The Unreasonable Effectiveness Of Quantum Physics in Mathematics

Robbert Dijkgraaf
Institute for Advanced Study

Arnold Sommerfeld Lectures
Munich, Jan 15, 2018

Mathematics \& Physics

If you want to be a physicist, you must do three things-first, study mathematics, second, study more mathematics, and third, do the same.

Arnold Sommerfeld

"The Unreasonable Effectiveness of Mathematics in the Natural Sciences."

- Eugene Wigner (1960)

Galileo: "The Book of Nature"

Philosophy is written in this grand book - I mean the universe - which stands continually open to our gaze, but it cannot be understood unless one first learns to
comprehend the language and interpret the characters in which it is written. It is written in the language of
mathematics, and its characters are triangles, circles, and other geometrical figures, without which it is humanly impossible to understand a single word of it; without these, one is wandering around in a dark labyrinth.
"To those who do not know mathematics it
 the beapty thedderpest bequity ofinature ... If yountwht to Pearn of obut hature, to appasiontandertwnaticindecesqry to understand the language that she speaks in."

Black Box

Freeman Dyson

(Gibbs Lecture, 1972)

"I am acutely aware of the fact that the marriage between mathematics and physics, which was so enormously fruitful in past centuries, has recently ended in divorce."

 $M^{2} W_{\alpha}^{+}+W_{\alpha}^{-}-\frac{1}{2} \partial_{\nu} Z_{\alpha}^{0} \partial_{\nu} Z_{\alpha}^{0}-\frac{1}{2 c} M^{2} Z_{\mu}^{0} Z_{\mu}^{0}-\frac{1}{2} \partial_{\alpha} A_{\nu} \partial_{\alpha} A_{\nu}-\frac{1}{2} \partial_{\mu} H \partial_{\mu} H-$ $\frac{1}{2} m m_{2}^{2} H^{2}-\partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-}-M^{2} \phi^{+} \phi^{-}-\frac{1}{2} a_{2} \phi^{0} \partial_{\mu} \phi^{0}-\frac{1}{2 z} M^{2} \phi^{0} \phi^{0}-\beta_{x}\left(\frac{2 M / 2}{g^{2}}+\right.$
$\left.\frac{2 l /}{5} H+\frac{1}{2}\left(H^{2}+\phi^{0} \phi^{0}+2 \phi^{+} \phi^{-}\right)\right]+\frac{2 V^{\alpha}}{5} a_{k}-i g \Lambda_{\infty}\left(a_{V} Z_{\alpha}^{0}\left(W_{A}^{+} W_{v}^{-}-\right.\right.$
$\left.W_{\sim}^{+} W_{-}^{-}\right)-Z_{v}^{0}\left(W_{+}^{+} \dot{a} W_{\alpha}^{-}-W_{\alpha}^{-} a_{0} W_{\alpha}^{+}\right)+Z_{\mu}^{0}\left(W_{D}^{+} a_{\sigma} W_{\alpha}^{-}-\right.$
 $\left.\left.W_{\sim}^{-} \partial_{v} W_{\infty}^{+}\right)+A_{p}\left(W_{v}^{+} \alpha_{\nu} W_{\infty}^{-}-W_{v}^{-} \partial_{v} W_{\infty}^{+}\right]\right]-\frac{1}{4} g^{2} W_{\infty}^{+} W_{\sim}^{-} W_{v}^{+} W_{v}^{-}+$
$\frac{1}{2} g^{2} W_{\alpha}^{+}+W_{v}^{-} W_{\alpha}^{+} W_{v}^{-}+g^{2} c_{w}^{2}\left(Z_{\alpha}^{v} W_{\sim}^{+} Z_{v}^{o} W_{v}^{-}-Z_{\alpha}^{0} Z_{p}^{\alpha} W_{v}^{\alpha} W_{v}^{v}\right)+$ $g^{2} s_{\nu}^{2}\left(A_{p} W_{\alpha}^{+} A_{v} W_{v}^{-}-A_{\nu} A_{\nu} W_{v}^{+} W_{v}^{-}\right)+g^{2} s_{\alpha} A_{a}\left(A_{\sim} Z_{v}^{0}\left(W_{\alpha}^{+} W_{v}^{-}-\right.\right.$
