## Conformal Bootstrap: Problems for Lectures 1 and 2

1. The representation of the generators of the conformal algebra in $d$ (Euclidean) dimensions in terms of differential operators reads

$$
\begin{align*}
P_{\mu} & =i \partial_{\mu}  \tag{1}\\
M_{\mu \nu} & =i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)  \tag{2}\\
D & =i x^{\mu} \partial_{\mu}  \tag{3}\\
K_{\mu} & =i\left(2 x_{\mu}\left(x^{\nu} \partial_{\nu}\right)-x^{2} \partial_{\mu}\right) \tag{4}
\end{align*}
$$

Compute their commutators. Verify that the algebra is isomorphic to $S O(d+1,1)$, under the identification

$$
\begin{equation*}
J_{\mu \nu}=M_{\mu \nu}, \quad J_{\mu+}=P_{\mu} \quad J_{\mu-}=K_{\mu} \quad J_{+-}=D \tag{5}
\end{equation*}
$$

Here we have introduced lightcone coordinates in $\mathbb{R}^{d+1,1}$,

$$
\begin{equation*}
X^{ \pm}=X^{d+2} \pm X^{d+1} \tag{6}
\end{equation*}
$$

2. Consider the special case of two-dimensional conformal field theory. Recall the Virasoro generators

$$
\begin{equation*}
L_{n}=-z^{n+1} \frac{\partial}{\partial z}, \quad \bar{L}_{n}=-\bar{z}^{n+1} \frac{\partial}{\partial \bar{z}} \tag{7}
\end{equation*}
$$

where $z=x_{1}+i x_{2}$ and $\bar{z}=x_{1}-i x_{2}$ are complex coordinates on the plane. Find the relation between the conformal generators as presented in class $\left(P_{\mu}, K_{\mu}, M_{\mu \nu}\right.$ and $D$, where $\left.\mu, \nu=1,2\right)$ and the generators of the "global" part of the Virasoro algebra (also known as the Moebius algebra) namely $L_{n}, \bar{L}_{n}$ with $n=-1,0,1$.
Show that the the exponentiation of the Moebius algebra gives the group $S L(2, \mathbb{C})$ of fractional linear transformations,

$$
\begin{equation*}
z^{\prime}=\frac{a z+b}{c z+d}, \quad a d-b c=1 \tag{8}
\end{equation*}
$$

3. Constrain the form of 2-, 3- and 4-point functions of conformal scalar operators in $\mathbb{R}^{d}$ (d-dimensional Euclidean space) of a priori different dimensions. Here are two equivalent ways to do this:

- Using the embedding in $\mathbb{R}^{d+1,1}$ explained in the lectures.

Recall the definition of the projective hypercone in $\mathbb{R}^{d+1,1}$,

$$
\begin{equation*}
\eta_{M N} X^{M} X^{N}=0, \quad M, N=1, \ldots d+2, \quad X^{M} \sim \lambda X^{M} \tag{9}
\end{equation*}
$$

where $\eta$ has signature $(+++\cdots-)$. The embedding of $\mathbb{R}^{d}$ into the hypercone is

$$
\begin{equation*}
x_{\mu}=\frac{X_{\mu}}{X_{d+2}+X_{d+1}}, \quad \mu=1, \ldots d \tag{10}
\end{equation*}
$$

We choose a section of the hypercone by imposing

$$
\begin{equation*}
X^{+} \equiv X_{d+2}+X_{d+1}=1 \tag{11}
\end{equation*}
$$

A useful elementary property is

$$
\begin{equation*}
X_{i} \cdot X_{j}=-\frac{1}{2} x_{i j}^{2}, \quad x_{i j}^{2} \equiv\left(x_{i}-x_{j}\right)^{2} . \tag{12}
\end{equation*}
$$

In this language, a scalar operator $\mathcal{O}(x)$ of dimension $\Delta$ corresponds to a scalar operator $\mathcal{O}^{H C}(X)$ defined on the hypercone, according to

$$
\begin{equation*}
\mathcal{O}(x)=\left(X^{+}\right)^{\Delta} \mathcal{O}^{H C}(X)=\mathcal{O}^{H C}(X) \tag{13}
\end{equation*}
$$

The hypercone operators obeys

$$
\begin{equation*}
\mathcal{O}^{H C}(\lambda X)=\lambda^{-\Delta} \mathcal{O}(X) . \tag{14}
\end{equation*}
$$

- An alternative (perhaps more elementary) way to constrain conformal correlators is to use covariance under inversion,

$$
\begin{equation*}
I: x_{\mu} \rightarrow x_{\mu}^{\prime}=\frac{x_{\mu}}{x^{2}} . \tag{15}
\end{equation*}
$$

A little calculation gives

$$
\begin{equation*}
x_{12}^{\prime 2}=\frac{x_{12}^{2}}{x_{1}^{2} x_{2}^{2}} \tag{16}
\end{equation*}
$$

Show that this leads to the same conclusions as the embedding method.

