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LOQpS N oot

Consider the Ising model
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http://mcwa.csi.cuny.edu/umass/izing/lsing_text.pdf



LOQpS N oot

this IS non-
ergodic: Q O >
cannot evolve
INto

critical slowing Nupdates 3 z is the dynamical critical
down = ~ [, exponent
L typically, z ~ 2

A global update to switch between the two would have exponentially
low acceptance tactors

how to solve this problem?



ldea: work in an extended space with open ends:

insert/remqve
WOorm
cut/glue . keep at most 1 worm pair
worm > in the configuration
®

: advanceﬁegedei
Worm

Because of the open ends, it is easy to
sample different topological sectors



Worm algorithm "

we will see that the
‘extended space” also has
a precise meaning (it is a
sampling of the correlation
function)

extended space

physica
space
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HIgh temperature expansion
of the Ising model

N. V. Prokof’ev
partition function: 7 = Z o2 (i) KO0
{o:}

7 — Z ( H eKUin)
oi} \b=(1,j)

Specific for the Ising model, we have the following trick following trick
(instead of the more general Taylor expansion of the exponential):

GKOiaj — COSh(K)[l —|— tanh(K)O-’LO-]]
plug in:

7 = 2N cosh™ (K) i ( 1] tanhNb(K))

{Np=0,1} \b=(i,j)



HIgh temperature expansion
of the Ising model

How does the sum over closed loops come about?

consider 1+ tanh(K)Jiaj

if 11s taken, do nothing
it tanh(K)o;0; is taken, put a bond on the graph (with weight tanh(K))

on site i: E o, #onds(i)
closed o ==1

The number of bonds incident on every

site must hence be even
o§%n




partition function sector

No overlaps!




N. V. Prokof’ev

Spin correlation function

consider the correlation function

Grm
KH
gim = :E € 010 M

Z
{oi}

loops+IM—worm
= 2% (cosh K)*“ Z (

H(tanhK)Nb>

{Ny}=0,1 b
the space for the worm algorithm is
/Z U G, the same as for the generalized
partition function

i Zw = 4+ \G

the constant A can be seen as an

| D optimization constant governing the

& relative frequency one isinthe Zor G
space

guestion: how would you incorporate a magnetic field in this loop representation”



N. V. Prokof’'ev

Algorithm

1. if | == M choose a new site at random and go to step 2
2. move M around until M reaches | again as follows:

1. choose direction, let it be bond b
2. it Nb == 0 then change Nb to Nb =1 with probability R = tanh(K); if Nb

== 1 then change Nb to Nb=0 with probability 1




Algorithm

N. V. Prokof’ev




Algorithm




A‘g()ﬂthm N okt

] ] |
l-*‘MJ leo—I
Estimators: | | . .
GI-M)=GI-M)+1 g(t — j) = (0i0j) = G(i — j)/Z
Z = Z_|_5IM :<<ZO’5> >:Z<aiaj>:N><M2/Z
Ninks = Niinks £ 1 ' "7
M2:M2—|—1 E:—JNd<O'10'2>:—JTLdg(1)

E = —Jtanh(K) [dN + (Njinks) sinh?(K)]



Scope and extensions

Phase transitions (second order)
finite size scaling
Potts model, higher dimensions, XY model, ...

superfluidity and winding number



a 3D Ising model ;8_ 2D Ising model 1
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FFIG. 2. Autocorrelation times [or various universality
classes. The 3D Ising model is fitted to 7 = —4.3 4 9.21n(L),
and z(L = 64) = 0.18 (see text). The 2D Ising model is
fitted to 7 = —7.2 - 6.2In(L), and 2z(L = 512) = 0.25.
The 3D XY-model is fitted to 7 = 1.7 + 3.85In(L), and
2(L = 128) = 0.2. The 2D XY-model is fitted to
T = 1.85 + 2.05In(L), and z(L. = 640) = 0.16. The
3D Gaussian model is fitted to 7 = 18.9 + 5.8In(L), and
z(L = 64) = (0.17. The g = 3 Potts model in 2D is fitted
to the power law 7 = 4,313,

htt

/larxiv.or

df/cond-mat/0103146.pdf


http://arxiv.org/pdf/cond-mat/0103146.pdf

continuous-time expansion (strong coupling)
basis = Fock states, H1 = kinetic term