$\left.\left.W_{v}^{+} W_{\alpha}^{-}\right)^{2}-2 A_{\sim} Z_{D}^{o} W_{v}^{+} W_{v}^{-}\right)-g a\left(H^{3}+H \phi^{0} \phi^{0}+2 H \phi^{+} \phi^{-}-\right.$ $\left.\left.\frac{1}{1} g^{2} \alpha_{h} \right\rvert\, H^{4}+\left(\phi^{0}\right)^{4}+4\left(\phi^{+} \phi^{-}\right)^{2}+4\left(\phi^{0}\right)^{2} \phi^{+} \phi^{-}+4 H^{2} \phi^{+} \phi^{-}+2\left(\phi^{0}\right)^{2} H^{2}\right]-$ $g M W_{\mu}^{+} W_{\alpha}^{-} H-\frac{1}{2} g g^{M} Z_{\mu}^{0} Z_{\mu}^{0} H-\frac{1}{2} i g\left[W_{\mu}^{+}\left(\phi^{0} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{0}\right)-\right.$ $W_{\alpha}^{-}\left(\phi^{0} \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\phi^{\rho}} \phi^{\rho}\right) \left\lvert\,+\frac{1}{2} g\left[W_{\mu}^{+}\left(H \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} H\right)-W_{\alpha}^{-}\left(H \partial_{\mu} \phi^{+}-\right.\right.\right.$ $\left.\left.\phi^{+} \partial_{\mu} H\right)\right]+\frac{1}{2} g \frac{1}{\rho_{\sim}}\left(Z_{\mu}^{0}\left(H \partial_{\mu} \phi^{0}-\phi^{0} \partial_{\mu} H\right)-i g \partial_{N_{\sim}^{2}}^{2} M Z_{\mu}^{0}\left(W_{\mu}^{+} \phi^{-}-W_{\alpha}^{-} \phi^{+}\right)+\right.$ igs $s_{w} M A_{\alpha}\left(W_{\alpha}^{+} \phi^{-}-W_{\alpha}^{-} \phi^{+}\right)-i g \frac{1-\lambda^{2}}{\alpha_{\alpha}} Z_{\alpha}^{0}\left(\phi^{+} \partial_{\alpha} \phi^{-}-\phi^{-} \partial_{\alpha} \phi^{+}\right)+$ $\left.\left.i g s_{v} A_{\varepsilon}\left(\phi^{+} \partial_{\alpha} \phi^{-}-\phi^{-} \partial_{\alpha} \phi^{+}\right)-\frac{1}{4} g^{2} W_{\mu}^{\ddagger} W_{\alpha}^{-} \right\rvert\, H^{2}+\left(\phi^{0}\right)^{2}+2 \phi^{+} \phi^{-}\right]-$ $\frac{1}{4} g^{2} \frac{1}{\alpha=} Z_{\mu}^{0} Z_{\mu}^{0}\left(H^{2}+\left(\phi^{0}\right)^{2}+2\left(2 s_{\pi}^{2}-1\right)^{2} \phi^{+} \phi^{-}-\frac{1}{2} g^{2} \frac{\sum_{n}^{2}}{c_{\infty}} Z_{\mu}^{0} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+\right.\right.$
$\left.W_{\alpha}^{-} \phi^{+}\right)-\frac{1}{2} g^{2} \frac{2}{C_{\alpha}^{2}} Z_{p}^{0} H\left(W_{\alpha}^{+} \phi^{-}-W_{\alpha}^{-} \phi^{+}\right)+\frac{1}{2} g^{2} s_{\alpha} A_{\mu} \phi^{0}\left(W_{\mu}^{+} \phi^{-}+\right.$ $\left.W_{\alpha}^{-} \phi^{+}\right)+\frac{1}{2} i g^{2} s_{\omega} A_{\mu} H\left(W_{\alpha}^{+} \phi^{-}-W_{\alpha}^{-} \phi^{+}\right)-g^{2} \frac{2}{L^{2}}\left(2 r_{\infty}^{2}-1\right) Z_{\mu_{\alpha}}^{0} A_{\mu} \phi^{+} \phi^{-}$ $g^{1} s_{w}^{2} A_{\pi} A_{x} \phi^{+} \phi^{-}-\bar{e}^{\lambda}\left(\gamma \partial+m m_{\varepsilon}^{\lambda}\right) e^{\lambda}-\bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda}-\vec{u}_{j}^{\lambda}\left(\gamma \partial+m m_{n}^{\lambda}\right) d \alpha_{j}^{\lambda}-$

