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The cross section

The cross section is given by

1 1 ,

where @ is the total incoming momentum, (s = Q?) and

n n ddp'
do, = (27r)45d QM - Z p? H (27T)d]—15+ (p§ - m?)
j=1 =1

is the phase space in d = 4 — 2¢ dimensions (in reality ¢ — 0 such that d = 4, but we
allow d # 0 for later purposes). The index + of the §-function means that we consider only
positive solutions E = ++/m? + p2, in other words

0y (pF —m3) =6 (p; —m3) 0(E),

where 6 (E) is the Heaviside step-function.

S~1 comes from averaging for incoming (spin) states.



where 6 (E) is the Heaviside step-function. The amplitude iM,, is obtained from all possible
Feynman graphs and S~! comes from averaging for incoming (spin) states. One can obtain
> ]Mn\z directly from the so called “cut” graphs following the Cutkosky rules. If a matrix
element is given by the sum over all graphs G,

1

then the matrix element squared is given by the sum over all possible squared graph and

over all possible cuts of these graphs:

SIMal = Yews s X9
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cut



then the matrix element squared is given by the sum over all possible squared graph and

over all possible cuts of these graphs:

CIMal = Fewss M)

(]

AN

cut

The Feynman rules for the cut graphs are the usual ones with the following additional
rules:

1. the sign of explicit factors of i = v/—1 and directions of fermionic arrows and those
of all momenta are reversed in G as compared to G.

2. We do not integrate over the loop momentum of initial-state momenta,
3. A cut line j in the initial state means a factor of

e p+m; if jis a fermion,

e p—m; if j is a antifermion,

e —gu if j is a (massless) gauge boson.

In the final state the corresponding factors are

° (115 + mj) 2w (p? — m?) if j is a fermion/antifermion,

® —gu2mdy (p?) if (massless) gauge boson.

The 64 distributions express the on mass-shell conditions. These convert an integral
over a loop momentum into the element of a one-particle phase-space measure.



Example: ete” — ptpu~

We consider as a very easy application of the Cutkosky rules the reaction ete™ — utpu~.
At the amplitude level there is only one Feynman graph that contributes at lowest order to
this reaction:

7

+

1

In order to better describe the kinematics of the reaction we use the Mandelstam variables
known from the QFTI lecture,

S = (pe* + pe+)2 = (pu* + pu+)2 )
t= (pe— - p,u—)2 = (pe+ - pu+)2 )
u=(pe- — ppr)’ = (per — 1-)? - (1.17)

Furthermore we express the coupling in terms of o = %. The squared amplitude is then
given by

Pet

Zspin |M2\2 _ w!y _ (4:2a) Tr [(]l’ﬁ - me) yH <1756— + ’I’)’Le) w]
Pe- x T [(plf + m“) Tu (plﬁ - m“) %]

Evaluating the traces! we obtain:
2 42 2 2 2, 2
ue+1 m, —m m;m
> Mo = 8 (4ma)? i ] (1.18)
spin




SPINOR FORMALISM

We compute amplitudes of fixed helicity, which has the following advantages:
e Helicity is conserved along massless fermion lines.

e We can exploit gauge invariance and select an explicit representation for the polar-
ization vectors.

e Different helicity configurations do not interfere, therefore, in computing Zhehcity |]\4n|2
we sum the helicity amplitudes incoherently.



We define the basic spinor products by

(ij) = (") = u-(k)us(ky),  [ij] = @757) = us(ki)u—(k;).
(12)

The helicity projection implies that products like (i*|;j*) vanish.

For numerical evaluation of the spinor products, it is useful to have explicit
formulae for them, for some representation of the Dirac v matrices. In the Dirac
representation,

0 __ 1 0 i 0 O'i o 0 1
Y= (0 -1 ) Y= _O.i 0 ’ V5 = 1 0 ’ (13)

the massless spinors can be chosen as follows,

Vit NI

1 k—eier 1 —Vk+
uy (k) =v_(k) = NARRGERE u_ (k) =vy(k) = 75 | —vEe—ien |

VEk—ei#r Vit
(14)

where
| R R

eFive = ! - ’ Kt o= ROk (15)

W2+ 2 Vi

(Gl ==3), 1 ==l

(7)) =1l =0.



