An almost perfect Universe results from the Planck mission Torsten Enßlin (MPI für Astrophysik) on behalf of the Planck Collaboration

Why Planck?

COBE

WMAP

Planck

Why Planck? $M_{\rm pl} = \sqrt{\frac{\hbar c}{8\pi G}}$

What is Planck doing?

Gaussian statistics

ZEHN DEUTSCHE MARK

GL0011661A1

GL0011661A1

DESB/

Deutsche Bundesbank

Frankfurt am Main 1. Oktober 1993

Ľ

ПП

t

(w=p)

T

.....

100

Testing inflation

ZEHN DEUTSCHE MARK

GL0011661A1

GL0011661A1

DFSBA

Deutsche Bundesbank

Teramo Frankfurt am Main 1.Oktober 1993

The microwave sky

The timelines

The sky as seen by Planck

All emissions at microwave & submillimetre wavelengths

The cosmic microwave background

ca. 1 angular degree

Recombination & photon diffusion

- Before recominaton: photons scatter on free electrons
- After: photons free-stream through Universe
- Observed CMB light from surface
 of last scattering
- Finite duration of recombination permitted photons to diffuse
- Struktures smaller than 5 arcmin are erased (1/6 of moon diameter)
- Planck resolution: 5 arcmin

The cosmic microwave background

Angular power spectrum

Multipole l

The cosmic microwave background

Simulation

gravitational lensing

gravitational lensing

projected mass distribution

Precision cosmology

Acoustic scale is most precisely known cosmic parameter: 1.19345 ± 0.00076°

Expansion rate of the Universe, the Hubble constant: $H_0 = 67.15 \text{ km/s/Mpc}$ (previously 69.32 km/s/Mpc)

Age of the Universe: 13.82 billion years (previously 13.77 billion years)

Primordial spectral index: 0.96 Significant deviation from scale Invariance as predicted by inflation

Precision cosmology

Planck (CMB+lensing)

Parameter	Best fit	68 % limits
$\Omega_{\rm b} h^2$	0.022242	0.02217 ± 0.00033
$\Omega_{ m c}h^2$	0.11805	0.1186 ± 0.0031
$100\theta_{\rm MC}$	1.04150	1.04141 ± 0.00067
au	0.0949	0.089 ± 0.032
$n_{\rm s}$	0.9675	0.9635 ± 0.0094
$\ln(10^{10}A_{\rm s})\ldots\ldots\ldots$	3.098	3.085 ± 0.057

Fig. 2. Comparison of the base Λ CDM model parameters for *Planck*+lensing only (colour coded samples), and the 68% and 95% constraint contours adding *WMAP* low- ℓ polarization (WP, red contours), compared to textitWMAP9 (Bennett et al., 2012, grey contours).

	Planck	(CMB+lensing)	Planck+	WP+highL+BAO
Parameter	Best fit	68 % limits	Best fit	68 % limits
$\Omega_{\rm b}h^2$	0.022242	0.02217 ± 0.00033	0.022161	0.02214 ± 0.00024
$\Omega_{\rm c}h^2$	0.11805	0.1186 ± 0.0031	0.11889	0.1187 ± 0.0017
100θ _{MC}	1.04150	1.04141 ± 0.00067	1.04148	1.04147 ± 0.00056
τ	0.0949	0.089 ± 0.032	0.0952	0.092 ± 0.013
<i>n</i> _s	0.9675	0.9635 ± 0.0094	0.9611	0.9608 ± 0.0054
$\ln(10^{10}A_{\rm s})\ldots\ldots\ldots$	3.098	3.085 ± 0.057	3.0973	3.091 ± 0.025
		10 ⁴ [² μK ²] ^{10³} 10 ²		Planck WMAP9 ACT SPT

