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Part I:
Generation of Three-Body Interactions
from Three-Body Loss




Motivation

e 3-body loss processes (-)

® ubiquitous, but typically undesirable inelastic 3 atom collision
e inelastic 3 atom collision

A /\ /\ N
e molecule + atom ejected from lattice é}ﬁ/ \ /
@ \/

e 3-body interactions (+)

* Stabilize bosonic system with attractive interactions
» Stabilize 3-component fermion system: atomic color superfluidity

173 — V3

= We make use of strong 3-body loss to generate a 3-body

hard-core constraint




Basic Mechanism: Interactions via Loss

* Model: Bosons on the optical lattice with three-body recombination

* Hamiltonian: H = —J Z bTb + — an —1)

(i.J)
* Three-body recombination: loss from lattice to continuum of unbound states

* Model on-site three-body loss: Master Equation

in Lindblad form

couples density matrix sectors with n+3, n particles

—i[H,p] + 22b3pb* {b]

three-body loss rate

* zero temperature approximation: binding energy of deeply bound molecule
much larger than lattice depth




Basic Mechanism: Interactions via Loss

non-particle number conserving: couples sectors with
* Rewrite the Master Equation as n+3, n particles in the density matrix

N

i 13 23 nhy ST~
p =i (Hersp —pHlyr) + 15 L. 250(5]) _\@%

particle number conserving (but norm decays)

!

Hyp=H—i22 Y (51)5} -

12
up to double triple and higher
occupancy ® occupancy

= Consider the limit ¥3 > U,J
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Basic Mechanism |l: Interactions via Loss

* Second order Perturbation Theory

- Define projector P onto subspace with at most 2 atoms per site (Q=1-P)

!

l

21 T
Hp, ot ~ PHP + — PHQHP = PHP — =} Pclc;P PHP | PHQ
| V3 2 - J i

(k1) \

aen U

PHP = —] Y. bib;+ > LA —1) & b3=0
{i.j) l

= Three-body hardcore constraint due to: dynamic suppression of triple

onsite occupation
. J?
= Small decay constant in P subspace: I'= 127_
3

= Realization of a Hubbard-Hamiltonian with three-body hard-core

constraint on time scales T = I/F




Physical Realization in Cold Atomic Gases

*Estimate Loss rate: Integrate free space recombination rate over parameter estimate

Wannier function

® short length scale collisions not modified by lattice
* Cesium close to a zero crossing of the scattering length (e.g.

Naegerl et al.)

* Preparation of the ground state of PHP: lattice depth Vo/ER

* Nonequilibrium problem: role of residual heating effects

* Approach: Exact numerical time evolution of full Master Equation in |D;
combine DMRG method with stochastic simulation of ME

* Find optimal experimental sequence to avoid heating




Ground State Preparation

Quantum Trajectories: Stochastic Simulation

“Unlucky trajectory”
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* Evolve stochastic trajectories (states)
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* Quantum Jumps
)
V)= el

* Norm decays below random threshold
* Jump operator chosen randomly

l<b* b|+ b. b>l
l<b™ b’ b. b>l

“Lucky trajectory”:

“Unlucky trajectory”
long range order y el Y

Features:

* Evolution of individual trajectories
* Expectation values by stochastic average




Ground State Preparation

Ramping down a superlattice Buildup of long-range order in “lucky” case

[I' =250J

—

Ramp: Superlattice,V/]=30 to V/]=0,
N=M=20; U/} =-8

o
(63]
T

O

Probability of no decay

o




Part Il
Phase Diagram for Three-Body Hardcore Bosons

Atomic Superfluid
(ASF)

Ising QCP

f /
" Dimer Superfluid .
(DSF) Continuous

l Supersolid
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spin waves

interactions interactions
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Physics of the projected Hamiltonian

* The constrained Bose-Hubbard Hamiltonian stabilizes attractive two-body interactions

PHP=—J Y blb;+ — Zn, &b =

: U <0 J

e Qualitative picture for ground state: Mean Field Theory

* homogenous Gutzwiller Ansatz for projected on-site Hilbert space

=[11%  jYii= hQ0i+ AP+ K21 £, = r,é

[

E(ra;fa) = U JZR R +2"2nrcosF + 272

* Gutzwiller energy
F = f2 + fo 2f1




Mean Field Phase Diagram
5/
e Consider correlation functions: '

. Jz|
hbi - Atomic SF order parameter critical interaction strength: | superfluid

“0 . U p Tl
ht? i - Dimer SF order parameter J—; = 21+n=2+2 n(1 n=2) |

_5*

e Symmetry breaking patterns: dimer superfluid

hbi& 0 hPPi& 0 - Conventional SF

I]bi &0 I]bzi =0 - NO! phase locking in GW energy\A

hbi =0 htPig& 0
- “Dimer SF”

