GRAVITATIONAL WAVES and BINARY BLACK HOLES

Thibault Damour

Institut des Hautes Etudes Scientifiques

Twenty-sixth Arnold Sommerfeld Lecture Series Colloquium, 11 May 2022 Ludwig Maximilians Universität, Munich

STARTING FROM 14 SEPT 2015: GRAVITATIONAL WAVE (GW) DETECTIONS BY TWO LIGO (+ VIRGO+KAGRA+...) GW DETECTORS

$$\begin{array}{c} m_{1} = 36^{+5}_{-4}M_{\odot} \\ m_{2} = 29^{+4}_{-4}M_{\odot} \\ m_{2} = 29^{+4}_{-4}M_{\odot} \\ m_{2} = 410^{+160}_{-1.18} \\ D_{L} = 410^{+160}_{-1.80} \\ \end{array}$$

GW150914, [LVT151012,]GW151226, GW170104,...: incredibly small signals lost in the broad-band noise

1e-18

5e-19

-5e-19

-1e-18

-1e-18

-1.5e-18

-2e-18

-2.5e-18

-3e-18

0.2

0

0.2

0.25

0.25

0.3

0.3

0.35

GW151226 from LIGO open data

$$\begin{split} h_{GW}^{\max} &\sim 10^{-21} \sim 10^{-3} \, h_{LIGO}^{\text{broadband}} \\ \delta L/L &= 10^{-21} \rightarrow \delta L \sim 10^{-9} \, \text{atom} \, ! \\ \frac{\delta L^{tot}}{\lambda} &\sim \mathcal{F} \frac{L}{\lambda} \frac{\delta L}{L} \sim 10^{11} h \sim 10^{-10} \text{fringe} \end{split}$$

How can LIGO-Virgo detect dL = 10^-9 atom ?

Interferometry: dL/lambda=10^-10 fringe (Michelson 1881: Berlin-Potsdam;trying to detect the motion of the Earth -> Special Relativity !)

Laser: theoretical foundation due to Einstein 1917

Quantum properties of light: theoretical foundation due to Einstein 1905-24 shot noise; squeezed state of light

High-power, ultrastabilized laser (power recycling: Schilling '81, Drever '83)

Optics: mirror, coating, ...

Vibration isolation Ultra-high vacuum Feedback + control systems

A. Michelson

LIGO-Virgo p>0.5 Events (01-02-03a-03b; nov 2021) 90 events, incl.: 2 NS-NS; 3 NS-BH; 85 BH-BH

Masses in the Stellar Graveyard

LIGO-Virgo data analysis

Various levels of search and analysis: online/offline, parameter estimation

Online trigger searches:

CoherentWaveBurst Time-frequency (Wilson, Meyer, Daubechies-Jaffard-Journe, Klimenko et al.) Omicron-LALInference sine-Gaussians Gabor-type wavelet analysis (Gabor,...,Lynch et al.) Matched-filter: PyCBC (f-domain), gstLAL (t-domain)

0.05

Time(s)

0.15

1.5

Strain

-1.5

Offline data analysis: Generic transient searches Binary coalescence searches

Here: focus on matched-filter definition

(crucial for high SNR, significance assessment, and parameter estimation)

Matched Filtering

$$\langle output | h_{\text{template}} \rangle = \int \frac{df}{S_n(f)} o(f) h_{\text{template}}^*(f)$$

Basics of Gravitational Waves

In linearized GR (Einstein 1916, 1918):

$$g_{ij} = \delta_{ij} + h_{ij}$$

Two Transverse-Traceless (TT) tensor polarizations propagating at v=c

$$h_{ij} = h_{+}(x_{i}x_{j} - y_{i}y_{j}) + h_{\times}(x_{i}y_{j} + y_{i}x_{j})$$

Lowest-order generation: quadrupole formula

$$h_{ij} \simeq \frac{2G}{c^4 r} \ddot{Q}_{ij}^{TT} (t - r/c)$$

Pioneering the GWs from coalescing compact binaries

Freeman Dyson 1963

Einstein 1918 + Landau-Lifshitz 1941

Freeman Dyson's challenge: describe the intense flash of GWs emitted by the last orbits and the merger of a binary BH, when v~c and r~GM/c^2

Tools used for the GR 2-body pb

Post-Newtonian (PN) approximation (expansion in 1/c; ie v^2/c^2 and GM/(c^2r))

Post-Minkowskian (PM) approximation (expansion in G; ie in GM/(c^2b)) and its recent Worldline EFT avatars

Multipolar post-Minkowskian (MPM) approximation theory to the GW emission of binary systems

Matched Asymptotic Expansions useful both for the motion of strongly self-gravitating bodies, and for the nearzone-wavezone matching

Gravitational Self-Force (SF): expansion in m1/m2, with « first law of BH mechanics » (LeTiec-Blanchet-Whiting'12,...)

Effective One-Body (EOB) Approach

Numerical Relativity (NR)

```
Effective Field Theory (EFT)
```

Quantum scattering amplitude aided by Double-Copy, Generalized Unitarity, « Feynman-integral Calculus » (IBP, DE, regions, reverse unitarity,...), Kosower-Maybee-O'Connell

+ Worldline QFT

Tutti Frutti method

BASICS OF BLACK HOLES

1916 Schwarzschild (non rotating) Black Hole (BH)

$$ds^{2} = -(1 - \frac{2GM}{c^{2}r})dt^{2} + \frac{dr^{2}}{1 - \frac{2GM}{c^{2}r}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2})$$

Schwarzschild radius (singularity ?): $r_S = 2GM/c^2$

1939 Oppenheimer-Snyder « continued collapse »

1963 Kerr Rotating BH: M, S

1965 Doroshkevich, Zel'dovich, Novikov

1969 Penrose

Horizon: cylindrical-like regular null hyper-surface whose sectional area is nearly constant, and actually slowly increasing (Christodoulou '70, Christodoulou-Ruffini '71, Hawking '71)

radial potential
$$A_S(r) = 1 - \frac{2GM}{c^2 r}$$

Motion of Strongly Self-gravitating Bodies (NS, BH)

Multi-chart approach to motion of strong-self-gravity bodies, and matched asymptotic expansions [EIH '38], Manasse '63, Demianski-Grishchuk '74, D'Eath'75, Kates '80, Damour '82

Combine two expansions in two charts:

$$g_{\mu\nu}(x) = \eta_{\mu\nu} + Gh^{(1)}_{\mu\nu}(x) + G^2 h^{(2)}_{\mu\nu}(x) + \cdots$$

 $G_{\alpha\beta}'(x) = G_{\alpha\beta}^{(0)}(x) + G_{\alpha\beta}^{(1)}(x) + \cdots$ Practical Technique for Computing the Motion of Compact Bodies (NS or BH)

Skeletonization

$$T_{\mu\nu}(x) \to \sum_{A} \int ds_A m_A u_A^{\mu} u_A^{\nu} \delta(x - x_A)$$

--> UV divergences: dimensional regularization, « Effacing Principle » TD 83 up to G^6

Reduced Worldline Action at the Linear Approximation (one-particle exchange)

Electrodynamics (Fokker 1929)

$$S_{\text{tot}}[x_{a}^{\mu}, A_{\mu}] = -\sum_{a} \int m_{a} ds_{a} + \sum_{a} \int e_{a} dx_{a}^{\mu} A_{\mu}(x_{a}) - \int d^{D}x \frac{1}{16\pi} F_{\mu\nu} F^{\mu\nu} + S_{\text{gf}}$$
"Integrate out " the field A_mu in the total (particle+field) action
$$S_{\text{eff}}^{\text{class}}[x_{a}(s_{a})] = -\sum_{a} m_{a} \int ds_{a}$$

$$+ \frac{1}{2} \sum_{a,b} e_{a} e_{b} \iint dx_{a}^{\mu} dx_{b\mu} \delta ((x_{a} - x_{b})^{2}).$$
One-photon-exchange diagram
$$G(x) = \delta(-\eta_{\mu\nu}x^{\mu}x^{\nu}) = \frac{1}{2r} \left(\delta(t - r) + \delta(t + r)\right) ; \Box G(x) = -4\pi\delta^{4}(x)$$
Linearized gravity
One-graviton-exchange diagram
$$u_{a}^{\mu} \equiv \frac{dx_{a}^{\mu}}{ds_{a}}$$

$$S_{\text{rcd}}[x_{a}(s_{a})] = -\sum_{a} m_{a} ds_{a}$$

$$+ \sum_{a,b} Gm_{a} m_{b} \int \int ds_{a} ds_{b} u_{a}^{\mu} u_{a}^{\nu}(u_{b\mu}u_{b\nu} - \frac{1}{D-2}\eta_{\mu\nu})\delta((x_{a} - x_{b})^{2})$$

