̂⌫̂ = diag{⇢(r), p(r), p(r), p(r)}

p0(r) +
↵0(r)

2
(⇢(r) + p(r)) = 0

pressure will diverge somewhere 
if radius of ball is 

Metric

Stress tensor

Basic equation:  The gradient of pressure has to balance the attraction
                        of gravity

p = 0

R <
9

4
M

R = 2M



R <
9

4
M

We can argue that if                somewhere, then the solution is 
unphysical 

p ! 1

Thus if the ball reaches a radius                    then it must continue
to collapse through               and create a horizon 

R <
9

4
M

R = 2M

    Q:  If stars are allowed to reach a size                  then can collapse 
         be prevented?  If so, how? 

R <
9

4
M



Can we deform the horizon ?



ds2 = �f(y)dt2 + hij(y)dy
idyj

L = �1

2
@a�@

a�� V (�)

V 00 < 0

� = �0 = constant

The no-hair theorem (Bekenstein): 

If we do form a horizon, then can we deform it (so that the pair creation 
process may change) ? 

Try to add a time-independent classical scalar field to the hole

Then the only solution is 

So the geometry of the hole does not deform  (Classical no-hair 
theorem)

Time independent metric

Lagrangian for scalar field

Assume potential is stable



Can we change the quantum state of the hole, without changing the 
classical geometry ?

Hawking radiation is a quantum process, and if we change the 
quantum state around the horizon, then maybe the pair creation 
process will be altered

Consider a free scalar field in flat spacetime

⇤� = 0

The solutions to this equation are

f = ei(
~k·~x�!t) ! = |~k|with



To quantize this scalar field, we write

[â~k, â
†
~k0 ] = �~k,~k0

�̂ =
X

~k

1p
V

1p
2!

⇣
â~k e

i(~k·~x�!t) + â†~k e
i(~k·~x�!t)

⌘

and impose the commutation relations

Then each fourier mode becomes a harmonic oscillator with frequency 

! = |~k|

The state annihilated by all the annihilation operators is the vacuum |0i

â~k|0i = 0



Acting with a creation operator        adds a particle of momentum      
and energy

â†~k ~k
! = |~k|

We can add many particles: â†~k1
. . . â†~kn

|0i

We can make a coherent state eµ~kâ
†
~k |0i

µ~kwhere       is a complex number

|µ~k|For large         ,  the expectation value       behaves like a classical
field solution to the wave equation   

h�̂i

⇤� = 0

(This the relation between the quantum and the classical theory)



The same formalism works in curved spacetime. The wave-equation
is 

⇤� = gab�;ab = 0

fi(x)

�̂ =
X

i

⇣
âifi(x) + â†if

⇤
i (x)

⌘
⇤fi = 0

We take a complete set of solutions           to the wave equation 

and we write

[âi, â
†
j ] = �i,jWe again impose the commutation relations

The vacuum       is given by |0i âi|0i = 0

â†i1 . . . â
†
in
|0iParticle excitations are given by



Adding ‘hair’ to a star:

We solve the wave equation in this background

�̂ =
X

l,m,n

⇣
âlmn Ylm(✓,�)flmn(r)e

�i!t + â†lmn Y
⇤
lm(✓,�)f⇤

lmn(r)e
i!t

⌘

⇤� = 0 � = Ylmflmn(r)e
�i!t,

âlimini |0i = 0

|0iThe vacuum state       of the quantum field is given by

We then write the quantum field as



We can change the state by adding quanta

â†l1m1n1
. . . â†l1m1n1

|0i

But all his does not work if there is a horizon …

This adds ‘hair’ to the star.  If we take a coherent state

eµlmnâ
†
lmn |0i

then we get ‘classical’ deformations of the star.



We again try to solve the wave equation, now
in the Schwarzschild geometry

⇤� = 0 � = Ylmflmn(r)e
�i!t,

But this time we do not find good solutions flmn(r)

Pressure
Trr ! 1

Field modes have 
divergent
stress-energy

gtt = 0



Why is it hard to find hair? 

Large relative momentum needed
to keep the rocket stationary 

Horizon



Thus we see that we cannot deform the horizon (at either the classical 
or the quantum level) to change the production of entangled pairs

entangled
not
entangled ?

NO !!

