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Preface

The aim of the lectures is to review various aspects of renormalization group flows in diverse
dimensions.

• Introduction.
• Basic Tools: The Two-Dimensional Case.
• Three Dimensions.
• Four Dimensions.
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Introductory Comments

The idea that we can try to solve (or usefully approximate) a complicated physical system by
trying to ignore slow degrees of freedom is very old. For example, to first approximation, we
can treat the nucleus of the atom as static.

Let us present a simple example where the application of this general idea immediately
leads to a nontrivial result. Consider the Schrödinger equation with Hamiltonian

H =
1

2
p2
x +

1

2
p2
y +

1

2
λ2x2y2 . (1.1)

Above λ is a positive coupling constant. The question is whether for nonzero λ the spectrum
is continuous or discrete.

Solution: There are flat directions for xy = 0, namely x = 0 or y = 0. If we go very far
on these flat directions, say we take |x| → ∞, then the y degree of freedom is very heavy,
with frequency w = λ|x|. So the y degree of freedom needs to be integrated out – it settles in
the ground state with energy E = 1

2λ|x|. Hence, the effective Hamiltonian that we get after
we integrate out the variable y is

H =
1

2
p2
x +

1

2
λ|x|+ · · · , (1.2)

where the · · · stand for terms that are suppressed at large x relative to the linear term in |x|.
We see that the light degree of freedom x is confined (i.e. no flat directions) and therefore has
a discrete spectrum.

Exercise 1: Devise a procedure to compute corrections to (1.2) at large |x|. How does the
first subleading term behave as |x| → ∞?

We see that the ideas of renormalization group are already useful in quantum mechanics.
In Quantum Field Theory (QFT) the ideas of the renormalization group are often not only
very useful, but also indispensable.

If we think of a very dense lattice of d space-like dimensions of sizeL and spacing a << L
as an approximation to continuum QFT, then we have some complicated system of (L/a)d

quantum-mechanical degrees of freedom. Let us further assume that at each lattice point there
are n quantum mechanical degrees of freedom.

The correlation length ξ is measured by correlation functions of local operators on the
lattice

〈O(~r1)O(~r2)〉 ∼ e−(|r1−r2|)/ξ . (1.3)

On sufficiently long distance scales the lattice structure always disappears. But usually
one would expect ξ ∼ a so there is no nontrivial theory to describe at long distances (we say
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that the theory is gapped). However, if we tune the lattice couplings such that ξ >> a, then on
sufficiently long distance scales there is a nontrivial continuum QFT. If we tune to the point
ξ → ∞ then one has a continuum conformal quantum field theory (CFT): a system without
any energy scale.

One can now perturb our lattice theory, say, we can change some coupling constant. This
can sometimes lead to a new nontrivial theory which has very large correlation length. This is
when we have an interesting RG flow. We can often describe the deformation parameter itself
in the language of an operator that we add to our QFT, see figure below.

CFT
uv

CFT
i r

deformation

So a renormalization group flow in the context of QFT is when the continuum CFTuv
is perturbed by an operator with scale M that triggers some reorganization of the degrees of
freedom, possibly ending with a new CFTir at very long distances (�M−1).

This description of QFT is very naturally connected to the physics of quantum spin sys-
tems and to high-energy physics. But QFT is so interesting because it also describes entirely
different phenomena as well.

Classical Statistical Physics: Consider a classical system with coordinates qi and momenta
pi, and energy functional H =

∑
i p

2
i + V (qi). Thermal physics just means to sum over the

entire phase space

Z =

∫
dpidqie

−H(pi,qi)/T .

The integral over momentum is trivial and we remain with

Z ∼
∫
dqie

−V (qi)/T .

Typically, say in some classical lattice system, we would have

V (qi) = K(qi+1 − qi)2 + v(qi) + · · ·

then if the lattice is dense enough and if we tune T to lie near a phase transition, then the
microscopic details would again disappear and we see that we get a d-dimensional Euclidean
QFT. Difference such as qi+1−qi are approximated by continuous derivatives. In this context,
the word ‘Quantum’ is really misleading, because Euclidean QFT can also describe entirely
classical systems, such as boiling water (at the second order phase transition point...).
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Stochastic Quantization: Suppose we have a particle subject to friction and being stirred
by random force

m
d~v

dt
= −α~v + ~η(t)

where η(t) is some random stirring force. We can assume, for example, that

〈~η(t1)~η(t2)〉 ∼ δ(|t1 − t2|) .

This is called the Langevin equation. Suppose one reaches some kind of equilibrium at the
end (so 〈~η〉 = 0) and one would like to compute 〈~vn〉. Suppose that η was a given function,
then we could think of this as follows:

〈~vn(t0)〉 ∼
∫

[Dη(t)]e−
1
2 ~η(t)2~vnη (t0) (1.4)

where vη is the exact solution corresponding to a given ~η. If one assumes eventual equilibrium,
then limt0→∞〈~vn(t0)〉 would exist. We could compute it by identifying some effective field
theory at zero dimensions. In this simplest Langevin example, these correlation functions are
computed (roughly) from

lim
t0→∞

〈~vn(t0)〉 ∼
∫
d~ve−α~v

2

~vn .

This procedure is related to the central assumption of stochastic quantization. Regardless of
that, one can rewrite many classical stochastic systems in terms of supersymmetric QFT etc.
See [1] for a review.

To summarize. we see that QFT describes (among others)
• High-Energy Physics
• Quantum Many body Systems (zero and nonzero temperature)
• Classical Statistical Systems
• Stochastic Systems

Let us now list some general questions that we will be concerned with (not all can be
solved at the moment, and not all would be addressed in this mini-course)

• Is any sufficiently nice system without an explicit mass scale always conformal (i.e.
enjoys the full conformal group)?

• Starting fromCFTuv , whichCFTir can we flow to? are there are interesting constraints?
• When do nontrivial CFTs exist?
• What is the geometry in the space of theories?
• Consequences for experiments?
• Using AdS/CFT, can we learn something about quantum gravity from all of this?
• Is there a useful useful generalization of the renormalization group for systems which are

not in equilibrium?
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Two-Dimensional Models

We consider Euclidean two-dimensional theories that enjoy the isometry group of R2. Namely,
the theories are invariant under translations and rotations in the two space directions. If the
theory is local it has an energy momentum tensor operator Tµν which is symmetric and con-
served Tµν = Tνµ, ∂µTµν = 0. These equations should be interpreted as operator equations,
namely they must hold in all correlation functions except, perhaps, at coincident points. Here
we will study theories where, when possible, these equations hold in fact also at coincident
points. In other words, we study theories where there is no local gravitational anomaly. See [2]
for some basic facts about theories violating this assumption.

We can study two-point correlation functions of the energy-momentum operator. This cor-
relation function is highly constrained by symmetry and conservation. It takes the following
most general form in momentum space:

〈Tµν(q)Tρσ(−q)〉 =
1

2

((
qµqρ − q2ηµρ)(qνqσ − q2ηνσ

)
+ ρ↔ σ

)
f(q2)

+ (qµqν − q2ηµν)(qρqσ − q2ηρσ)g(q2) .
(2.1)

The most general two-point function is therefore fixed by two unknown functions of the mo-
mentum squared. (Note that above we have stripped the trivial delta function enforcing mo-
mentum conservation.)