Reduced Action in Gravity and its Diagrammatic Expansion

$$S_{\text{eff}}^{\text{class}}[x_a(s_a)] = [S_{\text{pm}} + S_{\text{EH}} + S_{\text{gf}}]_{g_{\mu\nu}(x) \to g_{\mu\nu}^{\text{gf}}[x_a(s_a)]}$$

PN: Infeld-Plebanski '60 PM:TD-Esposito-Farese '96 EFT: Goldberger-Rothstein '06

Needs gauge-fixed* action and time-symmetric Green function G. *E.g. Arnowitt-Deser-Misner Hamiltonian formalism or harmonic coordinates. Perturbatively solving (in dimension D=4 - eps) Einstein's equations to get the equations of motion and the action for the conservative dynamics

Post-Newtonian Expansion of the Reduced Gravity Action

2Post-Minkowskian (G^2, one-loop) has been explicitly computed (Westpfahl et al. '79,'85; Bel-Damour-Deruelle-Ibanez-Martin'81) but, at the time, classical PM calculations did not go beyond one-loop

Use slow-motion-weak-field PN expansion: in powers of 1/c^2: 1PN= (v/c)^2; 2PN= (v/c)^4, etc nPN=(v/c)^(2n)

$$\Box^{-1} = (\Delta - \frac{1}{c^2}\partial_t^2)^{-1} = \Delta^{-1} + \frac{1}{c^2}\partial_t^2\Delta^{-2} + \dots$$

$$\begin{array}{c|c} \text{1PN=G[(v/c)^{2}+ Gm/(r c^{2})]} \\ L^{(1)} = \sum_{A} -m_{A}c^{2}\sqrt{1 - \frac{v_{A}^{2}}{c^{2}}} = \sum_{A} \left(-m_{A}c^{2} + \frac{1}{2}m_{A}v_{A}^{2} + \frac{1}{8c^{2}}m_{A}v_{A}^{4} + \cdots \right) \\ L^{(2)} = \frac{1}{2}\sum_{A \neq B} \frac{G_{N}m_{A}m_{B}}{r_{AB}} \left[1 + \frac{3}{2c^{2}}(v_{A}^{2} + v_{B}^{2}) - \frac{7}{2c^{2}}(v_{A} \cdot v_{B}) \\ - \frac{1}{2c^{2}}(n_{AB} \cdot v_{A})(n_{AB} \cdot v_{B}) + O\left(\frac{1}{c^{4}}\right) \right] . \\ L^{(3)} = -\frac{1}{2}\sum_{B \neq A \neq C} \frac{G_{N}^{2}m_{A}m_{B}m_{C}}{r_{AB}r_{AC}c^{2}} + O\left(\frac{1}{c^{4}}\right) \end{array}$$

State of the art for PN dynamics

- 1PN (including v²/c²) [Lorentz-Droste '17], Einstein-Infeld-Hoffmann '38
- 2PN (inc. v⁴/c⁴) Ohta-Okamura-Kimura-Hiida '74, Damour-Deruelle '81 Damour '82, Schäfer '85, Kopeikin '85
- 2.5 PN (inc. v⁵/c⁵) Damour-Deruelle '81, Damour ⁵², Schäfer '85, LO-radiation-reaction Kopeikin '85
- 3 PN (inc. v⁶/c⁶) Jaranowski-Schäfer '98, Blanchet-Faye '00, Damour-Jaranowski-Schäfer '01, Itoh-Futamase '03, Blanchet-Damour-Esposito-Farèse' 04, Foffa-Sturani '11
- 3.5 PN (inc. v⁷/c⁷) Iyer-Will '93, Jaranowski-Schäfer '97, Pati-Will '02, Königsdörffer-Faye-Schäfer '03, Nissanke-Blanchet '05, Itoh '09
- 4PN (inc. v⁸/c⁸) Jaranowski-Schäfer '13, Foffa-Sturani '13,'16 Bini-Damour '13, Damour-Jaranowski-Schäfer '14, Marchand+'18, Foffa+'19

New feature at G⁴/c⁸ (4PN and 4PM) : **non-locality in time** (linked to IR divergences of formal PN-expansion) (Blanchet, TD '88)

- 5PN (inc. v¹⁰/c¹⁰ and G⁶) Bini-Damour-Geralico'19: complete modulo two
- numerical parameters; Bluemlein et al'21: potential-graviton contrib. and
- partial determination of radiation-graviton contrib. used QGRAF to generate
 545812 4-loop diagrams, and 332020 5-loop diagrams
- 6PN (inc. v¹²/c¹² and G⁷) Bini-Damour-Geralico'20: complete modulo four
- additional parameters

Inclusion of **spin-dependent effects**: Barker-O' Connell'75, Faye-Blanchet-Buonanno'06, Damour-Jaranowski-Schaefer'08, Porto-Rothstein '06, Levi '10, Steinhoff-Hergt-Schaefer '10, Steinhoff'11, Levi-Steinhoff'15-18, Bini-TD, Vines, Guevara-Ochirov-Vines,....

First complete 2PN and 2.5PN dynamics obtained by using 2PM (G^2) EOM of Bel et al.'81

soft (radiation) gravitons

2-body Taylor-expanded N + 1PN + 2PN Hamiltonian

$$\begin{split} H_{\rm N}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \frac{\mathbf{p}_{1}^{2}}{2m_{1}} - \frac{1}{2}\frac{Gm_{1}m_{2}}{r_{12}} + (1 \leftrightarrow 2) \\ c^{2}H_{\rm 1PN}(\mathbf{x}_{a},\mathbf{p}_{a}) &= -\frac{1}{8}\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{3}} + \frac{1}{8}\frac{Gm_{1}m_{2}}{r_{12}}\left(-12\frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 14\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}m_{2}} + 2\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}m_{2}}\right) \\ &+ \frac{1}{4}\frac{Gm_{1}m_{2}}{r_{12}}\frac{G(m_{1}+m_{2})}{r_{12}} + (1 \leftrightarrow 2), \\ c^{4}H_{\rm 2PN}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \frac{1}{16}\frac{(\mathbf{p}_{1}^{2})^{3}}{m_{1}^{5}} + \frac{1}{8}\frac{Gm_{1}m_{2}}{r_{12}}\left(5\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{4}} - \frac{11}{2}\frac{\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2}}{m_{1}^{2}m_{2}^{2}} - \frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + 5\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \\ &- 6\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} - \frac{3}{2}\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}}\right) \\ &+ \frac{1}{4}\frac{G^{2}m_{1}m_{2}}{r_{12}^{2}}\left(m_{2}\left(10\frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 19\frac{\mathbf{p}_{2}^{2}}{m_{2}^{2}}\right) - \frac{1}{2}(m_{1}+m_{2})\frac{27(\mathbf{p}_{1}\cdot\mathbf{p}_{2}) + 6(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}m_{2}}\right) \\ &- \frac{1}{8}\frac{Gm_{1}m_{2}}{r_{12}}\frac{G^{2}(m_{1}^{2} + 5m_{1}m_{2} + m_{2}^{2})}{r_{12}^{2}} + (1 \leftrightarrow 2), \end{split}$$

2-body Taylor-expanded 3PN Hamiltonian [DJS 01]

$$\begin{split} c^{6}H_{3\mathrm{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= -\frac{5}{128}\frac{(\mathbf{p}_{1}^{2})^{4}}{m_{1}^{2}} + \frac{1}{32}\frac{Gm_{1}m_{2}}{r_{12}}\left(-14\frac{(\mathbf{p}_{1}^{2})^{3}}{m_{1}^{6}} + 4\frac{((\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2} + 4\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2})\mathbf{p}_{1}^{2}}{m_{1}^{4}m_{2}^{2}} + 6\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{4}m_{2}^{2}} \\ &\quad -10\frac{(\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2} + \mathbf{p}_{2}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2})\mathbf{p}_{1}^{2}}{m_{1}^{4}m_{2}^{2}} + 24\frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{4}m_{2}^{2}} \\ &\quad +2\frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{3}m_{2}^{2}} + (7\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2} - 10(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{3}m_{2}^{4}} \\ &\quad +\frac{(\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2} - 2(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{3}m_{2}^{2}} + 15\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{3}m_{2}^{4}} \\ &\quad -18\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{m_{1}^{3}m_{2}^{2}} + 5\frac{(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{m_{1}^{3}m_{2}^{2}}} + \frac{G^{2}m_{1}m_{2}}{r_{12}^{2}}\left(\frac{1}{16}(m_{1} - 27m_{2})\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{2}}\right) \\ &\quad -18\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{m_{1}^{3}m_{2}^{2}} + 5\frac{(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{3}m_{2}^{2}} \\ &\quad -18\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{1}^{2}\cdot\mathbf{p}_{1})(\mathbf{n}_{2}\cdot\mathbf{p}_{2}) \\ &\quad -\frac{18}{m_{1}}\frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{3}m_{2}} - \frac{1}{48}m_{2}\frac{25(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}+371\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2}}{m_{1}^{2}m_{1}^{2}} \\ &\quad -\frac{18}{m_{1}}\frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2}) \\ &\quad -\frac{18}{m_{1}}\frac{\mathbf{p}_{1}^{2$$

- C.

