# What is ：Dark Matter？ 

 ．and Classiffication of Effective operatorsHitoshi Murayama（Berkeley，Kavli IPMU，DESY）
Arnold Sommerfeld Seminar，July 25， 2019

東京大学国際高等研究所 THE UNIVERSITY OF TOKYO

INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE
NSTITUTES FOR ADVANCED STUDY

## What is <br> Dárk＇Matter？

Hitoshi Murayama（Berkeley，Kavli IPMU，DESY）
Arnold Sommerfeld Sẹminar，July 25， 2019




## matter


$\Omega_{\mathrm{m}}$ changes the overall heights of the peaks


## Dim Stars? Black Holes?

Search for MACHOs (Massive Compact Halo Objects)

## Large Magêllanic Cloud





## Best limit on Black Hole dark matter

observe Andromeda for one night read out CCDs every 2 min


No detection $\Rightarrow$ more stringent upper bound, than 2yr Kepler data (Griest et al.)


Nikura, Takada et al., Nature Astronomy

## Mass Limits

## "Uncertainty Principle"

- Clumps to form structure
- imagine $V=G_{N} \frac{M m}{r}$
- "Bohr radius": $r_{B}=\frac{\hbar^{2}}{G_{N} M m^{2}}$
- too small $m \Rightarrow$ won't "fit" in a galaxy!
- m > $0^{-22} \mathrm{eV}$ "uncertainty principle" bound (modified from Hu, Barkana, Gruzinov, astro-ph/0003365)


SIMP: dark hadrons
$m \sim 0.3 \mathrm{GeV}, \sigma \sim 10^{-24} \mathrm{~cm}^{2}$

## WIMP Miracle



$$
\begin{gathered}
\left\langle\sigma_{2 \rightarrow 2} v\right\rangle \approx \frac{\alpha^{2}}{m^{2}} \\
\alpha \approx 10^{-2} \\
m \approx 300 \mathrm{GeV}
\end{gathered}
$$

$$
\frac{n_{\mathrm{DM}}}{s}=4.4 \times 10^{-10} \frac{\mathrm{GeV}}{m_{\mathrm{DM}}}
$$

"weak" coupling $\quad$ "weak" mass scale correct abundance

Miracle ${ }^{2}$

## sociology

- We used to think
- need to solve problems with the SM
- hierarchy problem, strong CP, etc
- it is great if a solution also gives dark matter candidate as an option
- big ideas: supersymmetry, extra dim
- probably because dark matter problem was not so established in 80's




## recent thinking

- dark matter definitely exists
- naturalness problem may be optional?
- need to explain dark matter on its own
- perhaps we should decouple these two
- do we really need big ideas like SUSY?
- perhaps we can solve it with ideas more familiar to us?

Seminar in Berkeley Strongly Interacting Massive Particle (SIMP)


## Miracles



$$
\begin{gathered}
\left\langle\sigma_{2 \rightarrow 2} v\right\rangle \approx \frac{\alpha^{2}}{m^{2}} \\
\alpha \approx 10^{-2} \\
m \approx 300 \mathrm{GeV}
\end{gathered}
$$

WIMP miracle!


$$
\begin{gathered}
\frac{n_{\mathrm{DM}}}{s}=4.4 \times 10^{-10} \frac{\mathrm{GeV}}{m_{\mathrm{DM}}} \\
\left\langle\sigma_{3 \rightarrow 2} v^{2}\right\rangle \approx \frac{\alpha^{3}}{m^{5}} \\
\alpha \approx 4 \pi \quad \begin{array}{l}
\text { Hochberg, Kuflik, } \\
\text { Volansky, Wacker }
\end{array} \\
m \approx 300 \mathrm{MeV}^{\text {arXiv:1 } 402.5143}
\end{gathered}
$$

SIMP miracle!

## 

$$
\left.\Gamma_{\mathrm{ann}} \simeq H\right|_{\text {freezeoput }}
$$

## $\Gamma_{\mathrm{ann}} \simeq n_{\mathrm{dm}}^{2}\left\langle\sigma v^{2}\right\rangle_{\mathcal{B} \rightarrow 2}$

$$
H \simeq \frac{T^{2}}{M_{\mathrm{pl}}}
$$

$$
\begin{aligned}
m_{\mathrm{dm}} n_{\mathrm{dm}} & \sim m_{p} n_{b} \quad\left\langle\sigma v^{2}\right\rangle_{2 \rightarrow 2} \simeq \frac{\alpha^{2}}{m_{\mathrm{dm}}^{2}} \\
n_{b} & \sim \eta_{b} s
\end{aligned}
$$

$$
\eta_{b} \simeq T_{\mathrm{eq}} / m_{p} \quad s \simeq T^{3}
$$

$$
\Gamma_{\mathrm{ann}} \simeq \frac{T_{\mathrm{eq}}^{2} \alpha^{2}}{x_{F}^{3} \times m_{\mathrm{dm}}} \quad=\quad H \simeq \frac{m_{\mathrm{dm}}^{2}}{M_{\mathrm{pl}}^{2} x_{F}^{2}}
$$

## SIMPlest Miracle

- Not only the mass scale is similar to QCD
- dynamics itself can be QCD! Miracle³
- DM = pions
- e.g. $\operatorname{SU}(4) / S p(4)=S^{5}$
$\mathcal{L}_{\text {chiral }}=\frac{1}{16 f_{\pi}^{2}} \operatorname{Tr} \partial^{\mu} U^{\dagger} \partial_{\mu} U$


$$
\mathcal{L}_{\mathrm{WZW}}=\frac{8 N_{c}}{15 \pi^{2} f_{\pi}^{5}} \epsilon_{a b c d e} \epsilon^{\mu \nu \rho \sigma} \pi^{a} \partial_{\mu} \pi^{b} \partial_{\nu} \pi^{c} \partial_{\rho} \pi^{d} \partial_{\sigma} \pi^{e}+O\left(\pi^{7}\right)
$$