Sij = (k'i-i-k‘j)Q = 2]€1‘~]€j

(@) il = GG = (51— s) Mi M) = 2ki - kj =555 (18)

We also have the useful identities:
Gordon identity and projection operator:

(M) = 2k, ) = 31 E7) K (19)
antisymmetry:
Giy=—j), Ui=-[kj, @i)=[id=0 (20)

Fierz rearrangement:

(@MY KT ) = 2 [ik] (1) (21)
charge conjugation of current:
@ HT) = G (22)
Schouten identity:
(ig) (kD) = (k) (G1)+ (il) (k). (23)

In an n-point amplitude, momentum conservation, >\, k' = 0, provides one

more identity,
n

> ik = o. (24)

i=1
i#j,k



The next step is to introduce a spinor representation for the polarization
vector for a massless gauge boson of definite helicity +1,

F F

z V) (#)

where k is the vector boson momentum and ¢ is an auxiliary massless vector,
called the reference momentum, reflecting the freedom of on-shell gauge tran-
formations. We will not motivate Eq. 25, but just show that it has the desired
properties. Since ¥|kT) =0, e¥(k, q) is transverse to k, for any g,

ef(k,q) -k = 0. (26)
Complex conjugation reverses the helicity,
() =€, . (27)

The denominator gives ¢, the standard normalization (using Eq. 21),

. - Yg |l ) a )
R N T
et (5—)* = egt.gt = %<q_|’7#bk<_q>k<:;12_|'7#|k_> - 0. (28)

the reference momentum ¢ does amount to an on-shell gauge transformation,
since ¢,, shifts by an amount proportional to k,:

oy oty = ST wlRT) (T wlRT) (G Mla ) + (G ] Fule®)
@)@ = TEan T Vak NCIFTSRPT
V29 Q9

BRI i 29)

(30)

>

=+



QED

Feynman rules in covariant Feynman gauge

In the Feynman gauge the we have the following Feynman rules:

v . G
'A\L/\/\/\/ = A'yw(p) = _1% H
P p _
_ =TI = —iej eyt

J _ Ay — P J 7 f3ls
) Aj(p) =i p2—m?
e outgoing fermion: @ (p) e outgoing antifermion: v (p)
e incoming fermion: u (p) e incoming antlfermlon v (p)
e outgoing photon: 68) (p)* e incoming photon: Eu (p)

We introduce the following notation:
e external outgoing fermion of momentum p, helicity +: (p=|,

e external outgoing antifermion of momentum p, helicity +: |pF),

+ (pE|yplkt)

e external outgoing vector of momentum p, reference k, helicity =+: eff (p, k) = VERF L)

The fermion propagator of momentum p in the direction of the fermion arrow is +1 P The

vector propagator of momentum p is: —? Guv-



; ‘ iM = (=ie) = Ty UL Tu2Un()

e e — puppg in QED.

- 2
1€
= ?<3v"4]<2'm1]
2ie?
= ?<32>[14] :

(32)[14](32)

21](32) = [12](23) = [1 2 3) = [1(= }= 3— #)3)

a similar set of manipulations would have given

[14]°

iM = 2ie? 234

with square brackets only.



A simple application of the helicity formalism

We now compute the leading order contribution to the process eTe™ — ptu~ using the
helicity formalism. Although it is not a physical choice, we consider the following crossing
invariant kinematic configuration which is useful for obtaining the squared matrix element
in either the annihilation or in the scattering channels:

0% — pi +ph + Py + Pk (1.51)

As for the labelling convention, we anticipate further use of the result, when it will become
clear. There is only one Feynman graph:

et




A general amplitude is given by
Ay (1,202, 40,500 ) — ¢ ay (10,212, 4,51 )

where the numbers are just a short-hand notation for the momenta, j = p;, which is a
standard in the helicity formalism. Choosing a specific helicity configuration and applying
the Feynman rules, we find

+ 0= 4+ -\ — _ : (=ig"") f M
Gy (1 72 ,4 55 ) = a4 (+577+a7)_<1+|17#|2+> 519 <57‘1’Y ‘47>

L 2[14](52) (45) . 2[12](25) (52) . 2(25) L5o
T Tay e - ay Y
where s;; = (pi + pj)2 and in the third line we used momentum conservation (4 = —1 —

2 — B) to rewrite [14] (45) as

(14 (45) = (1+ 4] 5+) = (1+ |1 = 2= 8| 5+) = (1+|-2|5+)
= —[12] (25) . (1.53)