2-body Taylor-expanded 4PN Hamiltonian [DJS, 2014, JS 2015]

 $(\Lambda 3)$

$$\begin{split} \epsilon^8 H_{4\text{PN}}^{\text{laca}}(\mathbf{x}_a, \mathbf{p}_a) = & \frac{7(\mathbf{p}_1^2)^5}{256m^2} + \frac{Gm_1m_2}{r_{12}} H_{46}(\mathbf{x}_a, \mathbf{p}_a) + \frac{G^2m_1m_2}{r_{12}^2} m_1 H_{46}(\mathbf{x}_a, \mathbf{p}_a) \\ & + \frac{G^2m_1m_2}{r_{12}^3} \left(m_1^2 H_{44}(\mathbf{x}_a, \mathbf{p}_a) + m_1m_2 H_{442}(\mathbf{x}_a, \mathbf{p}_a) \right) \\ & + \frac{G^4m_1m_2}{r_{12}^4} \left(m_1^3 H_{42}(\mathbf{x}_a, \mathbf{p}_a) + m_1^2 m_2 H_{422}(\mathbf{x}_a, \mathbf{p}_a) \right) \\ & + \frac{G^5m_1m_2}{r_{12}^5} H_{46}(\mathbf{x}_a, \mathbf{p}_a) + (1 \leftrightarrow 2), \end{split}$$

H ₄₅ (x ₀ , p _c) =	45(p ₁ ²) ^a S(n ₁₂	(p1) (m12-p2) (p1	3 15(n ₁₂ ·p ₂)"	p ₁)' 9 n ₁₂ p)	$(n_{12} \cdot p_2) (p_1) (p_1)$	\mathbf{p}_2	
	1.28m ²	640% 2	64 <i>m</i> ⁶ <i>m</i> ²		1.6ea ⁵ ₁ ea ² ₂		
	$-3(p_1^2)^2(p_1,p_2)^2 - 15(n_{12},p_1)^2(p_1^2)^2p_2^2 - 23(p_1^2)^2p_2^2 - 35(n_{12},p_1)^2(n_{12},p_2)^2$						
	32m*m2	$64m_1^6m_2^2$	$64m_1^8m_2^2$	256e4 ³ e4	5		
	$+ \frac{25(n_{12}\cdot p_1)^3(n_{12}\cdot p_2)^3p_{1,12}^3}{23(n_{12}\cdot p_1)(n_{12}\cdot p_2)^5(p_1^2)^2} + \frac{85(n_{12}\cdot p_1)^4(n_{12}\cdot p_2)^2(p_1\cdot p_2)}{2} + \frac{1}{2} \frac{1}{2$						
	128010	12	256w w	23	56m m2		
	$45(n_{12}\cdot p_1)^2(n_{12}\cdot p_2)^2p_1^2(p_1\cdot p_2) = (n_{12}\cdot p_2)^2(p_1^2)^2(p_1\cdot p_2) = 25(n_{12}\cdot p_1)^3(n_{12}\cdot p_2)(p_1\cdot p_2)^2$						
	128	w ⁵ ₁ .w ³ ₂	256mfm3	1.10	6-1/2 1/2 2		
	$+\frac{7(a_{12},\mathbf{p}_1)(a_{13},\mathbf{p}_1)}{64m}$	p_)pj(p1 p1) ² _3	(n ₁₂ p ₁) ² (p ₁ p ₂) 64m ⁵ m ⁵	³ 2 p ² ₁ (p ₁ p ₂) ³ 64m ⁵ m ²	256m ⁵ m ²	P2) p2	
	$7(n_{12}\cdot p_1)^3/n_{12}\cdot p_2)p_1^2p_2^3 = 24(n_{12}\cdot p_1)(n_{12}\cdot p_2)(p_1^2)^2p_2^2 = 23(n_{12}\cdot p_1)^4(p_1\cdot p_2)p_2^2$						
	128nr ₁ n	42	$256m_1^5m_2^3$	256	m ² ₂ .m ² ₂		
	$+\frac{7(a_{12}\cdot\mathbf{p}_1)^2p_1^2(\mathbf{p}_1)}{2}$	$p_1 \cdot p_2 / p_2^2 = \frac{7(p_1^2)^2}{2}$	$(\mathbf{p}_1, \mathbf{p}_2)\mathbf{p}_2^2 = \frac{5(\mathbf{n}_{12})}{5(\mathbf{n}_{12})}$	$(\mathbf{p}_1)^* (\mathbf{n}_{12} \cdot \mathbf{p}_2)^* \mathbf{p}$	$\frac{1}{1+}\frac{7(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{4}(\mathbf{p}_{1})}{2}$	3	
	128.474	1 256	un ^s ang	64 <i>m</i> ⁺ ₁ <i>m</i> ⁺ ₂	6424 ⁴ m ⁴ ₂		
	$\frac{(\mathbf{n}_{12},\mathbf{p}_1)(\mathbf{n}_{12},\mathbf{p}_2)}{4m^4}$	z) ³ p²(p ₁ p ₂) _↓ (n w²	$(2 \mathbf{p}_2)^2 \mathbf{p}^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)$ $16m_1^4 m_2^4$	$\frac{2}{5} \frac{5(n_{-2} p_1)^4(n_{-2} p_1)^4(n_$	$\frac{(r_2 \mathbf{p}_2)^2 \mathbf{p}_2^2}{m_2^4} + \frac{21(\mathbf{n}_1)}{m_2^4}$	$\frac{(\mathbf{p}_1)^2 (\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 \mathbf{p}_1^2 \mathbf{p}_2^2}{64 \kappa a_1^4 \kappa a_2^4}$	
	$\frac{3(n_{12},p_2)^2(p_1^2)}{2(p_1^2)}$	${}^{2}\mathbf{p}_{2}^{2} = (\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2} (\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2$	12*P2)(P1*P2)P	$(n_{12}.p_1)(n_{12}.p$	$p_1^2(\mathbf{p}_1, \mathbf{p}_2)\mathbf{p}_1^2$, ($(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)^2 \mathbf{p}_1^2$	
	32m.[m]	4	estus	16m	1413	Qualita5	
	p ₁ (p ₁ , p ₂) p ₁	$7(\mathbf{n}_{12}\cdot\mathbf{p}_1)^4(\mathbf{p}_2^2)^2$	$3(n_{12}, p_1)^2 p_1^2(p_1)$	$(\mathbf{p}_1^2)^2 = \frac{7(\mathbf{p}_1^2)^2(\mathbf{p}_2^2)^2}{2(\mathbf{p}_1^2)^2(\mathbf{p}_2^2)^2}$	1 m	(A4z)	
	1 2 cm 1 cm 1	5-1 art art	1.01 01	2802 01	C	10.000	