The form (2.1) holds in any number of dimensions. In two dimensions the two functions
f(q2) and g(q2) are not independent.

Exercise 2: Show that the two kinematical structures in (2.1) are not independent in
two dimensions.

Now let us make a further assumption, that the theory is scale invariant (but not necessarily
conformal invariant). This allows us to fix the two functions f , g up to a constant1

f(q2) =
b

q2
, g(q2) =

d

q2
. (2.2)

We can now calculate the two-point function 〈Tµµ (q)Tµµ (−q)〉

〈Tµµ (q)Tµµ (−q)〉 = (b+ d)q2 . (2.3)

Transforming back to position space this means that 〈Tµµ (x)Tµµ (0)〉 ∼ (b + d)�δ(2)(x). In
particular, at separated points the correlation function vanishes:

1A logarithm is disallowed since it violates scale invariance. (The rescaling of the momentum would not produce
a local term.)
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〈Tµµ (x)T νν (0)〉x 6=0 = 0 . (2.4)

In unitary theories, this means that the trace itself is a vanishing operator Tµµ = 0 (since
it creates nothing from the vacuum, it must be a trivial operator). This is called the Reeh-
Schlieder theorem [3].

The operator equation
Tµµ = 0 (2.5)

is precisely the condition for having the full conformal symmetry of R2, SO(3, 1), present.
In fact, in two-dimensions, (2.5) is sufficient to guarantee an infinite symmetry group (the

Virasoro algebra). This is because Tzz obeys ∂̄Tzz = 0 and so it can be multiplied by an
arbitrary holomorphic function and still remain conserved. We will elaborate on that a little
more later.

The equation (2.5) is satisfied in all correlation functions at separated points, but it may
fail at coincident points. We have already seen this phenomenon in (2.3). Such contact terms
signal an anomaly of SO(3, 1). Other than this potential anomaly, (2.5) means that SO(3, 1)
is a perfectly good symmetry of the theory. Therefore, we see that scale invariant theories are
necessarily conformal invariant in two dimensions [4].2

More generally, we find

〈T ρρ (q)Tµν(−q)〉 = −(b+ d)(qµqν − q2ηµν) , (2.6)

which is again a polynomial in momentum and hence a contact term in position space, consis-
tently with (2.5). One may wonder at this point whether there exist Quantum Field Theories
for which these contact terms are absent because b+ d = 0. Consider the correlation function
〈T11T11〉. This has support at separated points. It is proportional to b+ d.

Exercise 3: In light of exercise 2, is this a coincidence?

Therefore, in unitary theories, from reflection positivity (i.e. Reeh-Schlieder theorem) it
follows that

b+ d > 0 . (2.7)

So far we have seen that scale invariant theories in fact enjoy SO(3, 1) symmetry, but
the symmetry is afflicted with various contact terms such as (2.6). To see clearly the physical
meaning of this anomaly, we can couple the theory to some ambient curved space (there is no
dynamics associated to the curved space, it is just a background field). This is done to linear
order via ∼

∫
d2xTµνhµν , where hµν is the linearized metric gµν = ηµν + hµν . Hence in the

presence of a background metric that deviates only slightly from flat space

〈Tµµ (0)〉gµν ∼
∫
d2x〈Tµµ (0)T ρσ(x)〉hρσ(x) ∼ (b+ d)

∫
d2x

(
∂ρ∂σδ2(x)− ηρσ�δ2(x)

)
hρσ

∼ (b+ d)(∂ρ∂σ − ηρσ�)hρσ .

(2.8)

The final object (∂ρ∂σ − ηρσ�)hρσ is identified with the linearized Ricci scalar. In princi-
ple, if we had analyzed three-point functions of the energy-momentum tensor and so forth,

2Some technical assumptions implicit in the argument above are spelled out in [4], where the argument was first
developed.
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we would have eventually constructed the entire series expansion of the Ricci scalar. There-
fore, the expectation value of the trace of the energy-momentum tensor is proportional to the
Ricci scalar of the ambient space. This is the famous two-dimensional trace anomaly. It is
conventional to denote the anomaly by c (and not by b+ d as we have done so far). The usual
normalization is

T = − c

24π
R . (2.9)

c is also referred to as the “central charge” but we will not emphasize this representation-
theoretic interpretation here. Our argument (2.7) translates to c > 0.

There is a very useful consequence of (2.9). Consider the conservation equation in curved
space ∇µTµν = 0. If we switch to local complex coordinates with a Hermitian metric

ds2 = eϕdzdz̄ ,

then the conservation equation takes the form

∂z̄Tzz + eϕ∂z(e
−ϕTzz̄) = 0 .

But in two dimensions we have the relation (2.9) so we can substitute this into the second term
of the equation above. It is useful to remember that R = −4e−ϕ∂∂̄ϕ.

This implies that we can definite a holomorphic energy-momentum tensor

T ′zz = Tzz + αc
(
−(∂ϕ)2 + 2∂2ϕ

)
. (2.10)

Exercise 4: Fix the numerical coefficient α and verify the appearance of the Schwartzian
derivative below.

The advantage of T ′ is that it is holomorphic, but the disadvantage is that it transforms
non-covariantly under holomorphic coordinate transformations z → f(z) (because ϕ shift
in-homogeneously). T ′ is what is actually used in most of the literature on 2d CFTs, and the
prime is usually omitted. The in-homogenous piece in the transformation rule is the so-called
Schwartzian derivative

z → w(z) , {w, z} =
wzzz
wz
− 3

2

(
wzz
wz

)2

. (2.11)

Using (2.9) we can present another useful interpretation of c. Consider a two-dimensional
conformal field theory compactified on a two-sphere S2 of radius a,

ds2 =
4a2

(1 + |x|2)2

2∑
i=1

(dxi)
2 , |x|2 =

2∑
i=1

(xi)
2 . (2.12)

The Ricci scalar is R = 2/a2. Because of the anomaly (2.9), the partition function

ZS2 =

∫
[dΦ]e−

∫
S2 L(Φ) (2.13)

depends on a. (If the theory had been conformal without any anomalies, we would have ex-
pected the partition function to be independent of the radius of the sphere.) We find that



Two-Dimensional Models 7

d

d log a
logZS2 = −

∫
S2

√
g〈T 〉 =

c

24π

∫
S2

√
gR =

c

24π

2

a2
V ol(S2) =

c

3
. (2.14)

Thus the logarithmic derivative of the partition function yields the c anomaly. This particular
interpretation of c will turn out to be very useful later.

The central charge c appears in several other very important places. We would like to
explain very briefly why c appears in the entanglement entropy of the vacuum [5]. Suppose
we take R = A ∪Ac and A = [a, b] some interval. The reduced density matrix is defined by

ρA = TrAc(ρvacuum) ,

with ρvacuum the density matrix of the normal pure vacuum. Then, the Renyi entropies are
defined by

Sn =
1

n− 1
TrA(ρnA) .

