Quantum Computers (Basics) Optimization, Entanglement and Chaos (Some) Challenges

Entanglement, Chaos and Quantum
Computation

Arnold Sommerfeld Lectures (Munich 2023)
In collaboration with Joonho Kim (IAS Princeton,Rigetti) and
Dario Rosa (IBS, South Korea)

JSTAT 073101 (2022), Phys. Rev. A 106, 052424 (2022),
JSTAT 023104 (2023).



Quantum Computers (Basics) Optimization, Entanglement and Chaos

Outline

Quantum Computers (Basics)

Optimization, Entanglement and Chaos

(Some) Challenges

(Some) Challenges



Quantum Computers (Basics) Optimization, Entanglement and Chaos (Some) Challenges

The Classical Computer

Classical Mechanics is the physical paradigm for classical
computing.

The classical computer uses bits to represent the values it
is operating on.

A bit can be either 0 (off) or 1 (on).

The state of the classical computer at any given time is
described by a collection of zeros and ones:

01100100000111111011101.... (1)

The set of gates (AND, NOT) is a complete set - every
logical function can be written using these gates.
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The Quantum Computer

e Quantum Mechanics is the physical paradigm for quantum
computing.

e The quantum computer uses quantum bits called qubits to
represent the values it is operating on.

e A qubit can represent the values 0 or 1, or a linear
combination of both with complex coefficients (The
principle of superposition):

[0) = al0) +BI1), o+ =1 (2)

Qubit

S it of
qua ntum information
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Quantum Register

¢ A stack of n qubits is a quantum register.
¢ The state of the quantum register lives in the Hilbert space:

H=C?*@C?®---@C?% dmH)=2" (3)

V) = ZCI1...i,7|i1>“'|in>aik:0a1
Yol = 1, ) ~e¥y) = CPPTT (4)

« Single qubit: CP!

0 iv . 0
[v) = cosE\O) + €'?sin é\1) (5)
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Entanglement

A generic state |¢)) € H is not a product state:

) [ @)@ -+ @ [Y)n (6)

Entanglement can be viewed as a measure of the
deviation from being a product state, and is a measure for
quantum correlation.

Entanglement is necessary for quantum computation.

Example:
. 1
a \FZ

It requires a delicate isolation of the quantum system from
the classical environment (decoherence).

Bell State:  |¢) (100) + |11)) (7)
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Entanglement

e The higher the entanglement is, the larger the information
spread, such that we can read the information only after
measuring a significant fraction of the qubits.

e As we will see, entanglement is responsible both for the
success and failure of the quantum algorithms. The
quantum algorithm will not be effective in the absence of
entanglement, as well as with its excess.

o We will quantify an optimal region of information spreading
and entanglement, which leads to the success of the
optimization in the quantum/classical hybrid algorithms.
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Quantum Gates

Operations on the quantum register are performed by
unitary transformations (Reversible).

A universal set of one-qubit and two-qubit gates can
approximate any unitary evolution.

Single-qubit gates: X|0) = [1), X|1) = |0).
Single-qubit rotations plus CNOT is a universal set of
gates.

Two-qubit gate (CNOT):

e 0100
CNOT =
0 0 0 1
a —Q—
00 10
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Toffoli Gate (Universal)

S
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Circuit Architecture

e The architecture that we will be discussing (random
quantum circuit) :

exp(ifli0y,)

exp(i ;0y,5)
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Quantum Circuit Architecture

e The qubits are arranged identically with period n, i ~ i + n.

¢ At each time step, a chain of the two-qubit unitary gates
act on the quantum register. The action is (alternating) on
neighbouring qubit pairs.

e The two-qubit gate is made of independent Pauli-y
rotations (with random parameter in 2/(0, 27)), acting on
single qubits:

(8)

—sinf cosd

R(9) = exp(ioyb) = < cos ¢ Sin@)

followed by the controlled-Z operation:
CZ =diag(1,1,1,-1) (9)

that generically creates a pairwise entanglement.
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Noise

Quantum system are extremely delicate: qubit phase
errors, quantum gate errors, decoherence.