The other helicity amplitudes can be obtained from that computed in Eq. (1.52), using dis-
crete symmetry transformations of parity and charge conjugation. Parity transformation
revereses all helicities of the helicity amplitude. It is implemented by the complex conjuga-
tion operation which substitutes (ij) < [ji]. Charge conjugation changes antifermions into
fermions and vice versa, which in the present case amounts to interchanging indices 4 with
5 and/or 1 with 2. Thus,

as (+,— —+) = aa (+, =+, =) |45 (from charge conjugation)

L 2(24)?
i p (1.54)

ag (= +, = +) = as(+, =+ = )lujopi (from parity transformation)
. 2[25)°
= — 1.55
' T12] [45] (1.55)
2 [24]2

ag (=, +,+,—) = —im . (1.56)

Computing the square of the amplitude, summed over helicities, we obtain

4 (52 1 82 21,2
3 AP = 642M:8(4WQ)2 T (1.57)

2
S$128 S
helicity 12245

where we adopted the usual notation of Mandelstam:

S$12 = S45 = S, Soq =1, S25 = U.



amplitudes for e;ef, — vy

i(ZS;: 4)7 -€(3) +v-€(3) i(i; 3

M= (=i (2 {7 (1) - e<4>} 1.

There are four possible choices for the photon polarizations. However the cases
vrYL and vy vg are related by interchange of the momenta 3 and 4. The cases YrVR
and vz are related by parity, which interchanges states with R and L polarization.

Further, it is easy to see that the amplitudes for ygyr and ;7. are actually zero.
For the case of vgyg, choose r = 2 for both polarization vectors,

b1 (294
O =T ey

When these choices are used in (39), we find, with the use of the Fierz identity (18)

1 (29#4]

>

(2y-€(4) ~ 2022)[4 = 0, (41)

which vanishes because (22) = 0. A similar cancellation occurs with €(3). So the
entire matrix element vanishes. The amplitude for the case v, must then also
vanish by parity; alternatively, we can find the same cancellation for that case by
using 7 = 1 in both polarization vectors.



To compute the amplitude for the case yr7yr, choose

1 (2v*3
6#(3> = 7< ] ] )
V2 (23)
Then the second diagram in Fig. 3 vanishes by the logic of the previous paragraph.
Using the Fierz identity, the first diagram gives

et (4) = . (42)

. —ie? 2.2
M = i AR+ 92031)

- o 2O
_ <13>[3ﬁ‘<323>[14] (24)[14] (42)[31]

o ((24))°
= 2ie (23)(31) (43)




QCD

Here we shall discuss how to calculate colour diagrams for SU(N,) colour group (in the
Nature, quarks have N, = 3 colours). For more details, see [4].

Elements of SU(N,) are complex N, x N, matrices U which are unitary (UTU = 1)
and have det U = 1. Complex N, -component column vectors ¢* transforming as

q—Uq or ¢ —U¢ (A1)

form the space in which the fundamental representation operates. Complex conjugate row
vectors ¢;” = (¢')* transform as

¢"—q"U" or g —qf (U, where (UT);= (Ui]-)* : (A.2)

this is the conjugated fundamental representation. The scalar product is invariant: ¢*¢ —
qTUTUq = qtq. In other words,
8 — G U (U =UW(UT)F; =6 (A.3)

J

is an invariant tensor (it is the colour structure of a meson). The unit antisymmetric
tensors g''*Ne and €;,. 4, are also invariant:

11...IN, Ji--JINe 781 . .. TTiNe . — L2l INe o SU1eUN,
£ — € Uty - UNejy =detU - =c (A.4)

(they are the colour structures of baryons and antibaryons).



Infinitesimal transformations are é;iven by
U=1+1ia"t", (A.5)

where a® are infinitesimal real parameters, and t* are called generators (of the fundamental
representation). They have the following properties:

UtU =1 +ia®(t* — (1) =1 = (t9)F =¢°,

(A.6)
detU =1+4+1a*Trt* =1 = Trt*=0,

and are normalized by
Tr " = Tpo®; (A.7)

usually, Tp = 1/2 is used, but we shall not specialize it. The space of unitary matrices is
NZ2-dimensional, and that of traceless unitary matrices — (N2 —1)-dimensional. Therefore,
there are N? — 1 generators t* which form a basis of this space. Their commutators are i
times unitary traceless matrices, therefore,

19,87 = if et (A.8)

where f%¢ are real constants.