Z =3 (nile~PHoTem I ()

{ni}
Z =Y (nile Mo 1- 5H1 T)dT 5d7‘ TdT/Hl T)Hy (7' ) n;
> ind (/O<>+/O/O AR I
T T
B . | |
by virtue of the time-ordered product and the Heisenberg
operators

Hl (7‘) — €THOH16_THO
each term describes the evolution of the occupation numbers
(insert complete set of states before and after H)



zeroth order:

7 = Z (n;|e BHo|n,) = Z o—BHo(ni)

{nz {n’b}

This is the atomic limit. Graphical representation:

L
>

4-site problem;
occupation numbers
are 0-1-2-1

imaginary time




second order

> /dT/dT

{n1},{n2}

o
>

imaginary time

2 —(B—T)Ho(nl) <n1 |H1 ‘n2>e—(7-_7-’)H0(n2) (n2|H1 |n1>6_7-/H0(n1)

brute force evaluation of this expansion :
high temperature series expansion (also
done for log Z) — see the book by
Oitmaa and coworkers. Stochastic
evaluation —> PIMC



higher order graphical representation:




Green function:

G(t—j,7i —Tj) = %Tr [G_BHTb(i,Ti)bT(j, Tj)}
:l ‘ so there is a
similar
expansion
: : : but with two
S additional

Iil_l— ,end" points




Data structure: get to know your neighbors.
My implementation: list of ,,kinks™ (alternatively, work with
intervals)

(most tricky point of the code)
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grand-canonical bosonic exchange

N.V. Prokof’ey, B.V. Svistunov and |. Tupitsyn, Sov. Phys. |JETP 87,310 (1998).



Ultracold atom quantum
simulators pass first key test

+ : control, clean, tunable
- :temperature, detection, light-matter effects




The SSE representation of
the Helsenberg model

P
@ @¢ OO @@ O @ O N
— 11
@ O | | 10
very naturally leads to a loop algorithm! 0O @ )
@ O O @ 2
the inverse temperature leads to another ‘classical’ 0O & ._o
dimension (‘)=.' 7
6
BJ\" 1
2 n' @ O
— 4
(all configurational bond weights are 1/2 for this ® O ® O 3
particular case; an energy shift has been applied) o @ ,
@ O | ]
C @ @ O |
L — ()

see: A. Sandvik, Computational Studies of @eeccoeo0eon

Quantum Spin systems, AIP Conf.Proc.

1297:135,2010, arXiv:1101.3281 wias) = (5) F



In mapping the quantum to the classical system
7 = Trexp P = E D;
?

some of the P; may D < 0

li)>
/.\ Troyer and Wiese have shown that the sign
li > .
e.g. 2 electrons might problem is NP-hard
exchange places li> ‘I/
li;> http://arxiv.org/abs/cond-mat/0408370; Phys.Rev.Lett. 94 (2005) 170201
i, >

consequence : exponential scaling


http://arxiv.org/abs/cond-mat/0408370

evaluation in case of negative weights: (M.Troyer)

2. Ale)p(c)

= >.p(c)

_ 2 AQ)s(o)lp(e)| /2. Ip(e)l _ (As)’
>es@pd /X Ip(e)]  — (s)

with <S> = Z/Z/ the average sign given by

7 = . ‘fermionic’ system
2. ’ Z]Z" = exp(=BNAS)

= > Ini ‘bosonic’ system
7

The variance can become exponentially large :

_ V(A ()2 /M _ 1 (s)?
(S) (s) VM (s)

The sign problem is basis dependent : e.g., if we know the full spectrum, all weights are positive
However, still no solution

The situation is reminiscent of NP hard problems (no proof of exponential scaling, but no solution
that scales polynomially is known)

A solution to the sign-problem is a solution that does not scale exponentially (stronger than
positive weights) when the bosonic problem is easy (polynomial)




Euleri

(M. Troyer)

e 7 bridges of Konigsberg
e is there a roundtrip that crosses each bridge exactly once!?