## SIMPlest Miracle

- $\operatorname{SU}(2)$ gauge theory with four doublets
- $\operatorname{SU}(4)=\mathrm{SO}(6)$ flavor symmetry
- $\left\langle q^{i} q^{i}\right\rangle \neq 0$ breaks it to $\mathrm{Sp}(2)=\mathrm{SO}(5)$
- coset space $\mathrm{SO}(6) / \mathrm{SO}(5)=\mathrm{S}^{5}$
- $\Pi_{5}\left(S^{5}\right)=\mathbb{Z} \Rightarrow$ Wess-Zumino term
- $\mathcal{L}_{W Z}=\varepsilon_{a b c d e} \varepsilon^{\mu v \rho \sigma} \pi^{\mathrm{a}} \partial_{\mu} \pi^{\mathrm{b}} \partial_{v} \pi^{\mathrm{c}} \partial_{\rho} \pi^{\mathrm{d}} \partial_{\sigma} \pi^{\mathrm{e}}$


## Wess-Zumino term

- $\operatorname{SU}\left(N_{c}\right)$ gauge theory - $\pi_{5}\left(\mathrm{SU}\left(N_{f}\right)\right)=\mathbb{Z}\left(N_{f} \geq 3\right)$
- $\operatorname{Sp}\left(N_{c}\right)$ gauge theory

(a)
(b)
(c)
- $\mathrm{SO}\left(\mathrm{N}_{\mathrm{c}}\right)$ gauge theory
- $\pi_{5}\left(\mathrm{SU}\left(N_{f}\right) / \mathrm{SO}\left(N_{f}\right)\right)=\mathbb{Z}\left(N_{f} \geq 3\right)$


## LAGRANGIANS

## Quark theory

$$
\mathcal{L}_{\text {quark }}=-\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu a}+\bar{q}_{i} i \not D q_{i}-\frac{1}{2} m_{Q} J^{i j} q_{i} q_{j}+h . c .
$$

## Sigma theory

$$
\mathcal{L}_{\text {Sigma }}=\frac{f_{\pi}^{2}}{16} \operatorname{Tr} \partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}-\frac{1}{2} m_{Q} \mu^{3} \operatorname{Tr} J \Sigma+\text { h.c. }-\frac{i N_{c}}{240 \pi^{2}} \int \operatorname{Tr}\left(\Sigma^{\dagger} d \Sigma\right)^{5}
$$



## Pion theory


(a)

(b)

(c)

$$
\begin{aligned}
\mathcal{L}_{\text {pion }}= & \frac{1}{4} \operatorname{Tr} \partial_{\mu} \pi \partial^{\mu} \pi-\frac{m_{\pi}^{2}}{4} \operatorname{Tr} \pi^{2}+\frac{m_{\pi}^{2}}{12 f_{\pi}^{2}} \operatorname{Tr} \pi^{4}-\frac{1}{6 f_{\pi}^{2}} \operatorname{Tr}\left(\pi^{2} \partial^{\mu} \pi \partial_{\mu} \pi-\pi \partial^{\mu} \pi \pi \partial_{\mu} \pi\right) \\
& +\frac{2 N_{c}}{15 \pi^{2} f_{\pi}^{5}} \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left[\pi \partial_{\mu} \pi \partial_{\nu} \pi \partial_{\rho} \pi \partial_{\sigma} \pi\right]+\mathcal{O}\left(\pi^{6}\right)
\end{aligned}
$$

The Results


Solid curves: solution to Boltzmann eq. $\frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3 / 10}$
Dashed curves: along that solution

$$
\frac{\sigma_{\text {scatter }}}{m_{\pi}} \propto m_{\pi}^{-9 / 5}
$$

The Results


Solid curves: solution to Boltzmann eq. $\quad \frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3 / 10}$
Dashed curves: along that solution

$$
\frac{\sigma_{\text {scatter }}}{m_{\pi}} \propto m_{\pi}^{-9 / 5}
$$ ©

## The Results




Solid curves: solution to Boltzmann eq. $\frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3 / 10}$
Dashed curves: along that solution

$$
\frac{\sigma_{\text {scatter }}}{m_{\pi}} \propto m_{\pi}^{-9 / 5}
$$

## DDO 154 dwarf galaxy

## DDO 154 dwarf galaxy



can be explained if dark matter scatters against itself Need $\sigma / m \sim 1 \mathrm{~b} / \mathrm{GeV}$
only astrophysical information beyond gravity

## Diversity in stellar distribution

Similar outer circular velocity and stellar mass, but different stellar distribution

- compact $\rightarrow$ redistribute SIDM significantly


Ayuki Kamada

- extended $\rightarrow$ unchange SIDM distribution



## self interaction



- $\sigma / m \sim \mathrm{~cm}^{2} / \mathrm{g}$ $\sim 10^{-24} \mathrm{~cm}^{2} / 300 \mathrm{MeV}$
- flattens the cusps in NFW profile
- suppresses substructur
- actually desirable for dwarf galaxies?