The information problem is really a combination of two things:

 (a) Creation of entangled pairs by the Hawking process

 (b) The ‘no-hair’ arguments which suggest that the state at the horizon
     cannot be changed



Q: Is there hair of any kind at the horizon? If so how ?



The structure of the black hole



For               the surface                       is spacelike                   

From (??) we are given that

||⌅2||2 = ⇤⌅2|⌅2⌅ ⇥ �21 < �2 (65)

|⇤⌅1|⌅2⌅| ⇥ �2 < � (66)

S(p) = (�21 � �22) ln
e

(�21 � �22)
+O(�3) < � (67)

SN+1 > SN + ln 2� 2� (68)

ds2 = � (1� 2M

r
)dt2 +

dr2

(1� 2M
r )

+ r2(d⇥2 + sin2 ⇥d⇤2) (69)

r > 2M r < 2M t = constant r = constant (70)
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The black hole is described by the Schwarzschild 
metric

Structure of the black hole

For               the surface                       is spacelike                   

From (??) we are given that

||⌅2||2 = ⇤⌅2|⌅2⌅ ⇥ �21 < �2 (65)

|⇤⌅1|⌅2⌅| ⇥ �2 < � (66)

S(p) = (�21 � �22) ln
e

(�21 � �22)
+O(�3) < � (67)

SN+1 > SN + ln 2� 2� (68)

ds2 = � (1� 2M

r
)dt2 +

dr2

(1� 2M
r )

+ r2(d⇥2 + sin2 ⇥d⇤2) (69)

r > 2M r < 2M t = constant r = constant (70)

4

Crucial point about the black hole: 
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r=0 horizon

t=constant

r=constant

The spacelike slices in Eddington Finkelstein coordinates

no time-independent 
slicing possible

‘later’ slices are 
‘longer’

u

(u, r)



The smooth slices in the
Penrose diagram

The scaling distorts the 
intrinsic geometrical shape 
of the slices

Infalling matter
shell makes the 
hole

singularity

r = 0

r = 1

Penrose diagram



The stretching of slices leads to particle creation

�̂ =
X

l,m,n

⇣
âlmn Ylm(✓,�)flmn(r)e

�i!t + â†lmn Y
⇤
lm(✓,�)f⇤

lmn(r)e
i!t

⌘

In general, any change of the geometry leads to particle creation

positive frequency
solution to wave equation

negative frequency
solution to wave equation

e�i!t ! Ae�i!0t + Bei!
0t

Vacuum state gets changed to state containing particles



initial geometry

final geometry

region of 
change

R

R

Number of created quanta ⇠ 1

Wavelength of created quanta ⇠ R

In general the energy of these 
created quanta is so low, that
they create no significant deformation
of the metric

Scales

1p
2
(00 + 11)

Typically in an entangled state



In the black hole, the geometry never stabilizes, so particle creation 
keeps going on …

r = 0

Horizon

r = 1

Horizon

Eikonal approximation: Constant phase 
                                  along geodesics



Entangled pairs

The Hawking process
The fourier modes
of a quantum field get 
distorted

If the initial mode was in a 
vacuum state, the new 
mode will typically NOT be 
in a vacuum state

Carrying out the details, we 
find that a pair of particles 
is created

There is a particle outside 
IF there is a particle inside

There is no particle outside 
IF there is no particle 
inside



r=0 horizon

entangled pairs

Older quanta move apart

initial matter

Thus older quanta get
‘flushed away’ from 
the pair creation 
region

New pairs are then 
created again from 
the vacuum

1p
2
(00 + 11)



Scales for Hawking radiation

There is only one length scale in the Schwarzschild metric

R = 2GM

The emitted quanta have wavelength � ⇠ R

�t ⇠ RThe time between emissions is 

The number of emitted quanta is 

N ⇠ M/(1/R) ⇠ GM2 ⇠
✓
M

mp

◆2

(G ⇠ l2p ⇠ 1

m2
p

)



Q:  Do we have the vacuum state at the horizon? If not, why not? 

Q:  If we have the vacuum state around the horizon, then do we get
the creation of entangled pairs by stretching? If not, why not? 



The possibility of small corrections



So what is the solution in string theory?