(The von-Neumann entropy is recovered from the n→ 1 limit, if the limit exists.) The Sn can
be calculated from the partition function of the theory on an n-sheeted covering of R2:

Cn := ∪ni=1R2
(i)

such that for any field φ, it takes the same values for all R2
(i) away from A and on A we glue

φi and φi+1 in a cyclic fashion. This construction can be regarded technically as some twist
field correlation function in a symmetric orbifold theory. Less abstractly, near the points a, b
we simply have a conical singularity with the total angle in the range θ ∈ [0, 2πn]. The space
Cn constructed above can actually be mapped conformally to the one with A = [0,∞].3 Then
the Cn space associated to it is manifestly equivalent to the ordinary complex plane after a
transformation

z = w1/n , w ∈ Cn , z ∈ R2 .

Now, using the fact that the holomorphic energy-momentum tensor does not transform co-
variantly, using the explicit expressions (2.10),(2.11) we find that the conical defects at a, b
behave as primary operators of dimensions

∆n =
c

24
(1− 1/n2) .

The Renyi entropy, being just the partition function on Cn, is therefore given by

Sn ∼
1

n− 1
|a− b|−c/6(n−1/n) . (2.15)

In particular, the n→ 1 limit exists and gives

Svon−Neuman ∼ c log(|a− b|) . (2.16)

The analysis of the case thatA consists of a disjoint union of intervals is far more complicated
and we will not discuss it here.

3Exercise 5: Show that in two dimensions any interval can be conformally mapped to the half line.
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We will now consider non-scale invariant theories, i.e. theories where there is some con-
formal field theory at short distances, CFTuv , and some other conformal field theory (that
could be trivial) at long distances, CFTir. Let us study the correlation functions of the stress
tensor in such a case, following [6]. To avoid having to discuss contact terms (which were
very important above) we switch to position space. We begin by rewriting (2.1) in position
space.

In terms of the complex coordinate z = x1 + ix2 the conservation equations are ∂z̄Tzz =
−∂zT , ∂zTz̄z̄ = −∂z̄T , where T stands for the trace of the energy-momentum tensor. We can
parameterize the most general two point functions consistent with the isometries of R2

〈Tzz(z)Tzz(0)〉 =
F (zz̄,M)

z4
,

〈T (z)Tzz(0)〉 =
G(zz̄,M)

z3z̄
,

〈T (z)T (0)〉 =
H(zz̄,M)

z2z̄2
.

(2.17)

In the above M stands for some generic mass scale of the theory. As we have seen in our
analysis above (2.1), we know that the conservation equation should bring down the number
of independent functions to two. Indeed, we find the following relations Ḟ = −Ġ + 3G,
Ḣ−2H = −Ġ+G, where Ẋ ≡ |z2| dXd|z|2 , leaving two real undermined functions (remember
that G and F are complex).

Using these relations one finds that the combination C ≡ F − 2G − 3H satisfies the
following differential equation

Ċ = −6H . (2.18)

However, since H is positive definite, the equation above means that C decreases monotoni-
cally as we increase the distance. Let us now identify C at very short and very long distances.
At very short and very long distances it is described by the appropriate quantities in the cor-
responding conformal field theories. As we have explained above, in conformal field theory
G,H are contact terms, hence can be neglected as long we do not let the operators collide. On
the other hand, F ∼ c. (It is easy to verify that F is sensitive only to the combination b+ d as
defined in (3.3). Hence, it is only sensitive to c.)

This shows that C is a monotonic decreasing function that starts from cUV and flows to
cIR. Since the anomalies cUV , cIR are defined inherently in the corresponding conformal
field theories, this means that the space of 2d CFTs admits a natural foliation and the renor-
malization group flow can proceed in only one direction in this foliation. No cycles of the
renormalization group are allowed.

One can think of c as a measure of degrees of freedom of the theory. In simple renormal-
ization group flows it is easy to understand that c should decrease since we merely integrate
out some massive particles. However, there are many highly nontrivial renormalization group
flows where there are emergent degrees of freedom, and the result that

cUV > cIR (2.19)

is a strong constraint on the allowed emergent degrees of freedom.
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We can integrate the equation (2.18) to obtain a certain sum rule

cUV − cIR ∼
∫
d log |z2|H ∼

∫
d2z|z2|〈T (z)T (0)〉 > 0 . (2.20)

Since c can also be understood as the path integral over the two-sphere, the inequal-
ity (2.19) can also be interpreted as a statement about the partition function of the massive
theory on S2.

There is also a very interesting reinterpretation using the entanglement-entropy of the in-
terval. when the interval [a, b] is very short compared to the mass scale, then we recover (2.16)
with c → cuv . When the interval becomes very long compared to the mass scale, then we
have (2.16) with c→ cir. In between there is some interpolating functions. Using information-
theoretic properties of entropy, it is possible to show directly [10] from this point of view that
cuv > cir. So it would seem that the monotonicity of the renormalization group flow in two
dimensions is essentially equivalent to some properties of the von-Neumann entropy.
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Three-Dimensional Models

Three-dimensional QFT is directly relevant for understanding interesting classical second or-
der phase transitions (boiling water, He3 etc), as well as quantum critical points that appear
condensed matter physics. Finally, it is a useful playground for confinement and other non-
perturbative aspects of quantum field theory.

Here we will discuss the symmetries of fixed points, S3 partition functions, monotonicity
of RG flows, connection to entanglement entropy, and supersymmetry.

3.1 Conformal Invariance

There are interesting examples of continuum theories with infinite correlation length but no
conformal symmetry. Consider the free gauge field in three dimensions

S =
1

2e2

∫
d3xF 2

µν

One would think that the theory is scale invariant because we can assign the gauge field di-
mension 1/2 and thus e would be dimensionless.

However, the only conceivable, conserved, gauge invariant, energy-momentum tensor we
could write is

Tµν = FµρF
ρ
ν −

1

4
ηµνF

2 . (3.1)

Exercise 6: Show that this energy-momentum tensor is conserved.

It is not traceless in three-dimensions Tµµ = 1
4F

2. It is possible to prove that a local scale
current has to be of the form

∆µ = xνTµν − Vµ , (3.2)

where Vµ is called the virial current. This is conserved if an only if Tµµ = ∂νVν , i.e. the
energy-momentum tensor is a gradient of a well-defined operator. In our case, the best we can
do is to write a non-gauge invariant scale current

∆µ = xνTµν −
1

2
FµνA

ν (3.3)

which is conserved.
It is not a good scale current because it is not gauge invariant. However, the charge

∆ =

∫
d2x∆0 (3.4)

is gauge invariant if we assume all the fields decay sufficiently rapidly.
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Exercise 7: Show that the scale current (3.3) is conserved and show that the associated
charge is gauge invariant.

So we conclude that the theory has no scale current, but a scale charge exists. One can
also show that the currents of special conformal transformations don’t exist, but in this case,
also the associated charges does not exist. So free 3d QED is an example of a theory that is
unitary, scale invariant, but not conformal.

It is not really known whether this theory is an exception or there are more theories of
this sort (it would be very interesting to find a unitary interacting example – it is fair to say
that most people believe such theories do not exist). This free counterexample to the idea that
scale invariance+unitarity imply conformal invariance has been discussed in many places, see
for example [7],[8] and references therein.