The quantities

Aa — q+taq/
transform as
A — ¢TUTtUq = U™ A, (A.9)
this is the adjoint representation. It is defined by
UTt'U = U™t (A.10)
and hence .
U = —Tr Ut Ut". (A.11)
Tk

The components (%)’

tensor (see (A.10)):

; are some fixed numbers; in other words, they form an invariant

(1) — UPU ()5 (U)'y = (1) (A.12)
For an infinitesimal transformation,

A — gt (1 — i)t (1 +iat)q' = ¢ (t* +ia%i f*1") |

so that
U™ = §% +ia“(t9)? (A.13)
where the generators in the adjoint representation are
(L) =if*. (A.14)

As for any representation, these generators satisfy the commutation relation
(ta)dc<tb)ce o (tb)dc(ta)ce — ifabc(tc)de : <A15)
it follows from the Jacobi identity
[, [t 4] + [t [, ) + [t [t ¢ = 0
_ (Z’fbdciface - j fdac fhee | Z-fabcifdce) e



2000000 = A2b  (p) =6"" Ay (p) K, a
e E = Tla = —igs 2
oy ==

Wy a

g ma __ 3
AP (p) = §2b 2 E = Dgpy = —igs I p*

Sooee- = p) =0"" %
a P b P _;:_ >

p

C?’Y— CL,bC

= a,ﬁ’,’y (p7q?r) = _lgs (Fa)bc Va,ﬁ,’y (pvqar) pt+q+r= 0

Vo, 5.4 (0,¢:7) = (P = @)y 9ap + (4 = 1) 98y + (1 = D) g Gy

— ma,b,ed
— T8¢



2 3 2 3 2 3
qLdr — 99- L\«
+ +
1 4 1 4 1 4 )

iM = (ig)2(1 {'y @) ED g, (3) 4y (3) LB gy 6(2)} n

S12 513

Hig) (1) (1) ((2) - €32 =3 +er(3)(2-3+2) - €(2) + x(2)(~2+ 2~ 3) - €(3) )
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In this formula, t* and t* are the color SU(3) representation matrices coupling to
the gluons 2 and 3, respectively. The third diagram in Fig. 4 has a color structure
that can be brought into the forms seen in the first two diagrams by writing

— gfabere = (ig) - i fete = (ig)(t:® — £t%) . (46)

We will find it convenient to rescale the color matrices: 7% = /2t so that the T°
are normalized to

tr[TT) = 5 . (47)
We can then write the amplitude in (45) in the form
iM = iM(1234) - T°T* + iM(1324) - T"T° (48)
with
. { (142 —1
(230 = (02 - @2 o)+ 0 ) B2 - B o 8)(2-3+2)-2) + ()22 3) e(3)]
2 3 2 3
+
1 4 1 4

The elements iM are called color-ordered amplitudes. the color-ordered amplitudes must be separately gauge-invariant.



Basics of colour algebra

We now forget about all but the colour part of the Feynman rules and try first to develop
an efficient technique to compute the coefficients involving the colour structure. This is
possible because the colour degrees of freedom factorize from the other degrees of freedom
completely. We use the following graphical representation for the colour charges in the
fundamental representation:

= (t") -
k l

The normalization of these matrices is given by

b
Tr(t*t’) = fmm@mmm = Tr 0% = Tr. 9920000

The ususal choice is T = %, but Tr = 1 is also used often. We shall use both.
In the adjoint representation the colour charge T is represented by the matrix (F¢),,
that is related to the structure constants by

al
(Fa)bc = (Fb)ca = (Fc)ab = —i fape = b c

where F* with a =1,..., (N2 — 1) are (N2 — 1) x (N2 — 1) matrices which again satisfie
the commutation relation (1.1). The graphical notation in the adjoint representation is not

unique. For the matrix (F'*),, we assume an arrow pointing from index ¢ to b, opposite
to which we read the indices of (F'*). On the structure constans the indices are not dis-
tingushed, therefore arrow do not appear. However, these are completely antisymmetric in
their indices, therefore, the ordering matters. By convention, in the graphical representa-
tion, the ordering of the indices is anticlockwise. The representation matrices are invariant
under SU(N) transformations.



