

What is Dark Matter? and Classification of Effective operators

Hitoshi Murayama (Berkeley, Kavli IPMU, DESY) Arnold Sommerfeld Seminar, July 25, 2019

BERKELEY CENTER FOR THEORETICAL PHYSICS

What is Dark Matter?

UNIVERSITY OF TOKYO

FOR ADVANCED STUDY

Hitoshi Murayama (Berkeley, Kavli IPMU, DESY) Arnold Sommerfeld Seminar, July 25, 2019

E FOR THE PHYSICS AND

ATHEMATICS OF THE UNIVERSE

BERKELEY CENTER FOR THEORETICAL PHYSICS

matter

Ω_m changes the overall heights of the peaks

Dim Stars? Black Holes?

Search for MACHOs (Massive Compact Halo Objects)

Not enough of them!

Best limit on Black Hole dark matter

No detection ⇒ more stringent upper bound, than 2yr Kepler data (Griest et al.)

Niikura, Takada et al., Nature Astronomy

Mass Limits "Uncertainty Principle"

- Clumps to form structure
- imagine $V = G_N \frac{Mm}{r}$ "Bohr radius": $r_B = \frac{\hbar^2}{G_N Mm^2}$
- too small $m \Rightarrow$ won't "fit" in a galaxy!
- m >10⁻²² eV "uncertainty principle" bound (modified from Hu, Barkana, Gruzinov, astro-ph/0003365)

SIMP: dark hadrons $m\sim 0.3$ GeV, $\sigma\sim 10^{-24}$ cm²

Miracle²

sociology

- We used to think
 - need to solve problems with the SM
 - hierarchy problem, strong CP, etc
 - it is great if a solution also gives dark matter candidate as an option
 - big ideas: supersymmetry, extra dim
 - probably because dark matter problem was not so established in 80's

no sign of new physics that explains naturalness!

Leptoquarks 4 TeV 3 **RS** Gravitons Te\ **CMS** Preliminary

0

CMS Exotica Physics Group Summary - ICHEP, 2016

recent thinking

- dark matter definitely exists
 - naturalness problem may be optional?
- need to explain dark matter on its own
- perhaps we should decouple these two
- do we really need big ideas like SUSY?
- perhaps we can solve it with ideas more familiar to us?

Seminar in Berkeley Strongly Interacting Massive Particle (SIMP)

I ' 'R

Yonit Hochberg

e

 $m_{\rm DM}$

Volansky, Wacker

SIMPlest Miracle

- Not only the mass scale is similar to QCD
- dynamics itself can be QCD! Miracle³
- DM = pions

• e.g. $SU(4)/Sp(4) = S^{5}$ DM DM $\mathcal{L}_{chiral} = \frac{1}{16f_{\pi}^{2}} \operatorname{Tr} \partial^{\mu} U^{\dagger} \partial_{\mu} U$ Phys.Rev.Lett. II5 (2015) 021301 $\mathcal{L}_{WZW} = \frac{8N_{c}}{15\pi^{2}f_{\pi}^{5}} \epsilon_{abcde} \epsilon^{\mu\nu\rho\sigma} \pi^{a} \partial_{\mu} \pi^{b} \partial_{\nu} \pi^{c} \partial_{\rho} \pi^{d} \partial_{\sigma} \pi^{e} + O(\pi^{7})$ $\pi_{5}(G/H) \neq 0$

SIMPlest Miracle

- SU(2) gauge theory with four doublets
- SU(4)=SO(6) flavor symmetry
- $\langle q^i q^j \rangle \neq 0$ breaks it to Sp(2)=SO(5)
- coset space SO(6)/SO(5)=S⁵
- $\pi_5(S^5) = \mathbb{Z} \Rightarrow Wess-Zumino term$
- $\mathcal{L}_{WZ} = \epsilon_{abcde} \epsilon^{\mu\nu\rho\sigma} \pi^a \partial_{\mu} \pi^b \partial_{\nu} \pi^c \partial_{\rho} \pi^d \partial_{\sigma} \pi^e$