3.2 A More Careful Look into Free 3d QED (for advanced
students)

The discussion above is essentially correct, but there is a more precise way to phrase it. In
three dimensions a free gauge field and a free scalar field are completely equivalent

∂µφ = εµνρF
νρ . (3.5)

The Bianchi identity corresponds to the Klein-Gordon equation.
One has to distinguish the case that the gauge symmetry acting on Aµ is compact from the

non-compact case. In the former, one can have a nontrivial flux of the magnetic field through
two-cycles. That means that φ is a periodic scalar, so that it can wind through the dual one-
cycle. If we decompactify the gauge symmetry, the period of the scalar goes to zero. So the
scalar dual to a gauge field with noncompact gauge symmetry is of zero radius (this is a scalar
without a zero mode).

The clash between having a conserved energy momentum tensor and conformal invariance
is clearly visible in the language of φ. A traceless energy-momentum tensor for φ would take
the form

Tµν = ∂µφ∂νφ−
1

2
ηµν(∂φ)2 +

1

8
(ηµν∂

2 − ∂µ∂ν)φ2 (3.6)

Exercise 8: Show that this is conserved and traceless.

However, this energy-momentum tensor is inconsistent with the periodicity of φ. One can
naturally interpret the period of φ as some dimensionful parameter (of dimension 1/2). In the
far UV, the periodicity goes to zero (since it has mass dimension) and therefore one finds that
the UV theory is a scalar without a zero mode. This is a unitary scale but non-conformally in-
variant theory. In the infrared the scalar effectively de-compactifies. Then, the energy momen-
tum tensor (3.6) becomes admissible. Hence, the infrared theory is just an ordinary, conformal,
non-compact free scalar field.

One can therefore summarize the free 3d gauge field model in the following diagram:
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A zero radius scalar field: 

Unitary, scale invariant, non−conformal

A non−compact scalar field:

Unitary, conformal

3d QED:

One can test this interpretation of the 3d QED model by, for example, computing the
entanglement entropy on a disk. One indeed finds that this approaches infinity logarithmically
in the UV (we will discuss why this has to be the case below) and a finite value, identical to
that of a free non-compact scalar field, in the infrared [9].

3.3 S3 Partition Functions

An interesting question is whether there exists a function in three dimensions satisfying some-
thing similar to (2.19). The problem consists of identifying a candidate quantity that could
satisfy such an inequality and then proving that it indeed does so.

There are various ways to define quantities in higher-dimensional field theories that share
some common features with c. For example, in conformal theories in two dimensions c is
equivalent to the free energy density of the system, divided by the appropriate power of the
temperature. One could define a similar object in higher-dimensional field theories. However,
one quickly finds that it is not monotonic [11]. This already shows that inequalities such
as (2.19) are quite delicate, and they fail if one chooses to measure the number of effective
degrees of freedom in the wrong way (albeit a very intuitive and seemingly natural way).

Progress on the problem of identifying a candidate quantity generalizing (2.19) happened
quite recently [12],[13]. The conjecture arose independently from studies in AdS/CFT and
from studies of N = 2 supersymmetric 3d theories.

Any conformal field theory on R3 can be canonically mapped to a theory on the curved
space S3. This is because S3 is stereographically equivalent to flat space (thus the metric on S3

is conformal to R3). In three dimensions there are no trace anomalies, and hence the partition
function over S3 has no logarithms of the radius. (This should be contrasted with the situation
in two dimensions, (2.14).)

Consider

ZS3 =

∫
[dΦ]e−

∫
S3 L(Φ) . (3.7)

This is generally divergent and takes the form (for a three-sphere of radius a)

logZS3 = c1(Λa)3 + c2(Λa) + F . (3.8)
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Terms with inverse powers of Λ are dropped since they are not part of the continuum theory.
They can be tuned away by adding the cosmological constant counter-term and the Einstein-
Hilbert counter-term. However, no counter term can remove the finite part F .1

Imagine a three-dimensional flow from some CFTuv to some CFTir. Then we can (in
principle) compute Fuv and Fir via the procedure above. The conjecture is

Fuv > Fir . (3.9)

Let us outline the computation of F is simple examples. Take a free massless scalar
L = 1

2 (∂Φ)2. To put it in a curved background while preserving conformal invariance (more
precisely, Weyl invariance) we write in d dimensions

S =
1

2

∫
d3x
√
g

(
(∇Φ)2 +

d− 2

4(d− 1)
R[g]Φ2

)
. (3.10)

This coupling to the Ricci scalar is necessary to preserve Weyl invariance. Weyl invariance
means that the action is invariant under rescaling the metric by any function. We achieve this
by accompanying the action on the metric with some action on the fields. For the action above,
Weyl invariance means that the action is invariant under

g → e2σg , φ→ e−
1
2σφ . (3.11)

We can now compute the partition function on the three-sphere by diagonalizing the cor-
responding differential operator − logZS3 = 1

2 log det
(
−∇2 + 1

8R
)
. The Ricci scalar is

related to the radius in three dimensions via R = 6
a2 . The eigenfunctions are of course well

known. The eigenvalues are

λn =
1

a2

(
n+

3

2

)(
n+

1

2

)
,

and their respective multiplicities are

mn = (n+ 1)2 .

The free energy on the three-sphere due to a single conformally coupled scalar is therefore

− logZS3 =
1

2

∞∑
n=0

mn

(
−2 log(µ0a) + log

(
n+

3

2

)
+ log

(
n− 1

2

))
. (3.12)

We have inserted an arbitrary scale µ0 to soak up the dependence on the radius of the sphere.
Since there are no anomalies in three dimensions, we expect that there would be no depen-
dence on µ0 eventually.

1More precisely, one can have the gravitational Chern-Simons term, but this cannot affect the real part of F . We
disregard the imaginary part of F in our discussion.
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This sum clearly diverges and needs to be regulated. We choose to regulate it using the
zeta function. One finds that with this regulator

∑
n=0mn = ζ(−2) = 0 and therefore a

logarithmic dependence on the radius is absent, as anticipated. We remain with

Fscalar = −1

2

d

ds

[
2ζ(s− 2,

1

2
) +

1

2
ζ(s,

1

2
)

]
=

1

16

(
2 log 2− 3ζ(3)

π2

)
≈ 0.0638

One can perform a similar computation for a free massless Dirac fermion field and one finds

Ffermion =
log 2

4
+

3ζ(3)

8π2
≈ 0.219

The absolute value of the partition function of a massless Majorana fermion is just a half of
the result above. We see that the counting of degrees of freedom is quite nontrivial.

An interesting fact is that a nonzero contribution to F arises also from topological degrees
of freedom. This has to be contrasted with the situation in two dimensions, where c was
defined through a local correlation function and hence was oblivious to topological matter.
For example, let us take Chern-Simons theory associated to some gauge group G,

S =
k

4π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (3.13)

where k is called the level. This theory has no propagating degrees of freedom. Indeed, the
equation of motion is

0 = F = dA+A ∧A ,

which means that the curvature of the gauge field vanishes everywhere. Such gauge fields are
called flat connections. The space of flat connection on the manifold M is fixed completely
by topological properties of the manifold.

The partition function of CS theory on the three sphere has been discussed in [14]. In
particular, for U(1) CS theory the answer is 1

2 log k while for U(N) it is

FCS(k,N) =
N

2
log(k +N)−

N−1∑
j=1

(N − j) log

(
2 sin

πj

k +N

)
. (3.14)

We see that the contribution from a topological sector can be in fact arbitrarily large as we
take the level k to be large.