 160m ⁵	192 m ⁴	16m ⁶	64 w ₁ ⁵	128m ² ₁ m	2		
$_{\pm}$ 67(n ₁₂ ·p ₁) ² (n ₁₂ ·)	p:)p_ 167(n;	2-p1)(a12-p2)(p	²) ² 1547(m	$(\mathbf{p}_1 \cdot \mathbf{p}_1)^{(2)} (\mathbf{p}_1 \cdot \mathbf{p}_2)$	$851(n_{12}\cdot p_1)^2p$	$p_1^2(p_1 p_2)$	
16m ³ m ₂		128min;	2	5661 ⁹ 612	128m ³ /	<i>n</i> ₂	
$(1099(p_1^2)^2(p_1 \cdot p_2))$	3253(n ₁₀ -p	$(\mathbf{n}_{12} \cdot \mathbf{p}_1)^4 (\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 + 1067 (\mathbf{n}_{12} \cdot \mathbf{p}_2)^2$		$(n_{12} \cdot p_2)^2 p_1^2 = 4$	567(n ₁₃ ·p ₂) ² (p	$7(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 (\mathbf{p}_1^2)^2$	
255mf.m,	25.0	m ⁺ m ² 2	480.01	.on2	$3840m_1^4m_2^2$		
$-3571(\bm{n}_{12}\cdot\bm{p}_1)^3(\bm{n}_{11}\cdot\bm{p}_2)(\bm{p}_1\cdot\bm{p}_2)+3073(\bm{n}_{12}\cdot\bm{p}_1)(\bm{n}_{12}\cdot\bm{p}_2)p_1^2(\bm{p}_1\cdot\bm{p}_2)+4345(\bm{n}_{12}\cdot\bm{p}_1)^2(\bm{p}_1\cdot\bm{p}_2)^3$							
320m/+	wź	483	$lm_1^4m_2^2$	1	'80ev ³ ₁ ev ² ₂		
$3461p_1^2(p_1 \cdot p_2)^2$,	$1673(\mathbf{u}_{12} \cdot \mathbf{p}_1)^2$	p ² 939(m ₁₂ -p	$(p_1)^2 p_1^2 p_2^2 = 20$	81(p ₁ ²) ² p ₂ ² 13	$(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3 (\mathbf{n}_{12} \cdot \mathbf{p}_2)^3$	2)3	
3840m [m]	1920a fini	3840 <i>m</i>	frez 3	\$40.a:1 an1	Series		
191(n ₁₂ -p ₁)(n ₁₂ -	p2)3p1 19(n1	$(\mathbf{p}_1)^2 (\mathbf{n}_{12} \cdot \mathbf{p}_2)^2$	(p ₁ ·p ₂) 5(n	$(p_1 \cdot p_2)^2 p_1^2 (p_1 \cdot p_2)^2$	p ₂)		
1920.00		384 m m3	. 232	384m ³ m ³	54		
$11(n_{12} \cdot p_1)(n_{12} \cdot p_2)$	$(\mathbf{p}_1 \cdot \mathbf{p}_2)^2$, 7	7(p ₁ -p ₂) ² , 233	$({\bf n}_1,\cdot{\bf p}_1)^{\rm S}({\bf n}_1)$	•p. p2 47(n	$: p_1)(\mathbf{n}_1, \mathbf{p}_2)\mathbf{p}$	ip?	
1 August 1 A	h	Quanter?	360.00	1.00	32. 12. 10.		
192.w ₁ .a	2	in a line b					
$(\mathbf{n}_{12}, \mathbf{p}_1)^2 (\mathbf{p}_1, \mathbf{p}_2)$	≦ pქ 185p;(p₁-	p ₂)pj 7(n ₁₂ -p	$(\mathbf{u}_{12}, \mathbf{p}_{2})^{2}$	$(7(n_{12}\cdot p_2)^*p_1^*)$	1.02		
$+\frac{\frac{192w_1^3m}{(p_{12}\cdot p_1)^2(p_1-p_2)}}{384m_1^3m_2^3}$	2 <u>p[185p_j(p_1-</u>	$\frac{ \mathbf{p}_2 \mathbf{p}_1 }{ \mathbf{a}_1 } = \frac{7(a_{12} \cdot \mathbf{p})}{4}$	n_)2(n_12+p_2)* mpnd	$+\frac{7(\mathbf{n}_{12}\cdot\mathbf{p}_2)^4\mathbf{p}_1^4}{42a_1^2w_2^4}$	1.1.1		
$+\frac{(\mathbf{n}_{12},\mathbf{p}_1)^2(\mathbf{p}_1,\mathbf{p}_2)}{384\pi\eta^2\pi_2^3}$ $+\frac{(\mathbf{n}_{12},\mathbf{p}_1)^2(\mathbf{p}_1,\mathbf{p}_2)}{7(\mathbf{n}_{12},\mathbf{p}_1)(\mathbf{n}_{12},\mathbf{p}_2)}$	$\frac{2}{2} = \frac{185 \mathbf{p}_1^2 (\mathbf{p}_1 + \frac{185 \mathbf{p}_1^2 (\mathbf{p}_1 + \frac{1}{384 m_1^2})}{384 m_1^2}}{\mathbf{p}_1^2 (\mathbf{p}_1 + \mathbf{p}_2) + 21}$	$\frac{\mathbf{p}_{2}(\mathbf{p}_{1})}{\mathbf{m}_{2}^{2}} = \frac{7(\mathbf{u}_{12} \cdot \mathbf{p})}{4}$ $\frac{\mathbf{p}_{12}(\mathbf{p}_{1})}{(\mathbf{n}_{12} \cdot \mathbf{p}_{2})^{2}} (\mathbf{p}_{1} \cdot \mathbf{p}_{2})$	$(\mathbf{n}_1)^2 (\mathbf{n}_{12} \cdot \mathbf{p}_2)^2$ $(\mathbf{n}_1^2 \cdot \mathbf{p}_2)^2$ $(\mathbf{n}_1^2 \cdot \mathbf{p}_2)^2$ $(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2$	$+\frac{7(\mathbf{u}_{12}\cdot\mathbf{p}_2)^2\mathbf{p}_2^2}{4^2a_1^2w_2^4}$. 49(n ₁₂ p ₂) ² p ₁	pį	
$+\frac{\frac{192 \omega_1^2 a}{384 \omega_1^2 \omega_2^2}}{\frac{384 \omega_1^2 \omega_2^2}{2 \omega_1^2 \omega_2^2}}$ = $\frac{7 (\mathbf{n}_{12}, \mathbf{p}_1) (\mathbf{n}_{12}, \mathbf{p}_2)}{2 \omega_1^2 \omega_2^2}$	$\frac{\frac{2}{2}}{\frac{p_1^2}{384m_1^2}} \frac{185p_1^2(\mathbf{p}_1,\mathbf{p}_2)}{384m_1^2}$	$\frac{\mathbf{p}_{2}(\mathbf{p}_{2})}{\mathbf{m}_{2}^{3}} = \frac{7(\mathbf{n}_{12} \cdot \mathbf{p})}{4}$ $\frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{2})^{2}(\mathbf{p}_{1} \cdot \mathbf{p}_{2})}{16\pi_{1}^{2}m_{1}^{2}}$	$\frac{(n_{12} \cdot p_{2})^{2}}{(n_{12} \cdot p_{2})^{2}}$ $\frac{(n_{12}^{2} \cdot p_{2})^{2}}{(n_{12} \cdot p_{2})^{2}}$ $\frac{(n_{12} \cdot p_{2})^{2}}{(n_{12} \cdot p_{2})^{2}}$	$+\frac{7(\mathbf{n}_{12}\cdot\mathbf{p}_2)^2\mathbf{p}_2^2}{4^3w_1^2w_2^4}$ $(^2(\mathbf{n}_{12}\cdot\mathbf{p}_2)^2\mathbf{p}_2^2)$ $k\pi_1^2w_1^4$	$\frac{49}{48rr_1^2nr_2^3}$	₽į́	
$+\frac{\frac{192 \omega_1^2 a}{384 m_1^2 m_2^2}}{\frac{384 m_1^2 m_2^2}{2 m_1^2 m_2^2}}$ = $\frac{7 (\mathbf{n}_{12}, \mathbf{p}_1) (\mathbf{n}_{12}, \mathbf{p}_2)}{2 m_1^2 m_1^2}$ = $\frac{132 (\mathbf{n}_{12}, \mathbf{p}_2) (\mathbf{n}_{12}, \mathbf{p}_2)}{132 (\mathbf{n}_{12}, \mathbf{p}_2) (\mathbf{n}_{12}, \mathbf{p}_2)}$	$\frac{\frac{2}{p_1^2}}{\frac{185p_1^2(\mathbf{p}_1 \cdot \mathbf{p}_2)}{384m_1^2}} \frac{185p_1^2(\mathbf{p}_1 \cdot \mathbf{p}_2)}{\frac{21}{121}}$ $\mathbf{p}_2(\mathbf{p}_1 \cdot \mathbf{p}_2)\mathbf{p}_1^2$	$\frac{\mathbf{p}_{2}(\mathbf{p}_{1})}{\mathbf{p}_{2}^{2}(\mathbf{p}_{1} - \frac{7(\mathbf{n}_{12} \cdot \mathbf{p}_{2})}{4})^{2}(\mathbf{p}_{1} - \mathbf{p}_{2})^{2}(\mathbf{p}_{1} - \mathbf{p}_{2})^{2}(\mathbf{p}_{1} - \mathbf{p}_{2})^{2}(\mathbf{p}_{1} - \mathbf{p}_{2})^{2}(\mathbf{p}_{1} - \mathbf{p}_{2})^{2}\mathbf{p}^{2}$	$\frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{2})^{2}}{(\mathbf{n}_{12} \cdot \mathbf{p}_{2})^{2}}$ $\frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{2})^{2}}{(\mathbf{n}_{12} \cdot \mathbf{p}_{2})^{2}}$ $\frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{2})^{2}}{(\mathbf{n}_{12} \cdot \mathbf{p}_{2})^{2}}$	$+\frac{7(\mathbf{n}_{12}\cdot\mathbf{p}_2)^2\mathbf{p}_2^2}{4\omega_1^2\omega_2^4}$ $\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_2)^2\mathbf{p}_2^2}{8\omega_1^2\omega_2^4}$ $\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_2)^2\mathbf{p}_2^2}{(\mathbf{p}_1^2)^2-173\mathbf{p}_2^2}$	$[\frac{49(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 \mathbf{p}_1^3}{48 \kappa \tau_1^2 m_2^4} \\ \mathbf{p}_1^2)^2 = 13(\mathbf{p}_1^2)^2$	Pİ	