Repeat the exercise for the 2-point function of vector operators $\mathcal{O}_{\mu}(x)$ of dimension $\Delta$. The correspond to vector operators $\mathcal{O}_{M}(x)$ on the hypercone obeying

$$
\begin{equation*}
\mathcal{O}_{M}^{H C}(\lambda X)=\lambda^{-\Delta} \mathcal{O}_{M}^{H C}(X), \quad X^{M} \mathcal{O}_{M}^{H C}(X)=0, \quad \mathcal{O}_{M}^{H C}(X) \sim X_{M} \mathcal{O}^{H C}(X) \tag{17}
\end{equation*}
$$

where the last relation should be interpreted as a gauge equivalence. The $4 d$ operator is recovered by projecting the index as follows,

$$
\begin{equation*}
\mathcal{O}_{\mu}(x)=\frac{\partial X^{M}}{\partial x^{\mu}} \mathcal{O}_{M}^{H C}(X) . \tag{18}
\end{equation*}
$$

4. Give as many concrete examples as you can for the different types of non-generic representations of the four-dimensional conformal group introduced in class: $\mathcal{C}_{j_{1}, j_{2}}, \mathcal{B}_{j_{1}}^{L}, \mathcal{B}_{j_{2}}^{R}$ and $\mathcal{B}$. For example, we saw that $\mathcal{B}$ corresponds to a free scalar field, obeying $\square \phi=0$.
5. The character of a representation $R$ of the four-dimensional conformal group is defined as

$$
\begin{equation*}
\chi_{R}=\operatorname{Tr}_{R} s^{2 \Delta} x^{2 j_{1}} \bar{x}^{2 j_{2}} . \tag{19}
\end{equation*}
$$

Recall that the decomposition rules of conformal representations at the unitarity bounds are:

$$
\begin{align*}
\lim _{\epsilon \rightarrow 0} \mathcal{A}_{j_{1}+j_{2}+2+\epsilon, j_{1}, j_{2}} & =\mathcal{C}_{j_{1}, j_{2}}+\mathcal{A}_{j_{1}+j_{2}+3, j_{1}-\frac{1}{2}, j_{2}-\frac{1}{2}}  \tag{20}\\
\lim _{\epsilon \rightarrow 0} \mathcal{A}_{j_{1}+1+\epsilon, j_{1}, 0} & =\mathcal{B}_{j_{1}}^{L}+\mathcal{C}_{j_{1}-\frac{1}{2}, \frac{1}{2}}  \tag{21}\\
\lim _{\epsilon \rightarrow 0} \mathcal{A}_{j_{2}+1+\epsilon, 0, j_{2}} & =\mathcal{B}_{j_{2}}^{R}+\mathcal{C}_{\frac{1}{2}, j_{2}-\frac{1}{2}}  \tag{22}\\
\lim _{\epsilon \rightarrow 0} \mathcal{A}_{1+\epsilon, 0,0} & =\mathcal{B}+\mathcal{A}_{3,0,0} . \tag{23}
\end{align*}
$$

Compute $\chi_{\mathcal{C}_{j_{1}, j_{2}}}, \chi_{\mathcal{B}_{j_{1}}}, \chi_{\mathcal{B}_{j_{2}}^{R}}$ and $\chi_{\mathcal{B}}$.
Challenging problem:
Using characters, find the decomposition into irreducible representations of the tensor product $\mathcal{B} \otimes \mathcal{B}$. This amounts to decomposing into irreps the most general bilinear of a free complex scalar field,

$$
\begin{equation*}
: \partial_{\mu_{1}} \ldots \partial_{\mu_{k}} \phi \partial_{\nu_{1}} \ldots \partial_{\nu_{\ell}} \bar{\phi}: . \tag{24}
\end{equation*}
$$

(Why complex and not real?).

Hints: guess the answer by doing a few steps of the sieve procedure or by thinking about the field theory interpretation. Use Mathematica to handle the characters.

