## The Unreasonable Effectiveness Of Quantum Physics in Mathematics

#### **Robbert Dijkgraaf** Institute for Advanced Study

Arnold Sommerfeld Lectures Munich, Jan 15, 2018

## **Mathematics & Physics**



If you want to be a physicist, you must do three things—first, study mathematics, second, study more mathematics, and third, do the same.

#### **Arnold Sommerfeld**



### "The Unreasonable Effectiveness of Mathematics in the Natural Sciences."

– Eugene Wigner (1960)



### Galileo: "The Book of Nature"

Philosophy is written in this grand book — I mean the universe — which stands continually open to our gaze, but it cannot be understood unless one first learns to comprehend the language and interpret the characters in which it is written. It is written in the language of mathematics, and its characters are triangles, circles, and other geometrical figures, without which it is humanly impossible to understand a single word of it; without these, one is wandering around in a dark labyrinth.

"To those who do not know mathematics it is diffinultate of the was the weak eding as to the beauty the deepest beauty of nature ... If you Want to learn about nature, to apprecienternature internecessary to understand the language that she speaks in."



# **Black Box**





#### **Freeman Dyson** (*Gibbs Lecture*, 1972)

"I am acutely aware of the fact that the marriage between mathematics and physics, which was so enormously fruitful in past centuries, has recently ended in divorce."