There is a continuous manifold of errors.

We cannot copy (no cloning).
We cannot measure the data qubits to detect errors.

Threshold theorem:
d
>
P~ | =
‘ <pth

(10)
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Quantum Algorithms

Noisy Intermediate-Scale Quantum (NISQ) technology is
being developed rapidly.

It poses a great challenge to come up with efficient
quantum algorithms that will run on the NISQ computers
and perform better than classical ones.

Many real-world use cases are associated with machine
learning and optimization, for which random circuits offer
an appropriate framework:

7: _ exp(ifl iy ;)
j - exp(ify joy ;)
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Hamiltonian Complexity

The typical optimization tasks can be formulated as a
search for the ground state of a x-local Hamiltonian H,
which is a sum of local operators that act on « qubits:

H=> H (11)
i
H; imposes a constraint analogous to x-local clause in
classical constraint satisfaction problems:
(Xi VXV Xk) X, Xj, Xk € {0,1} (12)

implies x;x;xx € {001,010,011,100,101,110,111}.

The Hamiltonian encodes an exact combinatorial problem,
where each H; is a constraint (QAOA, VQA, Hamiltonian
complexity).
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Hamiltonian Ground State

e The ground state is an eigenstate of the Hamiltonian with
the lowest eigenvalue.

e The expectation value E of the Hamiltonian defines the
cost function.

e The optimization task is the minimization of the cost
function trying to reach the ground-level energy:

E(9) = (de(0)[H|pe(6)),  |e(8)) = UO)[0)*"  (13)



Optimization, Entanglement and Chaos
Random Circuit Model

e The random circuit model is a unitarily evolving closed
(1 4+ 1)-dimensional chaotic system.

e The discrete space and time directions are spanned by the
qubits and the circuit layers, respectively.

 The initial state |0)®" is pure, and so is the final state
|1c(0)) produced by the circuit.

¢ While the initial state is not entangled, the successive

application of the circuit layers generates entanglement
between the qubits in the final state:
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Entanglement Entropies

Divide the system of n qubits to two subsets A and B with
naand ng = n— na qubits (ng = ng = 3).

The circuit’s bipartite entanglement can be represented by
the reduced density matrix:

pa=Trgpc(0), pc(0) = |[¥c(0))(Ye(0)] (14)
The k-th Renyi entropy reads:

1
Rf = 7= logTr (p’;\) (15)

The limit kK — 1 corresponds to the von Neumann
entanglement entropy:

See = —Trpalog pa (16)

We will use these entropies to diagnose the efficiency of
the quantum algorithm.



Optimization, Entanglement and Chaos

A Simple Example
e The Bell State:

[¥12) = —= (100) +[11)) (17)

7
e The density matrix reads:

piz = [vr2) (2] = 5 (100} + 1)) ((00] + (1) (18)

e The reduced density matrix reads:

1
5 (0)(0]+ 1)(1)) = (2

N —
N———

p1 (19)

N \

e The k-th Renyi entropy reads:

RE =1 (20)
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Maximally Mixed State

e The density matrix of the maximally mixed state of N
qubits is:

1
Pmixed = 2LNN (21)
e The Renyi entropies are:
RK=N (22)

e ltis the limit of 3 — 0 of the thermal density matrix:

e
Pthermal = Tre—BH (23)
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Circuit Entanglement

e The general structure of the Renyi entropies:

N4

A B [

Geometric measure

na-

Entanglement entropies

Number L of Circuit Layers

e The geometric measure of entanglement measures the
distance of the state |¢/) from the closest product state:

eg(|¥)) = — log supaep|(al)[? (24)
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Numerical Simulations

e We see a linear growth of the entropies to a plateau with
an approximate value 3 (up to a numerical shift).

e The entanglement velocities are independent of the
number of qubits but are different for the Von Neumann
and Renyi-2 entropies.

e The Von Neumann entropy plateau is a little higher and the
velocity is larger than that of Renyi-2.