- $\pi_5(SU(N_f)/SO(N_f)) = \mathbb{Z} (N_f \ge 3)$
- $SO(N_c)$ gauge theory
- $\pi_5(SU(2N_f)/Sp(N_f)) = \mathbb{Z} (N_f \ge 2)$
- $Sp(N_c)$ gauge theory
- $\pi_5(SU(N_f)) = \mathbb{Z} (N_f \geq 3)$
- $SU(N_c)$ gauge theory

Witten

LAGRANGIANS

Quark theory

$$\mathcal{L}_{\text{quark}} = -\frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu a} + \bar{q}_{i} i \not\!\!\!D q_{i} - \frac{1}{2} m_{Q} J^{ij} q_{i} q_{j} + h.c.$$

Sigma theory

$$\mathcal{L}_{\text{Sigma}} = \frac{f_{\pi}^{2}}{16} \text{Tr} \partial_{\mu} \Sigma \ \partial^{\mu} \Sigma^{\dagger} - \frac{1}{2} m_{Q} \mu^{3} \text{Tr} J \Sigma + h.c. - \frac{iN_{c}}{240\pi^{2}} \int \text{Tr}(\Sigma^{\dagger} d\Sigma)^{5}$$

$$\boxed{\begin{array}{c}} \textcircled{0}\\ \end{array}{0}\\ \textcircled{0}\\ \textcircled{0}\\ \textcircled{0}\\ \textcircled{0}\\ \end{array}{0}\\ \textcircled{0}\\ \textcircled{0}\\ \textcircled{0}\\ \end{array}{0}\\ \textcircled{0}\\ \textcircled{0}\\ \end{array}{0}\\ \textcircled{0}\\ \textcircled{0}\\ \textcircled{0}\\ \end{array}{0}\\ \textcircled{0}\\ \textcircled{0}\\ \end{array}{0}\\ \end{array}{0}\\ \textcircled{0}\\ \textcircled{0}\\ \end{array}{0}\\ \end{array}{0}\\ \textcircled{0}\\ \end{array}{0}\\ \end{array}{0}\\ \begin{array}{0}\\ \begin{array}{0}\\\\\\\\\\\\\\\\\\0\\\\\end{array}{0}\\ \end{array}{0}\\ \end{array}{0}\\$$

Solid curves: solution to Boltzmann eq. Dashed curves: along that solution $\frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3/10}$ $\frac{\sigma_{\text{scatter}}}{m_{\pi}} \propto m_{\pi}^{-9/5}$

Solid curves: solution to Boltzmann eq. Dashed curves: along that solution

$$\frac{\frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3/10}}{\frac{\sigma_{\text{scatter}}}{m_{\pi}} \propto m_{\pi}^{-9/5}}$$

Solid curves: solution to Boltzmann eq. Dashed curves: along that solution

$$\frac{\frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3/10}}{\frac{\sigma_{\text{scatter}}}{m_{\pi}} \propto m_{\pi}^{-9/5}}$$

DDO 154 dwarf galaxy

DDO 154 dwarf galaxy

can be explained if dark matter scatters against itself Need $\sigma/m \sim 1b$ / GeV

only astrophysical information beyond gravity

Diversity in stellar distribution

Similar outer circular velocity and stellar mass, but different stellar distribution

- compact → redistribute SIDM significantly

Ayuki Kamada

- extended \rightarrow unchange SIDM distribution

self interaction

- σ/m ~ cm²/g
 ~10⁻²⁴cm² / 300MeV
- flattens the cusps in NFW profile
- suppresses substructur
- actually desirable for dwarf galaxies?

