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Lecture Overview ____ ColdAtoms

Engineering
: Condensed Matter /1 Quantum Optics
Ma|n theme Many-Body States X Dissipation/Driving

Dissipation can be turned into a favorable, controllable
tool in cold atom many-body systems.

Part I: Quantum State Engineering in Driven Dissipative Many-Body Systems
* Proof of principle: Driven Dissipative BEC

» Application |: Nonequilibrium phase transition from competing
unitary and dissipative dynamics

* Application Il: Cooling into antiferromagnetic and d-wave states of
fermions

- Collaboration: H. P. Blichler, A. Daley, A. Kantian, B. Kraus, A. Micheli, A. Tomadin,
W.Yi, P. Zoller

Part Il: Dissipative Generation and Analysis of 3-Body Hardcore Models

* Mechanism

» Experimental prospects, ground state preparation
» Application |: phase diagram for attractive 3-hardcore bosons
* Application Il: atomic color superfluid for 3-component fermions

= Collaboration: M. Baranov, A. J. Daley, M. Dalmonte, A. Kantian, J. Taylor, P. Zoller
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Outline Part I: Cold Atoms

: : : : Engineering
Quantum State Engineering in Driven Condensed Matter £ Quantum Optics

D|SS|pat|Ve Many'BOdy SyStemS Many-Body States Dissipation/Driving

* Introduction: Open Systems in Quantum Optics

 Driven Dissipative BEC:
- Mechanism for pure DBEC: Many-Body Quantum Optics
- Physical Implementation of DBEC: Reservoir Engineering, Bogoliubov bath

 Application I: Competition of unitary vs. dissipative dynamics

- first look: weak interactions
- strong interactions: nonequilibrium phase transition

» Application II: Targeting pure fermion states W
- An excited many-body state: n-condensate M
KA

- Antiferromagnetic and d-wave fermion states

References:
SD, A. Micheli, A. Kantian, B. Kraus, H.P. Buchler, P. Zoller, Nature Physics 4, 878 (2008);
B. Kraus, SD, A. Micheli, A. Kantian, H.P. Blchler, P. Zoller, Phys. Rev. A78, 042307 (2008)

F. Verstraete, M. Wolf, I. Cirac, Nature Physics 5, 633 (2009)
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Quantum State Engineering in Many-Body Systems

¢ thermodynamic equilibrium
- standard scenario of condensed matter & cold atom physics

_ T—0
H|E,) = Eg|E;)  p~e el =2 |By) (B,

Hamiltonian (many body) cooling to ground state

¥ interesting ground states

Hamiltonian Engineering: v quantum phases

e driven / dissipative dynamical equilibrium

- quantum optics drive

d . ~
d_': = —i[H,p] + Lp p(t) tmoo, Dss mixed state
I?
competing dynamics = |D> <D‘ pure state (“dark state”)
master equation steady state

v’ many body pure states / driven quantum phases
Liouvillian Engineering: v mixed states ~ “finite temperature”
v useful an interesting fermion states
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Open Quantum Systems
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Open Quantum Systems
H = Hs + Hp + Hiyy

continuum bath of

Hg:/mw@m

operators
Hiy = i/dw/@(w) [bLJ — b@//

linear bath operator coupling to the system

Three approximations:

(1) Born approximation: k(w)/wy < 1

(2) Markov approximation:

drive

_

harmonic oscillators  quantum jump operators
polynomial in system

k(w) ~const.= k(t—t') ~do(t—1t) ,

environment /
bath

wo
system frequency
H_J
wo — U wo + U
reservoir bandwidth

AL ]
_ 0 A
(3) Rotating wave approximation: << 1 -
/”@0 Jo = |g)(e| =0 Q| <T
Wwo — V = A o v
' A Q
detuning m-go (g o) (E) H I g
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Open Quantum Systems
ﬁtptot — _i[HS + HB + Hintaptot]

= Eliminate bath degrees of freedom in second order time-dependent
perturbation theory (Born approximation)

rb th< \. guantum jump operators
a

effective system dynamics from Master Equation (zero temperature bath)

Oip = —i[Hs, p| + £ JapJl, — ${J1Ja, p}

—& _/

L|p] Liouvillian operator in Lindblad form

 Structure: second order perturbation theory
¢ mnemonic: norm conservation O:;trp =0 pure state: trp = tr,o2 — 1