10 Von Neumann entropy 10 Renyi-2 entropy
8- 84
— N =20
—— n=18
6 6 n=16
p — n=14
n=12
“] “] n=10
4 n=8
4
24 f 24 4
/
f f
[ T T T T T 0 T T T T T
10 20 30 40 50 60 10 20 30 40 50 60
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Numerical Simulations

e Various k-th Renyi entropies for n = 12 and n = 20 qubits
averaged over 50 samples as a function of the number of
layers.

e We see the linear growth of the entropies to a plateau with
an approximate value 3, up to numerical shifts that depend
on K.

e In the linear region, the growth rates are independent of
the number of qubits but depend on k.

Entanglement Entropies at n=12 Entanglement Entropies at n=20
10

54 8

4 —— Von Neumann
67 Rényi-2

3 —— Rényi-4
44 —— Rényi-6

2] —— Rényi-w

14 27

] T T T o T T T

20 40 60 80 20 40 60 80




Quantum Computers (Basics) Optimization, Entanglement and Chaos (Some) Challenges

Renyi Entropies Monotonicity

e The Renyi-k entropies are non-increasing as a function of

k:
Jm Rp) < - < R?(p) < See(p) Scl,iLnOR"(p)
Smax(p) = limg_0 R¥(p) = log (rank p)
Smin(p) = NiMkLoe R¥(p) = —log (Amax(p))  (25)
Max entropy Smax Min entropy Smin Stax - Smin
:

T T T T T T T T
20 40 60 80 20 40 60 80 20 40 60 80
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Entanglement Scaling

e A ground state of x-local Hamiltonians with a mass gap is
typically a non-generic state whose entanglement entropy
is expected to follow an area law scaling (proof in one
dimension by Hastings).

¢ In the linear growth region in the entanglement entropy
curve:
RE(pa) ~ vkL - Area(dA) = vxL (26)
where v is the entanglement velocity that depends on k.
e In the plateau region:

RA(pa) ~ nj2 — ¢, = Vol(A) — cx (27)
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Optimization Task

¢ Using the density matrix of the quantum circuit p¢(0):
E(0) =Tt (pc(0)H) (28)

¢ One performs multiple iterations of evaluating the density
matrix pc(6) and updating the parameters (via the gradient
descent) that will finally stop at 6 = 6.

¢ We would like to reach the final parameter ; such that
AE=Tr ((pc(é?f) — pg)H) ~0 (29)

where pg is the exact ground state of the Hamiltonian.
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Trace Distance

Cauchy-Schwarz inequality:

Tr ((pc(0r) = pg)H) < llpc(0r) = pgll; - 1Hll5, (30)

where the trace norm || O||y is the sum of singular values of
an operator O, i.e., eigenvalues of (O'0)'/2.

A natural condition for efficient reduction of AE is
arranging an initial circuit state p(6;,) to be in the proximity
of the ground state with a small enough trace distance
1c(0in) — pgll;-

We generally do not know the ground state, thus being
unable to estimate the trace distance ||pc(0in) — pgll; -

The trace distance can be considerably large even when

the energy difference between quantum states is
minuscule.
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Entanglement Diagnostic

e Upper Bound:

2

’
< na— See(pa)

_ A
2 PA 2na

1

e Lower bound (ng > 1):

See (pa) 1 Ia
11— na 2P

(Some) Challenges
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Entanglement Diagnostic

Our strategy will be to avoid having a maximally entangled
state as an initial circuit state pc(0j,) in order to locate it in
the proximity of the ground state.

"Expressible Circuits" that can express a volume-law
entangled states have to be highly entangled.

The entanglement diagnostic for circuit states is only a
necessary condition to keep the initial and target states
close.