 $\left.\left.\left.1-\gamma^{2}\right) u_{j}^{2}\right)+\left(d_{j} \gamma^{\alpha}\left(1-\frac{\pi}{3} s_{w}^{2}-\gamma^{s}\right) d_{j}^{2}\right)\right]+\frac{\sum_{2}}{2 \sqrt{2}} W_{\alpha}^{+}\left[\left(\vec{v}^{2} \gamma^{*}\left(1+\gamma^{2}\right) e^{2}\right)+\right.$
 $\left.\left.\gamma^{2}\right) d_{j}^{2}\right) \left\lvert\,+\frac{\dot{c}^{2} \pi \tilde{L}^{2}}{2 \sqrt{2}}\left[-\phi^{+}\left(\bar{\nu}^{\lambda}\left(1-\gamma^{3}\right) e^{\lambda}\right)+\phi^{-}\left(\bar{e}^{-\lambda}\left(1+\gamma^{2}\right) v^{\lambda}\right) \mid-\right.\right.$

 $\left.\frac{\text { xa }}{2}{ }^{\text {min }} \phi^{0}\left(d_{j}\right)^{5} d_{j}^{2}\right)+\bar{X}+\left(\dot{b}^{2}-M^{2}\right) X^{+}+\bar{X}-\left(\partial^{2}-M^{2}\right) X^{-}+X^{0}\left(\dot{o}^{2}-\right.$ $\left.\frac{W^{2}}{2}\right) X^{0}+Y \partial^{2} Y+i g c_{v} W_{\mu}^{+}\left(\partial_{\alpha} X^{0} X--\partial_{\mu} X+X^{0}\right)+i g s_{w} W_{\mu}^{+}\left(\partial_{\mathcal{L}} \bar{Y} X^{-}\right.$ $\left.\partial_{\sim} X^{+} Y\right)+i g c_{\alpha} W_{\alpha}^{-}\left(\partial_{2} X^{-} X^{0}-\partial_{\alpha} X^{0} X^{+}\right)+i g s_{\alpha} W_{\alpha}^{-}\left(\partial_{\alpha} X^{-} Y-\right.$ $\left.\partial_{\mu} Y X^{+}\right)+i g c_{v} Z_{\mu}^{0}\left(\partial_{\alpha} X^{+} X^{+}-\partial_{\beta} X^{-} X^{-}\right)+i g s_{s_{\mu}} A_{\mu}\left(\partial_{\alpha} X^{+}+X^{+}-\right.$ $\left.\alpha_{2} \bar{X}^{-} X^{-}\right)-\frac{1}{2} g M\left[\bar{X}^{+} X^{+} H+\bar{X}^{-} X^{-} H+\frac{1}{\alpha_{2}} X^{0} X^{0} H\right]+$ $\frac{1-22^{2}}{2 n} \lg M\left[X^{+} X^{0} \phi^{+}-\bar{X}^{-} X^{0} \phi^{-}\right]+\frac{1}{2 n} \operatorname{ig} M\left[X^{0} X^{-} \phi^{+}-X^{0} X^{+} \phi^{-}\right]+$ igM $M\left[S_{v}\left[X^{0} X^{-} \phi^{+}-X^{0} X^{+} \phi^{-}\right]+\frac{1}{2} i g M\left[X^{+} X^{+} \phi^{0}-X^{-} X^{-} \phi^{0}\right]\right.$

ELEMENTARY PARTICLES

Symmetry

Strong Force (QCD)

3 colors of quarks

Symmetry

Global Symmetry

Local Gauge Symmetry

Gauge Fields

Intermediate Gauge Bosons

Gluons

connection $A^{I J}=N \times N$ matrix

Truth And Beauty

Seal of the Institute for Advanced Study
"My work always tried to unite the true with the beautiful, but when I had to choose one or the other, I usually chose the beautiful."

Hermann Weyl

"It is more important for our equations to be beautiful than to have them fit experiment."