$H_{-1}(\mathbf{x} - \mathbf{p}_1) = 5027(\mathbf{n}_{12} \cdot \mathbf{p}_1)^4 = 22993(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 \mathbf{p}_1^2 = 6695(\mathbf{p}_1^2)^2 = 3191(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2(\mathbf{n}_{12} \cdot \mathbf{p}_2)$	
$\frac{2441}{3} \frac{(S_0, P_0)}{284 m_1^4} = \frac{250 m^4}{250 m^4} = \frac{1152 m_1^4}{1152 m_1^4} = \frac{640 m_1^2 m_2}{640 m_1^2 m_2}$	
$+\frac{23561(\mathbf{n}_{12}\cdot\mathbf{p}_1)(\mathbf{n}_{12}\cdot\mathbf{p}_2)\mathbf{p}_{1-1}^2}{23561(\mathbf{n}_{12}\cdot\mathbf{p}_1)(\mathbf{n}_{12}\cdot\mathbf{p}_1)^2(\mathbf{p}_1\cdot\mathbf{p}_2)}-\frac{752969\mathbf{p}_1^2(\mathbf{p}_1\cdot\mathbf{p}_2)}{23561(\mathbf{n}_{12}\cdot\mathbf{p}_1)(\mathbf{n}_{12}\cdot\mathbf{p}_2)}$	
$1920m_1^3m_2$ $384m_1^3m_2$ $28800m_1^3m_2$	
$-\frac{16481(\mathbf{n}_{12}\cdot\mathbf{p}_1)^2(\mathbf{n}_{12}\cdot\mathbf{p}_2)^2}{960m_1^2m_2^2}+\frac{94433(\mathbf{n}_{12}\cdot\mathbf{p}_2)^2\mathbf{p}_1^2}{4300m_1^2m_2^2}-\frac{103957(\mathbf{n}_{12}\cdot\mathbf{p}_1)(\mathbf{n}_{12}\cdot\mathbf{p}_2)(\mathbf{p}_1\cdot\mathbf{p}_2)}{2400m_1^2m_2^2}$	<u>2)</u>
$+\frac{791(\mathbf{p}_1\cdot\mathbf{p}_2)^2}{400wr_1^2wr_2^2}+\frac{26627(\mathbf{n}_{12}\cdot\mathbf{p}_1)^2\mathbf{p}_2^2}{1600m_1^2m_2^2}-\frac{118261\mathbf{p}_1^2\mathbf{p}_2^2}{4800wr_1^2m_2^2}+\frac{105(\mathbf{p}_2^2)^2}{32m_1^2}.$	(λ4c)
$H_{442}(\mathbf{x}_a,\mathbf{p}_a) = \left(\frac{2749\pi^2}{8192} - \frac{211189}{19200}\right) \frac{(\mathbf{p}_1^2)^2}{m_1^4} + \left(\frac{63347}{1600} - \frac{1059\pi^2}{1024}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 \mathbf{p}_1^2}{m^4} + \left(\frac{375\pi^2}{8192} - \frac{23533}{1280}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2}{m^4} + \left(\frac{1059\pi^2}{8192} - \frac{1059\pi^2}{1280}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2}{m^4} + \left(\frac{1059\pi^2}{8192} - \frac{1059\pi^2}{1280}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2}{m^4} + \left(\frac{1059\pi^2}{8192} - \frac{1059\pi^2}{1280}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2}{m^4} + \left(\frac{1059\pi^2}{1280} - \frac{1059\pi^2}{1280}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2}{m^4} + \frac{1059\pi^2}{1280} - \frac{1059\pi^2}{1280}\right) \frac{(\mathbf{n}_{12} \cdot$	$\frac{(\mathbf{p}_{t})^{4}}{a_{t}^{4}}$
$+ \left(\frac{10631x^2}{3192} - \frac{1918349}{57600}\right) \frac{(\mathbf{p}_1 \cdot \mathbf{p}_2)^2}{m_1^2 m_2^2} + \left(\frac{13723x^2}{16384} - \frac{2492417}{57600}\right) \frac{\mathbf{p}_1^3 \mathbf{p}_2^2}{m_1^2 m_2^2}$	
$+ \left(\frac{1411429}{19200} - \frac{1059x^2}{512}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 \mathbf{p}_1^2}{n t_1^2 n t_2^2} + \left(\frac{248991}{6400} - \frac{5153\pi^2}{2048}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_2)(\mathbf{p}_1 \cdot \mathbf{p}_2)}{n t_1^2 n t_2^2}$	
$-\left(\frac{30383}{960}+\frac{36405\pi^2}{16384}\right)\frac{(\mathbf{n}_{-2}\cdot\mathbf{p}_1)^2(\mathbf{n}_{-2}\cdot\mathbf{p}_2)^2}{m_1^2m_2^2}+\left(\frac{1243717}{14400}-\frac{40483\pi^2}{16384}\right)\frac{\mathbf{p}_1^2(\mathbf{p}_1\cdot\mathbf{p}_2)}{m_1^3m_2}$	
$+\left(\frac{2269}{60}+\frac{35655\pi^2}{16384}\right)\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_1)^3(\mathbf{n}_{12}\cdot\mathbf{p}_2)}{m_1^3m_2}+\left(\frac{4310\pi^2}{16384}-\frac{39\pi^211}{6400}\right)\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_1)(\mathbf{n}_{12}\cdot\mathbf{p}_2)\mathbf{p}_1^2}{m_1^3m_2}$	
$+ \left(\frac{56955\pi^2}{16384} - \frac{1645983}{12200}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)}{m_1^2 m_2},$	(A4d)
$H_{*21}(\mathbf{x}_{\alpha},\mathbf{p}_{*}) = \frac{6436 \mathbf{p}_{1}^{2}}{4800 m_{1}^{2}} - \frac{91 (\mathbf{p}_{1} \cdot \mathbf{p}_{2})}{8 m_{1} m_{2}} + \frac{105 \mu_{2}^{2}}{32 m_{2}^{2}} - \frac{9841 (\mathbf{u}_{12} \cdot \mathbf{p}_{1})^{2}}{1600 m_{1}^{2}} - \frac{7 (\mathbf{u}_{12} \cdot \mathbf{p}_{1}) (\mathbf{u}_{12} \cdot \mathbf{p}_{2})}{2 m_{1} m_{2}},$	(A4e)
$\mathcal{H}_{422}(\mathbf{x}_{n},\mathbf{p}_{n}) = \left(\frac{1037033}{57600} - \frac{199177\pi^{2}}{49152}\right)\frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + \left(\frac{176033\pi^{2}}{24576} - \frac{2864917}{57600}\right)\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}m_{2}} + \left(\frac{282351}{19200} - \frac{21837\pi^{2}}{8192}\right)\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}m_{2}} + \frac{(1282351}{19200} - \frac{(1282351}{19200} - \frac{(1282351)}{8192}\right)\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}m_{2}} + \frac{(1282351}{19200} - \frac{(1282351)}{8192}$	$\frac{\mathbf{p}_2^2}{m_2^2}$
$+ \left(\frac{698723}{19200} + \frac{21745\pi^2}{16384}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2}{m_1^2} + \left(\frac{63641\pi^2}{24576} - \frac{2712013}{19200}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{-2} \cdot \mathbf{p}_2)}{m_1m_2}$	
$+ \left(\frac{3200179}{27600} - \frac{28691\pi^2}{24576}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2}{m_2^2},$	(A4f)
$H_{49}(\mathbf{x}_a, \mathbf{p}_c) = -\frac{m_1^4}{16} + \left(\frac{6237\pi^2}{1024} - \frac{169799}{2400}\right)m_1^3m_1 + \left(\frac{24825\pi^2}{6144} - \frac{609427}{7200}\right)m_1^3m_2^2.$	(A4g)

$$H_{4\text{PN}}^{\text{nonloc}}(t) = -\frac{1}{5} \frac{G^2 M}{c^8} I_{ij}^{(3)}(t) \\ \times \operatorname{Pf}_{2r_{12}/c} \int_{-\infty}^{+\infty} \frac{\mathrm{d}v}{|v|} I_{ij}^{(3)}(t+v),$$
 13

Perturbative Theory of the Generation of Gravitational Radiation

- Einstein '16, '18 (+ Landau-Lifshitz 41, and Fock '55) : h_+ , h_x and quadrupole formula
- Relativistic, multipolar extensions of LO quadrupole radiation :
- Sachs-Bergmann '58, Sachs '61, Mathews '62, Peters-Mathews '63, Pirani '64
- Campbell-Morgan '71, Campbell et al '75,

nonlinear effects:

Bonnor-Rotenberg '66, Epstein-Wagoner-Will '75-76 Thorne '80, .., Will et al 00 MPM Formalism:

Blanchet-Damour '86, Damour-lyer '91, Blanchet '95 '98 Combines multipole exp. , Post Minkowkian exp., analytic continuation, and PN matching

MULTIPOLAR POST-MINKOWSKIAN FORMALISM (BLANCHET-DAMOUR-IYER)

Decomposition of space-time in various overlapping regions:

- 1. near-zone: r << lambda : PN
- 2. exterior zone: r >> r_source: MPM
- 3. far wave-zone: Bondi-type expansion then matching between the zones

in exterior zone, iterative solution of Einstein's vacuum field equations by means of a double expansion in non-linearity and in multipoles, with crucial use of analytic continuation (complex B) for dealing with formal UV divergences at r=0

The PN-matched MPM formalism has allowed to compute the GW emission to very high accuracy (Blanchet et al)

Nonlocality in time: Tail-transported hereditary effects

(Blanchet-Damour '88)

M

Hereditary (time-dissymetric) modification of the quadrupolar radiation-damping force, signalling a breakdown of a basic tenet of PN expansion at the 4PN level: (v/c)^8 fractional

$$g_{00}^{-1}(\mathbf{x},t) = -1 + \frac{1}{c^{2}} \left[2 \int \frac{d^{3} \mathbf{y} \rho(\mathbf{y},t)}{|\mathbf{x}-\mathbf{y}|} \right] + \frac{1}{c^{4}} \left[\partial_{t}^{2} \mathbf{X} - 2U^{2} + 4 \int \frac{d^{3} \mathbf{y}}{|\mathbf{x}-\mathbf{y}|} \rho \left[\mathbf{v}^{2} + U + \frac{\Pi}{2} + \frac{3p}{2\rho} \right] \right] \\ + \frac{1}{c^{6}} 6 \hat{\Phi}_{00} + \frac{1}{c^{7}} \left[-\frac{2}{5} \mathbf{x}_{ab}^{(5)} I_{ab}(t) \right] + \frac{1}{c^{8}} 8 \hat{\Phi}_{00} + \frac{1}{c^{9}} 9 \hat{\Phi}_{00} \\ + \frac{1}{c^{10}} \left[-\frac{8}{5} \mathbf{x}_{ab} I(t) \int_{0}^{+\infty} dv \ln \left[\frac{v}{2P} \right]^{(7)} I_{ab}(t-v) + \frac{1}{10} \hat{\Phi}_{00} \right] + \cdots$$

generates a time-symmetric nonlocal-in-time 4PN-level action

(Damour-Jaranowski-Schaefer'14) which was uniquely matched to the local-zone metric via the Regge-Wheeler-Zerilli-Mano-Suzuki-Takasugi- based work of Bini-Damour'13

$$\begin{aligned} H_{4\text{PN}}^{\text{nonloc}}(t) &= -\frac{1}{5} \frac{G^2 M}{c^8} I_{ij}^{(3)}(t) \\ &\times \text{Pf}_{2r_{12}/c} \int_{-\infty}^{+\infty} \frac{\mathrm{d}v}{|v|} I_{ij}^{(3)}(t+v), \end{aligned}$$
25

Perturbative computation of GW flux from binary system

- Iowest order : Einstein 1918 Peters-Mathews 63
- 1 + (v²/c²) : Wagoner-Will 76
- ... + (v^3/c^3) : Blanchet-Damour 92, Wiseman 93
- ... + (v^4 / c^4) : Blanchet-Damour-Iyer Will-Wiseman 95
- ... + (v^5/c^5) : Blanchet 96
- ... + (v⁶/c⁶) : Blanchet-Damour-Esposito-Farèse-Iyer 2004
- ... + (v^7/c^7) : Blanchet
- ... + most of (v^8/c^8) : Blanchet et al

$$\nu = \frac{m_1 m_2}{(m_1 + m_2)^2}$$

$$x = \left(\frac{v}{c}\right)^2 = \left(\frac{G(m_1 + m_2)\Omega}{c^3}\right)^{\frac{2}{3}} = \left(\frac{\pi G(m_1 + m_2)f}{c^3}\right)^{\frac{2}{3}}$$

$$\begin{split} \mathcal{F} &= \frac{32c^5}{5G}\nu^2 x^5 \bigg\{ 1 + \left(-\frac{1247}{336} - \frac{35}{12}\nu \right) x + 4\pi x^{3/2} \\ &+ \left(-\frac{44711}{9072} + \frac{9271}{504}\nu + \frac{65}{18}\nu^2 \right) x^2 + \left(-\frac{8191}{672} - \frac{583}{24}\nu \right) \pi x^{5/2} \\ \text{CQuadrupole} \\ &+ \left[\frac{6643739519}{69854400} + \frac{16}{3}\pi^2 - \frac{1712}{105}\gamma_{\text{E}} - \frac{856}{105}\ln(16x) \right. \\ &+ \left(-\frac{134543}{7776} + \frac{41}{48}\pi^2 \right) \nu - \frac{94403}{3024}\nu^2 - \frac{775}{324}\nu^3 \right] x^3 \\ \mathbf{3.5PN} \quad + \left(-\frac{16285}{504} + \frac{214745}{1728}\nu + \frac{193385}{3024}\nu^2 \right) \pi x^{7/2} + \mathcal{O}\left(\frac{1}{c^8} \right) \bigg\} \,. \end{split}$$

Analytical GW Templates for BBH Coalescences ?

PN corrections to Einstein's quadrupole frequency « chirping » from PN-improved balance equation dE(f)/dt = - F(f)

$$\frac{d\phi}{d\ln f} = \frac{\omega^2}{d\omega/dt} = Q_{\omega}^N \widehat{Q}_{\omega}$$
$$Q_{\omega}^N = \frac{5c^5}{48\nu v^5}; \ \widehat{Q}_{\omega} = 1 + c_2 \left(\frac{v}{c}\right)^2 + c_3 \left(\frac{v}{c}\right)^2$$

 $\ensuremath{\overset{\scriptstyle <}{_{\scriptstyle \sim}}}$ slow convergence of PN $\ensuremath{\overset{\scriptstyle >}{_{\scriptstyle \sim}}}$

Brady-Creighton-Thorne'98:

inability of current computational
 techniques to evolve a BBH through its last
 ~10 orbits of inspiral » and to compute the
 merger

Damour-Iyer-Sathyaprakash'98: use resummation methods for E and F

Buonanno-Damour '99-00: novel, resummed approach: Effective-One-Body analytical formalism

Effective One Body (EOB) Method

Buonanno-Damour 1999, 2000; Damour-Jaranowski-Schaefer 2000; Damour 2001 (SEOB)

[developped by: Barausse, Bini, Buonanno, Damour, Jaranowski, Nagar, Pan, Schaefer, Taracchini, ...]

Resummation of perturbative PN results —>>> description of the coalescence + addition of ringdown (Vishveshwara 70, Davis-Ruffini-Tiomno 1972) [+ CLAP (Price-Pullin'94)] Buonanno-Damour 2000

Predictions as early as 2000 :

continued transition, non adiabaticity, first complete waveform, final spin (OK within 10%), final mass

EOB: resumming the dynamics of a two-body system (m_1,m_2,S_1,S_2) in terms of the dynamics of a particle of mass mu and spin S* moving in some effective metric g(M,S)

Effective metric for non-spinning bodies: a nu-deformation of Schwarzschild

$$M = m_1 + m_2 \qquad \mu = \frac{m_1 m_2}{m_1 + m_2} \qquad \nu = \frac{\mu}{M} = \frac{m_1 m_2}{(m_1 + m_2)^2}$$
$$ds_{\text{eff}}^2 = -A(r;\nu) dt^2 + B(r;\nu) dr^2 + r^2 \left(d\theta^2 + \sin^2\theta \, d\varphi^2\right)$$

TWO-BODY/EOB "CORRESPONDENCE":

THINK QUANTUM-MECHANICALLY (J.A. WHEELER)

Computing radial integrals à la Sommerfeld (Damour-Schaefer'88)

$$\begin{split} I_{r}(E,J) &= \frac{1}{2\pi} \oint p_{r}(E,J,r) dr \qquad I_{\varphi} = \frac{1}{2\pi} \oint p_{\varphi} d\varphi = p_{\varphi} = J \\ I(A, B, C, D_{1}, D_{2}, D_{3}) &= \frac{2}{2\pi} \int_{r_{\min}}^{r_{\max}} dr \left(A + \frac{2B}{r} + \frac{C}{r^{2}} + \frac{D_{1}}{r^{3}} + \frac{D_{2}}{r^{4}} + \frac{D_{3}}{r^{5}} \right)^{\frac{1}{2}} \\ (3.9) \quad I(A, B, C, D_{1}, D_{3}, D_{3}) &= \frac{B}{\sqrt{-A}} - \\ &-\sqrt{-C} \left\{ 1 - \frac{1}{2} \frac{B}{C^{2}} \left[D_{1} - \frac{3}{2} \frac{D_{3}B}{C} + \frac{15}{8} \frac{D_{1}^{2}B}{C^{2}} \right] - \underbrace{I - \frac{1}{r_{\min}} + \frac{1}{r_{\max}} +$$