. byt 2
but: O;trp® # 0 — trp? - “purity

= Purity is not conserved
= go for dstrp* < 0
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Open Quantum Systems
 Stochastic Interpretation: Quantum Jumps

Orp = —ilH,pl + £ Y _ JapJl — ${J1Ja p}
Heg=H —ir/2) JlJ,

(87
—i[Hegt, p]* + £ Y _ JapJ]
quantum jump operators

(8%

Sﬁz :I1 02 b\ f
' | | J
> | o | |
Ay L A o o | v DNem—m———
0.1 L I'._,"' ‘I | '! y | '__,"'
¢ | U . |
|g> . I Ul damped Rabi oscillations |/ ||
Nt . j g . c 2 . 2 jl ] .
0 5 10 15 20 25 ) 35 40 45 S0
Jo =|g)(e] =0 t1tt e -
t, Lty ¢, ts tg
time evolution of upper state population of driven dissipative two-level system (single run)

* Averaging over “quantum trajectories” generates all correlation functions

Engineer the jump operators J,,
[A,B]* := AB — BT AT

[

Monday, November 2, 2009



Driven Dissipative BEC
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Dark States in Quantum Optics

e (Goal: pure BEC as steady state solution, independent of initial density matrix:

p(t) — |BEC)(BEC)| fort — oo

e Such situation is well-known quantum optics (three level system): optical pumping
(Kastler, Aspect, Cohen-Tannoudji; Kasevich, Chu; ...)

f E% o(t) 2 g1 (gy

g-1) |g+1)
= Driven dissipative dynamics “purifies” the state

= |g1) is a “dark state” decoupled from light

Coc|g+> =0

= Dark state is Eigenstate of jump operators with zero Eigenvalue
= Time evolution stops when system is in DS: pure steady state
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An Analogy

e A-system: three electronic levels (VSCPT by Aspect, Cohen-Tannoudiji; Kasevich, Chu)

AP

0
8+1) D) | B)
dark state bright state
e 1 atom on 2 sites D) ~ |gy1) +g-1) [B)~|g+1) — |g-1)
T T T T
(a1 + a2) |vac) (a1 - a2) [vac)
symmetric anti-symmetric
J “in-phase” “out-of-phase”

~ dissipative Josephson junction
pumping into symmetric state

= “phase locking”: like a BEC
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Driven Dissipative lattice BEC

nearest neighbours
« Consider jump operator: // M
_}.
j +a;)(ai—a;

gWav/avia ¥y

Cij = (a:f
(1) BEC state is a dark state: ~ |BEC) = (Za£> vac)
cii|BEC) = 0 Vi ai—a)Ya =Y al(a—a)+Y 68
/ ! /

(2) BEC state is the only dark state:
. (a] +d )has no eigenvalues

. (di — aj) has unique zero eigenvalue

(a; —a;) Yi— (1 — €9 gy Vg
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Driven Dissipative lattice BEC

(3) Uniqueness: IBEC> is the only stationary state (sufficient condition)

If there exists a stationary state which is not a dark state, then there must exist a
subspace of the full Hilbert space which is left invariant under the set  {cq}

(4) Compatibility of unitary and dissipative dynamics rn @
o

H = ')

|D) be an eigenstate of H, H|D) = E |D) D)

[—o0

p(r) — |D) (D]

e Long range order in many-body system from quasi-local dissipative operations
e Uniqueness: Final state independent of initial density matrix

e Criteria are general: jump operators for AKLT states (spin model), eta-states
(fermions), d-wave states (fermions, next lecture)
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A. Griessner, A. Daley et al. PRL 2006; NJP 2007
(noninteracting atom)

Physical Realization: Reservoir Engineering

® driven two-level atom + spontaneous

emission

e)

optical
I photon

g)

® reservoir: vacuum modes of the
radiation field (T=0)

° w~21x 10"H;

Quantum optics ideas/techniques

® much lower energy scales...
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A. Griessner, A. Daley et al. PRL 2006; NJP 2007
(noninteracting atom)

Physical Realization: Reservoir Engineering

® driven two-level atom + spontaneous

emission

e)

optical
I photon

g)

® reservoir: vacuum modes of the
radiation field (T=0)

° w~21x 10"H;

Quantum optics ideas/techniques

?