## SIDM

Spergel \& Steinhardt (2000)
now complete theory


## Resonant scattering




Xiaoyong Chu, Camilo Garcia-Cely, HM, Phys.Rev.Lett. 122 (2019) no.7, 071103

## Unified description of SIDM

- Hans Bethe: effective range theory


Xiaoyong Chu, Camilo Garcia-Cely, HM, in preparation

## communication

- 3 to 2 annihilation
- excess entropy must be transferred to $e^{ \pm}, \gamma$
- need communication at some level
- leads to experimental signal



## if totally decoupled



- $3 \rightarrow 2$ annihilations without heat exchange is excluded by structure formation, [de Laix, Scherrer and Schaefer, Astrophys. J. 452, 495 (1995)]


## vector portal

dark QCD with SIMP


$$
\frac{\epsilon_{\gamma}}{2 c_{W}} B_{\mu \nu} F_{D}^{\mu \nu}
$$

## Kinetically mixed U(I)

- e.g., the SIMPlest model

SU(2) gauge group with $N_{f}=2$ (4 doublets)

- gauge $\mathrm{U}(\mathrm{I})=\mathrm{SO}(2)$
c SO(2) $\times \mathrm{SO}(3)$
c $\operatorname{SO}(5)=\mathrm{Sp}(4)$
- maintains degeneracy of quarks
- near degeneracy of pions for co-annihilation

$$
S U(4) / S p(4)=S^{5}
$$

$$
\begin{gathered}
\left(q^{+}, q^{+}, q^{-}, q^{-}\right) \\
\left(\pi^{++}, \pi^{--}, \pi_{x}^{0}, \pi_{y}^{0}, \pi_{z}^{0}\right)
\end{gathered}
$$

$$
\frac{\epsilon_{\gamma}}{2 c_{W}} B_{\mu \nu} F_{D}^{\mu \nu}
$$



## Super KEK B \& Belle II






## Holographic QCD


inspired by AdS/CFT from string theory



FIG. 1. A sample spectrum of twin particles. Here we use $f / v=1$ to demonstrate the $\mathbb{Z}_{2}$ invariance between the visible and twin sectors for $t, h, Z, W$; lighter particles are subject to $\mathbb{Z}_{2}$-breaking effects without spoiling the solution to the hierarchy problem. In practice, twin sector masses are of course raised by a factor of $f / v \gtrsim 3$.

They are stable since they are the lightest particle with a conserved $S U(2)_{f}$ quantum number. (Here and below, we denote particles in the twin sector with a prime on the

| meson $M$ | particle content | $m_{M}^{2} \propto$ | $m_{M}$ |
| :---: | :---: | :---: | :---: |
| $\theta^{0}(\mathbf{3}, \mathbf{1})$ | $u^{\prime} \bar{c}^{\prime}, c^{\prime} \bar{u}^{\prime}, \frac{1}{\sqrt{2}}\left(u^{\prime} \bar{u}^{\prime}-c^{\prime} \bar{c}^{\prime}\right)$ | $2 m_{u^{\prime}}$ | $m_{\pi}(1+\Delta)$ |
| $D^{+}(\mathbf{2}, \mathbf{2})$ | $u^{\prime} \bar{d}^{\prime}, c^{\prime} d^{\prime}, u^{\prime} \bar{s}^{\prime}, c^{\prime} \bar{s}^{\prime}$ | $m_{u^{\prime}}+m_{d^{\prime}}$ | $m_{\pi}\left(1+\frac{\Delta}{2}\right)$ |
| $D^{-}(\mathbf{2}, \mathbf{2})$ | $d^{\prime} \bar{u}^{\prime}, s^{\prime} \bar{u}^{\prime}, d^{\prime} \bar{c}^{\prime}, s^{\prime} \bar{c}^{\prime}$ | $m_{u^{\prime}+m_{d^{\prime}}} m_{\pi}\left(1+\frac{\lambda}{2}\right)$ |  |
| $\eta^{0}(\mathbf{1}, \mathbf{1})$ | $\frac{1}{2}\left(d^{\prime} \bar{d}^{\prime}+s^{\prime} \bar{s}^{\prime}-u^{\prime} \bar{u}^{\prime}-c^{\prime} \bar{c}^{\prime}\right)$ | $m_{u^{\prime}}+m_{d^{\prime}}$ | $m_{\pi}\left(1+\frac{\lambda}{2}\right)$ |
| $\pi^{0}(\mathbf{1}, \mathbf{3})$ | $d^{\prime} \bar{s}^{\prime}, s^{\prime} \bar{d}^{\prime}, \frac{1}{\sqrt{2}}\left(d^{\prime} \bar{d}^{\prime}-s^{\prime} \bar{s}^{\prime}\right)$ | $2 m_{d^{\prime}}$ | $m_{\pi}$ |

TABLE I. Decomposition of the meson $S U(4)_{f} 15$-plet under $S U(2)_{U} \times S U(2)_{D} \times U(1)_{\text {EM }}$. The third column shows the linear combination of quark masses that determines the meson masses-squared. From top to bottom, the meson masses go from heaviest to lightest, assuming $m_{d^{\prime}}=m_{s^{\prime}}<m_{u^{\prime}}=$ $m_{c^{\prime}}=m_{d^{\prime}, s^{\prime}}(1+\Delta)$.


FIG. 2. A visual representation of the meson spectrum.

## Conclusion

- surprisingly an old theory for dark matter
- SIMP Miracle ${ }^{3}$
- mass ~ QCD
- coupling ~ QCD
- theory ~ QCD
- can solve problem with DM profile
- very rich phenomenology
- can also be spin I, axion mediation
- can be a part of twin Higgs
- Exciting dark spectroscopy! THE UNIVERSITY OF TOKYO


## Effective

INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

ATLAS SUSY Searches* - 95\% CL Lower Limits

"The 2 TeV line has been reached for some scenarios"


## why effective operators

- No signal of BSM @ LHC so far
- use effective operators to parametrize physics at higher energies
- precision electroweak
- precision Higgs
- precision flavor
- $B, L$ violation
- coupling to the dark sector
- once deviation $\Rightarrow$ BSM theory
- similar to four-fermion operators in weak interactions $\Rightarrow$ Standard Model