Explicit 3PN EOB dynamics (Damour-Jaranowski-Schaefer '01)

post-geodesic effective mass-shell:

$$g_{\rm eff}^{\mu\nu}\,P_{\mu}^{\prime}\,P_{\nu}^{\prime}+\mu^2\,c^2+Q(P_{\mu}^{\prime})=0\,,$$

$$ds_{\rm eff}^2 = -A(R;\nu)dt^2 + B(R;\nu)dR^2 + R^2(d\theta^2 + \sin^2\theta d\phi^2)$$

$$M = m_1 + m_2, \qquad \mu = \frac{m_1 m_2}{m_1 + m_2}, \qquad \nu = \frac{m_1 m_2}{(m_1 + m_2)^2} = \frac{\mu}{M} \qquad \qquad u \equiv \frac{GM}{Rc^2}$$

$$A^{3PN}(u) = 1 - 2u + 2\nu u^3 + \left(\frac{94}{3} - \frac{41}{32}\pi^2\right)\nu u^4,$$

$$\overline{D}^{3PN}(u) = 1 + 6\nu \, u^2 + (52\nu - 6\nu^2) \, u^3,$$

$$\widehat{Q}^{3\text{PN}} \equiv rac{Q}{\mu^2 c^2} = (8\nu - 6\nu^2) u^2 rac{p_r^4}{c^4}.$$

$$\begin{split} \mathcal{H}_{N}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \frac{\mathbf{p}_{1}^{2}}{2m_{1}^{2}} - \frac{1}{2} \frac{Gm_{1}m_{2}}{r_{12}} + (1 \leftrightarrow 2) \\ & c^{2}\mathcal{H}_{198}(\mathbf{x}_{a},\mathbf{p}_{a}) = -\frac{1}{8} \frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{2}} + \frac{1}{8} \frac{Gm_{1}m_{2}}{r_{12}} \left(-12 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 14 \frac{(\mathbf{p}_{1},\mathbf{p}_{2})}{m_{1}m_{2}} + 2 \frac{(\mathbf{n}_{12},\mathbf{p}_{2})}{m_{1}m_{2}} \right) \\ \\ \\ c^{d}\mathcal{H}_{298}(\mathbf{x}_{a},\mathbf{p}_{e}) &= \frac{1}{16} \frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{2}} + \frac{1}{8} \frac{Gm_{1}m_{2}}{r_{12}} \left(5 \frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{2}} - \frac{1}{12} \frac{\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2}}{m_{1}^{2}m_{2}^{2}} + 5 \frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12},\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \\ & - 6 \frac{(\mathbf{p}_{1},\mathbf{p}_{1})(\mathbf{n}_{12},\mathbf{p}_{1})}{m_{1}^{2}m_{2}^{2}} - \frac{3}{2} \frac{(\mathbf{p}_{1},\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} - \frac{3}{2} \frac{(\mathbf{p}_{1},\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} - \frac{1}{2} \left(\mathbf{m}_{1},\mathbf{p}_{2} \right) \right) \\ & + \frac{1}{4} \frac{G^{2}m_{1}m_{2}}{r_{12}^{2}} \left(m_{1}^{2}(\mathbf{n}_{1}^{2},\mathbf{p}_{1})^{2} - \frac{3}{2} \frac{(\mathbf{p}_{1},\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} - \frac{1}{2} \left(\mathbf{m}_{1},\mathbf{n}_{2} \right) \right) \\ & + \frac{1}{4} \frac{G^{2}m_{1}m_{2}}{r_{12}^{2}} \left(m_{1}^{2}(\mathbf{n}_{1}^{2},\mathbf{p}_{1})^{2} - \frac{3}{2} \frac{(\mathbf{p}_{1},\mathbf{p}_{1})^{2}}{m_{1}^{2}m_{2}^{2}} - \frac{2}{2} \left(m_{1},\mathbf{n}_{2} \right) \right) \\ & + \frac{1}{4} \frac{G^{2}m_{1}m_{2}}{r_{12}^{2}} \left(m_{1}^{2}(\mathbf{n}_{1}^{2},\mathbf{p}_{1})^{2} - \frac{3}{2} \frac{(\mathbf{p}_{1},\mathbf{p}_{1})^{2}}{m_{1}^{2}m_{2}^{2}} - \frac{1}{2} \left(m_{1},\mathbf{m}_{2} \right) \right) \\ & - \frac{1}{8} \frac{Gm_{1}m_{2}}{r_{12}} \left(m_{1}^{2}(\mathbf{m}_{1},\mathbf{p}_{2}) - \frac{3}{2} \left(m_{1},\mathbf{m}_{2} \right) \frac{2}{2} \left(m_{1},\mathbf{m}_{2} \right) \right) \\ & - \frac{1}{8} \frac{G^{2}(\mathbf{m}_{1},\mathbf{p}_{2})}{r_{12}} \left(m_{1}^{2}(\mathbf{m}_{1},\mathbf{p}_{2}) + \frac{1}{2} \left(m_{1}^{2}(\mathbf{m}_{2},\mathbf{p}_{2}) \right) \\ & - \frac{1}{8} \frac{G^{2}(\mathbf{m}_{1},\mathbf{p}_{2})}{m_{1}^{2}m_{1}^{2}} + \frac{1}{2} \frac{G^{2}(\mathbf{p}_{1},\mathbf{p}_{2})}{m_{1}^{2}m_{1}^{2}} + \frac{1}{2} \frac{G^{2}(\mathbf{p}_{1},\mathbf{p}_{2})}{m_{1}^{2}m_{1}^{2}} \\ & - \frac{1}{16} \frac{G^{2}(\mathbf{m}_{1},\mathbf{p}_{2})}{m_{1}^{2}m_{1}^{2}} + \frac{1}{2} \frac{G^{2}(\mathbf{p}_{1},\mathbf{p}_{2})}{m_{1}^{2}m_{1}^{2}} \\ & - \frac{1}{18} \frac{G^{2}(\mathbf{p}_{1},\mathbf{p}_{2})}{m_{1}^{2}m_{1}^{2}} + \frac{1}{12} \frac{G^{2}(\mathbf{p}_{1},\mathbf{p}_{2})}{m_{1}^{2}m_{1}$$

Spinning EOB effective Hamiltonian $H_{\text{eff}} = H_{\text{orb}} + H_{\text{so}} \rightarrow H_{\text{EOB}} = Mc^2 \sqrt{1 + 2\nu \left(\frac{H_{\text{eff}}}{\mu c^2} - 1\right)}$

$$\hat{H}_{\text{orb}}^{\text{eff}} = \sqrt{A\left(1 + B_p p^2 + B_{np} (\boldsymbol{n} \cdot \boldsymbol{p})^2 - \frac{1}{1 + \frac{(\boldsymbol{n} \cdot \boldsymbol{\chi}_0)^2}{r^2}} \frac{(r^2 + 2r + (\boldsymbol{n} \cdot \boldsymbol{\chi}_0)^2)}{\mathcal{R}^4 + \Delta (\boldsymbol{n} \cdot \boldsymbol{\chi}_0)^2} ((\boldsymbol{n} \times \boldsymbol{p}) \cdot \boldsymbol{\chi}_0)^2 + Q_4\right)}.$$

 $H_{\rm so} = G_S \boldsymbol{L} \cdot \boldsymbol{S} + G_{S^*} \boldsymbol{L} \cdot \boldsymbol{S}^*,$

$$\mathbf{S} = \mathbf{S_1} + \mathbf{S_2}; \ \mathbf{S_*} = \frac{m_2}{m_1}\mathbf{S_1} + \frac{m_1}{m_2}\mathbf{S_2},$$