The sums »_, ¢¢;t%, and Tr (F2F") have two free indices in the fundamental and adjoint
representation, respectively. These are invariant under SU(N) transformations, therefore,
must be proportional to the unit matrix,

M

ijjk—i 75 k _CFi—‘—k:CFéik
Te(FOF") Efméﬂoz%m = O ypvson, = Cad”
a b v

where Cr and C are the eigenvalues of the quadratic Casimir operator in the fundamental,
respectively adjoint, representation. In the familiar case of angular momentum operator
algebra (SU(2)), the quadratic Casimir operator is the square of the angular momentum
with eigenvalues j(j + 1). The fundamental representation is two dimensional, realized
by the (half of the) Pauli matrices acting on two-component spinors, when j = 1/2 and
Cr =1/2(1/2+1) = 3/4. In the adjoint representation j = 1 and Ca = 2. Below we derive
the corrseponding values for general SU(N).



CHROMATICA

It is very convenient to do colour calculations in graphical form [4]. Quark lines mean
(5}, gluon lines mean §%°, and quark-gluon vertices mean (t*);. There is no need to invent
names for indices; it is much easier to see which indices are contracted — they are connected
by a line. Here are the properties of the generators t* which we already know:

Trl1 =N, or @ =N,,
Trt* =0 or '\N@ =0, (A.16)
Tr tatb = TF(Sab or VQW = TF MANN



There is a simple and systematic method for calculation of colour factors — Cvitanovi¢
algorithm [4]. Now we are going to derive its main identity. The tensor (t*)%;(¢t*)¥ is
invariant, because (*)’; is invariant. It can be expressed via 6;, the only independent
invariant tensor with fundamental-representation indices (it is clear that £--~e and &;, N
cannot appear in this expression, except the case N, = 2; in this case 5““5]1 can appear,

but it is expressible via 5;) The general form of this expression is

)5 = a [5;5;?’ — bé;éﬂ ,

I8 SR R

where a and b are some unknown coefficients. If we multiply (A.17) by (53 ,

or graphically

() (¢ =0 = a [6f — bN.ST]

i. e., close the upper line in (A.18),

we obtain

(A.17)

(A.18)



If we multiply (A.17) by (¢)%;,
(Y0 = T = a [ = @)t

i. e., close the upper line in (A.18) onto a gluon,

Ja Lol

CL:TF.

we obtain

The final result is )
(89, (1)*, = Tp {5}6;‘? - ﬁ%fﬂ : (A.19)

KZTF jTE_Ni+] (A.20)
C <

This identity allows one to eliminate a gluon exchange in a colour diagram: such an
exchange is replaced by the exchange of a quark—antiquark pair, from which its colour-
singlet part is subtracted.

or graphically




The Cvitanovi¢ algorithm consists of elimination gluon exchanges (A.20) and using
simple rules (A.16). Let’s consider a simple application: counting gluon colours. Their
number is

0D -0

Now we consider a very important example:

S

1
AL p—

The result is

m =Cp—>—— or t't"=0Cp, (A.23)

where the Casimir operator in the fundamental representation is

1



Colour diagrams can contain one more kind of elements: 3-gluon vertices if%°. The
definition (A.8) when written graphically is

S T T

Let’s close the quark line onto a gluon:

G
Bh o 2% o R

This is the final rule of the Cvitanovi¢ algorithm: elimination of 3—gluon vertices.

Therefore,

[ta’ tb] — Z-fabctc



The commutation relation (A.15) can be rewritten graphically, émilarly to (A.25):

Jacobi identity

[, [, 1)) + [, [, 6] + [, [t ¢]) = O
— (Z-fbdciface + ifdacl-fbce + ,ifabcifdce) e



| 1
e =1 [ — ] L -n
. i ’ : _1
fab(‘ - ’I‘I-(TaTbT() — TI‘(TGTLTI)) 5 - o

Jacobi identity e, [tb, td]] + [tb, [td, 1] + [td, [t tb” -0
— (Z-fbdciface + ,l»fdac,ifbce + 7:'](‘abcz'.]z'dce) e

e




Feynman diagrams for gg — gg. 5 3 5 3 4 3
\A\v 2 3
}m{ + figt + L}{Lﬂ + j}i
1 4 1 4 1 2 1 4