## Effective Operators

- Surprisingly difficult question
- In the case of the Standard Model
- Weinberg (1980) on $D=6 \not \&, D=54$
- Buchmüller-Wyler (I986) on $D=6$ ops
- 80 operators for $N_{f}=1, B, L$ conserving
- Grzadkowski et al (2010) removed redundancies and discovered one missed
- 59 operators for $N_{f}=1, B, L$ conserving
- Mahonar et al (2013) general $N_{f}$
- Lehman-Martin $(2014,15) D=7$ for general $N_{f}, D=8$ for $N_{f}=1$ (incomplete)

$$
\begin{align*}
\widehat{H}_{6} & =H^{3} H^{\dagger 3}+u^{\dagger} Q^{\dagger} H H^{\dagger 2}+2 Q^{2} Q^{\dagger 2}+Q^{\dagger 3} L^{\dagger}+Q^{3} L+2 Q Q^{\dagger} L L^{\dagger}+L^{2} L^{\dagger 2}+u Q H^{2} H^{\dagger} \\
& +2 u u^{\dagger} Q Q^{\dagger}+u u^{\dagger} L L^{\dagger}+u^{2} u^{\dagger 2}+e^{\dagger} u^{\dagger} Q^{2}+e^{\dagger} L^{\dagger} H^{2} H^{\dagger}+2 e^{\dagger} u^{\dagger} Q^{\dagger} L^{\dagger}+e L H H^{\dagger 2}+e u Q^{\dagger 2} \\
& +2 e u Q L+e e^{\dagger} Q Q^{\dagger}+e e^{\dagger} L L^{\dagger}+e e^{\dagger} u u^{\dagger}+e^{2} e^{\dagger 2}+d^{\dagger} Q^{\dagger} H^{2} H^{\dagger}+2 d^{\dagger} u^{\dagger} Q^{\dagger 2}+d^{\dagger} u^{\dagger} Q L \\
& +d^{\dagger} e^{\dagger} u^{\dagger 2}+d^{\dagger} e Q^{\dagger} L+d Q H H^{\dagger 2}+2 d u Q^{2}+d u Q^{\dagger} L^{\dagger}+d e^{\dagger} Q L^{\dagger}+d e u^{2}+2 d d^{\dagger} Q Q^{\dagger}+d d^{\dagger} L L^{\dagger} \\
& +2 d d^{\dagger} u u^{\dagger}+d d^{\dagger} e e^{\dagger}+d^{2} d^{\dagger 2}+u^{\dagger} Q^{\dagger} H^{\dagger} G_{R}+d^{\dagger} Q^{\dagger} H G_{R}+H H^{\dagger} G_{R}^{2}+G_{R}^{3}+u Q H G_{L} \\
& +d Q H^{\dagger} G_{L}+H H^{\dagger} G_{L}^{2}+G_{L}^{3}+u^{\dagger} Q^{\dagger} H^{\dagger} W_{R}+e^{\dagger} L^{\dagger} H W_{R}+d^{\dagger} Q^{\dagger} H W_{R}+H H^{\dagger} W_{R}^{2}+W_{R}^{3} \\
& +u Q H W_{L}+e L H^{\dagger} W_{L}+d Q H^{\dagger} W_{L}+H H^{\dagger} W_{L}^{2}+W_{L}^{3}+u^{\dagger} Q^{\dagger} H^{\dagger} B_{R}+e^{\dagger} L^{\dagger} H B_{R} \\
& +d^{\dagger} Q^{\dagger} H B_{R}+H H^{\dagger} B_{R} W_{R}+H H^{\dagger} B_{R}^{2}+u Q H B_{L}+e L H^{\dagger} B_{L}+d Q H^{\dagger} B_{L}+H H^{\dagger} B_{L} W_{L} \\
& +H H^{\dagger} B_{L}^{2}+2 Q Q^{\dagger} H H^{\dagger} \mathcal{D}+2 L L^{\dagger} H H^{\dagger} \mathcal{D}+u u^{\dagger} H H^{\dagger} \mathcal{D}+e e^{\dagger} H H^{\dagger} \mathcal{D}+d^{\dagger} u H^{2} \mathcal{D}+d u^{\dagger} H^{\dagger 2} \mathcal{D} \\
& +d d^{\dagger} H H^{\dagger} \mathcal{D}+2 H^{2} H^{\dagger 2} \mathcal{D}^{2} . \tag{3.16}
\end{align*}
$$

## $\mathcal{D}$ : space time derivative

## redundancies

- effective operators are invariants under the gauge group, Lorentz group, etc
- their classifications go back to Hilbert, Weyl
- applied to superpotentials, Standard Model
- but so far no general discussions on operators with derivatives
- two sources of redundancies
- equation of motion (EOM)
- integration by parts (IBP)


## Simplest Example

- scalars four-point at $O\left(p^{2}\right): 4(4+1) / 2=10$

$$
\left(\partial_{\mu} \partial_{\mu} \varphi_{i}\right) \varphi_{j} \varphi_{k} \varphi_{l} \quad\left(\partial_{\mu} \varphi_{i}\right)\left(\partial_{\mu} \varphi_{j}\right) \varphi_{k} \varphi_{l}
$$