(many body) cold atom systems

® much lower energy scales...
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A. Griessner, A. Daley et al. PRL 2006; NJP 2007
(noninteracting atom)

Physical Realization: Reservoir Engineering

® driven two-level atom + spontaneous
emission

e)

optical
I photon

g)

® reservoir: vacuum modes of the
radiation field (T=0)

° w~21x 10"H;

® trapped atom in a BEC reservoir

BEC

“phonon”

laser assisted atom + BEC collision

Wpg ~ 2T X kHZ
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A. Griessner, A. Daley et al. PRL 2006; NJP 2007

. . . . . . (noninteracting atom)
Physical Realization: Reservoir Engineering

e driven two-level atom + spontaneous ® trapped atom in a BEC reservoir
emission

laser 'N\"'\‘J
—_— @ photon

—5 e
o BEC
optica
sl photon . “phonon”
’g> laser assisted atom + BEC collision
® reservoir: vacuum modes of the P reservoir: Bogoliubov excitations of the BEC
radiation field (T=0) (at temperature T)
° w~2nx10%Hz J‘ Wpg ~ 2T X kHz
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Physical Realization

Schematic In practice

Rabi frequency b e |evel structure: optical superlattice

(b) A
X | ¥ o A R e AR
+0) AW v W
A
04 e Lesl
;. fap r r)
KA
ai a; e coherent excitation: Raman laser
(1) Coherent excitation with opposite laser
sign of Rabi frequency

i,

Qb'(a; —a)+h.c.

",

antisymmetric

cij = (a +a})(a;—aj) §
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Physical Realization
Schematic In practice

reservoir laser f

$

y

BEC = reservoir of
Bogoliubov excitations

",

(2) Dissipative decay back:

coupling of upper level to reservoir = Tppe < Oy effective

zero temperature reservoir

K(a] +a)by (ne+r)
k

e coupling to system: interspecies interaction

e short coherence length in bath provides quasi-local dissipative
Cij = (a:F 4+ aj) (ai _ aj) processes, but not mandatory for our setup to work

symmetric
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Physical Realization

(3) adiabatic elimination of auxiliary
level, trace out the bath

Effective single band jump operators
T i
c12 = (a; +ay)(ar —az)

Many sites: Array of dissipative junctions

LVAYAY

QVAV/AV/AV VS

Comments:

Long range phase coherence from quasi-local
dissipative operations

- Coherent drive: locks phases
- Dissipation: randomizes
- Conspiracy: purification

The coherence of the driving laser is mapped
on the matter system

Setting is therefore robust
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Competition of unitary vs. dissipative
dynamics
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Effects of finite interactions

H=-% ala; Y ale?

dissipative dynamics interacting Hamiltonian
favors pure BEC state dynamics not compatible
\2 Competition J
dp .
- = —iH p +Lp

"

treating interactions in
* weak coupling
* 3D: true (depleted) condensate, fixed phase: Bogoliubov theory
* 1,2D: phase fluctuations destroy long range order: Luttinger theory
» Strong coupling, 3D

* mixed state Gutzwiller Ansatz
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Weak Coupling: Linearized jump operators

momentum

« momentum space jump operators are nonlocal nonlinear objects | ——®&—=— k+q

1 . »
* In a linearized theory the reduce to (any dimension) A

Cq = fqrdq fap = 2v/n(1 —e™9%) : )
* Interpretation: 000900 =0

accumulation
* bosonic mode operators: depopulation of momentum q in favor of condensate
« zero mode explicit:  fq=0 =0
* lead to momentum dependent decay rate

Kq = ZK‘fq,ﬂz ~q’
A
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Many-Body Master Equation

* Interpretation: How close are we
to the GS of the Hamiltonian?