Let us now check the inequality (3.9) in a simple renormalization group flow. One can start
from the conformal field theory described by U(1)k CS theory coupled to Nf Dirac fermions
of charge 1. This is a conformal field theory because the Lagrangian has no coupling constant
that can run. (The CS coefficient is discrete because it is topological in nature.) This conformal
field theory is weakly coupled when k >> 1. Hence, the F coefficient is

FUV ≈
1

2
log k +Nf

(
log 2

4
+

3ζ(3)

8π2

)
Let us now deform this by a mass term. The fermions disappear, but there is a pure CS term
in the infrared with a shifted level k ±Nf/2, where the sign depends on the sign of the mass
term. Hence,
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FIR ≈
1

2
log (k ±Nf/2) ,

and one can convince oneself that in the regime where our analysis is valid,

Fuv > Fir (3.15)

holds true.
We would now like to discuss the physical interpretation of F , which is far from obvious.

The partition function over S3 does not have an obvious interpretation in terms of a Hilbert
space so it is not clear what does it count.

Consider the entanglement entropy across a disk, so in the notation of the previous section,
A = D2, a two-dimensional disk.

A

A
c

In three dimensions a logarithm is not allowed in the von-Neumann entropy of a disk.
(Roughly speaking, this is because there are no conformal anomalies.) In general, we expect
the von-Neumann entropy of a disk of radius r to take the form

Svon−Neumann = Λr + S , (3.16)

where Λ is some UV cutoff. This linear divergence can be removed by adding a local counter-
term on the boundary of the disk

∫
S1 dγ. However, S is physical, it cannot be removed by

adding any admissible local counterterm.

Exercise 9: (Challenging) suppose we add on the boundary of the disk the counter-term∫
S1 dγ κ where κ is the extrinsic curvature. This would seem to make S ambiguous. Explain

why the counter term
∫
S1 dγ κ is disallowed.

In the paper [15] it was shown that

F = S . (3.17)

Therefore, one can interpret the S3 partition function as the entanglement entropy across a
disk. Additionally, one can also think of this entanglement entropy as the thermodynamic
entropy in hyperbolic space [15]. We see again that monotonicity of the renormalization group
flow (3.15) is again intimately related to the entanglement entropy.

There is not yet a conventional field theoretic proof of this inequality (3.9), but using the
relation with the Entanglement Entropy, the inequality follows from some inequalities satisfied
by the density matrix. Various issues with this construction are discussed in [17]. Of course,
in all of these discussions one assumes that the entanglement entropy exists in the continuum
theory.



16 Three-Dimensional Models

3.4 Back to Free QED3

Above we have computed the F associated to the theory of a free fermion and to a free
conformally-coupled boson. Here we would like to go back to the subtle theory of a free
gauge field in three dimensions and compute the F associated to it.

Let us start with some general comments. First, since the gauge field is dual to a scalar,
one would be tempted to use (3.10). But remember that the gauge field is dual to a periodic
scalar, so the second term in (3.10) is disallowed. This is of course closely related to the fact
that the final term in the energy-momentum tensor (3.6) does not respect the gauged discrete
shift symmetry. We can ask under what conditions ZS3 is going to come out independent of
a, the radius of S3. ZS3 would be independence of a if there exists a local, well-defined, Vµ
such that

Tµµ = ∇ρVρ . (3.18)

This equation guarantees the existence of a conserved scale invariance current,

∆µ = xνTνµ − Vµ . (3.19)

Since such a local scale current does not exist for the free gauge field, there might be an
interesting dependence on a. This means that we might not be able to assign a finite F to the
theory of a free gauge field.

The partition function of the free scalar field on S3 is obtained by starting from the action

S =
1

2

∫
d3x
√
g
(
(∇φ)2 + αRφ2

)
(3.20)

On the sphere of radius a,R = d(d−1)/a2. α is a general real coefficient such that if α = 1/8
it is conformally coupled. Only α = 0 is consistent with the discrete shift symmetry.

The partition function as a function of α is F = 1
2 log det

(
−∇2 + αR

)
. To compute it

one again recalls that the eigenvalues of the Laplacian on the sphere of radius a:

λn =
1

a2
n(n+ 2) , (3.21)

and they come with multiplicity mn = (n+ 1)2. Hence,

F =
1

2

∑
n

mn log

(
λn +

6α

a2

)
. (3.22)

Let us investigate the dependence on the a that appears inside the logarithm first. It takes the
form − log(a)

∑
nmn. Employing zeta-function regularization

∑
n n

2 = ζ(−2) = 0 and
hence the coefficient of log(a) is zero.

We remain with

F =
1

2

∞∑
n=0

(n+ 1)2 log (n(n+ 2) + 6α) (3.23)

This is divergent as N3 where N is some effective cutoff on the modes. This corresponds
to a cosmological constant counter-term on S3. There is also a subleading linear divergence
corresponding to an Einstein-Hilbert counter-term. So the above sum needs a regulator.
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We see a certain sickness for α corresponding to the periodic free scalar, α = 0. This
is easily interpreted as coming from the fact we have a non-compact scalar zero mode once
we remove the curvature coupling. So this is a divergence from the infinite volume of target
space. It is an infrared divergence.

We can compute the sum (3.23) with a zeta-function regulator. A helpful formula that we
will use is
∞∑
n=0

(n+ 1)2 log(n+ c) = − d

ds

[
ζ(s− 2, c) + 2(1− c)ζ(s− 1, c) + (c− 1)2ζ(s, c)

]∣∣∣∣
s=0

.

(3.24)
Now let us consider α = 0, where the existence of a divergence due to the non-compact

target space has already been noted. We take α = 1
6ε to regulate things. We find

F [α =
1

6
ε] =

1

2
log(ε) +

log(π)

2
+
ζ(3)

4π2
+O(ε) . (3.25)

Exercise 10: Derive (3.24) and (3.25).

The coefficient 1
2 in front of the first log would be generally replaced by the dimension of

moduli space of the theory divided by two. Note that this partition function is now tending to
minus infinity. When ε is small, the scalar is effectively allowed to probe distances or order
φ ∼ ε−1/2R−1/2. Therefore, if we have a scalar with period sqrtf (where f has dimension
1), we expect that the leading logarithmic piece in the F function would be

F =
1

2
log(f−1R−1) = −1

2
log(fR) (3.26)

We see that when the scalar has zero radius F → ∞ which is completely consistent with the
qualitative picture of the flow in the figure on page 12.

Since the periodic scalar and the gauge field are equivalent, we see that the free gauge field
needs to be assigned infinite positive F (we again quote only the leading logarithmic term):

FMaxwell
S3 = − log(e2a)

2
. (3.27)

This allows us an interesting reinterpretation of the result 1
2 log k of the U(1)k CS theory,

quoted above (3.14). If we add a CS term of level k to a free Maxwell field, it picks up a
mass m ∼ e2k and hence the logarithm needs to be “cut-off” at spheres of radius a−1 ∼ e2k.
Therefore we expect to find in the infrared 1

2 log k with a positive sign in front of the logarithm.
This is precisely the result in CS theory, including the pre-factor.