Other QCD amplitudes can also be reduced to color-ordered structures. Another
case that will be important for us is the 4-gluon amplitude shown in Fig. 5. This

amplitude can be written in the form
iM = iM(1234) - tr[T T TT?) 4 iM(1243) - tr[T*T T T*]
+iM(1324) - tr[T*TT’TY] + iM(1342) - tr[T*TTT"]
+iM(1423) - tr[T*T T T¢] + iM(1432) - tr[TTTT"] . (50)

To write the four diagrams in Fig. 5 as a sum of color structures, we need to
convert color factors in the 3- and 4-gluon vertices into products of 7 matrices. For
the 3-gluon vertex, this is done through (46), or, by the use of (47), through

— gfate = D gy[portTe — TOTTY] (51)

V2

For the 4-gluon vertex, we need to apply this decomposition twice. The textbook

b c
form of the 4-gluon vertex is shown in Fig. 6. Each term can be manipulated as Y }{ Moo -ig? [ f::’:f;::(gti QZZ‘QtZ 9\:;)
follows ek bee "9,9.)
fadefbce uv _AG __uA _vo
7 2 d + (979" -97"g )l
o Z-ngabefcde = 5 tr([T“, Tb] [TC, Td])

2
= z‘%tr(T“T”TCTd — TT*TT — T*T°T°T" + T*T°TT*) (52)

The full 4-gluon vertex can then be rearranged into

2
’i%tr(TaTchTd>[2g“>\gya o guug)\a o g,u,agu)\] (53)

plus 5 more terms corresponding to the other 5 color structures in (50).



2 3 2
3 2 3
1 4 1 4 1 4

As an example, I will compute the color-ordered amplitude M(1234) that is used
to build up the four-gluon amplitude. Of the four Feynman diagrams in Fig. 5, only
the three diagrams shown in Fig. 9 contribute to this color-ordered component. Here
and in the rest of the lectures, the color-ordered amplitudes in the figures will be
ordered clockwise. Using the Feynman rules in Fig. 7, we find

IMI(1234) — (\%)2 i[e<4) (A= 1)+ A1)(21 +4) - e(4) + A) (=24 — 1) - (1))

3)(2—=3)r+ex(3)(23+2) €(2) +er(2)(—22—3) - €(3)]
(1—=22+M2)(22+1) - e(1) + M1) (=21 —2) - €(2)]
B =4+ e(4)(24+3) - €(3) + ex(3)(=23 —4) - €(2)]

€(2) - e(4) —e(1) - €(2) €(3) - €(4) — (1) - €(4) €(2) - €(3)]



Feynman rules for colour subamplitudes (for massless fermions)
We introduce the following notation:
e external outgoing fermion of momentum p, helicity +: (p=£|,

e external outgoing antifermion of momentum p, helicity +: |pF),

e external outgoing vector of momentum p, reference k, helicity =+: eljf (p,k) = %.

The fermion propagator of momentum p in the direction of the fermion arrow is +iz%' The
vector propagator of momentum p is: —]%gw,.

e = i%’y“ the factor of V2 is due to T = 1. (1.48)
Lagy (0, q,7) = iﬁvagﬂY (p,q,r) all incoming momenta (1.49)

V2

2
.g
Faﬁvé = 175 (2ga'ygﬂé — 9as9py — gaﬁg'yé) (1‘50)



Four-gluon amplitude

the case with all positive helicities. Choose the gluon polarization vectors so that the

same reference vector r is used in every case,

() = 1 (ry"y]

V2 (1)

(68)

Then, for all ¢, 7,

€(i) - e(g) ~ (rr)lji] = 0. (69)
By inspection of (56), every term contains at least one factor of €(i) - €(j). Thus, the
entire expression vanishes.

This argument is easily extended to the case with one negative helicity gluon. The
amplitude (56) is cyclically symmetric, so we can chose the gluon 1 to have negative
helicity without loss of generality. Then let

oy - - L2 1 (17%)]

oy YT
-

) = 0 for all 4,5, and so the complete amplitude

(70)

for j = 2,3,4. Again, €(i)
vanishes.

It is not difficult to see that these arguments carry over directly to the n-gluon
color-ordered amplitudes for any value of n. The tree amplitudes with all positive
helicities, or with one negative helicity and all of the rest positive, vanish. The



maximally helicity violating amplitudes are those with two negative and the rest
positive helicities.