* Diagonalize H
* consider equation for single mode

Bogoliubov / hydrodynamic excitation

N

Y,

linear sound mode q

QA

p =|~i7 [d'dp] -

+2x(wdpd+v*d pd— uv(d'pd' +dpd) + anticommutator term

N N

“cooling” “heating” squeezing
v%l, ué = vé + 1 generalized Bogoliubov coefficients
N, N+1 cf. thermal reservoir

= [ntrinsic heating/cooling, though reservoirisat T =0
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Characterization of Steady State: Density Operator

* linearized ME exactly solvable: Gaussian density operator

for each mode expressible as

_ i
Pk = €Xp (_Bkbkbk
with squeezed operators b (Bogoliubov transformation)

= mixed state with

Ki + (ex +Un)?
K + Ef

coth® (Bx/2) =

e at low momenta, resemblance to thermal state:

- Ek Un

~ —— T = —
Bk T =

»role of temperature played by interaction

(dgdq)

QA

Q1|3

linear sound Mmode
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Correlations in various dimension: 3D

» Steady state: condensate depletion:

m=n-no=3 [t

* small depletion justifies Bogoliubov theory
e squeezing and mixing effects tied to interaction strength (unlike th. equilibrium)

* Approach to the steady state:

Un 1 1

no,eq—no(t)N gﬁ 4

* power-law: Many-body effect due to mode continuum

* sensitive probe to interactions: cf. for noninteracting system

no.eq — n()(t) ~ t_3/2

* universal at late times
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Correlations in various dimension: 1/2D

» Steady State: quasi-condensates in low “temperature” phase

Tofr

T ~ c . -~ e 8J/n x) d — 1
{ayao) ~ (expi(0x — o)) {(x/xO)Teff/‘lTKT, d=2

Tkt = ®Jn > Tuge Teig =Un/?2 X0 ZZKH(TCffJ)_l/z
Kosterlitz-Thouless temperature Dissipative coupling:
of 2D quasi-condensate only sets cutoff scale

» steady state well understood as thermal Luttinger liquid
« similar results for temporal correlations (from ME via quantum regression theorem)
» weak effect of dissipation on phase fluctuations:

Eq ~ |(I|7Kq qu
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2D: Real Time Evolution

* Buildup of spatial correlations from disordered state

e_‘x|/§ 4 :O

‘Pt(X,O)N { Tefp

(x/xo)_me 4Ev/mxnt s oo

broadening of Gaussian governed
by time-dependent length scale

x; = 2(m&2xknr) /4

1.0

0.6

04

02

0.0 kuk

20

40

60

80

100
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with A. Tomadin

Strong Coupling: Nonequilibrium Phase Transition

* Analogy to Mott insulator / Superfluid quantum phase transition :

* enhancement of superfluidity: Hopping J driven dissipationv
* suppression of superfluidity: interaction U interaction U
= Expect phase transition as function of J / U Y / U

» Differences:

= Competition of two unitary evolutions vs. competition of unitary and dissipative evolution

v phase transition (temperature T)

v quantum phase transition (g)
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Reminder: Mott Insulator-Superfluid Phase Transition

—JZbTb — Yy R+ U AR

(,5)

* Hopping J favors delocalization in real space: ® Interaction U favors localization in real

e Condensate (local in momentum space!) space for integer particle numbers:

* Fixed condensate phase: Breaking of phase Mott state with quantized particle no.

rotation symmetry ®* no expectation value: phase symmetry intact
(unbroken)
<bz> ~ 6“0
e o fle][e][e]]e
>

= Competition gives rise to a quantum phase transition as a function of

U/J
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Reminder: Gutzwiller Ansatz

* Interpolation scheme encompassing the full range J/U.

- Main ingredient: product wave function ansatz
vy =11y, [w)i=>»" fﬁw,
' " complex amplitudes

- Limiting cases (homogeous, drop site index, amplitudes chosen real):

(W), =1Vi
AN

wave function normalization

* Mott state with particle number m: fn = 5n,m

* coherent state: f,,

|

Mott state

0

1

2

3

n

>

VvV N/nle N/2

Coh. state: Poisson Statistics

]

U

0

1

2 3

-----

e Validity: approximation neglects all spatial correlations

- becomes exact in infinite dimensions
- reasonable in d=2,3 (T=0)

e le)ie)le) ——
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Some slides taken out