- $\partial^{2} \varphi_{i}=m_{i}^{2} \varphi_{i}$ removes the first class: 4
- We know only 2 out of 6 are independent - $s, t, u, s+t+u=m_{1}{ }^{2}+m_{2}^{2}+m_{3}{ }^{2}+m 4^{2}$
$\left(\partial_{\mu} \varphi_{i}\right)\left(\partial_{\mu} \varphi_{j}\right) \varphi_{k} \varphi_{l}-\varphi_{i} \varphi_{j}\left(\partial_{\mu} \varphi_{k}\right)\left(\partial_{\mu} \varphi_{l}\right)=\frac{1}{2} \partial^{2}\left(\varphi_{i} \varphi_{j}\right)\left(\varphi_{k} \varphi_{l}\right)-\frac{1}{2}\left(\varphi_{i} \varphi_{j}\right) \partial^{2}\left(\varphi_{k} \varphi_{l}\right) \approx 0$ $\partial_{\mu} \varphi_{i} \partial_{\mu} \varphi_{j} \varphi_{k} \varphi_{l}+\partial_{\mu} \varphi_{i} \varphi_{j} \partial_{\mu} \varphi_{k} \varphi_{l}+\partial_{\mu} \varphi_{i} \varphi_{j} \varphi_{k} \partial_{\mu} \varphi_{l}=\partial_{\mu} \varphi_{i} \partial_{\mu}\left(\varphi_{j} \varphi_{k} \varphi_{l}\right) \approx 0$
- In addition, there are only $d$ linearly
independent momenta in d-dimensions for higher-point functions


## Main idea

- Take kinetic terms as the zeroth order Lagrangian $(\partial \phi)^{2}, \bar{\psi} i \not \partial \psi,\left(F_{\mu \nu}\right)^{2}$
- Classically, it is conformally invariant under $\mathrm{SO}(4,2)=\mathrm{SO}(6, \mathrm{C})$
- Operator-State correspondence in CFT tells us that operators fall into representations of the conformal group
- equation of motion: short multiplets
- remove total derivatives: primary states


## Master formula

- Define a multi-variate Hilbert series
$H\left(p, \phi_{1}, \cdots, \phi_{n}\right)=\int d \mu_{\text {conformal }} d \mu_{\text {gauge }} \sum_{n=1}^{\infty} p^{n} \chi_{[n ; 0]}^{*} \prod_{i} P E\left[\phi_{i} \chi_{i}(q, \alpha, \beta)\right]$
- integration over the gauge groups ípick up gauge invariants
- integration over the conformal group picks only the primary states and Lorentz scalars
- expand it in power series in $\phi_{i}$ and $p$ to find operators at given order in them
- Possible for any Lorentz-inv "free" QFT
*There are corrections for operators $\mathrm{d} \leq 4$ due to lack of orthonormality among characters for short multiplets


## Standard Model

$\chi H\left[t_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, z 1_{-}, z 2_{-}\right]:=\chi \operatorname{scal}[t, \alpha, \beta] * u 1[3, x] * \operatorname{su2f}[y] ;$ $\chi$ Hd $\left[t_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, z 1_{-}, z 2_{-}\right]:=\chi \operatorname{scal}[t, \alpha, \beta] * u 1[-3, x] * \operatorname{su2fb}[y] ;$ $\chi Q\left[t_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, z 1_{-}, z 2_{-}\right]:=\chi f \operatorname{ermL}[t, \alpha, \beta] * u 1[1, x] * \operatorname{su2f}[y] * \operatorname{su} 3 f[z 1, z 2] ;$ $\chi Q d\left[t_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, z 1_{-}, z 2_{-}\right]:=$
$\chi$ fermR $[t, \alpha, \beta] * u 1[-1, x] * \operatorname{su2fb}[y] * \operatorname{su} 3 f b[z 1, z 2] ;$ $\chi u\left[t_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, z 1_{-}, z_{2}\right]:=\chi f \operatorname{ermL}[t, \alpha, \beta] * u 1[-4, x] * \operatorname{su} 3 \mathrm{fb}[z 1, z 2] ;$ $\chi u d\left[t_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, z 1_{-}, z_{2}\right]:=\chi$ fermR $[t, \alpha, \beta] * u 1[4, x] * \operatorname{su} 3 f[z 1, z 2]$; $\chi d\left[t_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, z_{1}, z_{2}\right]:=\chi f \operatorname{ermL}[t, \alpha, \beta] * u 1[2, x] * \operatorname{su3fb}[z 1, z 2] ;$ $\chi$ dd[t_, $\left.\alpha_{-}, \beta_{-}, x_{-}, y_{-}, z 1_{-}, z_{2}\right]:=\chi f \operatorname{ermR}[t, \alpha, \beta] * u 1[-2, x] * \operatorname{su} 3 f[z 1, z 2] ;$ $\chi L\left[t_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, z 1_{-}, z 2_{-}\right]:=\chi f \operatorname{ermL}[t, \alpha, \beta] * u 1[-3, x] * \operatorname{su2f}[y] ;$ $\chi \mathrm{Ld}\left[\mathrm{t}_{-}, \alpha_{-}, \beta_{-}, \mathrm{x}_{-}, y_{-}, \mathrm{z}_{-}, \mathrm{z}_{-}\right]:=\chi \mathrm{f} \operatorname{ermR}[\mathrm{t}, \alpha, \beta] * u 1[3, \mathrm{x}] * \operatorname{su2fb}[\mathrm{y}] ;$ $\chi \in\left[t_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, z 1_{-}, z 2_{-}\right]:=\chi f \operatorname{ermL}[t, \alpha, \beta] * u 1[6, x] ;$
$\chi e d\left[t_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, z 1_{-}, z_{2}\right]:=\chi f \operatorname{ermR}[t, \alpha, \beta] * u 1[-6, x] ;$
$\chi \mathrm{Bl}\left[\mathrm{t}_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, \mathrm{z}_{-}, \mathrm{z}_{-}\right]:=\chi \mathrm{f} \mathrm{sL}[\mathrm{t}, \alpha, \beta] ;$
$\chi \operatorname{Br}\left[\mathrm{t}_{-}, \alpha_{-}, \beta_{-}, \mathrm{x}_{-}, y_{-}, \mathrm{z1}_{-}, z_{2}\right]:=\chi \mathrm{f} \mathrm{sR}[\mathrm{t}, \alpha, \beta] ;$
$\chi \mathrm{W} 1\left[t_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, z_{1}, z_{2}\right]:=\chi f \operatorname{sL}[t, \alpha, \beta] * \operatorname{su2ad}[y] ;$
$\chi \mathrm{Wr}\left[t_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, z_{1}, z_{2}\right]:=\chi f s R[t, \alpha, \beta] * \operatorname{su2ad}[y] ;$
$\chi G 1\left[t_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, z 1_{-}, z 2_{-}\right]:=\chi f \operatorname{sL}[t, \alpha, \beta] * \operatorname{su3ad}[z 1, z 2] ;$
$\chi \operatorname{Gr}\left[t_{-}, \alpha_{-}, \beta_{-}, x_{-}, y_{-}, z 1_{-}, z 2_{-}\right]:=\chi f \operatorname{sR}[t, \alpha, \beta] * \operatorname{su3ad}[z 1, z 2] ;$
$H\left(p, \phi_{1}, \cdots, \phi_{n}\right)=\int d \mu_{\text {conformal }} d \mu_{\text {gauge }} \sum_{n=1}^{\infty} p^{n} \chi_{[n ; 0]}^{*} \prod_{i} P E\left[\phi_{i} \chi_{i}(q, \alpha, \beta)\right]$.