Paul Dirac

"Every law of physics, pushed to the extreme, will be found to be statistical and approximate, not mathematical perfect and precise."

John Wheeler

"Any theory that can account for all of the facts is wrong, because some of the facts are always wrong."

Francis Crick

Where do we find

 truth and beauty in physics?

large
small

Emergence

Thermodynamics

$\mathrm{H}_{2} \mathrm{O}$ molecules

large

small

Physics

Relativity

Quantum

$$
i \hbar \frac{\partial \Psi}{\partial t}=H \Psi
$$

large

Mathematics

Geometry

Algebra

Quantization

Geometry

Algebra

$Z(K) \in \mathbb{C}$

geometric object
quantum
invariant

Emergence

Geometry

 Algebra
Synthesis

Quantum
 Geometry

String Theory

ABC of Physics for Mathematicians

Classical Mechanics

d (Action) $=0$,
 Geodesic, solution PDE

calculus, geometry, dynamical systems,...

Quantum Mechanics

Sum over histories $\sum e^{-i \text { Action } / \hbar}$
B
functional analysis, operator algebra, differential topology,...

Quantum Field Theory

creation/annihilation $\sum_{\text {graphs }}$

B

quantum topology: knots, 3-manifolds, 4-manifolds, twistors, amplitudology

String Theory

$$
\text { points } \rightarrow \text { loops } \quad \sum_{\text {surfaces }}
$$

conformal field theory, algebraic curves, moduli spaces, mirror symmetry, quantum cohomology

Quantum Gravity
 Space-time foam

Planck length $10^{-35} \mathrm{~m}$
non-commutative \& emergent geometry, automorphic forms, categorification,...

Particles

Why is every electron exactly the same?

"Time is the fourth dimension"

Richard Feynman

 \because . . - ic
 - $\quad \sin +\frac{(+i)(+i)(-i)(+i)}{\text { ceaceld }}$ -.. - ..

Conctl

ir herencd inow deritsin $A \rightarrow$ $\tau 4$ a⿻丷 $^{6} i X_{A}$. $/$ /incues in atios duiectois $B \rightarrow A$ it is $x_{8 \mathrm{~A}}=-x_{A B}^{*}$
 rivivo in neverte $(i, *)$ isech inkly it chover, ot a must a min of $\mathrm{pat} \mathrm{s}_{-}$. $B \mu+i t h, M A X+M 1 H$ to $H 2$, Lenes ch sign chowed.