The gradient-based optimization indeed works efficiently

for those variational circuits whose average entanglement
entropy scales slower than the volume law.
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Hamiltonians
The one-dimensional Ising Hamiltonian:

n n
H= Z 02,i0z,i+1 + g Z Ox,i (33)
i=1 =1

The long-range Ising model:

1 n
H= Z e 02i0zj+ g Z Ox,i (34)
~ oi. ) -
i i=

d(i,j) is the shortest distance between the /’'th and j'th
spins.
The SYK model:

H = (i)9/? S g YiVig (39)

1<ii<...<ig<2n

{"i}1<i<2n are Majorana fermions and Jj,. ;, are randomly
drawn from the Gaussian distribution with mean 0 and
variance (g — 1)!/(2n)9~1.
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Ground State Energies

e The ground energies: (Left) Nearest-neighbor Ising
Hamiltonian with different g. (Middle) Long-range Ising
Hamiltonian at g = 1 with different «.. (Right) SYK4
Hamiltonian with 100 different instances of Gaussian
random couplings:

Nearest-neighbor Ising model Long-range Ising model SYK4 model
-5 7104 -0.40
10 -7.754
- -9.50
157 -10.304 | |—n=6
-11.90 3 — n=8
.0.909 n=10
-204 ' | —n=12
-12.804 -1.00 i
-14.204
25 0. AR m'.m,'v.’v' i w4
120 = o
E : , . T 15851 ; : : 130 ; ; ; T
0.5 1 1.5 2 25 5 10 15 20 0 20 40 60 80 100
¢} o a
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Optimization, Entanglement and Chaos

Renyi Entropies

The scatter plot of energy and Reényi-2 entropy over all
eigenstates of the n = 12 Hamiltonians: (Left)
Nearest-neighbor Ising Hamiltonian at g = 1. (Middle)
Long-range Ising Hamiltonian at g = « = 1. (Right) SYK4
Hamiltonian with a particular instance of Majorana fermion
couplings sampled from Gaussian distribution:

Nearest-neighbor Ising model Long-range Ising model SYK4 model

IS
L

@
!

~
h

T T T T T - T T T T T - T T T T T
-04 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4 0.6 -0.4 -0.2 0 0.2 0.4
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Renyi Entropies

e The ground state entanglement entropies with 12 qubits:
(Left) Nearest-neighbor Ising Hamiltonian with different g.
(Middle) Long-range Ising Hamiltonian at g = 1 with
different a.. (Right) SYK4 Hamiltonian with 100 different
instances of Gaussian random couplings:

s Nearest-neighbor Ising model s Long-range Ising model s SYK4 model
5 5
4 4
3 3
2 2
—— Von Neumann
Rényi-2
— Rényi-4
— Rényi-6

o—rw

T T T T T T T
0.5 1 15 2 25 5 10 15 2 0 20 40 60 80 100
9 o Random Seed
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Optimization

The objective is to find a circuit parameter 6* that can
closely approximate the ground state energy, E(6*) ~ Eg.

Iterative steps are proportional to the negative gradient of
the energy function at each point:

07’-}—1 =0; — UVE(HT) (36)

As we are interested in finding a general correlation
between the entanglement diagnostics and the success of
optimization.
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Optimization |

e The optimization to reach the nearest-neighbours
transverse-field Ising model ground state at g =1 as a
function of the number of circuit layers:

Energy difference before/after optimization Trace distance before/after optimization Renyi-2 entropy before/after optimization
16 J 3
1 .
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Optimization |

(Some) Challenges

e The optimization to reach the non-local Ising Hamiltonian
ground state at « = g = 1 as a function of the number of

circuit layers:

Energy difference before/after optimization

Trace distance before/after optimization

Renyi-2 difference before/after optimization

i

'
0.8
0.6
0.4+

02"

i

8 12162024 2832364044 4852566064 68
L

812162024 2832364044 485256606468
L

8 12162024 2832364044 4852566064 68
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Optimization Il

¢ Measurements averaged over 30 independent circuits,
before/after the VQA optimization with a particular instance
of the SYK,4 Hamiltonian at n = 12, as a function of the
circuit depth L:

5 Energy difference before/after optimization Trace distance before/after optimization Renyi-2 entropy before/after optimization

14

|
1] 47
v 0.98-
08 i .
3]
096
0.6
0.94] 2
0.4+ :
]
0.24 0.92-
o]
e B - B e o o R
4 8 12 16 20 24 28 32 36 40 4 8 12 16 20 24 28 32 36 40 4 8 12 16 20 24 28 32 36 40
L L L