## D=8 operators

$2 * L \wedge 2 * L d \wedge 2 * t \wedge 2+2 * e e^{* e d * L * L d * t \wedge 2+e e \wedge 2 * e d \wedge 2 * t \wedge 2 ~}+2 * d * d d * L * L d * t \wedge 2+2 *$
 *ud*ee*ed*t^2 + 4*u*ud*d*dd*^2 + u^2*d*ee*t^2 + 2*u^2*ud^2*t^2 + 2*Qd* dd*ee*L*t^2 + 3*Qd*ud*ed*Ld*t^2 + 2*Qd*u*d*Ld*t^2 + 3*Qd^2*ud*dd*t^2

 ${ }^{*} u^{*} u d^{*} t \wedge 2+Q^{\wedge} 2^{*} u d^{*} e d^{*} t \wedge 2+3^{*} Q^{\wedge} 2^{*} u^{*} d^{*} t \wedge 2+4 * Q^{\wedge} 2^{*} \mathrm{Q} d \wedge 2 * t \wedge 2+Q^{\wedge} 3^{*} L^{*} t^{\wedge} \wedge 2$ $+W r *$ L^2*Ld^2 + Wr*ee*ed*L*Ld + Wr*d*dd*L*Ld + Wr*u*ud*L*Ld + Wr*Qd*dd* ee*L + 3*Wr*Qd*ud*ed*Ld + Wr*Qd*u*d*Ld + 3*Wr*Qd^2*ud*dd + Wr*Qd^2*u*ee $+2 * W r * Q d \wedge 3 * L d+W r^{*} Q^{*} d^{*} d^{*} L d+W r^{*} Q^{*} u d^{*} d d^{*} L+3 * W r * Q^{*} Q d * L * L d+W r^{*} Q^{*} Q d$ *ee*ed $+2{ }^{* W} r^{*} Q^{*} Q d^{*} d * d d+2 * W r * Q^{*} Q d^{*} u^{*} u d+2 * W r * Q \wedge 2 * Q d \wedge 2+W r \wedge 2 * L * L d * t$

 $L+3 * W L * Q^{*} u^{*} e e^{*} L+3 * W L * Q^{*} Q d^{*} L^{*} L d+W L * Q^{*} Q d^{*} e^{*} e d+2 * W L^{*} Q^{*} Q d^{*} d^{*} d d+2^{*}$ $W L * Q * Q d * u * u d+W L * Q \wedge L^{*} u d^{*} e d+3 * W l * Q^{\wedge} 2^{*} u * d+2 * W l * Q^{\wedge} 2^{*} Q d \wedge 2+2 * W l * Q^{\wedge} 3^{*} L$

 *Ld + Gr*d*dd*ee*ed + Gr*d^2*dd^2 + 3*Gr*ud^2*dd*ed + Gr*u*ud*L*Ld +Gr* u*ud*ee*ed + 4*Gr*u*ud*d*dd + Gr*u^2*ud^2 + Gr*Qd*dd*ee*L + 3*Gr*Qd*ud* ed*Ld + 2*Gr*Qd*u*d*Ld + 6*Gr*Qd^2*ud*dd + Gr*Qd^2*u*ee + 2*Gr*Qd^3*Ld $+G r * Q^{*} d^{*} e d^{*}$ Ld + 2*Gr*Q*ud*dd*L + 2*Gr*Q*Qd*L*Ld + Gr*Q*Qd*ee*ed + 4*Gr ${ }^{*} Q^{*}$ Qd*d*dd + 4*Gr*Q*Qd*u*ud + Gr*Q^2*ud*ed + 2*Gr*Q^2*Qd^2 + Gr*Wr*Q*Qd* $t+G r * W l * Q * Q d * t+G r \wedge 2 * d * d d^{*}+G r \wedge 2 * u * u d * t+G r \wedge 2 * Q * Q d * t+2 * G r \wedge 2 * W r \wedge 2$ $+G r \wedge 2 * W l \wedge 2+3 * G r \wedge 4+G l * d * d d * L * L d+G l * d * d d * e e * e d+G l * d \wedge 2 * d d \wedge 2+G l *$








