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Gravity is an attractive force



Gravity is an attractive force

PE — GMm

By itself, the small mass has an intrinsic energy
E = mc?

When it is placed near the larger mass, what energy should we assign ?
Let us start with the Newtonian approximation ...

_ 2 GMm
FE = mc -
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We see that the total energy of ™ becomes zero at

_ GM

62

r

and for smaller 7" it is negative

negative net energy



Suppose we keep placing more and more masses
inside the horizon radius, until the mass comes to

zero (or close to zero; it may stop at the planck
mass)

Then we have a low mass object with a lot of internal structure

The problem is that we can make an infinite number of such planck
mass objects, because we can start with an arbitrarily large mass...

Of course since we have talked about Gravity and Special Relativity, we
should really use General Relativity



General relativity Mass curves spacetime

All the force’ of gravity is encoded
in this curvature of spacetime




The black hole

. Horizon
Everything must
keep moving inivards This region becomes

aivacuum

\ \

Density is still
—" very low




Why is it hard to stop black hole formation?

. . 2G M
Horizon radius R =
C2
47
Flat space approximation M = 3 R’

2G (4m 4 B 3c? 1
It = 2 (SpR> = '0_<87TG> R?

We see that as we take bigger and bigger holes, the density at the
point of horizon formation becomes smaller and smaller



Repeating our argument properly with general relativity does not change
our answer much

negative net energy

Q: Do we have a region where energy is negative!

Q: If not, then how do we stop horizon formation?



Hawking radiation



negative net energy

But how should we place the particle inside the hole ?

Hawking: Quantum mechanics will do this automatically ...



In quantum mechanics, the vacuum can have fluctuations
which produce a particle-antiparticle pair

AE At ~ h

But if a fluctuation happens near the horizon, the particles do not have
to re-annihilate

AFE =0 — At=o

Thus the negative energy particle gets
automatically placed in the correct position
inside the horizon



The outer particle drifts
off to infinity as ‘Hawking
radiation’

The mass of the hole has
gone down, so the horizon
shrinks slightly

The process repeats, and
another particle pair is
produced

The energy of the hole
reduces

But overall energy of hole +
radiation is conserved



Two possibilities:

(a) Black hole evaporates away completely

vacuum o
(b) A planck sized remnant is left

(%) :

We will see that each of these possibilities presents us
with problems ...



Q: If we have a horizon, then can we stop or alter the process of
Hawking evaporation? If so, how!

Q: If the evaporation is not stopped or altered, then

(a) does the hole evaporate away completely?
or
(b) Are we left with a planck sized remnant?



The problem with Hawking evaporation



The crucial issue now has to do with ‘entanglement’

electron positron positron electron

Vacuum fluctuations typically produce entangled states ...

So the state of the radiation is entangled with the state of the remnant



The entanglement can come from many sources:

(a) Charge: positive and negative ete™ Le eT
(b) Spin: Up and down TL=47
(c) Existence or nonexistence of a particle

Co|0Y]0) + C[1)[1) + C[2)[2) + . ..

M
General form of entangled state ‘\If> = Z C; 1%4 & X?
1=1



The amount of this entanglement is very large ...

If NV particles are emitted, then there are

possible arrangements

2N

We can call an electron a 0 and a positron a |

&

+ 01001 |

+ 000000

Now there are two possibilities:

000000

101100



(a) Information loss: The evaporation goes on till the remnant has zero
mass. At this point the remnant simply vanishes

®
vacuum °
The radiation is entangled,
000000 but there is nothing
that it is entangled WITH
101100

The radiation cannot be assighed ANY quantum state ... it can only be

described by a density matrix ... this is a violation of quantum mechanics
(Hawking 1975)
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The black hole information paradox

Star is described by
a wavefunction W,

1 Quantum mechanics:

w /9 (00 + 11) entangled pairs are created
K3 Cannot be described by
vacuum % any quantum state
L

Contradicts quantum theory Ve = ey,



(b) Ve assume the evaporation stops when we get to a planck sized
remnant.

The remnant must have at least 2N internal states

SERRN 000000

+ 01001 | 101100

+ 000000 LT

Can we hold an unbounded number of states in planck volume with
energy limited by planck mass?



But if we accept AdS/CFT duality then we cannot have remnants

CFT with finitely many degrees

of freedom in a finite volume @

So CFT has finitely many states

with energy less than E /x

The CFT lives on a sphere of radius Ropr AdS/CFT duality
(Maldacena 97)

The AdS has a curvature radius RAdS

An excitation of energy 1/RAdS in the center of AdS has an
energy 1/ Rcpr inthe CFT

So a planck mass remnant in AdS corresponds to finitely
many states in the CFT; thus we cannot have remnants



Q: Does entanglement keep rising between the emitted radiation and
the remaining hole? If not why not!?
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Q: Does the hole completely evaporate away! If so, is there any
entanglement left at the point of evaporation!?

vacuum ®

Q:Is a remnant left! If so, do we accept that there is no analogue of

AdS/CFT duality?