Hu adiet r sta govivi samet divetic, then $\kappa_{A B}=x_{5 A} L_{12}$ ase th

$M^{2} W_{\alpha}^{+} W_{\alpha}^{-}-\frac{1}{2} \partial_{0} Z_{\alpha}^{0} \partial_{0} Z_{\alpha}^{0}-\frac{1}{2 x} M^{2} Z_{\alpha}^{0} Z_{\alpha}^{0}-\frac{1}{2} \partial_{\alpha} A_{\nu} \partial_{\alpha} A_{v}-\frac{1}{2} \partial_{\mu} H \partial_{\mu} H-$ $\frac{1}{2} m \omega_{2}^{2} H^{2}-\partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-}-M^{2} \phi^{+} \phi^{-}-\frac{1}{2} a_{1} \phi^{0} \partial_{\mu} \phi^{0}-\frac{1}{2 z_{2}} M^{0} \phi^{0}-\beta_{\varepsilon}\left(\frac{2 M}{g^{2}}+\right.$
$\left.\frac{2 l l}{g} H+\frac{1}{2}\left(H^{2}+\phi^{0} \phi^{0}+2 \phi^{+} \phi^{-}\right)\right]+\frac{2 V M^{\alpha}}{5} a_{k}-i g \Lambda_{0}\left(a_{0} Z_{\alpha}^{0}\left(W_{\alpha}^{+} W_{v}^{-}-\right.\right.$
 $\left.W_{v}^{-} \dot{\alpha}_{\infty} W_{\alpha}^{+}\right)-i g s_{v} \mid \tilde{o}_{\sim} A_{\alpha}\left(W_{\alpha}^{+} W_{v}^{-}-W_{v}^{+} W_{\alpha}^{-}\right)-A_{v}\left(W_{\alpha}^{+} \alpha_{\infty}^{+} W_{\alpha}^{-}-\right.$ $\left.\left.W_{\sim}^{-} \partial_{\nu} W_{\alpha}^{+}\right)+A_{\alpha}\left(W_{v}^{+} \partial_{\sim} W_{\alpha}^{-}-W_{v}^{-} \partial_{0} W_{+}^{+}\right)\right]-\frac{1}{4} g^{2} W_{\alpha}^{+} W_{\alpha}^{-} W_{v}^{+} W_{v}^{-}+$
$\frac{1}{2} g^{2} W_{\alpha}^{+} W_{v}^{-} W_{\alpha}^{+} W_{v}^{-}+g^{2} c_{N}^{2}\left(Z_{\sim}^{0} W_{\alpha}^{+}+Z_{v}^{0} W_{v}^{-}-Z_{\alpha}^{0} Z_{\alpha}^{0} W_{v}^{+} W_{v}^{-}\right)+$ $g^{2} s_{w}^{2}\left(A_{\alpha} W_{\alpha}^{+} A_{v} W_{v}^{-}-A_{\alpha} A_{\alpha} W_{v}^{+} W_{v}^{-}\right)+g^{2} s_{\alpha} \Omega_{\alpha}\left(A_{v} Z_{v}^{0}\left(W_{\alpha}^{+} W_{v}^{-}-\right.\right.$
$\left.\left.W_{v}^{+} W_{\alpha}^{-}\right)-2 A_{\alpha} Z_{\alpha}^{0} W_{D}^{+} W_{v}^{-}\right)-g a\left(H^{x}+H \phi^{0} \phi^{0}+2 H \phi^{+} \phi^{-}-\right.$ $\left.\left.\frac{1}{6} 9^{2} \alpha_{h} \right\rvert\, H^{4}+\left(\phi^{0}\right)^{4}+4\left(\phi^{+} \phi^{-}\right)^{2}+4\left(\phi^{0}\right)^{2} \phi^{+} \phi^{-}+4 H^{2} \phi^{+} \phi^{-}+2\left(\phi^{0}\right)^{2} H^{2}\right]-$ $\left.{ }_{g} M W_{\alpha}^{+} W_{\alpha}^{-} H-\frac{1}{2} g \frac{M}{c} Z_{\mu}^{0} Z_{\mu}^{0} H-\frac{1}{2} i g \right\rvert\, W_{\alpha}^{+}\left(\phi^{0} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{0}\right)-$ $\left.W_{\mu}^{-}\left(\phi^{0} \partial_{\mu} \phi^{+}-\phi^{+} \partial_{\alpha} \phi^{\rho}\right)\right]+\frac{1}{2} g\left[W_{\mu}^{+}\left(H \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} H\right)-W_{\alpha}^{-}\left(H \partial_{\mu} \phi^{+}-\right.\right.$
 $i g s_{w} M A_{\mu}\left(W_{\alpha}^{+} \phi^{-}-W_{\alpha}^{-} \phi^{+}\right)-i g \frac{1-2 \alpha^{2}}{2_{\alpha}} Z_{\mu}^{0}\left(\phi^{+} \partial_{\mu} \phi^{-}-\phi^{-} \partial_{\mu} \phi^{+}\right)+$ $\left.\left.i g s_{w} A_{\alpha}\left(\phi^{+} \partial_{\alpha} \phi^{-}-\phi^{-} \partial_{\alpha} \phi^{+}\right)-\frac{1}{4} g^{2} W_{\alpha}^{+} W_{\alpha}^{-} \right\rvert\, H^{2}+\left(\phi^{0}\right)^{2}+2 \phi^{+} \phi^{-}\right)-$ $\frac{1}{4} g^{2} \frac{1}{\alpha} Z_{\alpha}^{0} Z_{\alpha}^{0}\left(H^{2}+\left(\phi^{0}\right)^{2}+2\left(2 s_{m}^{2}-1\right)^{2} \phi^{+} \phi^{-} \left\lvert\,-\frac{1}{2} g^{2} \frac{N_{n}^{2}}{\rho_{\alpha}} Z_{\alpha}^{0} \phi^{0}\left(W_{\alpha}^{+} \phi^{-}+\right.\right.\right.$
$\left.W_{\alpha}^{-} \phi^{+}\right)-\frac{1}{2} g^{2} \underline{\Omega}_{\alpha}^{2} Z_{\mu}^{0} H\left(W_{\alpha}^{+} \phi^{-}-W_{\alpha}^{-} \phi^{+}\right)+\frac{1}{2} g^{2} s_{\omega} A_{\mu} \phi^{0}\left(W_{\dot{\alpha}}^{+} \phi^{-}+\right.$
$\left.W_{\alpha}^{-} \phi^{+}\right)+\frac{1}{2} i g^{2} s_{\alpha} A_{\mu} H\left(W_{\alpha}^{+} \phi^{-}-W_{\alpha}^{-} \phi^{+}\right)-g^{2} \frac{2}{c_{\alpha}}\left(2 r_{\alpha}^{2}-1\right) Z_{\rho_{\alpha}^{2}}^{0} A_{\mu} \phi^{+} \phi^{-}$ $g^{1} s_{\infty}^{2} A_{\alpha} A_{\alpha} \phi^{+} \phi^{-}-\bar{e}^{\lambda}\left(\gamma \partial+m m_{c}^{\lambda}\right) e^{\lambda}-\bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda}-\vec{u}_{j}^{\lambda}\left(\gamma \partial+m m_{n}^{\lambda}\right) \alpha_{j}^{\lambda}-$
 $\frac{i_{v}}{4} Z_{n}^{0}\left[\left(\bar{v}^{2} \gamma^{\alpha}\left(1+\gamma^{2}\right) v^{2}\right)+\left(\vec{e}^{-1} \gamma^{\alpha}\left(4 s_{v}^{2}-1-\gamma^{2}\right) e^{2}\right)+\left(\bar{u}_{j}^{2} \gamma^{\alpha}\left(\frac{1}{3} x_{v}^{2}-\right.\right.\right.$ $\left.\left.\left.1-\gamma^{2}\right) \alpha_{j}^{2}\right)+\left(d_{j} \gamma^{2}\left(1-\frac{\pi}{3} s_{w}^{2}-\gamma^{3}\right) d_{j}^{j}\right)\right]+\frac{\sum_{2}}{2 \sqrt{2}} W_{\mathcal{L}}^{+}\left[\left(\vec{v}^{2} \gamma^{2}\left(1+\gamma^{2}\right) c^{2}\right)+\right.$