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{\mu}f^{abs}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{\mu}f^{abs}f^{abs}g^{b}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{s}_{\nu} +$  $\frac{1}{2}ig_s^2(\bar{q}_i^\sigma \gamma^{\mu}q_i^\sigma)g_{\mu}^a + \bar{G}^a\partial^2 G^a + g_s f^{abs}\partial_{\mu}\bar{G}^a G^b g_{\mu}^s - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H \frac{1}{2}m_{k}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2m^{2}}M\phi^{0}\phi^{0} - \beta_{b}[\frac{2M^{2}}{a^{2}} +$  $\frac{2M}{v}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)) + \frac{2M^4}{v^2}\alpha_h - ig\alpha_a[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu \begin{array}{l} W^+_{\nu}W^-_{\mu}) - Z^0_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} - W^-_{\mu}\partial_{\nu}W^+_{\mu}) + Z^0_{\mu}(W^+_{\nu}\partial_{\nu}W^-_{\mu} - W^-_{\nu}\partial_{\nu}W^+_{\mu}) \\ W^-_{\nu}\partial_{\nu}W^+_{\mu})] - igs_w[\partial_{\nu}A_{\mu}(W^+_{\mu}W^-_{\nu} - W^+_{\nu}W^-_{\mu}) - A_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} - W^-_{\nu})] \end{array}$  $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-}$  $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}) +$  $q^{2}s_{a}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{a}c_{a}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] \frac{1}{2}q^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2]$  $gMW^+_{\alpha}W^-_{\alpha}H - \frac{1}{2}g^M_{\alpha}Z^0_{\alpha}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\alpha}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) W^{-}_{\alpha}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})|+\frac{1}{2}g|W^{+}_{\alpha}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)-W^{-}_{\alpha}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)$  $\phi^+\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{-}}(Z^0_{\mu}(H\partial_{\mu}\phi^0 - \phi^0\partial_{\mu}H) - ig\frac{s_{-}^2}{c_{-}}MZ^0_{\mu}(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) +$  $igs_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1-2a_\mu^2}{2a_\mu} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) +$  $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - 0$  $\frac{1}{4}g^2\frac{1}{a^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s^2_{\mu} - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s^2_{\mu}}{a}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- +$  $W_{\alpha}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c}Z_{\alpha}^{0}H(W_{\alpha}^{+}\phi^{-} - W_{\alpha}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\alpha}\phi^{0}(W_{\alpha}^{+}\phi^{-} +$  $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-}$  $g^{1}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-} - \bar{e}^{\lambda}(\gamma\partial + m_{e}^{\lambda})e^{\lambda} - \bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda} - \bar{u}_{i}^{\lambda}(\gamma\partial + m_{a}^{\lambda})u_{i}^{\lambda}$  $d_j^{\lambda}(\gamma \partial + m_d^{\lambda})d_j^{\lambda} + igs_w A_{\mu}[-(e^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda}) - \frac{1}{3}(d_j^{\lambda}\gamma^{\mu}d_j^{\lambda})] +$  $\frac{iq}{4s_{w}}Z_{\mu}^{0}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{\mu})\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{\mu})e^{\lambda}) + (\bar{u}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{\mu})e^{\lambda})]$  $(1 - \gamma^{5})u_{j}^{\lambda}) + (d_{j}^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_{w}^{2} - \gamma^{5})d_{j}^{\lambda})] + \frac{w}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) +$  $(\bar{u}_{1}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\mu}d_{1}^{\mu})] + \frac{iq}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})\nu^{\lambda}) + (\bar{d}_{1}^{\mu}C_{\lambda\mu}^{\dagger}\gamma^{\mu}(1 + \gamma^{5})\nu^{\lambda})]$  $\gamma^{5} u_{j}^{\lambda} \left[ + \frac{iq}{2\sqrt{2}} \frac{m_{\nu}^{2}}{M} \left[ -\phi^{+} (\bar{\nu}^{\lambda} (1 - \gamma^{5}) e^{\lambda}) + \phi^{-} (\bar{e}^{\lambda} (1 + \gamma^{5}) \nu^{\lambda}) \right] \frac{a}{2} \frac{m_{\lambda}^{2}}{M} [H(\bar{e}^{\lambda} e^{\lambda}) + i\phi^{0}(\bar{e}^{\lambda} \gamma^{5} e^{\lambda})] + \frac{s_{1}}{2M\sqrt{2}} \phi^{+}[-m_{d}^{n}(\bar{u}_{j}^{\lambda}C_{\lambda,\kappa}(1 - \gamma^{5})d_{j}^{n}) +$  $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda n}(1+\gamma^5)d_j^n) + \frac{iq}{2M\sqrt{2}}\phi^-[m_d^{\lambda}(d_j^{\lambda}C_{\lambda n}^{\dagger}(1+\gamma^5)u_j^n) - m_u^n(d_j^{\lambda}C_{\lambda n}^{\dagger}(1-\gamma^5)u_j^n)]$  $\gamma^5 u_j^n ] - \frac{4}{2} \frac{m_i^\lambda}{M} H(\bar{u}_j^\lambda u_j^\lambda) - \frac{4}{2} \frac{m_i^\lambda}{M} H(d_j^\lambda d_j^\lambda) + \frac{iq}{2} \frac{m_i^\lambda}{M} \phi^0(\bar{u}_j^\lambda \gamma^5 u_j^\lambda) \frac{s_{\theta} m_d^2}{\delta M} \phi^0(d_d^2 \gamma^5 d_d^2) + \bar{X}^+ (\partial^2 - M^2) X^+ + \bar{X}^- (\partial^2 - M^2) X^- + \bar{X}^0 (\partial^2 - M^2) X^ \frac{M^2}{d^2}$  $X^0 + \tilde{Y} \partial^2 \tilde{Y} + ige_w W^+_{\mu} (\partial_{\mu} \tilde{X}^0 X^- - \partial_{\mu} \tilde{X}^+ X^0) + igs_w W^+_{\mu} (\partial_{\mu} \tilde{Y} X^- - \partial_{\mu} \tilde{X}^+ X^0)$  $\partial_{\alpha} \hat{X}^+ Y$ ) +  $igc_{\alpha} W_{\alpha}^- (\partial_{\alpha} \hat{X}^- X^0 - \partial_{\alpha} \hat{X}^0 X^+)$  +  $igs_{\alpha} W_{\alpha}^- (\partial_{\alpha} \hat{X}^- Y - \partial_{\alpha} \hat{X}^0 X^+)$  $\partial_{\alpha} \widehat{Y} X^{+} + igc_{\alpha} Z^{0}_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} A_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-} X^{-}) + igs_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-}) + igs_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{-}) + igs_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+}) + igs_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+} - \partial_{\alpha} \widehat{X}^{+}) + igs_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+}) + igs_{\alpha} (\partial_{\alpha} \widehat{X}^{+}) + igs_{\alpha} (\partial_{\alpha} \widehat{X}^{+} X^{+}) + i$  $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{a^{2}}\vec{X}^{0}X^{0}H] +$  $\frac{1-2c_0^2}{2c_0}igM[\bar{X}^+X^0\phi^+ - \bar{X}^-X^0\phi^-] + \frac{1}{2c_0}igM[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] +$  $igMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$ 



## Symmetry





## **Strong Force (QCD)**



3 colors of quarks

## **Symmetry**



## **Global Symmetry**



## **Local Gauge Symmetry**



## **Gauge Fields**



### **Intermediate Gauge Bosons**



### Gluons



connection  $A^{IJ} = N \times N$  matrix

### **Truth And Beauty**



Seal of the Institute for Advanced Study



"My work always tried to unite the true with the beautiful, but when I had to choose one or the other, I usually chose the beautiful."