Can we prevent the formation of a horizon!?



Given how much trouble we are having because of a horizon, let us ask
if we can prevent the formation of a horizon

— (00 + 11)

RS V2
We have already seen that for a large star, the density is very low at
the point of horizon formation

B 3c? i
P = StG ) R?

so it seems hard to stop the collapse.

But can we quantify Y \
this difficulty? \ !




"

This is not easy to get: matter near the horizon is pulled in very
strongly, and falls in

Buchdahl’s theorem: If we have a perfect fluid ball with radius

9
R< M
S 1

then the pressure will have to diverge somewhere



Metric
ds? = —e2*Mqt? + 2P dr? 4 r2(dh? + sin® 0dg?)

Stress tensor
T;ll? — dzag{p(”/“),p(T),p(T),p(T)}

Basic equation: The gradient of pressure has to balance the attraction
of gravity

o' (r)

p () + 7 (plr) + p(r) =0

p=20

pressure will diverge somewhere

if radius of ball is

9
R < °M
S 7




We can argue that if p — 00 somewhere, then the solution is
unphysical

9
Thus if the ball reaches a radius 2 < 1 M  then it must continue

to collapse through R = 2M and create a horizon

: 9
Q: If stars are allowed to reach a size R < 1 M then can collapse
be prevented?! If so, how!



Can we deform the horizon ?



If we do form a horizon, then can we deform it (so that the pair creation
process may change) !

The no-hair theorem (Bekenstein):

Try to add a time-independent classical scalar field to the hole

Time independent metric ~ ds® = — f(y)dt* + h;; (y)dy'dy’

1
Lagrangian for scalar field L = —§8a¢8a¢ — V(¢)

- /"
Assume potential is stable V' < ()

Then the only solutionis ¢ = @9 = constant

So the geometry of the hole does not deform (Classical no-hair
theorem)



Can we change the quantum state of the hole, without changing the
classical geometry !

Hawking radiation is a quantum process, and if we change the

quantum state around the horizon, then maybe the pair creation
process will be altered

Consider a free scalar field in flat spacetime

6 =0

The solutions to this equation are

f — ei(E-f—wt) with W = |E‘



To quantize this scalar field, we write

Z (A z(kaz wt) + 4 z(kx wt))
\/V \/Qw

and impose the commutation relations

Then each fourier mode becomes a harmonic oscillator with frequency
w = |k
The state annihilated by all the annihilation operators is the vacuum |0)

i7|0) = 0



—

Acting with a creation operator CALE adds a particle of momentum [
and energy w = |k

We can add many particles: CAL;%

AT
We can make a coherent state  "E% ‘0>

where Uy is a complex number

For large ],u,g , the expectation value (@) behaves like a classical
field solution to the wave equation

» =20

(This the relation between the quantum and the classical theory)



The same formalism works in curved spacetime. The wave-equation
IS

¢ = gab¢;ab =0

We take a complete set of solutions fz(ZL’) to the wave equation
fi=0

and we write gg = Z (&ifi (x) + &;-rfi* (x))

1

We again impose the commutation relations  |a;, A;L] = 04,

The vacuum |0) is given by @;|0) =0

Particle excitations are given by &;f e &Zn 0)



Adding ‘hair’ to a star:

We solve the wave equation in this background

¢ =0, ¢ — Ylmflmn(r)e_iwt

We then write the quantum field as

Q/B — Z (&lmn }/lm(ea ¢)flmn (T)e_iwt -+ &;mn Yl*m(ﬁ, ¢)fl>l;nn (T)eiwt)

[,m,n

The vacuum state |0) of the quantum field is given by

0) =0

a'limini



We can change the state by adding quanta

al .al 0)

l1m1n1 l1m1n1

This adds ‘hair’ to the star. If we take a coherent state
Himnd)
e mn=imn ‘O>

then we get ‘classical’ deformations of the star.

But all his does not work if there is a horizon ...



We again try to solve the wave equation, now
in the Schwarzschild geometry

¢ =0, ¢ — l/lmflmn(70)6_2'("”5

But this time we do not find good solutions [fimn (7“)

Pressure
Iy — 00

Field modes have
divergent
stress-energy




Why is it hard to find hair? Horizon .

Large relative momentum needed
to keep the rocket stationary

dmuce



Thus we see that we cannot deform the horizon (at either the classical
or the quantum level) to change the production of entangled pairs

NO !l ;
o () () * o
e:n':tangled
’ " not
entangled !