 ed + Br* $u^{*} u d^{*} L^{*} L d+B r^{*} u^{*} u d^{*} e e^{*} e d+2^{*} \mathrm{Br}^{*} u^{*} u d^{*} d^{*} d d+B r^{*} Q d^{*} d d^{*} e e^{*} \mathrm{~L}+3^{*}$
$B r^{*} Q d^{*} u d^{*} e d^{*} L d+B r^{*} Q d^{*} u^{*} d^{*} L d+3^{*} \mathrm{Br}^{*} Q d \wedge$ 2 $^{*} u d^{*} d d+B r^{*} Q d^{\wedge} 3^{*} L d+B r^{*} Q^{*} d^{*} e d$ $* L d+B r * Q^{*} u d^{*} d d^{*} L+2 * B r * Q^{*} d^{*} L * L d+B r * Q^{*} Q d^{*} e^{*} e d+2 * B r * Q^{*} Q^{*} d^{*} d d+2$
 $t+B r^{* W l}{ }^{*} Q^{*} Q d^{*} t+B r * G r * d^{*} d d^{*} t+B r * G r * u^{*} u d^{*} t+B r * G r * Q^{*} \mathrm{Cd}^{*} t+B r^{*} G r^{\wedge} 3^{3}$
 $+B r \wedge 2 * W l \wedge 2+2 * B r \wedge 2 * G r \wedge 2+B r \wedge 2 * G l \wedge 2+B r \wedge 4+B l * e e^{*} d^{*} L^{*} L d+B l * d^{*} d d^{*}$ L*Ld + Bl*d*dd*ee*ed + Bl*u*ud*L*Ld + Bl*u*ud*ee*ed + 2*Bl*u*ud*d*dd + 2 *BL*u^2*d*ee + BL*Qd*dd*ee*L + BL*Qd*u*d*Ld + BL*Qd^2*u*ee + Bl*Q*d*ed* Ld + Bl*Q*ud*dd*L + 3*Bl*Q*u*ee*L + 2*Bl*Q*Qd*L*Ld + Bl*Q*Qd*ee*ed + 2* $B L * Q^{*} Q d^{*} d^{*} d d+2 * B l * Q^{*} Q d^{*} u^{*} u d+3 * B l * Q^{\wedge} 2^{*} u^{*} d+B l * Q^{\wedge} 3 * L+B l * W r * L * L d * t$
 $\mathrm{ud} * \mathrm{t}+\mathrm{Bl} * \mathrm{Gr}{ }^{*} \mathrm{Q}^{*} \mathrm{Qd}{ }^{*} \mathrm{t}+\mathrm{Bl} * \mathrm{Gl} * \mathrm{~d}^{*} \mathrm{dd} * \mathrm{t}+\mathrm{Bl} \mathrm{Gl}^{*} \mathrm{u}^{*} \mathrm{ud} * \mathrm{t}+\mathrm{Bl} * \mathrm{Gl} * \mathrm{Q} * \mathrm{Qd} * \mathrm{t}+\mathrm{Bl} * \mathrm{Gl}$
 $u d^{*} t+B l * B r * Q * Q d * t+B l * B r * W l * W r+B l * B r * G l * G r+B l \wedge 2 * W r \wedge 2+2 * B l \wedge 2 *$ $W l \wedge 2+B l \wedge 2 * G r \wedge 2+2 * B l \wedge 2 * G l \wedge 2+B l \wedge 2 * B r \wedge 2+B l \wedge 4+3 * H d * e e^{*}$ L^2*Ld*t +



 $Q^{*} d^{\wedge}$ 2* $^{*} d d^{*} t+2^{* H} d^{*} Q^{*} u d^{\wedge}$ 2*ed* $^{*} t+6^{*} H d^{*} Q^{*} u^{*} u d^{*} d^{*} t+6 * H d^{*} Q^{*} Q d^{*} e e^{*} L^{*} t+6^{*}$ Hd*Q*Qd^2*ud*t + 3*Hd*Q^2*ud*L*t + 6*Hd*Q^2*Qd*d*t Hd*Wr*ee*L*t^2 + 2*

 Wl^2*ee*L + Hd*Wl^2*Qd*ud + 2*Hd*Wl^2*Q*d $+2 * H d * G r * Q d * u d * t \wedge 2+H d * G r * Q^{*}$ d*t^2 + 2*Hd*Gr*Wr*Qd*ud + Hd*Gr*Wr*Q*d + Hd*Gr^2*ee*L + 3*Hd*Gr^2*Qd*ud
 2*Hd*Gl*Wl*Q*d + Hd*Gl^2*ee*L + 2*Hd*Gl^2*Qd*ud + 3*Hd*Gl^2*Q*d + Hd*Br* ee*L*t^2 $+2 * H d * B r * Q d * u d^{*} t \wedge 2+H d * B r * Q^{*} d^{*} t \wedge 2+H d * B r * W r * e e * L+2 * H d * B r *$


 Bl*Gl*Qd*ud + 2*Hd*Bl*Gl*Q*d + Hd*Bl^2*ee*L + Hd*Bl^2*Qd*ud + Hd*Bl^2*Q* d + Hd^2*ee^2*L^2 + Hd^2*ud* ${ }^{*}$ t^3 + Hd^2*ud*d*L*Ld + Hd^2*Qd*ud*ee*L + *Hd^2*Qd^2*ud^2 +2 Hd^^2*Q*d*ee*L $+2 * H d \wedge 2 * Q * Q d * u d * d+2 * H d \wedge 2 * Q \wedge 2 * d \wedge 2+$ Hd^2*Wr*ud*d*t + Hd^2*Wl*ud*d*t + Hd^2*Gr*ud*d*t + Hd^2*Gl*ud*d*t + Hd^2 *Br* $u d^{*} d^{*} t+H d \wedge 2 * B L * u d^{*} d^{*} t+3 * H^{*} d^{*} L^{*}$ Ld^2*t $+H^{*} e e^{*} e d^{\wedge} 2^{*}$ Ld*t $+3 * H^{*} d^{*}$ dd*ed*Ld*t + 2*H*ud*dd^2*L*t + 3* ${ }^{*}{ }^{*} u^{*} d d^{*} e e^{*} L^{*} t+3^{*} H^{*} u^{*} u d^{*}$ ed*Ld*t $+2^{*} H^{*}$