We summarize that the “number of degrees of freedom” associated to a free gauge field
is formally infinite. In fact, this is necessary for the F -theorem to hold: we can start from
the free gauge field and flow to the topological CS term with any level k. Since the latter has
F = 1

2 log(k), the only consistent F that we must assign to the free gauge field is infinite.
This is somewhat unfortunate, because many interesting models whose dynamics we would
like to understand (e.g. QED+flavors in 3d) start their life in the ultraviolet from free gauge
fields and so the F -theorem does not easily lead to interesting bounds. However, one can still
place interesting bounds by applying tricks such as in [21].
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Note a conceptual difference from the c-theorem in two dimensions (2.19). In the two-
dimensional case, topological degrees of freedom do not contribute. In three dimensions, one
must count the topological degrees of freedom as well.

3.5 The S3 Partition Function can be Computed in N = 2 Theories

If one wants to gain some information about F beyond free (or weakly coupled) models,
non-perturbative methods are needed.

It turns out that if one starts from N = 2 (i.e. four supercharges) QFT in flat space (R3),
then one can put the theory on S3 while preserving four supercharges, which are not the same
ones that are preserved in flat space. A technical requirement is that the flat space theory has
at least one R-symmetry.

This statement is obvious for superconformal field theories in flat space, since they can be
placed on S3 using a stereographic transformation as above. The surprising fact is that this
can be done even if the theory is non-conformal.

One can then use supersymmetric localization to compute F in many interesting exam-
ples. In particular, the inequality (3.9) is always satisfied. To learn about these developments
see [18],[19],[20] and references therein.
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Four-Dimensional Models

We saw that in two dimensions the natural monotonic property of the RG evolution was tightly
related to the trace anomaly in two dimensions. In three dimensions the main role was played
by the three-sphere partition function (there are no trace anomalies in three dimensions).

In four dimensions there are two trace anomalies and the monotonic property of renormal-
ization group flows concerns again with these anomalies. The anomalous correlation function
is now

〈Tµν(q)Tρσ(p)Tγδ(−q − p)〉
And again, like in our analysis in two dimensions, there are contact-terms which are necessar-
ily inconsistent with Tµµ = 0. In four dimensions it turns out that there are two independent
trace anomalies. Introducing a background metric field we have

Tµµ = aE4 − cW 2 , (4.1)

where E4 = R2
µνρσ − 4R2

µν + R2 is the Euler density and W 2
µνρσ = R2

µνρσ − 2R2
µν + 1

3R
2

is the Weyl tensor squared. These are called the a- and c-anomalies, respectively.
It was conjectured in [22] (and shortly after studied extensively in perturbation theory

in [23],[24]) that if the conformal field theory in the ultraviolet, CFTUV , is deformed and
flows to some CFTIR then

aUV > aIR . (4.2)

The four-dimensional c-anomaly does not satisfy such an inequality (this can be seen by inves-
tigating simple examples) and also the free energy density divided by the appropriate power
of the temperature does not satisfy such an inequality.

In two and three dimensions we have seen that the quantities satisfying inequalities like (2.19), (3.9)
are computable from the partition functions on S2 and S3, respectively. Similarly, in four di-
mensions, since the four-sphere is conformally flat, the partition function on S4 selects only
the a-anomaly. Indeed,

∂log r logZS4 = −
∫
S4

√
g〈Tµµ 〉 = −a

∫
S4

√
gE4 = −64π2a .

In the formula above r stands for the radius of S4. Real scalars contribute to the anomalies
(a, c) = 1

90(8π)2 (1, 3), Weyl fermion: (a, c) = 1
90(8π)2 (11/2, 9), and a U(1) gauge field:

(a, c) = 1
90(8π)2 (62, 36).

In four dimensions, a free gauge field is a conformal field theory because (3.1) is traceless.
So the problems with the free gauge field that we have discussed at great length in three dimen-
sions do not exist in four dimensions. (Similar issues arise for the free two-form gauge theory,
but this does not appear naturally in the ultraviolet of interesting models in four dimensions.)
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We will now present an argument for (4.2), but before that, it is useful to repeat the two-
dimensional story from a new point of view. The main idea is to promote various coupling
constants to background fields [25],[26]. Our discussion below is more intuitive than rigorous,
but it can be made entirely rigorous using the formalism of [27],[28]. Following the more
rigorous and complete approach would force us to introduce a lot of notation and much more
algebra, but the essential idea and results would not be changed.

4.1 Two-Dimensional Models Revisited

Imagine any renormalizable QFT (in any number of dimensions) and set all the mass param-
eters to zero. The extended symmetry includes the full conformal group. If the number of
space-time dimensions is even then the conformal group has trace anomalies. If the number of
space-time dimensions is of the form 4k + 2, there may also be gravitational anomalies. We
will keep ignoring gravitational anomalies here.

Upon introducing the mass terms, one violates conformal symmetry explicitly. Thus, in
general, the conformal symmetry is violated both by trace anomalies and by an operatorial
violation of the equation Tµµ = 0 in flat space-time. The latter violation can always be removed
by letting the coupling constants transform. Indeed, replace every mass scale M (either in the
Lagrangian or associated to some cutoff) by Me−τ(x), where τ(x) is some background field
(i.e. a function of space-time). Then the conformal symmetry of the Lagrangian is restored if
we accompany the ordinary conformal transformation of the fields by a transformation of τ .
To linear order, τ(x) always appears in the Lagrangian as ∼

∫
ddx τTµµ . Setting τ = 0 one is

back to the original theory, but we can also let τ be some general function of space-time. The
variation of the path integral under such a conformal transformation that also acts on τ(x) is
thus fixed by the anomaly of the conformal theory in the ultraviolet. This idea allows us to
study some questions about general RG flows using the constraints of conformal symmetry.
We will sometimes refer to τ as the dilaton.

Consider integrating out all the high energy modes and flow to the deep infrared. Since
we do not integrate out the massless particles, the dependence on τ is regular and local. As
we have explained, the dependence on τ is tightly constrained by the conformal symmetry.
Since in even dimensions the conformal group has trace anomalies, these must be reproduced
by the low energy theory. The conformal field theory at long distances, CFTIR, contributes to
the trace anomalies, but to match to the defining UV theory, the τ functional has to compen-
sate precisely for the difference between the anomalies of the conformal field theory at short
distances, CFTUV , and the conformal field theory at long distances, CFTIR.

Let us see how these ideas are borne out in two-dimensional renormalization group flows.
Let us study the constraints imposed by conformal symmetry on action functionals of τ (which
is a background field). An easy way to analyze these constraints is to introduce a fiducial
metric gµν into the system. Weyl transformations act on the dilaton and metric according to
τ → τ + σ, gµν → e2σgµν . If the Lagrangian for the dilaton and metric is Weyl invari-
ant, upon setting the metric to be flat, one finds a conformal invariant theory for the dilaton.
Hence, the task is to classify local diff×Weyl invariant Lagrangians for the dilaton and metric
background fields.