* Phase transition reminiscent of Ising (cf Radzihovsky& ‘03; Stoof, Sachdev& ‘03):

hbi % expiq hE i % exp21iq

E(ra;fa) = U JZR R +2 2nncosF +23

= Spontaneous breaking of Z 2 symmetry@ ! Q + P of the DSF order parameter
= Second order within MFT




Quantum Field Theory

e Gutzwiller mean field theory: classical field theory for the amplitudes fa;i(f); A fsjfai=1
d

e Questions on various scales:
* Vacuum problem: Dimer bound state formation expected for attractive interaction
* Condensation/Thermodynamics: phase border, superfluid stiffness/ Goldstone
Theorem, EFT in strongly interacting limit

¢ Infrared limit: Nature of the Phase transition

= Quantized version of the Gutzwiller mean field description desirable

—>

thermodynamic long distance
5. 12

1 kig x n™=;T'=2 ¢
= g T !




Implementation of the Hard-Core Constraint

* Introduce operators to parameterize on-site Hilbert space (Auerbach, Altman ‘98)

fl.jvaci = jai; a=0,1,2

* They are not independent:

Action of operators

A I;-’/Ia,/ - 1
d

l

3;[ 1: o

21

* Representation of Hubbard operators:

i
3}- = r?fg’.l-ﬁ i+ l‘{./fo’-/ (/01

ni = 21‘;’./1‘2;/ + 1‘1T’./-1‘1 P fvaci




Implementation of the Hard-Core Constraint

e Hamiltonian:
= pA28 b+ Hoti+ UA B b
i /

AU v .
in=J A f;r,./-l‘o;/fg’./ﬁ e 2(1‘;,./-1‘1 ,-/far,.jﬁ ot f;r’.l-l‘o,-/l‘;r’./-fg,-/) + 24’./1‘{./1‘1 Al
i ji

* Properties:

* Mean field: Gutzwiller energy (classical theory)

* interaction: quadratic } * Role of interaction and hopping reversed

* hopping: higher order * Strong coupling approach

* One phase is redundant: absorb via local gauge transformation
hyi=expi)o;fhif byl exp ijoiti by ! exp 1ok

= e.g.t 0 can be chosen real




Implementation of the Hard-Core Constraint

* Resolve the relation between t-operators (zero density)

l‘;r,.l-fo,-/ = f;r,./- 1 l‘{./ﬁ o f;r,.l-fz;/ / l‘;r’./-(‘l f;r,.l-h o l‘;r,.l-l‘g;/)
* justification: for projective operators one has from Taylor representation

X=X L HX) = (O X+ XIA)  X=1 £ty by
* Now we can interpret the remaining operators as standard bosons:
e on-site bosonic space  H, = fjni}jmi?g; nm=0;1,2::

.
e correct bosonic enhancement factors on physical subspace /1= 0,1

* decompose into physical/unphysical space: Hi=PyU ﬁ

1
21
. .1
Ni;

e the Hamiltonian is an involution on P and U: A
f01;

Pi= IR TOE DI By

H = Hpp+ Hyy ~ D D )
* remaining degrees of freedom:“atoms” and “dimers” /0 y /1 I j2 I/'»

= similarity to Hubbard-Stratonovich transformation “dimers”’




Implementation of the Hard-Core Constraint

* The partition sum does not mix U and P too:

Z=1Trexp bH = Trppexp bHpp+ Tryyexp bHyy

¢ Need to discriminate contributions from U and P: Work with Effective Action

 Legendre transform of the Free energy W[J] = log Z[J]
diWJ]

dJ Quantum Equation of Motion for |]=0

Glc]= W[+ J'c; ¢
* Has functional integral representation:

exp G[c]= Ddcexp Sc+dc]+ J'dc; J=_dGC[C]

Sic = (h,0)] = dt AfQAih+ 8.3uk+ Hiti b]
/

* Usually: Effective Action shares all symmetries of S
* Here: symmetry principles are supplemented with a constraint principle




Condensation and Thermodynamics

* Physical vacuum is continuously connected to the finite density case:

Introduce new, expectationless operators by (complex) Euler rotation

e t=(fo;h;b)

e Hamiltonian in new coordinates takes form:

Quadratic part: Spin waves (Goldstone for n > 0)

S
H = Egw + Hsw + Hint

U U

Mean field: Gutzwiller Energy higher order: interactions

>

thermodynamic long distance

interactions
condensation
spin waves

interactions interactions
condensation




Hard-Core Constraint: Summary

* Constrained Model can be mapped on coupled boson theory. This should be

seen as a requantization of Gutzwiller mean field theory

* This theory automatically respects constraint: Decoupled physical and

unphysical subspaces

e Effective Action path integral quantization favorable: symmetry principles are

supplemented with a constraint principle




Vacuum Problem (n=0)

e Hamiltonian to third order is of Yukawa/Feshbach type:

* quadratic part:

Hpot = A(U 2U)Mo-j [ \

j \A \/

detuning from atom level

* leading interaction: \A
\

two separate atom’s energy

Dimer energy

AU M~ '
Hein = J A f;r,-/f1;/+ 2(’2,'/’1,'/f1,'/+f;r;if;r;/f?!/)

hi:ji
(bilocal) dimer splitting into atoms

e Compare to standard Hubbard-Stratonovich decoupling:

usually: decouple interaction {/ ! detuning % 1=U

here: interaction in quadratic part: detuning 97 (J

= realizes Feshbach model on the lattice
= we can expect resonant (strong coupling) phenomenology at weak coupling

~A U MN— .
Hin= JA 6,0 ms md(1 my mphy+ 20000 my mpt g+ 8.0 ma ma) b)) + 28 b8 it
hi;ji



Va.cuum PrObIemS dimer excitation

N
* The physics at n=0 and n=2 are closely connected: n=0 \W\W\y\y\y\y
o pemaranus oy b " VWG

* n=0: dimers on the physical vacuum
* n=2:di-holes on the fully packed lattice di-hole excitation

* Two-body problems can be solved exactly X
| ° G J(K) = + wen( Paann
e Bound state formation: Gd (w =q=0)=0

1 _/ dq 1
an|U| + by, (2m)? —Ey +2/d 3", (1 — cosqey)

n=0: ay=1, b =0

= reproduces Schrodinger Equation: benchmark
= Square root expansion of constraint fails

n=2: a2:4, b2=—6—|-3Eb

= di-hole-bound state formation at finite U in 2D

S SIS S S
[ I | O I |
NN oo
QUG
nnoyn
I\JQJOON




ASF - DSF Phase Border | shifts of the phase border

* Goal: Effects of quantum fluctuations on phase border Atomic Superfluid
red d=2

U/

e Strategy:

- Atomic mass matrix signals instability of ASF: blue d=3

detG,"(w=k=0)=0
- ordering principle: small density expansion around
ns0;n732

. Dimer Superfluid black MFT

0.;) T 0.‘5 T ‘ T l.‘5 ‘
e Results:
- dominant fluctuations: associated to bound state formation

- two scales: bound state formation (G_2) and atom criticality (G_I)
condensate depletion d=2

(i) low density: coincidence of scales
= strong shifts, nonanalytic nonuniversal behavior

—A. U U (/7 = 0) QIU(;(/? = O)j
g.d=3: ¢ s\~ F \ s 30
€& JZ JZ \/\ 2J75 r S 0.53

condensate angle

(i) maximum density: mismatch of scales, di-hole bound state

forms prior to atom criticality
= mean field like behavior

- Note: No particle-hole symmetry!




Effective Field Theory in Strong Coupling

= Perturbative limit U >> J: expect dimer hardcore model

= Perturbation theory second order ] for interaction coefficient:

+

- Strong quantum mechanical fluctuations: one and two-loop graph contribute equally
- Constraint vertices describe forbidden decay possibilities for dimers
- Resulting Hamiltonian (use constraint principle)

Hett = At f;r,-/(1 o o)1 Ty P+ Vikifio:j + et A T
i: ji i

constrained hopping effective nn-repulsion

oV 2.
-2 JUj




Symmetry Enhancement

* Interpret EFT as a spin model in external field:

(N*) CDW order
Heg = =2t »  (s¥s¥ + sVs¥ + As7s?) T, (NY)

* Leading (second) order perturbation theory:

74
|—Z—1

= |sotropic Heisenberg model (half filling n=1):

N s o P A
. ) X A
] L - v
ot 4 v mardpe e 325
LY ool
e\ X ”, v
" -
L

xy plane: superfluid order

* Emergent symmetry: SO(3) rotations vs. SO(2) sim U(I)

* Bicritical point with Neel vector order parameter
Y ] o
NT = E (=)s;

* charge density wave and supejrﬂuid exactly degenerate

®* CDW:Translation symmetry breaking

* DSF: Phase symmetry breaking

e physically distinct orders can be freely rotated into each other:

“continuous supersolid”

e But: - Next (fourth) order PT slightly favors DSF: A =1 — 8(z — 1)(J/ |U])* < 1

- Deviations from half filling




Signatures of “continuous supersolid”

* Proximity to bicritical point governs the physics in
strong coupling regime

- Second collective (pseudo) Goldstone mode

w(q) = 1z (leq +1)(1 eq) 2

- Use weak superlattice to rotate Neel order parameter

eftz=AJtz=1- A=~ 8(z—1)(J/U)* /\/\\/\/\/\/\N‘ _

- Simulation of |D experiment in a trap (t-DMRG)

d)
- 40

Yy
20

0

20 40 60 0 20 x 40
density profile: Onset of CDW  DSF order in textured regions




Infrared Limit: Nature of the Phase Transition

¢ Two near massless modes: Critical atomic field, dimer Goldstone mode

e Coleman-VVeinberg phenomenon for coupled real fields: Radiatively induced first order PT