Monday, November 2, 2009



e Dynamic generation of the phase transition from initial coherent state
n=1, J‘:0, thzo,lg—l,...,102 n=1, J\zO, thzo,lg—l,.. , 102 //
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | . . L L . \ L L \ L S 1 ., ----—s I e N R i e -
> 1€ > T‘ > ) > T« > [
2 superfluid thermal | GEJ thermal |
*E 0.8 phase state S 0.8 phase state -
() ransition 8 ] transition
0.6 - s = 064 -
2 T = ]
0.4- - O =4 -
] e ]
1 time =) ] time
O.Zj ~ E O'Zt —
4 Q_ 4
] > ]
[0 R o e e e s e I T T T T T T T T U) [0 e s e s e e e e B e AL T T
0 1 2 3 0 2 3
U/zK U/zK
interaction U interaction U
e U — Opure coherent state solution
* Phase transition: Non-analyticity develops for I — ©°

e above critical point: thermal state: “fixed temperature” given by mean particle density N;
no other scale appears

* No signatures of Mott physics due to strong mixing effect of U: unlike Bose-Hubbard
case of two unitary tendencies at T=0:
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A. Tomadin
Exact calculations for N=6 sites

n=1,J =0and p.b.c. n =1, {annd p.b.c‘.
| ! Lol ! L

S, 1 — 1 —
Q O
O =
=— |
'E 0.8 CTJSNH 0.8
o Q_\@/
- S5 ]
3 0.6 D 06
o0 —_ ]
= (4] ]
~ (- ]
04 O & 04-
i (@) M ]
fofe
0.2; -?"_8‘* 0.2
] g
O <
07““\ T I T T T TTTT T “k OA““\ ! L ! L L
107 10° 10" 10" 10° 10"
U/zK U/zK
interaction U interaction U
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Nonequilibrium Phase Diagram

e U/K transition: Classificat@

- interaction driven (like quantum PT)
- terminates in thermal state (like classical finite temperature PT)
® Add negative J (via phase imprinting): further competition through dynamical instability

- no stable equilibrium state (no dynamical fixed point)
- dynamical limit cycle?

2 - [

stable thermal

dynamically unstable:
negative curvature of
dispersion

2
7/2a xR
T 1 b
1 I
1 1
; : dynamically
, unstable
1 1
1 1 .
1 1
/a
/ Jcosd/k
dynamically stable:
pgsitive cuBr/vature of * Initialization: Coherent state, U=J=0
dispersion e follow time evolution of the system
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Dissipative Driving of Fermions

- Excited states:n Condensate
- Cooling into Antiferromagnetic and d-Wave States
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Cooling to Excited States: n-Condensate

e n-state: exact excited (i.e. metastable) eigenstate of the two-species
Fermi Hubbard Hamiltonian in d dimensions [Yang ’89]

H=-J) fifio +UZfi§ﬂlﬁiﬁ'T

{i.j)0

n-condensate

—

* local “doublon” nj :f}ffl

e checkerboard superposition n-particle

1
T]T:WZ@TIZ 0, ==l

e N-n-condensate:

PN VN exact eigenstate,
H(n!)710) = NU ') 7{0) off-diagonal long range order
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Cooling to Excited States: n-Condensate

e Small scale simulations (open BC) demonstrate n condensation for jumps

65}) =(n] —n})(Mi+m;)

& =nifl i)+ £ f

e [nterpretation: Quantum Jump picture

e H generates spin-up and down configurations on each pair of sites
(for any initial density matrix)

o o2
Cij
(1)

° ¢ creates checkerboard superposition: n condensate

associates into local doublons

= May be conceptually interesting
= However, these jump operators are two-body: difficult to engineer
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Motivation: Cooling Fermion Systems

Experimental phase diagram
e High temperature superconductivity for cuprates
- discovered in 1986 (Mdiller, Bednorz): cuprates show
superconductivity at unconventionally high temperature '
- riddle: attraction from repulsion
 microscopically, strong Coulomb onsite repulsion
- still, observe pairing of fermions with d-wave symmetry

strange metal

Farmi quk
Non-Femmi liqud o

Néol order

e Minimal model: 2d Fermi-Hubbard model
HFH = —J Z C,Z-L,JCj,g + Uzﬁmﬁi,l U ~ ]_OJ
(1,7),0 i

- realistic for cuprate high-temperature superconductors?
- hard to solve: strongly interacting fermion theory

* no controlled analytical approach available

* numerically (classical computer) intractable

= Quantum simulation of the Fermi-Hubbard model in optical lattices?