Hermann Weyl

"It is more important for our equations to be beautiful than to have them fit experiment."

#### **Paul Dirac**





"Every law of physics, pushed to the extreme, will be found to be statistical and approximate, not mathematical perfect and precise."

#### John Wheeler



"Any theory that can account for all of the facts is wrong, because some of the facts are always wrong."

#### **Francis Crick**



## Where do we find truth and beauty in physics?

Emergence

Reduction

energy

small

length

large

complexity

## Reduction

 $e^{-}$ 

e

## Light Matter

### Quantum Theory

e

 $e^-$ 

### large

small

### Emergence



### Thermodynamics



large

small





### Mathematics



### Quantization





Algebra

 $Z(K) \in \mathbb{C}$ 

quantum invariant



## Geometry



#### *effective geometry*



quantum

system

## Synthesis

*Quantum Geometry* 



String Theory

## ABC of Physics for Mathematicians

## **Classical Mechanics**

B

d(Action)=0, Geodesic, solution PDE

calculus, geometry, dynamical systems,...

## **Quantum Mechanics**



functional analysis, operator algebra, differential topology,...

## **Quantum Field Theory**



quantum topology: knots, 3-manifolds, 4-manifolds, twistors, amplitudology

## **String Theory**



conformal field theory, algebraic curves, moduli spaces, mirror symmetry, quantum cohomology



#### Planck length 10<sup>-35</sup> m

non-commutative & emergent geometry, automorphic forms, categorification,...

# **Particles**



# Why is every electron <u>exactly</u> the same?





## "Time is the fourth dimension"





There is only one electron in the universe!

#### John Wheeler

QUANTOM

5

t

33

Cm

#### **Richard Feynman**



Early turn In + Turis zing + is >und LEFT +il-il(-i)(+i) RIGHT (+iX+i)(-c) (+i) canella : any closed bip cerels € **P**.⊕  $\bigwedge \mathcal{O}$  $(\underline{e}, \underline{e})$ sile. CANCEL Hapith from A to B is personed in one disceton As the server the ampie XAR. If percued mother direction B > A it Trago 2 W X BA = - XAB Because Each turn for + is a turne for mino in reverse (1. \*) except while it changes, at a week or min of path. But the 11, MAX + MIN board, huns 5 × w·(+i) the sign changes, If we cleet & step going in same directore, then KAB = XAA because the no alterne is ener iner laffing sector (Yuti the thirs is we contribution.