Some string theorists considered the possibility that small corrections
could resolve the puzzle 

r = 0

Horizon

Very small corrections can of course come 
from any source

But why should we care?

The number of emitted quanta is very large

N ⇠
✓
M

mp

◆2

� 1

Maybe the net effect of all these small corrections 
is to remove the entanglement problem …



entangled pairs

same intrinsic geometry as on the first slice). The stretching is gentle and smooth, with all
lengthscales and timescales associated to the stretching being of order ⇤ M . This stretching
thus creates pairs of quanta on the slice, with wavelengths of order ⇤ M . Decomposing this
state into quanta that emerge from the hole (labelled b) and quanta that stay inside (labelled
c), we get a state that is schematically of the form Exp[�b†c†]|0⌅b � |0⌅c for each step of the
evolution. The explicit form of the state can be found for example in [9] for the 2-d black hole.
For our purposes we only need to note that this state is entangled between the inner and outer
members of the pair, and so for simplicity we break up the evolution into a set of discrete steps
(with time lapse �t ⇤ M), and take a simple form of the entangled state having just two terms

|⇥⌅pair =
1⇧
2
|0⌅c|0⌅b +

1⇧
2
|1⌅c|1⌅b (2.2)

(Nothing in the argument below should be a⇤ected by this simplification, or the simplification
of taking discrete timesteps. If we had a fermionic field we would in fact have just two terms
in the sum.)

At the initial timestep we have on our spacelike slice only the shell that has passed through
its horizon radius, denoted by a state |⇥⌅M . At the next time step we have, in the leading order
Hawking computation, the state

|⇥⌅ = |⇥⌅M ⇥
� 1⇧

2
|0⌅c1 |0⌅b1 +

1⇧
2
|1⌅c1 |1⌅b1

⇥
(2.3)

If we compute the entanglement of b1 with {M, c1} we obtain

Sent = ln 2 (2.4)

At the next step of evolution the slice stretches so that the quanta |b⌅1, |c⌅1 move away from
the middle of the ‘connector region’ C, and a new pair is pulled out of the vacuum near the
center of C. The full state is

|⇥⌅ = |⇥⌅M ⇥
� 1⇧

2
|0⌅c1 |0⌅b1 +

1⇧
2
|1⌅c1 |1⌅b1

⇥

⇥
� 1⇧

2
|0⌅c2 |0⌅b2 +

1⇧
2
|1⌅c2 |1⌅b2

⇥
(2.5)

If we compute the entanglement of the set {b1, b2} with {M, c1, c2}, we find

Sent = 2 ln 2 (2.6)

Continuing this process, after N steps we get, in the leading order Hawking computation,

|⇥⌅ = |⇥⌅M ⇥
� 1⇧

2
|0⌅c1 |0⌅b1 +

1⇧
2
|1⌅c1 |1⌅b1

⇥

⇥
� 1⇧

2
|0⌅c2 |0⌅b2 +

1⇧
2
|1⌅c2 |1⌅b2

⇥

. . .

⇥
� 1⇧

2
|0⌅cN |0⌅bN +

1⇧
2
|1⌅cN |1⌅bN

⇥
(2.7)

The entanglement entropy of the {bi} with the M, {ci} is

Sent = N ln 2 (2.8)

Since this entanglement keeps growing with N , we get the Hawking problem mentioned above.

6

initial
matter

r = 2Mr = 0
Leading order Hawking computation



r = 0

Horizon

bc

In Hawking’s leading order calculation 
the entangled state had the schematic 
form

1p
2
(|0�b|0�c + |1�b|1�c)

1p
2
(|0⇥b|0⇥c + |1⇥b|1⇥c) + ✏k

1p
2
(|0⇥b|0⇥c � |1⇥b|1⇥c)

✏k ⌧ 1(          )

With the small corrections, we can get 
a small mixture of some other states

For simplicity we just take one 
orthogonal state



not have, until recently, a construction of this hair, but many of them were still not worried
about Hawking’s paradox. The reason was based on the following misconception. Suppose the
horizon was a place with ‘normal physics’, and let us include a small correction, order � ⇧ 1
to the state of each created pair. The number of pairs N is very large, so it might be that
suitable choices of these small corrections would lead to a situation where Sent does decrease
in the manner expected of a normal body.