¢ One needs to overparametrize the circuit.
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Random Graph Architecture

e Consider a simple stochastic variation of the circuit
architecture that omits the CZ entangler inside the 2-qubit
gate with a fixed probability p = 1/2:

Energy difference before/after optimization Trace distance before/after optimization Renyi-2 entropy before/after optimization

16
.- 1] Y| 5T
144 B |
iy !
12 0.8 i Pl o4
i
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B |

8 ! ' I
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0.2 1]

04 . 04
...............
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Quantum Energy Landscape

e The energy function defines the quantum energy
landscape:

E(6) = (4(0)[H]y(6)) (37)

e We argue that decreasing the entangling capability and
increasing the number of circuit parameters have the same
qualitative effect on the Hessian eigenspectrum.

¢ Both the low-entangling capability and the abundance of
control parameters increase the curvature of non-flat
directions, contributing to the efficient search of area-law
entangled ground states as to the optimization accuracy
and the convergence speed.
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Quantum Energy Landscape
e The expectation values of the energy function and its
derivatives (flat directions on average):
Eo[E(0)] = Tr(H)/2" (38)
Eo[02E(8)] = Eg[020,E(8)] = --- =0 (39)
e The variance Varg [02E(8)] of the energy function gradient
with 56 circuit layers versus the probability p to remove the
two-qubit entanglers:

1004
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The Hessian

e The Hessian (H,, = 020pE) eigenspectrum with n =12
qubits and L = 56 layers versus the probability p to omit
the CZ-gates (at randomly initialized circuit parameters).

¢ (a) top/bottom eigenvalues, (b) % of large eigenvalues
satisfying |\| > 5, (c) % of small eigenvalues satisfying
|A| < 0.2, (d) gradient overlap with Pgmaj-

e

T T T T T T T T T T T T T T T i T T T T
0 02 04 06 08 0 02 04 06 08 0 02 04 06 08 0 02 04 06 08

(a) (b) (c) (d)
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Control Parameters

¢ Adding more control parameters (single-qubit rotations) for
fixed entanglement (L = 56 layers) leads to better

16 o 5] " 100% ] '
’ .
14
] 4K b
121 4 80%
109
39 60% ¥
ol
6] 2] o] 2]
o
] 1«
o] ! 20%
0 o] ol
, \ . \ ; , \ , \ , 0% , \ , \ ,
5 100 150 20 250 50 100 150 200 250 S0 100 150 200 250 S0 100 150 200 250

Energy Difference Renyi-2 Entropy Success Rate for AE < 0.1 Update Steps until AE < 0.1

e Reminiscent of classical over-parametrized deep learning.
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Classical Chaos

¢ A classical dynamical system with n degrees of freedom is
integrable iff it has n conserved quantities in involution.

¢ A characteristic of chaotic system is the sensitivity to initial
conditions (butterfly effect):

3| X(t)| ~ e6]X(0)] (40)
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Quantum Chaos

Quantum Chaos is the quantum theory of classical chaotic
dynamical systems.

The variational circuit states are in general chaotic.

We want to explore the connection between quantum
chaos diagnostics of circuit states and the circuit
performance.

Result: the diagnostics that use the eigenvalue spectrum,
e.g., operator spreading and entanglement entropy are
more accurate measures of the optimization efficiency than
those that use the level spacing distribution of the
entanglement spectrum, such as r-statistics or spectral
form factors.
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Quantum Chaos

Random matrix theory (RMT) describes statistical
properties of the energy eigenvalues of a numerous
chaotic systems (Wigner, Dyson, BGS).

The level spacing distribution p(s) is the probability to find
two neighbouring (energy) eigenvalues separated by a
distance s (s; = e 1 — €)).