 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abs}\partial_{\mu}g^{b}_{\nu}g^{b}_{\nu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abs}f^{abs}f^{abs}g^{b}_{\mu}g^{s}_{\nu}g^{d}_{\mu}g^{s}_{\nu} +$  $\frac{1}{2}ig_s^2(\tilde{q}_i^\sigma \gamma^\mu q_1^\sigma)g_\mu^a + \tilde{G}^a\partial^2 G^a + g_s f^{abs}\partial_\mu \tilde{G}^a G^b g_\mu^s - \partial_\nu W_\mu^+ \partial_\nu W_\mu^- M^2 W^+_{\mu} W^-_{\mu} - \frac{1}{2} \partial_{\nu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2c_{\nu}^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H \frac{1}{2}m_{b}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2m_{c}^{2}}M\phi^{0}\phi^{0} - \beta_{b}[\frac{2M^{2}}{q^{2}} +$  $\frac{2M}{v}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)) + \frac{2M^4}{v^2}\alpha_h - ig\alpha_a[\partial_v Z^0_a(W^+_aW^-_v W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\mu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\mu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\mu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\mu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\mu}W_{\mu}^{-}) + Z_{\mu}^{0}(W_{\mu}^{+}\partial_{\mu}W_{\mu}^{-}) + Z_{\mu}^{0}(W_{\mu}^{+}) + Z_{\mu}^{$  $W_{\nu}^{-}\hat{a}_{\nu}W_{\mu}^{+})$  =  $igs_{\nu}[\hat{a}_{\nu}A_{\mu}(\hat{W}_{\mu}^{+}W_{\nu}^{-} - \hat{W}_{\nu}^{+}\hat{W}_{\mu}^{-}) - A_{\nu}(\hat{W}_{\mu}^{+}\hat{a}_{\nu}^{-}W_{\mu}^{-})$  $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} +$  $\frac{1}{2}g^2W_{\mu}^+W_{\nu}^-W_{\mu}^+W_{\nu}^- + g^2c_{\mu\nu}^2(Z_{\mu}^0W_{\mu}^+Z_{\nu}^0W_{\nu}^- - Z_{\mu}^0Z_{\mu}^0W_{\nu}^+W_{\nu}^-) +$  $g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{\mu}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] \frac{1}{\pi}g^2 \alpha_h [H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2 \phi^+ \phi^- + 4H^2 \phi^+ \phi^- + 2(\phi^0)^2 H^2]$  $gMW^{+}_{\mu}W^{-}_{\mu}H - \frac{1}{2}g\frac{M}{c^{2}}Z^{0}_{\mu}Z^{0}_{\mu}H - \frac{1}{2}ig[W^{+}_{\mu}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]$  $\phi^+ \partial_\mu H) + \frac{1}{2}g_{\overline{c}_{\mu}}^1 (Z^0_{\mu}(H \partial_\mu \phi^0 - \phi^0 \partial_\mu H) - ig_{\overline{c}_{\mu}}^{s_{\mu}^*} M Z^0_{\mu}(W^+_{\mu} \phi^- - W^-_{\mu} \phi^+) +$  $igs_w M A_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1-2a_\mu^2}{2a_\mu} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) +$  $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - 0$  $\frac{1}{4}g^2 \frac{1}{a_{\mu}^2} Z^0_{\mu} Z^0_{\mu} [H^2 + (\phi^0)^2 + 2(2s_{\mu}^2 - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s_{\mu}^2}{a_{\nu}} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- +$  $W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{\mu}^{2}}{c_{\nu}}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} +$  $W_{\mu}^{-}\phi^{+}+\frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})-g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2}-1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-}$  $g^{1}s_{u}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-} - \bar{e}^{\lambda}(\gamma\partial + m_{e}^{\lambda})e^{\lambda} - \bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda} - \bar{u}_{i}^{\lambda}(\gamma\partial + m_{u}^{\lambda})u_{i}^{\lambda}$  $d_j^{\lambda}(\gamma \partial + m_d^{\lambda})d_j^{\lambda} + igs_w A_{\mu}[-(e^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda}) - \frac{1}{3}(d_j^{\lambda}\gamma^{\mu}d_j^{\lambda})] +$  $\frac{i\varphi}{4e_w}Z^0_\mu[(\bar{\nu}^\lambda\gamma^\mu(1+\gamma^5)\nu^\lambda) + (\bar{e}^\lambda\gamma^\mu(4s^2_w - 1 - \gamma^5)e^\lambda) + (\bar{u}^\lambda_1\gamma^\mu(\frac{4}{3}s^2_w (1 - \gamma^{5})u_{j}^{\lambda}) + (d_{j}^{\lambda}\gamma^{\mu}(1 - \frac{\kappa}{3}s_{w}^{2} - \gamma^{5})d_{j}^{\lambda})] + \frac{i\eta}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) +$  $(\bar{a}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\mu}d_{j}^{\mu})] + \frac{iq}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\mu}C_{\lambda\mu}^{\dagger}\gamma^{\mu}(1 + \gamma^{5})\nu^{\lambda})]$  $\gamma^{5} |u_{j}^{\lambda}| + \frac{iq}{2\sqrt{2}} \frac{m_{s}^{2}}{M} [-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] \frac{a}{2} \frac{m_b^2}{M} [H(\bar{e}^{\lambda} e^{\lambda}) + i\phi^0(\bar{e}^{\lambda} \gamma^5 e^{\lambda})] + \frac{\kappa_l}{2M\sqrt{2}} \phi^+ [-m_d^n(\bar{u}_j^{\lambda} C_{\lambda\kappa}(1 - \gamma^5)d_j^n) +$  $m_u^\lambda(\bar{u}_j^\lambda C_{\lambda n}(1+\gamma^5)d_j^n) + \frac{s_q}{2M\sqrt{2}}\phi^-[m_d^\lambda(\bar{d}_j^\lambda C_{\lambda n}^\dagger(1+\gamma^5)u_j^e) - m_u^e(\bar{d}_j^\lambda C_{\lambda e}^\dagger(1-\gamma^5)u_j^e)]$  $\gamma^5 u_j^n ] - \frac{4}{2} \frac{m_b^5}{M} H(\bar{u}_j^\lambda u_j^\lambda) - \frac{4}{2} \frac{m_b^5}{M} H(\bar{d}_j^\lambda d_j^\lambda) + \frac{iq}{2} \frac{m_b^5}{M} \phi^0(\bar{u}_j^\lambda \gamma^5 u_j^\lambda) \frac{\delta g}{\delta} \frac{m_A^2}{M} \phi^0(d_d^2 \gamma^5 d_d^3) + \bar{X}^+ (\partial^2 - M^2) X^+ + \bar{X}^- (\partial^2 - M^2) X^- + \bar{X}^0 (\partial^2 - M^2) X^ \frac{M^2}{d_{\mu}^2}$  $)X^0 + \tilde{Y} \partial^2 \tilde{Y} + igc_w W^+_{\mu} (\partial_{\mu} \tilde{X}^0 X^- - \partial_{\mu} \tilde{X}^+ X^0) + igs_w W^+_{\mu} (\partial_{\mu} \tilde{Y} X^- - \partial_{\mu} \tilde{X}^+ X^0)$  $\partial_{\mu} \hat{X}^+ Y$ ) +  $igc_w W^-_{\mu} (\partial_{\mu} \hat{X}^- X^0 - \partial_{\mu} \hat{X}^0 X^+)$  +  $igs_w W^-_{\mu} (\partial_{\mu} \hat{X}^- Y - \partial_{\mu} \hat{X}^0 X^+)$  $\partial_{\mu}\bar{Y}X^{+}) + igc_{\nu}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{\nu}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{\nu}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) + igs_{\mu}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) + igs_{\mu}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) + igs_{\mu}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) + igs_{\mu$  $\partial_{\mu} \bar{X}^{-} X^{-} - \frac{1}{2} g M [\bar{X}^{+} X^{+} H + \bar{X}^{-} X^{-} H + \frac{1}{d^{2}} \bar{X}^{0} X^{0} H] +$  $\frac{1-2c_{o}^{2}}{2c_{o}}igM[\hat{X}^{+}X^{0}\phi^{+}-\hat{X}^{-}X^{0}\phi^{-}]+\frac{1}{2c_{o}}igM[\hat{X}^{0}X^{-}\phi^{+}-\hat{X}^{0}X^{+}\phi^{-}]+$  $igMs_w[\hat{X}^{0}X^{-}\phi^{+} - \hat{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\hat{X}^{+}X^{+}\phi^{0} - \hat{X}^{-}X^{-}\phi^{0}]$ 