A priori, it is not wrong to think that small corrections might cause Sent to decrease.
Suppose the entangled pair at the first step is 1⇥

2
(|0⌃b1 |0⌃c1 + |1⌃b1 |1⌃c1). At the next step we

can have the state

|�⌃ =
1

2

�
|0⌃b1 |0⌃c1 [(1 + �1)|0⌃b2 |0⌃c2 + (1� �1)|1⌃b2 |1⌃c2 ]

+|1⌃b1 |1⌃c1 [(1 + ��1)|0⌃b2 |0⌃c2 + (1� ��1)|1⌃b2 |1⌃c2 ]
⇥

(2.1)

Note that the correction at each step can depend on everything in the hole at all earlier steps;
the only requirement is that the correction be small: |�1| < �, |��1| < �. We have ⌅ 2N correction
terms in general after N steps. Since N ⌅ ( M

mp
)2 for a 3+1 dimensional black hole, it appears

a priori possible for small corrections to pile up to make Sent decrease after the halfway point
of evaporation.

In [?] it was proved, using strong subadditivity, that such small corrections cannot lead to
a decrease in Sent. AMPS invoked this argument in their analysis, so let us outline the steps in
[?]. Let {b1, . . . bN} ⇥ {bi} be the quanta radiated in the first N steps, and {ci} their entangled
partners. The entanglement entropy at step N is Sent(N) = S({bi}). The created quanta at
the next step are are bN+1, cN+1. We then have [?]:

(i) By direct computation, one obtains

S(bN+1 + cN+1) < � . (2.2)

(ii) Similarly, by direct computation one obtains

S(cN+1) > ln 2� � . (2.3)

(iii) The unitary evolution of the hole does not a⇥ect quanta already emitted (we have
assumed that nonlocal e⇥ects, if any extend only to distances of order r0, and thus do not a⇥ect
quanta that have been emitted from the hole long ago). Thus we have

S({(bi}) = SN . (2.4)

(iv) The strong subadditivity inequality gives

S({bi}+ bN+1) + S(bN+1 + cN+1) ⇤ S(bN+1) + S(cN+1) . (2.5)

Using (i)-(iii) above we find that the entanglement entropy of the radiation after the (N +1)-th
time step, SN+1 ⇥ S({bi}+ bN+1), satisfies

SN+1 > SN + ln 2� 2� . (2.6)
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Note that the correction at each step can depend on everything in the hole at all earlier steps;
the only requirement is that the correction be small: |�1| < �, |��1| < �. We have ⌅ 2N correction
terms in general after N steps. Since N ⌅ ( M

mp
)2 for a 3+1 dimensional black hole, it appears

a priori possible for small corrections to pile up to make Sent decrease after the halfway point
of evaporation.

In [?] it was proved, using strong subadditivity, that such small corrections cannot lead to
a decrease in Sent. AMPS invoked this argument in their analysis, so let us outline the steps in
[?]. Let {b1, . . . bN} ⇥ {bi} be the quanta radiated in the first N steps, and {ci} their entangled
partners. The entanglement entropy at step N is Sent(N) = S({bi}). The created quanta at
the next step are are bN+1, cN+1. We then have [?]:

(i) By direct computation, one obtains

S(bN+1 + cN+1) < � . (2.2)

(ii) Similarly, by direct computation one obtains

S(cN+1) > ln 2� � . (2.3)

(iii) The unitary evolution of the hole does not a⇥ect quanta already emitted (we have
assumed that nonlocal e⇥ects, if any extend only to distances of order r0, and thus do not a⇥ect
quanta that have been emitted from the hole long ago). Thus we have

S({(bi}) = SN . (2.4)

(iv) The strong subadditivity inequality gives

S({bi}+ bN+1) + S(bN+1 + cN+1) ⇤ S(bN+1) + S(cN+1) . (2.5)

Using (i)-(iii) above we find that the entanglement entropy of the radiation after the (N +1)-th
time step, SN+1 ⇥ S({bi}+ bN+1), satisfies

SN+1 > SN + ln 2� 2� . (2.6)

5

Suppose that at the first step of emission we have no change

At the second step of emission, suppose that if we had 00 at the first step 
then a 00 is slightly more likely, and if we had a 11 at the first step, then a 11 
is slightly more likely