V(fq) V(1)

Df2,‘>
I/




Infrared Limit: Nature of the Phase Transition

* Perform the continuum limit and integrate out massive modes:

pure Goldstone action

St = Si[f] + Sald] + Sint[J, 1]

// pure Ising action \A

S[f] = aﬂfa/’f + P2 4+ | 4 coupling term

Ising field: Real part of atomic field \/\

\ / Sint[d, ] = ik— dt J f2
@)

Frey, Balents; Radzihovsky&
Ising potential landscape:

Z_2 symmetry breaking

= |nteractions persist to arbitrary long wavelength (cf. decoupling SW)

= Kk & 0:Phase transition is driven first order by coupling of Ising and Goldstone mode



d+1 Ising Quantum Ciritical Point at n=|

* Plot the Ising-Goldstone coupling: Ik

Sould:f] = ik 3y 12

decouplir

G3 B g
ot 2

* Symmetry argument:

e dimer compressibility must have zero crossing A

: : : jump in spec. heat
* and is locked to other couplings by time-local Jamp I 5p

gauge invariance and atom-dimer phase locking

= emergent relativistic symmetry: isotropic d+| density

dimensional model 0\/\ I\/\ 2\7\

no SSB d+1 Z 2 no SSB

= K must have zero crossing: true quantum
critical Ising transition
* Estimate correlation length: f/a, ~ K‘,_G ~ |1 — n’_G
= weakly first order, broad near critial domain

= Second order quantum critical behavior is a lattice+constraint effect




Summary: Beyond mean field phase diagram

| | U/
Atomic Superfluid ]
(ASF) s

Ising QCP

/

Continuous
l Supersolid

0.5 1.0 1.5

7 Dimer Superfluid
(DSF)

= Quantum fluctuations shift the phase border for low densities
= Radiatively induced first order ASF-DSF transition terminates into Ising QCP
= Symmetry enhancement in strong coupling leads to “continuous supersolid”

v Uniquely tied to interactions
v Uniquely tied to three-body constraint







Vacuum Problem (n=0)

G ;II(K) =VWWW + M/W\O/\/vw
- Exact solution of non-local two-body problem possible: >MM — >MM +>OWM

Recover nonperturbative Lippmann-Schwinger Eq.

e Bg 1 I 4

(2p)3 2(ex +€q k) 24 W Es% (U W)
U=tz 4=3(d=3)

JUj+ 2JZA/

G, (wk) = U+

= Fluctuation induced formation of dynamic dimer bound state

= Benchmark with otherwise available results passed

= Square root expansion of constraint fails




Dimer - Di-hole Mapping

* The physics at n=0 and n=2 are closely connected:

* no spontaneous symmetry breaking dimer excitation

* low lying excitations:

A
* n=0: dimers on the physical vacuum n=0 @/\8/@/@/@/\8/
= \8/\8/\&/\&/\&/\&/
W

* n=2:di-holes on the fully packed lattice

* There exists a |-1 mapping: di-hole excitation
Ll p %" UTU hop JT2J Gyt "2J ! VEJ{ Oexchange 2J ! J

dimer-di-hole trafo adding di-hole = removing dimer

= Modified Lippman-Schwinger equation for di-hole allows to

determine exactly the spectrum on top of the n=2 state




Bound state formation at n=0,2

: . : U
* Bound state formation: critical coupling —=°- 7= 2¢d

Jz’

n\d 2 3
0 0 -4/3
2 -11/6

S I S
nu qn
MMNMNo e
QUAUg
I [
r\:oowm

* Onset behavior:

* 3d: quadratic
e 2d: exponential due to log-divergence MET: linear

* Finite onset in 2d n=2: generalized LSE!

* Di-hole spectrum: gapless and quadratic:
o . MFT: none!
not a Mott Insulator for attractive interaction




Conclusions and Outlook

e Strong 3-particle dissipation can create 3-body hard-core interactions
* New equilibrium phases: dimer superfluid

* Preparation of these phases feasible, but of non-equilibrium nature

¢ Field theoretical framework for the treatment of certain constrained lattice models
* Constrained system can be mapped to coupled boson theory

* Beyond mean field physics on various scales

® Bound state formation: dimers and di-holes

5,
* Phase Border: nonuniversal shifts of the critical point

Jz
* Effective spin model with enhanced symmetries in strong coupling regime

superfluid
* Nature of phase transition: d+| dimensional Ising QCP at n=1 0’&

* Further applications:

® Nonperturbative effects on the MI-SF phase boundary

* Spin models?