*Euler (1735) :it exists if and only if the graph is connected and
there are no nodes of odd degree at all
* can be evaluated in polynomial time;is in complexity class P



(M. Troyer)

is there a path that crosses each vertex exactly once!?
expensive task by evaluating all paths

no solution in polynomial time is known

is NP-complete



proof

consider 3d frustrated Ising model (glass)

H=— Z Jikojok Jik=0,+J
(4:k)

does there exist a state with energy less than a bound Eo!

Is a NP-complete problem. F. Barahona, J. Phys. A 15,3241 (1982).

view it as a quantum problem in basis where H is not diagonal :
H=— Z Jj,kO';CO'Z Jj,k; — O, +J
(4,k)
random signs appear in off-diagonal matrix elements

bosonic model (ferromagnet, Jjx > 0) easy to solve

Hence, the sign problem causes NP-hardness

(M. Troyer)



AEOUT PROGRAMS MILLENNIUM PROBLEMS FEOPLE PUBLICATIONS EVENTS EUCLID

P vs NP Problem

Suppesc that you are crganizing housing
accommodations for a group of four hundrec
university students. Space is limited and only one
hundred of the students will receive places In the
dormitory. To complicate matters, the Dean has
provided you with a list of pairs of incompetible

Rules for the Millennium
Prizes

students, and requested that no pair from this list
appear inyour final choice. This is an example of
what computer scientists call an NP-problem,
since it is easy to check if a given choice of one hundred students proposed by a coworker is satistactory li.e.,
no pair taken from your coworker's list also appears on the list from the Dean's effice). however the task of
generat'ng such a list from scratch seems to be so hard as to be completely impractical. Indeed, the total
number of ways of choosing one hundred students from the four hundred applicantsis greater than the P Minesweeper

Related Documents:

'l Official Problem
Description

number of atoms in the known universe! Thus no future civilization could ever hope to build a
supercomputear capable of solving the problem by brute force; that is, by checking every possible

combination of 100 students. However, this apparent difficulty may only reflect the lack of ingenuity of your
programmer. Infact, one of the outstanding problems in computer science is determining whether

questions exist whose answer can be quickly checked, but which require an Impossibly long time to solve by Lecture by Vijaya

any direct procedure. Prodlems like the one listed above certainly seem to be of this kind, but so far nocne Ramachandran

has manzaged to prove that eny of them rcal'y arc sc hard as they eppear, i.c., that there really is no feesible
way to generate an answer with the help of a computer. Steghen Cook and Leonic Levin formulated the P
(i.e., easy to find) versus NP [i.e.. easy to check) problem independently in 197 1.

mage credit; on Lhe left, Stephen Cook by Jifi JeniCek (crupped). CCBY-SA 3.0

http://www.claymath.org/millennium-problems/p-vs-np-problem
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Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

nr of fermions /
complexity of problem
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Perturbative expansions

H = Ha —+ Hb not talking about variational Monte Carlo,
diffusion Monte Carlo, ...

-
''''''
- -
- -~
- ~~

continuous time

.. “
-~ -
-~ -
-y -
-----------

Strong Coupling two-body term is Ha,; choose basis where this is diagonal
eXP&hSiOhS‘ typically on finite system (requires finite size analysis), finite 3

can be sign-free for bosons; spins with AF couplings on bipartite lattices, ...

Weak Coupling one-body term is Hy; typically thermodynamic limit, can
. be ground state. Has Wick theorem, Dyson equation, etc
expansions:



Diagrammatic Monte Carlo

diagrammatic expansions:

sign

drawbacks

~ exp(- #n n) N = expansion order

no volume factors!

series usually asymptotic or worse (log Z instead of Z)

SIQ
mu

N prob

tidime

em

nsional objects

active field of research; true challenge,
many open guestions




Thank you!