Overall state after two emissions

After     steps of emission, there are             correction terms⇠ 2NN



leading order

leading order +
subleading effects

Number of emitted quanta is very large  ⇠ (M/mp)
2

Perhaps with all these corrections,
the entanglement goes down to zero …



If the problem can be resolved this way then there was no ‘information paradox’ in 
the first place: 

We would say that Hawking did a leading order calculation, and when subleading 
terms are taken into account, the problematic entanglement disappears 

This possibility looked plausible given how normal bodies behave … 

Emitted photon will be entangled with the 
atom which emitted it

But after some time the atom floats out like 
ash, so only things at infinity are entangled 
with each other

emission steps

entanglement normal
body

vacuum



Sent

emission steps

Hawking 
process

entanglement

emission steps

entanglement normal
body

small
corrections 

??

vacuum

entangled

These small corrections
may disentangle the radiation
from the remnant



The small corrections theorem

         (SDM arXiv:0909.1038)



A B

Quantum entanglement entropy

Suppose systems A and B 
are entangled with each other

|�⇥ =
NX

i=1

Cmn ⇥A
m � �B

n

We can choose an orthonormal basis for A and an 
orthonormal basis of B such that

|�⇥ =
MX

i=1

Ci ⇥
A
i � �B

i

We can trace out the degrees of freedom
in B, to get a reduced density matrix 
describing  A

�A =
MX

i=1

|Ci|2 |⇥i⇥�⇥i|



The entanglement entropy of A with the rest of the system (B) is

A B
=

MX

i=1

|Ci|2 ln |Ci|2

If A is entangled with B, then B is entangled with A

Quantum entropy can behave very 
differently from classical entropy !

S(A+B) = 0

S(A) = S(B)

S(A) = �Tr[�A ln �A]



A

B C

D

We can have many subsystems entangled 
with each other

E = h⇤ =
hc

⇥
(38)

⇧⌃�|H|⌃⌃ ⇥ ⇧⌃�|Hs.c.|⌃⌃+O(�) (39)

lp ⇤ ⇥ � Rs (40)

2� (41)

|⌅1⌃ = |0⌃|0⌃+ |1⌃|1⌃ (42)

|⌅2⌃ = |0⌃|0⌃ � |1⌃|1⌃ (43)

SN+1 = SN + ln 2 (44)

S = Ntotal ln 2 (45)

|⌃⌃ ⌅ |⌃1⌃|⌅1⌃+ |⌃2⌃|⌅2⌃ (46)

||⌃2|| < � (47)

SN+1 < SN (48)

SN+1 > SN + ln 2� 2� (49)

S(A) = �Tr[⇧A ln ⇧A] (50)

3

Entanglement entropy of  A 
with rest of system (B+C+D)

S(A+B) = �Tr[�A+B ln �A+B ]

Entanglement entropy of  A+B with
rest of system (C+D)

S(A+B) = S(C +D)Since overall system 
has a pure state, etc.

E = h⇤ =
hc

⇥
(38)

⌃⌃�|H|⌃⌥ ⇤ ⌃⌃�|Hs.c.|⌃⌥+O(�) (39)

lp ⌅ ⇥ � Rs (40)

2� (41)

|⌅1⌥ = |0⌥|0⌥+ |1⌥|1⌥ (42)

|⌅2⌥ = |0⌥|0⌥ � |1⌥|1⌥ (43)

SN+1 = SN + ln 2 (44)

S = Ntotal ln 2 (45)

|⌃⌥ ⇧ |⌃1⌥|⌅1⌥+ |⌃2⌥|⌅2⌥ (46)

||⌃2|| < � (47)

SN+1 < SN (48)

SN+1 > SN + ln 2� 2� (49)

S(A) = �Tr[⇧A ln ⇧A] (50)

bN+1 cN+1 {b} {c} p = {cN+1 bN+1} (51)

S({b}+ p) > SN � � (52)

S(p) < � (53)

S(cN+1) > ln 2� � (54)

S({b}+ bN+1) + S(p) > S({b}) + S(cN+1) (55)

S(A+B) + S(B + C) ⇥ S(A) + S(C) (56)

S({b}+ bN+1) > S) + ln 2� 2� (57)

S(A+B) ⇥ |S(A)� S(B)| (58)