2 100

l

	Planck	c (CMB+lensing)	Planck+WP+highL+BAO						
Parameter	Best fit	68 % limits	Best fit	68 % limits					
$\overline{\Omega_{\mathrm{b}}h^2}$	0.022242	0.02217 ± 0.00033	0.022161	0.02214 ± 0.00024					
$\Omega_{ m c}h^2$	0.11805	0.1186 ± 0.0031	0.11889	0.1187 ± 0.0017					
100θ _{MC}	1.04150	1.04141 ± 0.00067	1.04148	1.04147 ± 0.00056					
au	0.0949	0.089 ± 0.032	0.0952	0.092 ± 0.013					
<i>n</i> _s	0.9675	0.9635 ± 0.0094	0.9611	0.9608 ± 0.0054					
$\ln(10^{10}A_{\rm s})$	3.098	3.085 ± 0.057	3.0973	3.091 ± 0.025					
$\overline{\Omega_{\Lambda}}$	0.6964	0.693 ± 0.019	0.6914	0.692 ± 0.010					
$\Omega_m \ldots \ldots \ldots \ldots \ldots$	0.3036	0.307 ± 0.019							
σ_8	0.8285	0.823 ± 0.018	0.8288	0.826 ± 0.012					
Z _{re}	11.45	$10.8^{+3.1}_{-2.5}$	11.52	11.3 ± 1.1					
H_0	68.14	67.9 ± 1.5	67.77	67.80 ± 0.77					
$10^9 A_{\rm s}$	2.215	$2.19_{-0.14}^{+0.12}$							
$\Omega_{ m m}h^2$	0.14094	0.1414 ± 0.0029							
$\Omega_{\rm m}h^3$	0.09603	0.09593 ± 0.00058							
$Y_{\mathbf{P}}$	0.247785	0.24775 ± 0.00014							
Age/Gyr	13.784	13.796 ± 0.058	13.7965	13.798 ± 0.037					
Ζ* · · · · · · · · · · · · ·	1090.01	1090.16 ± 0.65							
<i>r</i> _*	144.58	144.96 ± 0.66							
$100\theta_*$	1.04164	1.04156 ± 0.00066	1.04163	1.04162 ± 0.00056					
Zdrag · · · · · · · · · · ·	1059.59	1059.43 ± 0.64							
<i>r</i> _{drag}	147.74	147.70 ± 0.63	147.611	147.68 ± 0.45					
k_{D}	0.13998	0.13996 ± 0.00062							
$100\theta_{\rm D}$	0.161196	0.16129 ± 0.00036							
z_{eq}	3352	3362 ± 69							
$100\theta_{eq}$	0.8224	0.821 ± 0.013							
$r_{\rm drag}/D_{\rm V}(0.57)$	0.07207	0.0719 ± 0.0011							

		Sroh	t sch	100	10MC	Us	Int	OLO As) A			3×217 AtSI	, the	SEXCIB OF	3 AP	180 AP 22	8 PS	3×217 A21	1 Apo	st Ak	1 51.4 AB	Sum	zre.	Ho		1.0
. 	$\Omega_{\rm b} h^2$																								
ers f	$\Omega_{\rm c} h^2$	-44%																							0.8
nete	$100 \theta_{\mathrm{MC}}$	41%	-40%																						0.8
arar	τ	24%	-22%	14%																					
ă	n_s	44% -	76%	41%	26%																				- 0.6
\checkmark	$\ln(10^{10}A_s)$	15%	7%	5%	94%	3%																			
	A_{143}^{CIB}	-5%	1%	5%	-3%	-8%	-6%						_												- 0.4
	A_{217}^{CIB}	-6%	3%	0%	-3%	-8%	-3%	65%	1																
ers Str	$r_{143\times217}^{\rm CIB}$	-1%	-1%	3%	-6%	-4%	-9%	6%	0%																-0.2
lete	A^{tSZ}	-3%	0%	3%	-8%	-6%	-11%	53%	16%	57%															0.2
Iran	$\xi^{tSZ \times CIB}$	-2%	5%	2%	0%	-3%	1%	11%	-11%	13%	0%														
0	γ^{CIB}	-1%	4%	-4%	2%	-1%	4%	2%	60%	-46%	-37%	-11%													- 0.0
pur	A_{100}^{PS}	0%	3%	0%	5%	5%	8%	8%	24%	-31%	-50%	-2%	20%												
<u>O</u> LOI	A_{143}^{PS}	0%	4%	1%	6%	14%	13%	-22%	-4%	7%	-30%	19%	1%	47%											0.2
OLÊ	$r^{\rm PS}_{143\times 217}$	1%	4%	0%	2%	11%	7%	5%	21%	-6%	9%	28%	33%	2%	38%										
fe	$A_{217}^{\rm PS}$	3%	1%	1%	7%	21%	12%	-39%	-65%	1%	-6%	4%	-42%	8%	56%	21%									
	A^{Dust}	0%	2%	-1%	0%	-3%	0%	17%	50%	-19%	-4%	-4%	79%	2%	-6%	19%	-35%								0.4
	A^{kSZ}	-18%	0%	-6%	-13%	-34%	-18%	-18%	-18%	-8%	-11%	5%	1%	-33%	-68%	-45%	-55%	0%				_			
S	Ω_{Λ}	53% -	98%	51%	24%	78%	-4%	0%	-3%	1%	0%	-5%	-4%	-2%	-3%	-4%	0%	-2%	-2%						0.6
éd ete	Age,	· 87 %	67%-	75%	- 26 %	-62%	-9%	1%	4%	-1%	0%	1%	3%	0%	0%	0%	-2%	1%	13%	-77%					
leriv ram	Ω_m	-53%	98%	-51%	-24%	-78%	4%	0%	3%	-1%	0%	5%	4%	2%	3%	4%	0%	2%	2%	-99%77%					0.8
	z_{re}	13%	-13%	9%	99%	18%	96%	-3%	-2%	-7%	-8%	0%	2%	5%	7%	2%	7%	0%	-12%	14% -15%	-14%				
	H_0	61%-	96%	57%	25%	78%	-2%	0%	-3%	1%	0%	-4%	-4%	-2%	-3%	-3%	0%	-2%	-4%	99%-84 %	-99%	14%			

Figure 21. Correlation matrix between all the cosmological (top block), foreground (middle block), and derived (bottom block) parameters, estimated using the Plik likelihood.