# **Virtual Particles**



## **Vacuum Fluctuations**



## **Vacuum Fluctuations**



"Everything that is allowed is obligatory."

# **Knot Theory**



# The Book Of Knots

<sup>7</sup>2 **(3)** <sup>7</sup>3 **(3)** <sup>7</sup>4 **(30)** <sup>7</sup>5 **(3)** <sup>7</sup>6 **(3)** <sup>7</sup>7 **(4)** <sup>8</sup>1 **(3)** <sup>8</sup>2 **(3)** <sup>8</sup>3 **(3)** 84 1 812 813 <sup>8</sup><sup>14</sup> 8<sup>15</sup> 8<sup>16</sup> 8<sup>16</sup> 8<sup>17</sup> 8<sup>18</sup> 8<sup>18</sup> 8<sup>19</sup> 8<sup>20</sup> 8<sup>20</sup> 8<sup>20</sup> 8<sup>21</sup> 8<sup>20</sup> <sup>\*</sup>& \*\*\* <sup>°</sup> 🕅 <sup>9</sup>16 <sup>9</sup>17 <sup>9</sup>10 <sup>9</sup>18 <sup>9</sup>14 **3** <sup>9</sup>15 **3** 9<sub>26</sub> × 927 5<sup>9</sup>23 2<sup>925</sup> <sup>9</sup>22 <sup>9</sup>20 **\* \* \* \* \*** <sup>9</sup>24 <sup>°</sup>\* 9<sub>28</sub> 4<sup>9</sup>29 )<sup>9</sup>30 л<sup>936</sup> 4<sup>2</sup> ه<sup>22</sup> ر D 51 00 ♪<sup>6</sup> **2**<sup>62</sup> 01 8 8 76 777 75 <sup>8</sup>1 73 ▲<sup>7<sup>2</sup><sub>4</sub></sup> Ø 8<sup>2</sup>9 811 828 8<sup>2</sup>10 A 87 200 8 8 **B** 00 ۸<sup>83</sup> Ø 8 R R Z