3

Strong 
subadditivity



We make the following model: 

(a) Outside the black hole (                  )  we have normal physics of 
quanta  

r > 10M

(b) The region                   can be described exactly by some dual field 
theory. But the semiclassical black hole physics is recovered to a good 
approximation for low energy processes over short times 

r < 10M

normal physics

close to normal physics

no claim about physics here



(c) Evolution near the horizon would create one pair to a first 
approximation

spacetime here is 
only an approximation

We may not have any
definition of spacetime here

normal spacetime

Hawking pair created 
to a first 
approximation



(d) Notation:  

b1b2bNbN+1cN+1

cN

c2

c1

{b}

r = 0 r = 2M

new pair



We write           for the entanglement entropy 
of a set       with the rest of the system

S(A)
A

(e) Entropy at step  N

b1b2bN

cN

c2

c1

{b}

r = 0 r = 2M

We want the entanglement of the outside 
region                 with the insider > 10M

r = 10M

Entanglement entropy at step     is N

SN = S({b})



(f) Creation of a new pair

b1b2bNbN+1cN+1

cN

c2

c1

{b}

r = 0 r = 2M

r = 10M

At this stage this is an unitary internal 
evolution of the ‘inside’ system. 

Thus the entanglement with the outside 
does not change

SN = S({b})



(f) Entanglements of the new pair

In the leading order Hawking process, the state of the newly created 
state of the pair is

S(bN+1) = ln 2S(bN+1, cN+1) = 0

|��pair = 1p
2
(|0�bN+1 |0�cN+1 + |1�bN+1 |1�cN+1)

Thus          is maximally entangled with         , and the set          ,  
is not entangled with anything else

bN+1 cN+1 bN+1 cN+1

Since the actual evolution has to approximate the leading order 
evolution, we require

,

S(bN+1, cN+1) < �1

✏1 ⌧ 1

S(cN+1) > ln 2� �2

✏2 ⌧ 1



(g) Entanglement entropy at step N + 1

b1b2bN

cN

c2

c1

{b}

r = 0 r = 2M

r = 10M

bN+1cN+1

At step           the entanglement 
of the ‘outside’ with the ‘inside’ is

N + 1

SN+1 = S({b}+ bN+1)



(h) The strong subadditivity of quantum entanglement entropy

A

B C

D

E = h⇤ =
hc

⇥
(38)

⌃⌃�|H|⌃⌥ ⇤ ⌃⌃�|Hs.c.|⌃⌥+O(�) (39)

lp ⌅ ⇥ � Rs (40)

2� (41)

|⌅1⌥ = |0⌥|0⌥+ |1⌥|1⌥ (42)

|⌅2⌥ = |0⌥|0⌥ � |1⌥|1⌥ (43)

SN+1 = SN + ln 2 (44)

S = Ntotal ln 2 (45)

|⌃⌥ ⇧ |⌃1⌥|⌅1⌥+ |⌃2⌥|⌅2⌥ (46)

||⌃2|| < � (47)

SN+1 < SN (48)

SN+1 > SN + ln 2� 2� (49)

S(A) = �Tr[⇧A ln ⇧A] (50)

bN+1 cN+1 {b} {c} p = {cN+1 bN+1} (51)

S({b}+ p) > SN � � (52)

S(p) < � (53)

S(cN+1) > ln 2� � (54)

S({b}+ bN+1) + S(p) > S({b}) + S(cN+1) (55)

S(A+B) + S(B + C) ⇥ S(A) + S(C) (56)

S({b}+ bN+1) > S) + ln 2� 2� (57)

S(A+B) ⇥ |S(A)� S(B)| (58)

3

SN+1 = S({b}+ bN+1)

We take

A = {b} C = cN+1B = bN+1, ,

S(bN+1, cN+1) < �1 S(cN+1) > ln 2� �2

We recall SN = S({b})

S({b}+ bN+1) + S(bN+1 + cN+1) � S({b}+ S(cN+1)

Then we get

SN+1 > SN + ln 2� (�1 + �2)

,

,

(SDM 2009)



Sent

emission steps

Hawking 
process

entanglement

emission steps

entanglement normal
body

small
corrections 

Thus we see that

Thus the Hawking argument is stable against small corrections