For integrable models p(s) follows the Poisson distribution:

p(s)=e"° (41)
For RMT: P
sPebss

ps(s) = ”17%5) (42)

GOE: 5 =1,GUE: g =2.
In the limit s — 0 p(s) — 0 (level repulsion).
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Quantum Chaos

e Denote the density matrix of the circuit state by p. and
divide n qubits of the quantum register into two subsets A
and B of the equal size, ny = ng = 3.

e The modular Hamiltonian H(p4) of the reduced density
matrix pa = Trgpc is:

e*H(PA)

PA= —7 (43)

Za = Tr pe—H(r4) is the partition function of the modular
Hamiltonian.

e Chaotic properties of Hamiltonian systems reveal
themselves also in the level spacing distribution of the
modular Hamiltonian spectrum.
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Circuit Distribution

(Some) Challenges

e Ha(p) eigenvalue-difference distribution at 30 layers
compared to GOE:
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Optimization, Entanglement and Chaos

Circuit Distribution

(Some) Challenges

e Ha(p) eigenvalue-difference distribution at 50 layers
compared to GOE:
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Operator Spreading

e Operator spreading is a diagnostic of the chaotic dynamics
and information scrambling.

e A local operator O that acts on a small number of qubits at
time step t = 0 evolves at time step ¢ to:

o(t) = U(h'o(0)u() (44)

that acts on a large number of qubits.

e This spread can be quantified and its growth is ballistic
with a characteristic velocity called the butterfly velocity.
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Operator Spreading

e Any Hermitian operator O(t) acting on n qubit systems can
be written in the Pauli string basis:

2n/2 Z Py p( ot @@ (45)

where

TV @ ol O()  (46)

1
/n(t) 2,7/2

e Under the unitary time evolution (44)

Tr(O(H)TO(t)) = Tr(O(0) = on Z |hj, .. = constant
(47)



Optimization, Entanglement and Chaos

Operator Spreading

e The size of the operator O(t) is measured by the size of
the region where O(t) does not commute with a typical

local operator agf’ at position x.
e This can be quantified as (OTOC):
1
C(x, 1) = 5Tr(pucO(1), o511 [O(1), 05))
1
= ST([O(1), o5 [O(1), 0871)
Z 2|hy.... (D (48)

/HAO a
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Operator Spreading
o We numerically measure (48) for 12 qubits, where the
operator O(0) is the Hamiltonian whose expectation value

we are minimizing:

L=1 L=5 L=20 L=40

= Generic

B Stochastic

L=1 L=15 L=40 L=80
2 a 6 8 10 12
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r-Statistics

e r-statistics is a short-range diagnostics of quantum chaos.

o Min(S,', S,'_H)
! Max(s;, Sjt1 )’
e r; =~ 0.53590, r; ~ 0.60266 and r; ~ 0.67617 for GOE, GUE
and GSE ensembles, respectively.

e For an integrable system the values of r; are typically
smaller, approaching the value of r; ~ 0.38629 for a
Poisson process.

Si = €41 — 6 (49)
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Circuit r-Statistics

e With 12 layers:

0.65 -
0.60 [
0.55F . .- N —— Poisson
e e el s ST T e T GOE

0.50F e T . °

3 I R . GUE
0455 " _eec, '

- — GSE
0.40 -
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Circuit r-Statistics

e With 50 layers:

—— Poisson

— GOE
GUE
— GSE

100

200 300 400 500
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Spectral Form Factor

e Define: _ ,
Z(r) = Tre~ImHalr) = 3~ g=ir(ei—e) (50)
i

e The spectral form factor ggg;f is another diagnostic for

quantum chaos:

50 layers

1k N=14

—— N =18
—— N = 20

0.01F

P
-
-
-
-
-
-
PR

10+ 0.001 0.010 0.100 1 10

e The universal structure begins at the "ramp time" t.amp.

e The linear ramp is a diagnostic for quantum chaos at "large
separation”.



(Some) Challenges

Challenges

¢ Develop analytical tools to study quantum circuits (Tensor
networks, condensed matter applications, quantum gravity)

¢ Understand which computations can a quantum computer
do better than the classical one (quantum complexity,
NISQ applications)

e Construct quantum algorithms for real world use cases.

e Study the relationship between classical and quantum, e.g.
classical and quantum deep learning.
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