 ${ }^{*} Q^{*}$ Qd ${ }^{*}$ ed* $L d^{*} t+6^{*} H^{*} Q^{*}$ Qd^2* $d d^{*} t+3 * H^{*} Q^{\wedge} 2^{*} d d^{*} L^{*} t+6 * H^{*} Q^{\wedge} 2^{*} Q d^{*} u^{*} t+H^{*}$ Q^3*ed*t $+2 * H^{*} W r r^{*}$ ed*Ld*t^2 $+2 * H^{*} W r * 0 d^{*} d d^{*} t \wedge 2+H^{*} W r * Q^{*} u^{*} t \wedge 2+2 * H^{*} W r \wedge 2$ ${ }^{*}$ ed*Ld $+2^{*} H^{*} W r^{\wedge} 2^{*} O d^{*} d d+H^{* W r} r^{\wedge} 2^{*} Q^{*} u+H^{* W L *} d^{*} L d^{*} t^{\wedge} 2+H^{* W L}{ }^{*} O d^{*} d d^{*} t \wedge 2$

 $+3^{*} H^{*} G r \wedge 2^{*} Q d^{*} d d+2^{*} H^{*} G r^{\wedge} 2^{*} Q^{*} u+H^{*} G l * Q d^{*} d d^{*} t \wedge 2+2^{*} H^{*} G l * Q^{*} u^{*} \mathrm{t}^{*} 2+\mathrm{H}^{*}$

 Ld + 2*H*Br*Wr*Qd*dd + H*Br*Wr*Q*u + 2*H*Br*Gr*Qd*dd + H*Br*Gr*Q*u + H Br^2*ed*Ld + H*Br^2*Qd*dd + H*Br^2*Q*u + H*Bl*ed*Ld*t^2 + H*Bl*Qd*dd*t^2
 *Gl*Qd*dd + 2*H*Bl*Gl*O*u + H*Bl^2*ed*Ld + H*Bl^2*Qd*dd + H*Bl^2*Q*u + 4




 $u d^{*} d d+H^{*} H d^{*}$ Qd^2* ${ }^{*}$ ee $+2^{*} H^{*} H d^{*}$ Qd^3*Ld $+2^{*} H^{*}$ dd $^{*} Q^{*} d^{*}$ ed*Ld $+2^{*} H^{*} H d^{*} Q^{*} u d$






 $\mathrm{Gr}{ }^{*} \mathrm{Q}^{*} \mathrm{Q} d^{*} \mathrm{t}+\mathrm{H}^{*} \mathrm{Hd} d^{*} \mathrm{Gr} \wedge 2^{*} \mathrm{t} \wedge 2+\mathrm{H}^{*} \mathrm{Hd} d^{*} \mathrm{Gr} \wedge 3+2^{*} \mathrm{H}^{*} \mathrm{Hd} d^{*} \mathrm{Gl}{ }^{*} d^{*} d d^{*} \mathrm{t}+2^{*} \mathrm{H}^{*} \mathrm{Hd} \mathrm{d}^{*} \mathrm{Gl}{ }^{*} \mathrm{u}^{*}$
 *H*Hd*Br*L*Ld*t + 2*H*Hd*Br*ee*ed*t + 2*H*Hd*Br*d*dd*t + 2*H*Hd*Br*u*ud*

 *t + 2*H*Hd*Bl*u*ud*t + 4*H*Hd*Bl*Q*Qd*t + H*Hd*Bl*Wr*t^2 + 2*H*Hd*Bl*Wl

 Wl*ee*L + 2*H*Hd^2*Wl*Q*d + H*Hd^2*Gr*Qd*ud + H*Hd^2*GL*Q*d + H*Hd^2*Br* Qd*ud $+H^{* H d \wedge 2 * B l * e e * L ~}+H^{* H d \wedge 2 * B l *} Q^{*} d+H^{* H d \wedge 3 * u d * d * t ~}+H^{\wedge}$ 2 $^{*}$ ed^2*Ld^2






 $H d \wedge 2 * u^{*} u d^{*} t+4 * H \wedge 2 * H d \wedge 2 * Q * Q d * t+2 * H \wedge 2 * H d \wedge 2 * W r * t \wedge 2+2 * H \wedge 2 * H d \wedge 2 * W r \wedge 2+$ $2 * H \wedge 2 * H d \wedge 2 * W L * t \wedge 2+2 * H \wedge 2 * H d \wedge 2 * W l \wedge 2+H \wedge 2 * H d \wedge 2 * G r \wedge 2+H \wedge 2 * H d \wedge 2 * G 1 \wedge 2+$ $H^{\wedge} 2 * H d \wedge 2 * B r * t \wedge 2+H \wedge 2 * H d \wedge 2 * B r * W r+H \wedge 2 * H d \wedge 2 * B r \wedge 2+H \wedge 2 * H d \wedge 2 * B L * t \wedge 2+H \wedge 2$

 * $\mathrm{H}^{\wedge} 3 * H d \wedge 3 * \mathrm{t} \wedge 2+\mathrm{H} \wedge 4 * \mathrm{Hd}$ ^4;


## Conclusions

- Nailed the question of classifying effective operators in any given Lorentz-inv theory
- Also for chiral Lagrangians
- useful techniques for matching
- careful mapping to observables
- hope for deviations from Standard Model
- inverse problem to identify BSM physics