The information problem is really a combination of two things:
(a) Creation of entangled pairs by the Hawking process

(b) The ‘no-hair’ arguments which suggest that the state at the horizon
cannot be changed



Q: Is there hair of any kind at the horizon? If so how !



The structure of the black hole



Structure of the black hole

The black hole is described by the Schwarzschild

metric
2M dr?
2 2 2 2 . 9 2
ds® = —(1—==)dt* + T + 72(d6? + sin® 0d¢?)

Crucial point about the black hole:

For r>2M the surface ¢ = constant is spacelike

For r <2M the surface r = constant is spacelike



The spacelike slices in Eddington Finkelstein coordinates (u, T)

U
I
I
I
I
I
I
I
I
I
I
I
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r=0

-

/ t=constant
\\ _ ‘later’ slices are
:  r=constant ‘ :
: longer
no time-independent
slicing possible
horizon



Penrose diagram

singularity

The smooth slices in the
Penrose diagram

The scaling distorts the
intrinsic geometrical shape
of the slices

Infalling matter /

shell makes the
hole




The stretching of slices leads to particle creation

In general, any change of the geometry leads to particle creation

6= 37 (1mn Yien (0. 0) frmn(r)e ™" + ], Yi5a (6. 0) fimn (1))

l,m,n
positive frequency / negative frequency /

solution to wave equation solution to wave equation
. ./ A
e 1wt y Ae~ W t 1 Be™ t

Vacuum state gets changed to state containing particles



Scales
Number of created quanta ~ 1

final geometry
Wavelength of created quanta ~ R

Typically in an entangled state

' 1
region of (00 +11)

\_/\
change V2

S~ In general the energy of these

initial geometry created quanta is so low, that
they create no significant deformation

of the metric



In the black hole, the geometry never stabilizes, so particle creation
keeps going on ...

Horizon Horizon
1

Eikonal approximation: Constant phase
along geodesics



The Hawking process

Entangled pairs
!

The fourier modes
of a quantum field get
distorted

If the initial mode was in a
vacuum state, the new
mode will typically NOT be
in @ vacuum state

Carrying out the details, we
find that a pair of particles
is created

There is a particle outside
IF there is a particle inside

There is no particle outside
IF there is no particle
inside



Older quanta move apart

L4

entangled pairs

|
s’. ﬁ(oo +11)

1]
",
Ty
g
'
Yy
[ ] ...
Y,
Ty

initial matter

r=0 horizon

Thus older quanta get
‘flushed away’ from
the pair creation
region

New pairs are then
created again from
the vacuum



Scales for Hawking radiation

There is only one length scale in the Schwarzschild metric

R =2GM

The emitted quanta have wavelength )\ ~ R
The time between emissions is At ~ R

The number of emitted quanta is

N~ M/(1/R) ~ GM?* ~ (ﬁ)Q

My

1
2
(GNlemQ)
p



Q: Do we have the vacuum state at the horizon? If not, why not!?

Q: If we have the vacuum state around the horizon, then do we get
the creation of entangled pairs by stretching? If not, why not!



The possibility of small corrections



So what is the solution in string theory?

Some string theorists considered the possibility that small corrections
could resolve the puzzle

Very small corrections can of course come
from any source

Horizon

But why should we care?

The number of emitted quanta is very large

M\ °
N~ 2] > 1
mp

Maybe the net effect of all these small corrections
is to remove the entanglement problem ...




., entangled pairs

Sent =IN2+1n2=2In2

b1
Sent =In2
/ Clib
P: A
/ Sent =0
1 1
d ) = [Y)u © (? 0)ex 0}, + % Ve, 1), )
: —10) s |O)p, + —=11)¢ 1b)
il (510)eslO)s + ZI0)ex L
matter
Y Leading order Hawking computation




In Hawking’s leading order calculation
the entangled state had the schematic
form

Horizon

5 (10)5]0)c + [1)6]1)c)

With the small corrections, we can get
a small mixture of some other states

For simplicity we just take one
orthogonal state

25(10)5[0)c + [1)6[1)c) + €575 (10)6]0)c — [1)5]1).)

(e < 1)



Suppose that at the first step of emission we have no change
75 (10)6,10)e, + Lo, [1)e,)

At the second step of emission, suppose that if we had 00 at the first step
then a 00 is slightly more likely,and if we had a || at the first step,then a | |
is slightly more likely

Overall state after two emissions

1

5 (‘O>bl 0) ey [(1+€1)]0)5,]0)c, + (1 —€1)[1)py]1) e, ]

16y [L)ea [(1 + €1)]0)4,[0)ey + (1 — 6'1)\1>b2\1>c2])

After IV steps of emission, there are ~ 2N correction terms



@ 4): leading order

leading order +

_,®
@T. I ° subleading effects

Number of emitted quanta is very large  ~ (M/mp)2

Perhaps with all these corrections,

the entanglement goes down to zero ...