It is convenient to define ĝµν = e−2τgµν , which is Weyl invariant. At the level of two
derivatives, there is only one diff×Weyl invariant term:

∫ √
ĝR̂. However, this is a topological

term, and so it is insensitive to local changes of τ(x). Therefore, if one starts from a diff×Weyl
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invariant theory, upon setting gµν = ηµν , the term
∫
d2x(∂τ)2 is absent because there is no

appropriate local term that could generate it.
The key is to recall that unitary two-dimensional theories have a trace anomaly

Tµµ = − c

24π
R . (4.3)

One must therefore allow the Lagrangian to break Weyl invariance, such that the Weyl vari-
ation of the action is consistent with (4.3). The action functional which reproduces the two-
dimensional trace anomaly is

SWZ [τ, gµν ] =
c

24π

∫
√
g
(
τR+ (∂τ)2

)
. (4.4)

We see that even though the anomaly itself disappears in flat space (4.3), there is a two-
derivative term for τ that survives even after the metric is taken to be flat. This is of course the
familiar Wess-Zumino term for the two-dimensional conformal group. (It also appears as the
Liouville or linear dilaton action in the context of conformal field theory.)

Consider now some general two-dimensional RG flow from a CFT in the UV (with central
charge cUV and a CFT in the IR (with central change cIR). Replace every mass scale according
to M → Me−τ(x). We also couple the theory to some background metric. Performing a
simultaneous Weyl transformation of the dynamical fields and the background field τ(x), the
theory is non-invariant only because of the anomaly δσS = cUV

24

∫
d2x
√
gσR. Since this

is a property of the full quantum theory, it must be reproduced at all scales. An immediate
consequence of this idea is that also in the deep infrared the effective action should reproduce
the transformation δσS = cUV

24

∫
d2x
√
gσR. At long distances, one obtains a contribution cIR

to the anomaly from CFTIR, hence, the rest of the anomaly must come from an explicit Wess-
Zumino functional (4.4) with coefficient cUV − cIR. In particular, setting the background
metric to be flat, we conclude that the low energy theory must contain a term

cUV − cIR
24π

∫
d2x(∂τ)2 . (4.5)

Note that the coefficient of this term is universally proportional to the difference between the
anomalies and it does not depend on the details of the flow. Higher-derivative terms for the
dilaton can be generated from local diff×Weyl invariant terms, and there is no a priori reason
for them to be universal (that is, they may depend on the details of the flow, and not just on
the conformal field theories at short and long distances).

Zamolodchikov’s theorem that we reviewed in the first chapter follows directly from (4.5).
Indeed, from reflection positivity we must have that the coefficient of the term (4.5) is positive,
and thus, the inequality is established.

We can be more explicit. The coupling of τ to matter must take the form τTµµ + · · · , where
the corrections have more τs. To extract the two-point function of τ with two derivatives we
must use the insertion τTµµ twice. (Terms containing τ2 can be lowered once, but they do not
contribute to the two-derivative term in the effective action of τ .) As a consequence, we find
that
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〈
e
∫
τTµµ d

2x
〉

= · · ·+ 1

2

∫ ∫
τ(x)τ(y)〈Tµµ (x)Tµµ (y)〉d2xd2y + · · ·

= · · ·+ 1

4

∫
τ(x)∂ρ∂στ(x)

(∫
(y − x)ρ(y − x)σ〈Tµµ (x)Tµµ (y)〉d2y

)
d2x+ · · · .

(4.6)

In the final line of the equation above, we have concentrated entirely on the two-derivative
term. It follows from translation invariance that the y integral is x-independent∫

(y − x)ρ(y − x)σ〈Tµµ (x)Tµµ (y)〉d2y =
1

2
ηρσ

∫
y2〈Tµµ (0)Tµµ (y)〉d2y . (4.7)

To summarize, one finds the following contribution to the dilaton effective action at two
derivatives

1

8

∫
d2xτ�τ

∫
d2yy2〈T (y)T (0)〉 . (4.8)

According to (4.5), the expected coefficient of τ�τ is (cUV −cIR)/24π, and so by comparing
we obtain

∆c = 3π

∫
d2yy2〈T (y)T (0)〉 . (4.9)

As we have already mentioned, ∆c > 0 follows from reflection positivity (which is a prop-
erty of unitary theories). Equation (4.9) precisely agrees with the classic results about two-
dimensional flows (2.20).

4.2 Back to Four Dimensions

One starts by classifying local diff×Weyl invariant functionals of τ and a background metric
gµν . Again, we demand invariance under gµν −→ e2σgµν , τ −→ τ +σ. We will often denote
ĝ = e−2τgµν . The combination ĝ transforms as a metric under diffeomorphisms and is Weyl
invariant.

The most general theory up to (and including) two derivatives is:

f2

∫
d4x
√
− det ĝ

(
Λ +

1

6
R̂

)
, (4.10)

where we have defined R̂ = ĝµνRµν [ĝ]. Since we are ultimately interested in the flat-space
theory, let us evaluate the kinetic term with gµν = ηµν . Using integration by parts we get

S = f2

∫
d4xe−2τ (∂τ)2 . (4.11)

One can use the field redefinition Ψ = 1− e−τ to rewrite this as

S = f2

∫
d4xΨ�Ψ . (4.12)

One can also study terms in the effective action with more derivatives. With four deriva-
tives, one has three independent (dimensionless) coefficients∫

d4x
√
−ĝ
(
κ1R̂

2 + κ2R̂
2
µν + κ3R̂

2
µνρσ

)
. (4.13)

It is implicit that indices are raised and lowered with ĝ. Recall the expressions for the Eu-
ler density

√
−gE4 and the Weyl tensor squared E4 = R2

µνρσ − 4R2
µν + R2 ,W 2

µνρσ =
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R2
µνρσ−2R2

µν + 1
3R

2 We can thus choose instead of the basis of local terms (4.13) a different
parameterization ∫

d4x
√
−ĝ
(
κ′1R̂

2 + κ′2Ê4 + κ′3Ŵ
2
µνρσ

)
. (4.14)

We immediately see that the κ′2 term is a total derivative. If we set gµν = ηµν , then ĝµν =
e−2τηµν is conformal to the flat metric and hence also the κ′3 term does not play any role as
far as the dilaton interactions in flat space are concerned. Consequently, terms in the flat space
limit arise solely from R̂2. A straightforward calculation yields∫

d4x
√
−ĝR̂2

∣∣∣∣
gµν=ηµν

= 36

∫
d4x

(
� τ − (∂τ)2

)2 ∼ ∫ d4x
1

(1−Ψ)2
(�Ψ)

2
. (4.15)

So far we have only discussed diff×Weyl invariant terms in four-dimensions, but from the
two-dimensional re-derivation of the c-theorem we have shown above, we anticipate that the
anomalous functional will play a key role.

The most general anomalous variation one needs to consider takes the form δσSanomaly =∫
d4x
√
−gσ

(
cW 2

µνρσ − aE4

)
. The question is then how to write a functional Sanomaly that

reproduces this anomaly. (Note that Sanomaly is only defined modulo diff×Weyl invariant
terms.) Without the field τ one must resort to non-local expressions, but in the presence of the
dilaton one has a local action.

It is a little tedious to compute this local action, but the procedure is straightforward in
principle. We first replace σ on the right-hand side of the anomalous variation with τ

Sanomaly =

∫
d4x
√
−gτ

(
cW 2

µνρσ − aE4

)
+ · · · . (4.16)

While the variation of this includes the sought-after terms, as the · · · indicate, this cannot be
the whole answer because the object in parenthesis is not Weyl invariant. Hence, we need to
keep fixing this expression with more factors of τ until the procedure terminates. Note that√
−gW 2

µνρσ, being the square of the Weyl tensor, is Weyl invariant, and hence we do not need
to add any fixes proportional to the c-anomaly This makes the c-anomaly “Abelian” in some
sense.