$\left.\left.\left.\gamma^{2}\right) a_{j}^{\lambda}\right)\right]+\frac{\dot{c}^{2} \pi}{2 \sqrt{2}} \frac{1}{2}\left[-\phi^{+}\left(\bar{\nu}^{\lambda}\left(1-\gamma^{3}\right) \varepsilon^{\lambda}\right)+\phi^{-}\left(\bar{e}^{-\lambda}\left(1+\gamma^{2}\right) v^{2}\right)\right]-$

 $\left.\frac{x^{2}}{2} \dot{W}^{0} \phi^{0}\left(d^{2}\right)^{5} d_{j}^{2}\right)+\bar{X}+\left(\partial^{2}-M^{2}\right) X+\bar{X}-\left(\partial^{2}-M^{2}\right) X^{-}+\bar{X}^{0}\left(\partial^{2}-\right.$ $\left.\frac{W^{2}}{2}\right) X^{0}+Y \partial^{2} Y+i g c_{v} W_{\alpha}^{+}\left(\partial_{\alpha} X^{0} X--\partial_{\alpha} X+X^{0}\right)+i g s_{v} W_{\mu}^{+}\left(\partial_{\alpha} \bar{Y} X^{-}-\right.$ $\left.\partial_{\alpha} \bar{X}+Y\right)+i g a_{\alpha} W_{\alpha}^{-}\left(\partial_{\alpha} \bar{X}-X^{0}-\alpha_{\alpha} X^{0} X^{+}\right)+i g s_{a} W_{\alpha}^{-}\left(\partial_{\alpha} \bar{X}-Y-\right.$ $\left.\partial_{\mu} \bar{Y} X^{+}\right)+i g c_{v} Z_{\mu}^{0}\left(\partial_{\mu} X^{+} X^{+}-\partial_{\mu} X^{-} X^{-}\right)+i g s_{\omega} A_{\mu}\left(\partial_{\alpha} X+X^{+}-\right.$
$\left.\partial_{2} \bar{X}^{-} X^{-}\right)-\frac{1}{2} g M\left[\bar{X}^{+} X^{+} H+\bar{X}^{-} X^{-} H+\frac{1}{x_{0}} X^{0} X^{0} H\right]+$ $\frac{1-2^{2}}{2} \lg M\left[X^{+} X^{0} \phi^{+}-X^{-} X^{0} \phi^{-}\right]+\frac{1}{2} \lg M\left[X^{0} X^{-} \phi^{+}-\bar{X}^{0} X^{+} \phi^{-}\right]+$ ${ }_{i g} M s_{w}\left[X^{0} X^{-} \phi^{+}-\bar{X}^{0} X^{+} \phi^{-}\right]+\frac{1}{2} i g M\left[X^{+} X^{+} \phi^{0}-X^{-} X^{-} \phi^{0}\right]$

