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Sommerfeld-Pauli-Bloch theory of
metals, insulators, and superconductors:

many-electron quantum states are adiabatically
connected to independent electron states

Metals
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Boltzmann-Landau theory
of dynamics of metals:

Long-lived quasiparticles (and quasiholes) have weak
interactions which can be described by a Boltzmann equation

Metals
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Modern phases of quantum matter

Not adiabatically connected
to independent electron states:

I. Many-particle quantum
entanglement

2. (a) Quasiparticles with quantum
numbers different from
those of the electron

(b) No quasiparticles
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“Complex entangled” states of
quantum matter,
not adiabatically connected to independent particle states

Gapped quantum matter
Z» Spin liquids, quantum Hall states

Conformal quantum matter
Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
Strange metals, Bose metals

S. Sachdey, arXiv:1203.4565
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“Complex entangled” states of
quantum matter,
not adiabatically connected to independent particle states

Gapped quantum matter
Z» Spin liquidS\guantum Hall states

exotic quasiparticles,

TQFT

Graphene, ultracold atoms, antiferromagnets

Conformal quantum m

Compressible quantum matter
Strange metals, Bose metals

S. Sachdey, arXiv:1203.4565
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“Complex entangled” states of
quantum matter,
not adiabatically connected to independent particle states

Gapped quantum matter
Z» Spin liquids, quantum Hall states

Conformal quantum matter

Graphene, ultracoldWoms, antiferromagnets
no quasiparticles,

CFT

Compressible quantum
Strange metals, Bose metals

S. Sachdey, arXiv:1203.4565
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“Complex entangled” states of
quantum matter,
not adiabatically connected to independent particle states

Gapped quantum matter
Z» Spin liquids, quantum Hall states

p
Conformal quantum matter

Graphene, ultracold atoms, antiferromagnets
L J

Compressible quantum matter
Strange metals, Bose metals
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Superfluid-insulator transition

a Superflud state

Ultracold ®“Rb

atoms - bosons

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, Nature 415, 39 (2002).
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Insulator

Superfluid
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U — a complex field representing the
Bose-Einstein condensate ot the superfluid

() #0
Superfluid

(W) =0
Insulator




S = /d2frdt 10, ¥]° — *|V, 0)? — V()]

V() = (A=) +u(|?)

() #0
Superfluid

(W) =0
Insulator

Ac A

M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
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S = /d2frdt 10, ¥]° — *|V, 0)? — V()]

V() = (A=) +u(|?)

vV

Particles and holes correspond
to the 2 normal modes in the

oscillation of ¥ about ¥ = (.

4

Re(y) Im()

(W) £ 0 () =0

Superfluid Insulator
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Insulator (the vacuum)
at large repulsion between bosons
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Excitations of the insulator:

Particles ~ W'
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Excitations of the insulator:

Holes ~ W
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S = /d2frdt 10, ¥]° — *|V, 0)? — V()]

V() = (A=) +u(|?)

vV

Particles and holes correspond
to the 2 normal modes in the

oscillation of ¥ about ¥ = (.

4

Re(y) Im()

(W) £ 0 () =0

Superfluid Insulator
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S = /d2rdt 10, ¥]° — *|V, 0)? — V()]

V() = (A=A +u(T)?)’

4

Nambu-Goldstone mode is the

oscillation in the phase V¥
at a constant non-zero |V|.

Nambu-
Goldstone
mode

W) £ () =0

Superfluid Insulator
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— /dQTdt [\8,5\If|2 — |V, U7 — V(¥)]

= (A=) +u (9P’

A conformal field theory

in 241 spacetime dimensions:

a CFT3

(¥) # 0 (V) =0

Superfluid Insulator




S = /derdt 10, ¥]° — *|V, 0)? — V()]

V() = (A=) +u(|?)