SIDM Spergel & Steinhardt (2000) *now complete theory*

Resonant scattering

Xiaoyong Chu, Camilo Garcia-Cely, HM, Phys.Rev.Lett. 122 (2019) no.7, 071103

Unified description of SIDM $V = -\alpha \frac{e^{-m_{\phi}}}{1-\alpha}$

in preparation

communication

- 3 to 2 annihilation
- excess entropy must be transferred to e[±], γ
- need communication at some level
- leads to experimental signal

if totally decoupled

 3→2 annihilations without heat exchange is excluded by structure formation, [de Laix, Scherrer and Schaefer, Astrophys. J. 452, 495 (1995)]

vector portal

$$\frac{\epsilon_{\gamma}}{2c_W}B_{\mu\nu}F_D^{\mu\nu}$$

Kinetically mixed U(I)

- e.g., the SIMPlest model SU(2) gauge group with N_f=2 (4 doublets)
- gauge U(1)=SO(2) $\subset SO(2) \times SO(3)$
 - \subset SO(5)=Sp(4)
- maintains degeneracy of quarks
- near degeneracy of pions for co-annihilation

 $SU(4)/Sp(4) = S^5$

$$(q^+,q^+,q^-,q^-)$$

$$(\pi^{++},\pi^{--},\pi^0_x,\pi^0_y,\pi^0_z)$$

$$\frac{\epsilon_{\gamma}}{2c_W}B_{\mu\nu}F_D^{\mu\nu}$$

Super KEK B & Belle II

inspired by AdS/CFT from string theory

FIG. 1. A sample spectrum of twin particles. Here we use f/v = 1 to demonstrate the \mathbb{Z}_2 invariance between the visible and twin sectors for t, h, Z, W; lighter particles are subject to \mathbb{Z}_2 -breaking effects without spoiling the solution to the hierarchy problem. In practice, twin sector masses are of course raised by a factor of $f/v \gtrsim 3$.

They are stable since they are the lightest particle with a conserved $SU(2)_f$ quantum number. (Here and below, we denote particles in the twin sector with a prime on the

$\mod M$	particle content	$m_M^2 \propto$	m_M
$ heta^0({f 3},{f 1})$	$u'\bar{c}', c'\bar{u}', \frac{1}{\sqrt{2}}(u'\bar{u}' - c'\bar{c}')$	$2m_{u'}$	$m_{\pi}(1+\Delta)$
$D^+(2,2)$	$u'ar{d'},c'ar{d'},u'ar{s'},c'ar{s'}$	$m_{u'} + m_{d'}$	$m_{\pi}(1+\frac{\Delta}{2})$
$D^{-}(2,2)$	d'ar u',s'ar u',d'ar c',s'ar c'	$m_{u'} + m_{d'}$	$m_{\pi}(1+\frac{\Delta}{2})$
$\eta^{0}(1,1)$	$\left \frac{1}{2}(d'\bar{d}'+s'\bar{s}'-u'\bar{u}'-c'\bar{c}')\right $	$m_{u'} + m_{d'}$	$m_{\pi}(1+\frac{\Delta}{2})$
$\pi^{0}(1,3)$	$d'\bar{s}', s'\bar{d}', \frac{1}{\sqrt{2}}(d'\bar{d}' - s'\bar{s}')$	$2m_{d'}$	m_{π}

TABLE I. Decomposition of the meson $SU(4)_f$ 15-plet under $SU(2)_U \times SU(2)_D \times U(1)_{\rm EM}$. The third column shows the linear combination of quark masses that determines the meson masses-squared. From top to bottom, the meson masses go from heaviest to lightest, assuming $m_{d'} = m_{s'} < m_{u'} = m_{c'} = m_{d',s'}(1 + \Delta)$.

FIG. 2. A visual representation of the meson spectrum.

Conclusion

- surprisingly an old theory for dark matter
- SIMP Miracle³
 - mass ~ QCD
 - coupling ~ QCD
 - theory ~ QCD
- can solve problem with DM profile
- very rich phenomenology
- can also be spin I, axion mediation
- can be a part of twin Higgs
- Exciting dark spectroscopy!