Gyrogravitomagnetic ratios (when neglecting spin^2 effects)

$$r^{3}G_{S}^{\rm PN} = 2 - \frac{5}{8}\nu u - \frac{27}{8}\nu p_{r}^{2} + \nu \left(-\frac{51}{4}u^{2} - \frac{21}{2}up_{r}^{2} + \frac{5}{8}p_{r}^{4}\right) + \nu^{2}\left(-\frac{1}{8}u^{2} + \frac{23}{8}up_{r}^{2} + \frac{35}{8}p_{r}^{4}\right)$$

$$r^{3}G_{S_{*}}^{\mathrm{PN}} = \frac{3}{2} - \frac{9}{8}u - \frac{15}{8}p_{r}^{2} + \nu\left(-\frac{3}{4}u - \frac{9}{4}p_{r}^{2}\right) - \frac{27}{16}u^{2} + \frac{69}{16}up_{r}^{2} + \frac{35}{16}p_{r}^{4} + \nu\left(-\frac{39}{4}u^{2} - \frac{9}{4}up_{r}^{2} + \frac{5}{2}p_{r}^{4}\right) + \nu^{2}\left(-\frac{3}{16}u^{2} + \frac{57}{16}up_{r}^{2} + \frac{45}{16}p_{35}^{4}\right)$$

Resummed EOB waveform

(Damour-Iyer-Sathyaprakash '98) Damour-Nagar '07, Damour-Iyer -Nagar '08, Pan et al. '10

$$\begin{split} h_{\ell m} &\equiv h_{\ell m}^{(N,\epsilon)} \hat{h}_{\ell m}^{(\epsilon)} \hat{h}_{\ell m}^{NQC} \\ \hat{h}_{\ell m}^{(\epsilon)} &= \hat{S}_{\rm eff}^{(\epsilon)} T_{\ell m} e^{i\delta_{\ell m}} \rho_{\ell m}^{\ell} \\ T_{\ell m} &= \frac{\Gamma(\ell + 1 - 2i\hat{k})}{\Gamma(\ell + 1)} e^{\hat{\kappa}k} e^{2i\hat{k}\ln(2kr_0)} \end{split} \\ \text{NB: T_lm} \\ resums an infinite number of terms and already contains, eg. (4.5PN tail^3) terms (Messina-Nagar17) \end{split}$$

$$\mathcal{F}_{arphi} \equiv -rac{1}{8\pi\Omega} \sum_{\ell=2}^{\ell_{\max}} \sum_{m=1}^{\ell} (m\Omega)^2 |Rh_{\ell m}^{(\epsilon)}|^2$$

Numerical Relativity (NR)

Mathematical foundations :

Darmois 27, Lichnerowicz 43, Choquet-Bruhat 52-

Breakthrough:

Pretorius 2005 generalized harmonic coordinates, constraint damping, excision

Moving punctures:

Campanelli-Lousto-Maronetti-Zlochover 2006 Baker-Centrella-Choi-Koppitz-van Meter 2006

The first EOB vs NR comparisons

Buonanno-Cook-Pretorius 2007

FIG. 21 (color online). We compare the NR and EOB frequency and $\text{Re}[_{-2}C_{22}]$ waveforms throughout the entire inspiral-merger-ring-down evolution. The data refers to the d = 16 run.

SXS COLLABORATION NR CATALOG

A catalog of 171 high-quality binary black-hole simulations for gravitational-wave astronomy [PRL 111 (2013) 241104]

Abdul H. Mroué,¹ Mark A. Scheel,² Béla Szilágyi,² Harald P. Pfeiffer,¹ Michael Boyle,³ Daniel A. Hemberger,³ Lawrence E. Kidder,³ Geoffrey Lovelace,^{4, 2} Sergei Ossokine,^{1, 5} Nicholas W. Taylor,² Anil Zenginoğlu,² Luisa T. Buchman,² Tony Chu,¹ Evan Foley,⁴ Matthew Giesler,⁴ Robert Owen,⁶ and Saul A. Teukolsky³

0115 0117 0110 0119 0120 0	E121 0123 0124 E135 0126 0127 E151
0128 0139 0139 0130 0131 0132 0123 012	c132 0134 0135 c137 0138 0136 c137
0008 0012 0017	0023 0023 0023 0023
0031 0047 0051 0055 0054	
noss 0095 0095 0095 0095 0095	
0025 0026 0028 0023	0051 0076 0079 0161
0034 0056 0063	0100 0153 0157 0156 0156
0073	
2002	
2009 2030 2030 2031	0092 0102 0102
2004 4000 4000 5000 10000 12040 2000 4000 4000 4000 10000 12040 2000 400	The Advert Added 19400 19400 7040 Added Added Added 19400 19400 7040 7040 4000 4000 4000 19400 71400 74400 4000

FIG. 3: Waveforms from all simulations in the catalog. Shown here are h_+ (blue) and h_x (red) in a sky direction parallel to the initial orbital plane of each simulation. All plots have the same horizontal scale, with each tick representing a time interval of 2000M, where M is the total mass.

But each NR waveform takes ~ 1 month, while 250.000 templates were needed and used...

EOB[NR]: Damour-Gourgoulhon-Grandclement '02, Damour-Nagar '07-16, Buonnano-Pan-Taracchini-....'07-16

NR-completed resummed 5PN EOB radial A potential

«We think, however, that a suitable "numerically fitted" and, if possible, "analytically extended" EOB Hamiltonian should be able to fit the needs of upcoming GW detectors.» (TD 2001)

here Damour-Nagar-Bernuzzi '13, Nagar-et al '16; alternative: Taracchini et al '14, Bohe et al '17

4PN analytically complete + 5 PN logarithmic term in the A(u, nu) function, With u = GM/R and nu = m1 m2 / (m1 + m2)² [Damour 09, Blanchet et al 10, Barack-Damour-Sago 10, Le Tiec et al 11, Barausse et al 11, Akcay et al 12, Bini-Damour 13, Damour-Jaranowski-Schäfer 14, Nagar-Damour-Reisswig-Pollney 15]

$$\begin{split} A(u;\nu,a_{6}^{c}) &= \boxed{P_{5}^{1}} \Biggl[1 - 2u + 2\nu \, u^{3} + \nu \left(\frac{94}{3} - \frac{41}{32} \pi^{2} \right) \, u^{4} \\ u &= \frac{GM}{c^{2}R} + \nu \left[-\frac{4237}{60} + \frac{2275}{512} \pi^{2} + \left(-\frac{221}{6} + \frac{41}{32} \pi^{2} \right) \nu + \frac{64}{5} \ln(16e^{2\gamma}u) \right] u^{5} \\ \nu &= \frac{m_{1}m_{2}}{(m_{1} + m_{2})^{2}} + \nu \left[\frac{a_{6}^{c}(\nu)}{105} - \left(\frac{7004}{105} + \frac{144}{5} \nu \right) \ln u \right] u^{6} \Biggr] \\ \boxed{a_{6}^{c \, \text{NR-tuned}}(\nu)} = 81.38 - 1330.6 \, \nu + 3097.3 \, \nu^{2} \end{split}$$

MAIN RADIAL EOB POTENTIAL $A(r; \nu)$

EOB[NR] / NR Comparison

Instantaneous GW power at coalescence ~ 10^56 erg/s ~ 10^-3 c^5/G

MATCHED FILTERING SEARCH AND DATA ANALYSIS

O1: precomputed bank of ~ 200 000 EOB templates for inspiralling and coalescing BBH GW waveforms: m1, m2, chi1=S1/m1^2, chi2=S2/m2^2 for m1+m2> 4Msun; + ~ 50 000 PN inspiralling templates for m1+m2< 4 Msun;

O2: ~ 325 000 EOB templates + 75 000 PN templates

Search template bank made of spinning EOB[NR] templates (Buonanno-Damour99,Damour'01...,Taracchini et al. 14) in ROM form (Puerrer et al.'14); Recently improved (Bohé et al '17) by including leading 4PN terms (Bini-Damour '13), spindependent terms (Pan-Buonnano et al. '13), and calibrating against 141 NR simulations. [post-computed NR waveform for GW151226 took three months and 70 000 CPU hours !]

FIG. 1. The four-dimensional search parameter space covered by the template bank shown projected into the component-mass plane, using the convention $m_1 > m_2$. The lines bound mass regions with different limits on the dimensionless aligned-spin parameters χ_1 and χ_2 . Each point indicates the position of a template in the bank. The circle highlights the template that best matches GW150914. This does not coincide with the best-fit parameters due to the discrete nature of the template bank.

+ auxiliary bank of Phenom[EOB+NR] templates (Ajith...'07, Hannam...'14, Husa...'16, Khan...'16)

46

GR tests from LIGO-Virgo

 SNR_{GR}

Fitting factor between the observed GW signal from the coalescence of two black holes and the best-fit GR prediction (LIGO SC '19):

The most direct evidence that the BHs predicted by GR exist and have the expected structure, notably the final damped vibration modes.

Towards the Future

ligo india

pulsar timing array

Double-Copy, « Feynman-integral Calculus », Generalized unitarity, Eikonal,...

Henri Poincaré

50

«Il n'y a pas de problèmes résolus, il y a seulement des problèmes plus ou moins résolus »

«There are no (definitely) solved problems, there are only more or less solved problems »