Data consistency acoustic-scale distance ratio

Fig. 15. Acoustic-scale distance ratio $r_s/D_V(z)$ divided by the distance ratio of the *Planck* base ACDM model. The points are colour coded as follows: green star (6dF); purple squares (SDSS DR7 as analyzed by Percival et al., 2010); black star (SDSS DR7 as analyzed by Padmanabhan et al., 2012); blue cross (BOSS DR9); and blue circles (WiggleZ). The grey band shows the approximate $\pm 1\sigma$ range allowed by *Planck* (computed from the CosmoMC chains).

Data consistency Hubble constant & Lambda

Fig. 30. The green stripe shows the predictions of standard BBN for the primordial abundance of helium 4 as a function of the baryon density (with 68% CL errors on nuclear reaction rates). The horizontal band shows observational bounds on helium 4 compiled by Aver et al. (2012) (68% CL), while the grey region in the upper part of the figure delineates the conservative 95% upper bound inferred from solar helium abundance by (Serenelli & Basu, 2010). Finally, we show the 68% and 95% joint contours on (ω_b , Y_P) inferred from *Planck*+WP+highL, when Y_P is left as a free parameter in the CMB analysis. Both BBN predictions and CMB results assume $N_{\text{eff}} = 3.046$ and no significant lepton asymmetry.

Data consistency Tensions & Agreements

Tensions:

Hubble constant:

with WMAP with SN measurements (might go away)

primordial power spectrum amplitude: with WMAP (2%) with Planck SZ cluster counts

All tensions only one to a few sigmas

Agreements:

With LSS power spectrum, with BAOs, with BBN

Polarization teaser

Fig. 11. *Planck TE* (left) and *EE* spectra (right) computed as described in the text. The red lines show the polarization spectra from the base Λ CDM *Planck*+WP+highL model, *which is fitted to the TT data only*.

non-Gaussian statistics

Ľ

t

CH-R

111

 $\sigma \sqrt{2 \pi}$ 2.725 Kelvin 0.00001 Kelvin

 \mathcal{C}

 $(\mu)^2$

 σ^2

(x)

2

Bispektrum non-Gaussian statistics

Inflation

$$\ddot{\phi}(t) + 3 H(t) \dot{\phi}(t) + V_{\phi} = 0$$
$$H^{2} = \frac{1}{3 M_{\rm pl}^{2}} \left(V(\phi) + \frac{1}{2} \dot{\phi}^{2} \right)$$

$$V(\phi)$$

slow role inflation

$$\epsilon_V = \frac{M_{\rm pl}^2 V_{\phi}^2}{2 V^2}$$
$$\eta_V = \frac{M_{\rm pl}^2 V_{\phi\phi}}{V}$$

slow role parameters

$$Inflation$$

$$N_* = \int_{t_*}^{t_*} dt \ H \approx \frac{1}{M_{\text{pl}}^2} \int_{\phi_*}^{\phi_*} d\phi \ \frac{V}{V_{\phi}}$$

$$A_s \approx \frac{V}{24\pi^2 M_{\text{pl}}^4 \epsilon_V}$$

$$A_s \approx \frac{2V}{24\pi^2 M_{\text{pl}}^4}$$

$$R_s \approx \frac{2V}{3\pi^2 M_{\text{pl}}^4}$$

$$R_s - 1 \approx 2\eta_V - 6\epsilon_V$$

$$n_t \approx -2\epsilon_V$$

$$dn_s/d \ln k \approx -16\epsilon_V \eta_V + 24\epsilon_V^2 + 2\xi_V^2$$

$$dn_t/d \ln k \approx -4\epsilon_V \eta_V + 8\epsilon_V^2$$

$$\epsilon_V = \frac{M_{\text{pl}}^2 V_{\phi}^2}{2V^2}$$

$$d^2 n_s/d \ln k^2 \approx -192\epsilon_V^3 + 192\epsilon_V^2 \eta_V - 32\epsilon_V \eta_V^2$$

$$-24\epsilon_V \xi_V^2 + 2\eta_V \xi_V^2 + 2\varpi_V^3,$$

$$\eta_V = \frac{M_{\text{pl}}^2 V_{\phi}^2}{V}$$

Anomalies

"Missing Power"

Hemisphere Asymmetry

"Cold Spot"

"Missing Power"

"Missing Power"

Hemissphere Asymmetry and "Cold Spot"

Anomalies

Planck confirms: anomalies previously seen by WMAP are CMB features!

But what is their meaning?

Signatures of new physics

(Universe inhomogeneous on largest scales, view on beginning of inflation, ...)

or simply statistical fluctuations?

(with the large number of tests applied, a few outliers are to be expected)

Conclusions

Planck provided us with an amazingly consistent cosmological picture

Planck confirmed the quantum fluctuation origin of the cosmic structures

A few discrepancies and anomalies remain, but wouldn't life be boring otherwise? The scientific results that we present today are the product of the Planck Collaboration, including individuals from more than 50 scientific institutes in Europe, the USA and Canada