For the 4-gluon amplitude, all that remains is to compute the color-ordered ampli-
tude in the case with two negative helicities. By the cyclic invariance of M, there are
only two cases, that in which the two negative helicities are adjacent and that in which
they are opposite. As an example of the first case, we can analyze iM(1_2_3,4,).
Choose the polarization vectors to be

wiqy L [4M1) (o) — L [4"2)
W= P =7
iy L (19"3] iy — L {14
=y W i
With this choice, all scalar products of €’s are zero except for
o 12[43(12)  (12)[43]
€(2)- €)= =3 [42(13) ~  (13)[42] (72)

Looking back at (56), we see that the first and third lines are zero. In the second line,
the only nonzero term is the one that involves €(2) - €(3) and no other dot product of
€’s. Thus,

(73)

Multiplying top and bottom by (12) and rearranging terms in the denominator to
cancel out the square bracket factors, we find

(12)"
(12)(23)(34)(41)

iM(1.2.3,4,) =ig” (74)



Similarly, to evaluate :M(1_2,3_4,), choose the polarization vectors to be

P 1 [491) oy L (12
‘W=7 2=y
ppay L [49"3) w1 ("4
VoI = R Vo (T )
With this choice, all scalar products of €’s are zero except for
o (13)[42]

Again, only the term that involves €(2)-€(3) and no other dot product of €’s is nonzero.

The value of that term is again given by the first line of (73), which, in this case,
evaluates to

(13)°[42)"
(34)[41](41)[43] (77)

Multiplying top and bottom by <13>2 and rearranging terms in the denominator to
cancel out the square brackets, we find

iM = —ig?

(13)*

iM(1.2,3 4,) =ig® (12)(23) (3 (A1) (78)




The form of (74) and (78) strongly suggests that the general form of an n-gluon
MHYV amplitude is

| . _ o (i)
iM(g4(1) -+ g-(i) -+ 9-(j) - - g9+ (n)) = ig 19y @3) - (n = Dl (79)
The corresponding formula, exchanging positive and negative helicities, is
Mg (1) g0 )+ g0 () g (n) = (~1)ig™ > zl - (0)

[12][23] - - [(n — 1)n][n1]

discovered in 1986 by Parke and Taylor



Photondecoupling equation

the lagrangian for SU(N) Yang—Mills theory
L= Te(-30"A"0, A, — iV2g "A"A A, + L AMAVALA,)  (811)

where A, (z) is a traceless hermitian N x N matrix. For quantum chromo-
dynamics, N = 3, but we will leave N unspecified in our calculations. In
section 80, we worked out the color-ordered Feynman rules for a scalar ma-
trix field; the same technology applies here as well. In particular, we draw
each tree diagram in planar fashion (that is, with no crossed lines). Then
the cyclic, counterclockwise ordering iy .. .1, of the external lines fixes the
color factor as Tr(7T%1 ...T%n), where the generator matrices are normal-
ized via Tr(TeT?) = §%. The tree-level n-gluon scattering amplitude is
then written as

T=g"72> Te(T™...T"AQ,...,n), (81.2)
noncyclic
perms
where we have pulled out the coupling constant dependence, and A(1,...,n)

is a partial amplitude that we compute with the color-ordered Feynman
rules. The partial amplitudes are cyclically symmetric,

A2,...,n,1) = A(1,2,...,n). (81.3)

The sum in eq. (81.2) is over all noncyclic permutations of 1...n, which is
equivalent to a sum over all permutations of 2...n.



completeness relation
(T (T = 667 — %0761 (81.30)
However, recall that the Yang—Mills field strength is

Fu = 0uAy = 8,4y — LALA) (81.31)
If we allow a generator matrix proportional to the identity, which corre-
sponds to a gauge group of U(NV) rather than SU(V), then this extra U(1)
generator commutes with every other generator. Thus the U(1) field does
not appear in the commutator term in eq. (81.31). Since it is this commuta-
tor term that is responsible for the interaction of the gluons, the U(1) field
is a free field. Therefore, any scattering amplitude involving the associated
particle (which we will call the fictitious photon) must be zero. Thus, if we
write a scattering amplitude in the form of eq.(81.2), and replace one of
the T%s with the identity matrix, the result must be zero.