The “non-Abelian” structure coming from the Weyl variation of E4 is the key to our con-
struction. The a-anomaly is therefore quite distinct algebraically from the c-anomaly.

The final expression for Sanomaly is (see [29], where the anomaly functional was pre-
sented in a form identical to what we use in this note)

Sanomaly = −a
∫
d4x
√
−g
(
τE4 + 4

(
Rµν − 1

2
gµνR

)
∂µτ∂ντ − 4(∂τ)2�τ + 2(∂τ)4

)
+ c

∫
d4x
√
−gτW 2

µνρσ .

(4.17)

Note that even when the metric is flat, self-interactions of the dilaton survive. This is analogous
to what happens with the Wess-Zumino term in pion physics when the background gauge
fields are set to zero and this is also what we saw in two dimensions.
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Setting the background metric to be flat we thus find that the non-anomalous terms in the
dilaton generating functional are∫

d4x
(
α1e
−4τ + α2(∂e−τ )2 + α3

(
�τ − (∂τ)2

)2)
, (4.18)

where αi are some real coefficients.
The a-anomaly has a Wess-Zumino term, leading to the additional contribution

SWZ = 2(aUV − aIR)

∫
d4x

(
2(∂τ)2�τ − (∂τ)4

)
. (4.19)

The coefficient is universal because the total anomaly has to match (as we have explained in
detail in two dimensions).

We see that if one knew the four-derivative terms for the dilaton, one could extract aUV −
aIR. A clean way of separating this anomaly term from the rest is achieved by rewriting it
with the variable Ψ = 1− e−τ . Then the terms in (4.18) become∫

d4x

(
α1Ψ4 + α2(∂Ψ)2 +

α3

(1−Ψ)2
(�Ψ)2

)
, (4.20)

while the WZ term (4.19) is

SWZ = 2(aUV − aIR)

∫
d4x

(
2(∂Ψ)2�Ψ

(1−Ψ)3
+

(∂Ψ)4

(1−Ψ)4

)
. (4.21)

We see that if we consider background fields Ψ which are null (�Ψ = 0), α3 disappears
and only the last term in (4.21) remains. Therefore, by computing the partition function of the
QFT in the presence of four null insertions of Ψ one can extract directly aUV − aIR.

Indeed, consider all the diagrams with four insertions of a background Ψ with momenta
ki, such that

∑
i ki = 0 and k2

i = 0. Expanding this amplitude, A, to fourth order in the
momenta ki, one finds that the momentum dependence takes the form s2 + t2 + u2 with
s = 2k1 ·k2, t = 2k1 ·k3, u = 2k1 ·k4. Our effective action analysis shows that the coefficient
of s2 + t2 + u2 is directly proportional to aUV − aIR.

In fact, one can even specialize to the so-called forward kinematics, choosing k1 = −k3

and k2 = −k4. Then the amplitude is only a function of s = 2k1 · k2. aUV − aIR can be
extracted from the s2 term in the expansion of the amplitude around s = 0. Continuing s to
the complex plane, there is a branch cut for positive s (corresponding to physical states in
the s-channel) and negative s (corresponding to physical states in the u-channel). There is a
crossing symmetry s↔ −s so these branch cuts are identical.

To calculate the imaginary part associated to the branch cut we utilize the optical theorem.
The imaginary part is manifestly positive definite. Using Cauchy’s theorem we can relate the
low energy coefficient of s2, aUV − aIR, to an integral over the branch cut. Fixing all the
coefficients one finds

aUV − aIR =
1

4π

∫
s>0

ImA(s)

s3
. (4.22)

As explained, the imaginary part ImA(s) can be evaluated by means of the optical theorem,
and it is manifestly positive. Since the integral converges by power counting (and thus no
subtractions are needed), we conclude



Scale vs Conformal Invariance 25

aUV > aIR . (4.23)

Note the difference between the ways positivity is established in two and four dimen-
sions. In two dimensions, one invokes reflection positivity of a two-point function (reflection
positivity is best understood in Euclidean space). In four dimensions, the Wess-Zumino term
involves four dilatons, so the natural positivity constraint comes from the forward kinematics
(and hence, it is inherently Minkowskian).

Let us say a few words about the physical relevance of aUV > aIR. Such an inequality
constrains severely the dynamics of quantum field theory, and the allowed renormalization
group flows. In favorable cases can be used to establish that some symmetries must be broken
or that some symmetries must be unbroken. In a similar fashion, if a system naively admits
several possible dynamical scenarios one can use aUV > aIR as an additional handle.

The work of [15] shows that a can be also obtained from the entanglement entropy across
an S2, i.e. A = D3 in our previous notation. But so far it has not been shown that (4.23) can
be derived by manipulating the entanglement entropy and the inequalities it obeys.

4.3 Scale vs Conformal Invariance

As we review in the section about two-dimensional theories, the problem in two dimensions
was essentially solved long ago. In three dimensions the problem is open. In four dimensions,
there has been a lot of recent work on the subject. The problem is almost solved. Let us briefly
explain what we mean by “almost.” The tools used to arrive at the results below are very
similar to what we have discussed in the previous two sections.

Suppose one is given a unitary scale invariant theory that is not conformal. That means
that there exists some Vµ such that Tµµ = ∂ρVρ. The theory is non-conformal if there does not
exist a scalar O such that Vµ = ∂µO. In fact, for the results below to hold true, one does not
quite need to assume the existence of Vµ – having a well-defined scale charge ∆ is sufficient.
(So the results also hold for the two-form gauge theory.)

In [30] it was shown that under these assumptions, for any state vector |X〉 in the scale
invariant theory, we have

〈V AC|Tµµ (p)Tµµ (q)|X〉 = 0 , p2 = q2 = 0 . (4.24)

(The momentum of the state |X〉 is −p − q.) If one could prove (4.25) for any p, q then it
would follow that Tµµ = 0 and thus the theory is conformal. However, one cannot hope to
be able to prove that Tµµ = 0 because in many four-dimensional models one can improve the
energy-momentum tensor.1 The best one can hope to prove is that Tµµ = �O.

In [8] the argument of [30] was generalized to prove the following

∀n ., ∀|X〉. , 〈V AC|Tµµ (p1)Tµµ (p2) . . . Tµµ (pn)|X〉 = 0 , p2
i = 0 . (4.25)

It was then argued that this allows to conclude that T = �O. The argument is not a proof,
but it relies on some very simple and intuitive analogy with S-matrix theory. A more precise
statement of what the argument shows is that, at least as far as the theory is flat space is con-
cerned, all its local properties must be consistent with conformal invariance (if one assumes
unitarity and scale invariance).

1For example, in scalar field theory, we can add the term (∂µ∂ν − ηµν∂2)φ2 to the energy-momentum tensor.



26 Four-Dimensional Models

We would like to finish with a short remark on the situation in higher dimensions: the
analysis was repeated in six dimensions in [31]. Despite many encouraging facts, a proof
that the Euler anomaly is monotonic does not exist yet. In five dimensions, the S5 partition
function has a physical finite part, which one should hope is monotonic in RG flows. But
currently there is no argument to that effect.
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