Okuth 1:

Exuah 15

Virtual Particles

Vacuum Fluctuations

Vacuum Fluctuations

\therefore "Everything that is allowed is obligatory.

Knot Theory

The Book Of Knots

 " 8

Chern-Simons Gauge Theory

Quantum Amplitude

Strings

Enumerative Geometry

The Quintic

$$
x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}+x_{5}^{5}=0
$$

Gromov-Witten Theory
 $N_{d}=\#$ curves of degree d

$$
\begin{aligned}
& x_{1}=a_{1, d} z^{d}+a_{1, d-1} z^{d-1}+\ldots+a_{1,1} z+a_{1,0} \\
& \ldots \\
& x_{5}=a_{5, d} z^{d}+a_{5, d-1} z^{d-1}+\ldots+a_{5,1} z+a_{5,0}
\end{aligned}
$$

$d=1$ Lines
 $N_{1}=2,875$

d=2 Conics
 $N_{2}=609,250$

$$
\begin{gathered}
\boldsymbol{d}=\mathbf{3} \text { Cubics } \\
N_{3}=317,206,375
\end{gathered}
$$

$N_{1}=2875$
$N_{2}=609250$
$N_{3}=317206375$
$N_{4}=242467530000$
$N_{5}=229305888887625$
$N_{6}=248249742118022000$
$N_{7}=295091050570845659250$
$N_{8}=375632160937476603550000$
$N_{9}=503840510416985243645106250$
$N_{10}=704288164978454686113488249750$

String Theory

$$
F(t)=\sum_{d \geq 0} N_{d} e^{-d t}
$$

Calabi-Yau Spaces

Mirror Symmetry

$$
F(t)=\sum_{d \geq 0} N_{d} e^{-t d}
$$

quantum (sum)
Symplectic Geometry

$$
F(t)=\oint_{C} \Omega(t)
$$

classical (period) Algebraic Geometry

Quantum Gravity

Space-Time Singularities

Black Holes
End of time

Big Bang
beginning of time
"The existence of spacetime singularities represents an end to the principle of sufficient causation and to so the predictability gained by science. HOW COULD PHYSICS LEAD TO A VIOLATION OF ITSELF - TO NO PHYSICS?"

Black Holes

"It from bit"

Simplest
Geometric Entropy
$S=1 / 4$ Area horizon
$=\log (\#$ quantum states)

Horizon

1 bit / $\ell_{\text {Planck }}^{2}$

Thermodynamics

Black Holes

Entropy

$$
d S \geq 0
$$

Second law

Horizon area

Merging BHs

Temperature
Hawking radiation

Open Strings and Branes

D-Branes multiplicity N

space-time

U(N) Yang-Mills Theory

$A^{I J}=N \times N$ matrix of open strings

ADS/CFT Correspondence [Maldacena]

Classical
 Geometry

Stringy
Geometry
deformed

ℓ string

Quantum
Geometry
emergent

Quantum Physics and Mathematics

Algebraic
Geometry
Topology

a RUANTULI

[Mathematics, Physics] $\neq 0$

Mathematical rigor

Physical intuition

$[q, p]=i \hbar$

"One can see the world with the p-eye, and one can see it with the q-eye, but if one opens both eyes, then one becomes crazy."
letter to Heisenberg, October 19, 1926