This decoupling of the fictitious photon allows us to use the much simpler
completeness relation

(T)7 (T)) = 6i'6y (81.32)

in place of eq.(81.30). There is no need to subtract the U(1) generator
from the sum over the generators, as we did in eq.(81.30), because the
terms involving it vanish anyway.

we want to extend our gauge group from SU(N) to U(N) = SU(N) x U(1).
We need to add the extra U(1l) generator. This would normally correspond
to a diffrent theory, but here we have a special case, since this U(1) generator
corresponds to the unit matrix it will commute with all the generators of SU (V).
This means that we can’t have a scattering amplitude involving this particle,
because the three and four point vertices are proportional to commutators of the
corresponding generators. Therefor this transsion can’t alter our final result.



It is easy to see that any tree diagram for n-gluon scattering can be re-
duced to a sum of “single trace” terms. This observation leads to the color
decomposition of the the n-gluon tree amplitudef

A ({ki Ay aid) = g2 Y Tr (T - T%m) AT (o(1M), ... o(n™)).

c€ESn/Zy,
2 (1)
Here g is the gauge coupling (£ = as), ki, A; are the gluon momenta and
helicities, and Af{ee(l/\l, . ,nAn) are the partial amplitudes, which contain all

the kinematic information. S, is the set of all permutations of n objects, while
Z, is the subset of cyclic permutations, which preserves the trace; one sums
over the set S,,/Z, in order to sweep out all distinct cyclic orderings in the
trace. The real work is still to come, in calculating the independent partial
amplitudes A'°®. However, the partial amplitudes are simpler than the full
amplitude because they are color-ordered: they only receive contributions from
diagrams with a particular cyclic ordering of the gluons. Because of this, the
singularities of the partial amplitudes, poles and (in the loop case) cuts, can
only occur in a limited set of momentum channels, those made out of sums of
cyclically adjacent momenta. For example, the five-point partial amplitudes
Afree(121 222 3% A4 5A5) can only have poles in si2, sa23, S34, Sa5, and Ss1,
and not in s13, So4, S35, Sa1, OF Ss2, where s;; = (k; + k'j)Q.

tree color decomposition, Eq. 4, is equally valid for gauge group U(N,.) as

SU(N,), but any amplitude containing the extra U(1) photon must vanish.
Hence if we substitute the U(1) generator — the identity matrix — into the
right-hand-side of Eq. 4, and collect the terms with the same remaining color
structure, that linear combination of partial amplitudes must vanish. We get

0 = AU(1,2,3,...,n) 4+ AU°(2,1,3,...,n) + A"(2,3,1,...,n)
o ATe(2,3,. .., 1,n), (8)

often called a “photon decoupling equation™ or “dual Ward identity™



The decoupling of the fictitious photon is useful in another way. Let us
apply it to the case of n =4, and set T% o I in eq. (81.2). Then we have

Af;“ee = g* [Tr(T'T*T*T*)A(1,2,3,4) + Tr(T'T?T*T?)A(1, 2,4, 3)]
¢ [Tr(T'T3T?T*)A(L,3,2,4) + Tr(T'T*T?*T?)A(1,4,2,3)] (1)
g [Tr(T'TT'T?)A(1,3,4,2) + Tr(T'T*T*T?) A(1,4,3,2)]
= g°A(1,2,3,4) [Tr(T'T°TT*) + Tr(T'T*T?T?)]
+9%A(1,4,2,3) [Tr(T'T*T?*T?) + Tr(T'T*T°T*)] (2)
)|

+92A(1,3,4,2) [Tr(T'T*T*T?) + Tr(T'T*T*T3)]

2A(1,2,3 4) [Tr(T'T°T?) + Tr(T'T°T?)]
9°A(1,4,2,3) [Tr(T'T°T?) + Tr(T'T°T?)] (4)
P A(1,3,4,2) [Tr(T'T°T?) + Tr(T T?T?)]
gQ( (1,2,3,4) + A(1,4,2,3) + A(1,3,4,2)) )
[Tr(T'T°T?) + Tr(T'T°T?)]
the 2nd factor can be written as
Tr(T*T’T + T*T°T") = Tr(T* {T°,T°}) = d** (6)

where d®*¢ are also structure constants of SU(3)

A(1,2,3,4) = — A(1,2,4,3) — A(1,4,2,3) .
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