If the problem can be resolved this way then there was no ‘information paradox’ in
the first place:

We would say that Hawking did a leading order calculation, and when subleading
terms are taken into account, the problematic entanglement disappears

This possibility looked plausible given how normal bodies behave ...

Emitted photon will be entangled with the
) >O atom which emitted it

But after some time the atom floats out like
ash, so only things at infinity are entangled
with each other

vacuum

[
»

/D entanglement‘ normal
body

emission steps



50 These small corrections
@’.- R P e ° may disentangle the radiation

--------- from the remnant
entangled
vacuum °
Sent entanglement normal
bod
entanglement small Y
Hawking .
corrections
process

emission steps 2 emission steps



The small corrections theorem

(SDM arXiv:0909.1038)



Quantum entanglement entropy

Suppose systems A and B
are entangled with each other

N
1=1

We can choose an orthonormal basis for A and an
orthonormal basis of B such that

M
T) =) Ci o @ xF
1=1

M
We can trace out the degrees of freedom o4 = Z C412 [oi) (4
in B, to get a reduced density matrix P

describing A



The entanglement entropy of A with the rest of the system (B) is

S(A) = =Trlpalnpa]

M
=Y |G’ In|C;|?
1=1

If A is entangled with B, then B is entangled with A

Quantum entropy can behave very _
differently from classical entropy ! S(A+B)=0



We can have many subsystems entangled
with each other

S(A) = =Trlpalnpa]

Entanglement entropy of A
with rest of system (B+C+D)

S(A+ B) = -TrlpaypInpay g

Entanglement entropy of A+B with
rest of system (C+D)

Since overall system S(A + B) = S(C + D)

etc.
has a pure state,

Strong <
subadditivity S(A+B)+5(B +C) = 5(4) +5(0)



We make the following model:

(a) Outside the black hole ( » > 10M) we have normal physics of
quanta

(b) The region 7 < 10M can be described exactly by some dual field
theory. But the semiclassical black hole physics is recovered to a good
approximation for low energy processes over short times

no claim about physics here



(c) Evolution near the horizon would create one pair to a first
approximation

Hawking pair created

“"..."'u,.\ ‘  to a ﬁrst
approximation

I % = ;" - .:

Do e T R

E 4 ..."n - E -':\ \

: ' .....'f--“ .

: : normal spacetime

spacetime here is
only an approximation

We may not have any
definition of spacetime here




(d) Notation:

ey ONH bn ba
O O
<
{b}

new pair




(e) Entropy at step \V

r=10M

: bn bo b1
O O O
<« >

b

We write S(A) for the entanglement entropy
of a set A with the rest of the system

We want the entanglement of the outside
region r > 10M with the inside

Entanglement entropy at step N is

Sn = S({b})




(f) Creation of a new pair

r=10M
b :
0 : o o o
: : < >
N {b}

€2

_ At this stage this is an unitary internal
C1 evolution of the ‘inside’ system.

Thus the entanglement with the outside
does not change

Sy = S({b})




(f) Entanglements of the new pair

In the leading order Hawking process, the state of the newly created
state of the pair is

‘\Ij>pa’i"“ — %5(‘0>5N+1 |O>CN—|—1 + |1>bN—|—1 |1>CN—|—1>

Thus by 1 is maximally entangled with ¢N+1,and the set byy1, CN+1
is not entangled with anything else

S(bN+1,CN_|_1) =0 , S(bN—H) —In2

Since the actual evolution has to approximate the leading order
evolution, we require

S(bN+1,CN+1) < €1 S(CN_|_1) >In2— e

€1 < 1 €0 K 1




(g) Entanglement entropy at step N + 1

r=10M
E bN‘|‘1 bN bQ bl
0 O O 0
< >
{0}

At step N + 1 the entanglement
of the ‘outside’ with the ‘inside’ is

Sn+1=S({b} +bny1)




(h) The strong subadditivity of quantum entanglement entropy

S(A+ B)+ S(B+C)>S(A)+ S(C)

We take

A = {b} , B = bN_|_1 , C = CN+1
We recall Sy =S({b}) , Sn+1=S{b} +bn+1)
S<bN—|—1acN—|—1) < €1 . S(CN_H) >In2— e

Then we get

S({b} +bn11) + S(bnt1 +envt1) = S0} + S(en+1)

Sn+1 > Sy +1n2 — (1 + e2) (SDM 2009)




Thus we see that

Sent

entanglement
Hawking

process

[
»

emission steps

entanglement normal
body

[
»

emission steps

Thus the Hawking argument is stable against small corrections