Effective operators

UNIVERSITY OF TOKYO

FOR ADVANCED STUDY

E FOR THE PHYSICS AND

MATHEMATICS OF THE UNIVERSE

Hitoshi Murayama (Berkeley, Kavli IPMU, DESY) with Brian Henning, Xiaochuan Lu, Thomas Melia

no sign of new physics

Status: March 2017

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s}=7,8$	B TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ \widetilde{q}\widetilde{q}, \widetilde{q} \rightarrow q\widetilde{\chi}_{1}^{0} \\ \widetilde{q}\widetilde{q}, \widetilde{q} \rightarrow q\widetilde{\chi}_{1}^{0} \\ (\text{compressed}) \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q\widetilde{q}\widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q\widetilde{q}\widetilde{\chi}_{1}^{1} \rightarrow qqW^{\pm}\widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow qq\widetilde{\chi}_{1}^{1} \rightarrow qqW^{\pm}\widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow qqWZ\widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow qqWZ\widetilde{\chi}_{1}^{0} \\ GMSB (\widetilde{\ell} \text{ NLSP}) \\ GGM (\text{bino NLSP}) \\ GGM (\text{higgsino-bino NLSP}) \\ GGM (\text{higgsino-bino NLSP}) \\ GGM (\text{higgsino NLSP}) \\ GRM (\text{higgsino NLSP}) \\ Gravitino LSP \\ \end{array} $	$\begin{array}{c} 0-3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (SS) \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets 0-2 jets - 1 b 2 jets 2 jets mono-jet	 b Yes Yes Yes Yes - Yes Yes Yes Yes Yes Yes Yes 	20.3 36.1 36.1 13.2 13.2 3.2 3.2 20.3 13.3 20.3 20.3		1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.7 TeV 1.6 TeV 2.0 TeV 1.65 TeV 37 TeV 1.8 TeV	$\begin{split} &m(\tilde{q}) = m(\tilde{g}) \\ &m(\tilde{\chi}^0_1) < 200 \ \text{GeV}, \ m(1^{st} \ \text{gen.} \tilde{q}) = m(2^{nd} \ \text{gen.} \tilde{q}) \\ &m(\tilde{q}) - 200 \ \text{GeV} \\ &m(\tilde{\chi}^0_1) < 200 \ \text{GeV} \\ &m(\tilde{\chi}^0_1) < 200 \ \text{GeV}, \ m(\tilde{\chi}^\pm) = 0.5 (m(\tilde{\chi}^0_1) + m(\tilde{g})) \\ &m(\tilde{\chi}^0_1) < 400 \ \text{GeV} \\ &m(\tilde{\chi}^0_1) < 400 \ \text{GeV} \\ &m(\tilde{\chi}^0_1) < 500 \ \text{GeV} \\ &cr(NLSP) < 0.1 \ \text{mm} \\ &m(\tilde{\chi}^0_1) < 950 \ \text{GeV}, \ cr(NLSP) < 0.1 \ \text{mm}, \ \mu < 0 \\ &m(\tilde{\chi}^0_1) > 680 \ \text{GeV}, \ cr(NLSP) < 0.1 \ \text{mm}, \ \mu > 0 \\ &m(\tilde{\chi}^0_1) > 1.8 \times 10^{-4} \ \text{eV}, \ m(\tilde{g}) = m(\tilde{q}) = 1.5 \ \text{TeV} \end{split}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd ger ẽ med	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} {\rightarrow} b \bar{b} \tilde{\tilde{\chi}}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} {\rightarrow} t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} {\rightarrow} b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	20 20 20 20	1.92 TeV 1.97 TeV 37 TeV	m(\tilde{k}_1^0)<600 GeV m(\tilde{k}_1^0)<200 GeV m(\tilde{k}_1^0)<300 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{x}_{1}^{0} \\ \tilde{b}_{1}b_{1}, \tilde{b}_{1} \rightarrow \tilde{x}_{1}^{1} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\tilde{x}_{1}^{1} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow Wb\tilde{x}_{1}^{0} \text{ or } \tilde{x}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c\tilde{x}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1} (\text{natural GMSB}) \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + h \end{split} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 