CFT3: The simplest class of theories

with many-body entanglement
and no quasiparticles

(¥) # 0 (V) =0

Superfluid Insulator




Honeycomb lattice

(describes graphene after adding long-range Coulomb interactions)
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€1

Semi-metal with

massless Dirac fermions
at small U/t

_Ql Brillouin zone




We define the Fourier transform of the fermions by
ca(k) = > ca(r)e " (4)
r

and similarly for cg. A and B are sublattice indices.
The hopping Hamiltonian is

Ho = —tz (C/]:\iaCBjoz CéjacAia) (5)
()

where o is a spin index. |f we introduce Pauli matrices 77 in
sublattice space (a = x, y, z), this Hamiltonian can be written as

Ho = /%CT(k){—t(COS(k-el)+cos(k-e2)+cos(k-e3))7X

+ t(sin(k -e1) + sin(k - e2) + sin(k - e3)>7'y} c(k) (6)

The low energy excitations of this Hamiltonian are near k ~ +£Q;.
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In terms of the fields near Q1 and —Q7, we define

Wata(k) = can(Q1 + k)

Vain(k) = can(—Q1 + k)

Vgiak) = cBa(Q1 + k)

Vpoalk) = cBa(—Q1 + k) (7)

We consider WV to be a 8 component vector, and introduce Pauli
matrices p? which act in the 1,2 valley space. Then the
Hamiltonian is

d2k o
Ho :/wa(k)(wykx+ v p ky)\ll(k), (8)

where v = 3t/2; below we set v = 1. Now define ¥ = WTp?77.
Then we can write the imaginary time Lagrangian as

/:f() — —I.W (CU’}/O + kxf)/l + ky’72) v (9)

where
Z __Z Z X

v =—p 1" N =p1 =17 (10)
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Exercise: Observe that L is invariant under the scaling
transformation x’ = xe™* and 7/ = 7e~¢. Write the Hubbard

interaction U in terms of the Dirac fermions, and show that it has
the tree-level scaling transformation U’ = Ue™¢. So argue that all
short-range interactions are irrelevant in the Dirac semi-metal

phase.
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-Q,

Brillouin zone




-Q,

Brillouin zone

The theory of free Dirac
fermions is invariant under

conformal transformations of
spacetime. This is a realization of

a simple conformal field theory in
2+| dimensions:a CFT3




The Hubbard Model at large U
th i+ U (W _ %) (nw _ _> DA

In the limit of large U, and at a density of one particle per site,
this maps onto the Heisenberg antiferromagnet

Hap =Y Ji;jS$S§

1<)

where a = x, vy, 2

1
SHES 502;20356@5,

with % the Pauli matrices and
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Insulating
antiferromagnet
with Neel order

Dirac
semi-metal
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Antiferromagnetism

We use the operator equation (valid on each site i):

1 1 2U ., U

Then we decouple the interaction via

exp (2:;/2./(#5’?2) /DJa(T) exp( Z/dT {@J{"? J,-aS,_a}

(12)
We now integrate out the fermions, and look for the saddle point
of the resulting effective action for J?.

Long wavelength fluctuations about this saddle point are described by a
field theory of the Néel order parameter, ¢, coupled to the Dirac fermions
in the Gross-Neveu model.

— 1
L=Vv,0,V+ -

5 {(aﬂgpaf 4 59032} 4 (9032)2 o )\gpamnga\u

24

|.LF. Herbut, V. Juricic, and B. Roy, Phys. Rev.B 79,0851 16 (2009)
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Dirac
semi-metal

Insulating
antiferromagnet
with Neel order

() # 0
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Insulating

Dirac antiferromagnet

semi-metal with Neel order /\
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Insulating
antiferromagnet

with Neel order /\

() # 0

Dirac
semi-metal

At the quantum critical point, the non-linear couplings A and u in the Gross-
Neveu model reach non-zero fixed-point values under the renormalization
ogroup flow. The critical theory is an interacting CFT3
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81{‘
€kA \/
o, Insulating
lrac | antiferromagnet
semi-meta with Neel order /\
(") =0 - | () #0 -