Monday, November 2, 2009



Quantum Simulation of Fermion Hubbard model

e (Clean realization of fermion Hubbard model possible
e Detection of Fermi surface in 40K (M. Kéhl et al. PRL 94, 080403 (2005))

e Fermionic Mott Insulators (R. Jérdens et al. Nature 455, 204 (2008); U.
Schneider et al., Science 322, 1520 (2008))

e (Cooling problematic: small d-wave gap sets tough requirements

0.001 0.01 0.1 T Ly

BCS superconductors Unitary continuum Fermi gas SF transition

Critical temperature Current lattice experiments
for d-wave SF

= Still need to be 10-100x cooler

e Existing proposal: Adiabatic quantum simulation (S. Trebst et al. PRL 96, 250402 (2006))
e Start from a pure initial state of noninteracting model
e Adiabatically transform to unknown ground state of interacting model

* Concrete scheme: find path protected by large gaps:
e prepare RVB ground state on isolated 2x2 plaquettes
e couple these plaquettes to arrive at many-body ground state
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Dissipative Quantum State Engineering Approach

* Roadmap:

(1) Precool the system (lowest Bloch band)

(2) Dissipatively prepare pure (zero entropy) state close to the expected ground state:
- energetically close
- symmetry-wise close
- spin-wise close

(3) Adapted adiabatic passage to the Hubbard ground state
- switch dissipation off
- switch Hamiltonian on

>
Precooling Dissipative Cooling H =0, L #0
Adapted l

adiabatic
passage

H=Hpryg, L£=0
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Some slides taken out
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Summary Part |

By merging techniques from quantum optics and many-body systems:
Driven dissipation can be used as controllable tool in cold atom systems.

* Pure states with long range correlations from quasilocal dissipation

* Many-body dark state, independent of initial density matrix
» Laser coherence mapped on matter system

» System steady state has zero entropy
* Nonequilibrium phase transition driven via competition of unitary and dissipative dynamics

* driven by interactions (like quantum phase transition)
* terminates into thermal state (like classical phase transition)

* Strong potential applications for fermionic quantum simulation
* cool into zero entropy d-wave state as intial state for Fermi-Hubbard model

* single particle operations due to Pauli blocking

» realistic setting using earth alkaline atoms in a cavity Cold Atoms

Engineering

Condensed Matter (1 Quantum Optics
Many-Body States X Dissipation/Driving
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Optical Lattices

e AC-Stark shift

- Consider an atom in its electronic ground state exposed to laser light at fixed position .

- Thelight be far detuned from excited state resonances: ground state experiences a second-
oder AC-Stark shift
0E; = a(w)]

with a(w) - dynamic polarizability of the atom for laser frequency w, I E2 - light intensity.

- Example: two-level atom {|g) , |e)}.

AE = a(w)] 4 (I~ &%)

-

M eg @

>

a(w) 1

Rabi frequency — |e)

_ I
AC Stark shift red detuned \' blue detuned

detuning from A = w — wey A<0,0E,<0 A>0,0E, >0
resonance O« A ? Y

ST nonresonant
Q2 laser L
5Eg = hﬂ L 1o) j|

o For standing wave laser configuration E(Z,t) = é€sinkze ™ + h.c., AC-
Stark shift is a function of position: It generates an optical potential Vs
02 (Z)
4A

Vopt () = 0E4(Z) = h = Vp sin® kx (k =2m/\)
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Effective Lattice Hamiltonian

Wannier function

harmonic oscillator function

H— /a;; ———M+v< )+ Vopt (%) Jax + gi2]

e Start from our model Hamiltonian, add optical potential:

e Periodicity of the optical potential suggests expansion of field operators into
localized lattice periodic Wannier functions (complete set of orthogonal functions)

ax = Y wWp(x

,m //

band index minimum position

e For low enough energies (temperature), we can restrict to lowest band:
T.U,J < \/4VoERr,Er =k*/(2m) — n =0
e Then we obtain the single band Bose-Hubbard model U

H=-JY blbj—pd fi+> eni+30» d(h;—1)  °  ° \/}/
(4,5) i i i :

J=— / Aol () (— B2 J2mA — Vi (2) o ( — A/2)
U:g/dazlwo(a:)]4 > 10—
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