#### **Chern-Simons Gauge Theory**



# **Quantum Amplitude**







#### **Enumerative Geometry** *The Quintic*



 $x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5 = 0$ 

**Gromov-Witten Theory**  $N_d = \# curves of degree d$ 

 $x_1 = a_{1,d} z^d + a_{1,d-1} z^{d-1} + \dots + a_{1,1} z + a_{1,0}$  $x_5 = a_{5,d} z^d + a_{5,d-1} z^{d-1} + \dots + a_{5,1} z + a_{5,0}$ 





# d = 2 Conics $N_2 = 609,250$



# **d = 3 Cubics** N<sub>3</sub>=317,206,375



 $N_1 = 2875$  $N_2 = 609250$  $N_3 = 317206375$ *N*<sub>4</sub> = 242467530000 *N*<sub>5</sub> = *229305888887625*  $N_6 = 248249742118022000$  $N_7 = 295091050570845659250$  $N_{g} = 375632160937476603550000$  $N_{g} = 503840510416985243645106250$  $N_{10} = 704288164978454686113488249750$ 

# **String Theory**

 $F(t) = \sum N_d e^{-dt}$  $d \ge 0$ 

# **Hidden Dimensions**

Calabi-Yau manifold



# Hidden Dimensions

Particles Forces

# Calabi-Yau Spaces





 $F(t) = \sum N_d e^{-td}$  $\overline{d \ge 0}$ 

*quantum (sum)* Symplectic Geometry  $F(t) = \oint_{C} \Omega(t)$ classical (period) Algebraic Geometry

# **Quantum Gravity**



# **Space-Time Singularities**

#### Black Holes End of time

#### **Big Bang** beginning of time

"The existence of spacetime singularities represents an end to the principle of sufficient causation and to so the predictability gained by science. HOW COULD PHYSICS LEAD TO A VIOLATION OF ITSELF – TO NO PHYSICS?"



# **Black Holes**

*"It from bit"* 

#### Simplest

#### **Geometric Entropy**

S = ¼ Area horizon = log(# quantum states)



1bit /  $\ell^2_{_{Planck}}$ 

Horizon

## Thermodynamics



#### Entropy

#### dS ≥ 0

Second law

Temperature

#### **Black Holes**



Horizon area

# Merging BHs



Hawking radiation

#### **Open Strings and Branes**









#### space-time

# U(N) Yang-Mills Theory



 $A^{IJ} = N \times N$  matrix of open strings

# **Black Holes In String Theory**

Hawking radiation

Black

# **ADS/CFT Correspondence [Maldacena]**



# Classical Geometry

#### Stringy Geometry deformed





# Quantum Geometry

emergent



smooth





# **Emergent Geometry**

Space-Time Gravity

Quantum Information

#### **Quantum Physics and Mathematics**





### [Mathematics, Physics] ≠ 0



"One can see the world with the p-eye, and one can see it with the q-eye, but if one opens both eyes, then one becomes crazy."

> letter to Heisenberg, October 19, 1926



Wolfgang Pauli

 $\left[ q,p
ight] =i\hbar$ 

#### "Dreams"

793228

In the broad light of day mathematicians check their equations and their proofs, leaving no stone unturned in their search for rigour. But at night, under the full moon, they dream, they float among the stars and wonder at the mystery of the heavens: they are inspired. Without dreams there is no art, no mathematics, no life.

from

Muchas abyal "Les cherchan" JHES

26433832



#### Sir Michael Atiyah (1929-2019)