Interacting CFT3
with many-body entanglement
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Numerical studies of the $=1/2 antiferromagnet
on the honeycomb lattice with second-neighbor exchange

| Neéel | PRVB | Dimer
| | > J,/ J,

0.22 0 35 Z. Zhu, D.A. Huse, and S. R.White,
arXiv:1212.6322

R. Ganesh, J. van den Brink, S. Nishimoto,
arXiv:1301.0853

K. Damle, F Alet, and S. Pujari, (J-Q model)
arXiv:1302.1408

C-0d
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Numerical studies of the $=1/2 antiferromagnet
on the honeycomb lattice with second-neighbor exchange

| Neéel | PRVB | Dimer
> J,/ J,

/ 0.22 0 35 Z. Zhu, D.A. Huse, and S. R.White,

arXiv:1212.6322
R. Ganesh, J. van den Brink, S. Nishimoto,

arXiv:1301.0853
K. Damle, F Alet, and S. Pujari, (J-Q model)
arXiv:1302.1408

C-0d

CFT3 with fractionalization and emergent gauge fields:
Write Neel order ¢ = 2707323, and CFT3 is

[ = |(a,u - iau)2a|2 -+ S‘Za|2 + U (|Zo¢‘2)2
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Electrical transport
The conserved electrical current is
J, = —iVy, V. (1)

Let us compute its two-point correlator, K, (k) at a spacetime
momentum k,, at T = 0. At leading order, this is given by a one
fermion loop diagram which evaluates to

Kuv(k) = / d*p Tr [vu(ivapx + mp? o)y (ivs(ks + ps) + mp®o?)]
pv 873 (p2 + m2)((p + k)2 + m?)

D kok,\ 1 k2x(1 —
— (duu ,u2 ) / dx X( X) ] (2)
T K 0o /m?+ k2x(1 — x)

where the mass m = 0 in the semi-metal and at the quantum
critical point, while m = |ANp| in the insulator. Note that the

current correlation is purely transverse, and this follows from the
requirement of current conservation

kK, = 0. (3)
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Of particular interest to us is the Kgg component, after analytic
continuation to Minkowski space where the spacetime momentum
k, is replaced by (w, k). The conductivity is obtained from this
correlator via the Kubo formula
. —lw

o(w) = lllno WKoo(w, k). (4)
In the insulator, where m > 0, analysis of the integrand in Eq. (2)
shows that that the spectral weight of the density correlator has a
gap of 2m at k = 0, and the conductivity in Eq. (4) vanishes.
These properties are as expected in any insulator.
In the metal, and at the critical point, where m = 0, the fermionic
spectrum is gapless, and so is that of the charge correlator. The
density correlator in Eq. (2) and the conductivity in Eq. (4)
evaluate to the simple universal results

1w
4\/k2—w2
oc(lw) = 1/4. (5)

K()()(w, k) —

Going beyond one-loop, we find no change in these results in the
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semi-metal to all orders in perturbation theory. At the quantum
critical point, there are no anomalous dimensions for the conserved
current, but the amplitude does change yielding

KOO(wv k) = K

olw) = K, (6)

where K is a universal number dependent only upon the
universality class of the quantum critical point. The value of the
for the Gross-Neveu model is not known exactly, but can be
estimated by computations in the (3 — d) or 1/N expansions.

Also note K, = K|k (5W k‘,;lgy)
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81{‘
€kA \/
o, Insulating
lrac | antiferromagnet
semi-meta with Neel order /\
(") =0 - | () #0 -

Interacting CFT3
with long-range entanglement

Thursday, August 8, 13



Dirac
semi-metal

Insulating
antiferromagnet
with Neel order

() # 0

Er A \/
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Optical conductivity of graphene

1,000 2000 3000 4000 5000 6000 7000 8,000
(v (cm"‘)

Q Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim,
H. L. Stormer, and D. N. Basov, Nature Physics 4, 532 (2008).
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Optical conductivity of graphene
Undoped graphene

0 1,000 2000 3000 4,000 5000 6000 7,000 8000
@ (cm~7)

Q Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim,
H. L. Stormer, and D. N. Basov, Nature Physics 4, 532 (2008).
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