0 - 2 \ e, \mu \\ 0 - 2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 - 2 \ e, \mu \end{matrix}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	3.2 13.2 .7/13.3 20.3 3.2 20.3 36.1 36.1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\begin{split} &m(\tilde{\chi}_{1}^{0}) < 100 \mathrm{GeV} \\ &m(\tilde{\chi}_{1}^{0}) < 150 \mathrm{GeV}, m(\tilde{\chi}_{1}^{\pm}) = m(\tilde{\chi}_{1}^{0}) + 100 \mathrm{GeV} \\ &m(\tilde{\chi}_{1}^{\pm}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0}) = 55 \mathrm{GeV} \\ &m(\tilde{\chi}_{1}^{0}) = 1 \mathrm{GeV} \\ &m(\tilde{\chi}_{1}^{0}) = 15 \mathrm{GeV} \\ &m(\tilde{\chi}_{1}^{0}) = 50 \mathrm{GeV} \\ &m(\tilde{\chi}_{1}^{0}) = 0 \mathrm{GeV} \\ &m(\tilde{\chi}_{1}^{0}) = 0 \mathrm{GeV} \\ &m(\tilde{\chi}_{1}^{0}) = 0 \mathrm{GeV} \end{split}$	1606.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{L} \delta (\tilde{\chi}_{L}^{0}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{2}^{0}, \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ GGM (wino NLSP) weak processing GGM (bino NLSP) weak processing (b) \\ \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ 4 \ e, \mu + \gamma \\ 1 \ e, \mu + \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$m(ilde{\mathcal{X}}_1^0)=$ $m(ilde{\mathcal{X}}_1^{\pm})=$ $m(ilde{\mathcal{X}}_2^0)=$	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) \!=\! 0 \; GeV \\ GeV, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{\pm}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}) \!=\! 0 \; GeV, m(\tilde{\tau}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{\pm}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ n(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{\pm}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{\pm}) \!=\! m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, \tilde{\ell} \; decoupled \\ m(\tilde{\chi}_{1}^{0}) \!=\! m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, \tilde{\ell} \; decoupled \\ (\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{2}^{0}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ \mathit{cr<1} \; nm \\ \mathit{cr<1} \; nm \end{array}$	1403.5294 ATLAS-CONF-2016-096 ATLAS-CONF-2016-093 ATLAS-CONF-2016-096 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})$ + GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow ev/e\mu v/\mu\mu v$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$	$ \begin{array}{c} \tilde{\chi}_1^{\pm} & \text{Disapp. trk} \\ \tilde{\chi}_1^{\pm} & \text{dE/dx trk} \\ & 0 \\ & \text{trk} \\ \text{dE/dx trk} \\ \sigma(e,\mu) & 1\text{-}2\mu \\ \rho(e,\mu) & 2\gamma \\ \text{displ. } ee/e\mu/\mu \\ \text{displ. vtx + je} \end{array} $	1 jet - 1-5 jets - - - μμ - ts -	Yes Yes - - - Yes - -	36.1 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.58 TeV 1.57 TeV	$\begin{split} &m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^{0})\sim 160 \; \text{MeV}, \; \tau(\tilde{\chi}_1^{\pm})=0.2 \; \text{ns} \\ &m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^{0})\sim 160 \; \text{MeV}, \; \tau(\tilde{\chi}_1^{\pm})<15 \; \text{ns} \\ &m(\tilde{\chi}_1^{0})=100 \; \text{GeV}, \; 10 \; \mu \text{s} < \tau(\tilde{g}) < 1000 \; \text{s} \\ &m(\tilde{\chi}_1^{0})=100 \; \text{GeV}, \; \tau>10 \; \text{ns} \\ &10 < \tan\beta < 50 \\ &1 < \tau(\tilde{\chi}_1^{0})<3 \; \text{ns}, \; \text{SPS8 \; model} \\ &7 < c\tau(\tilde{\chi}_1^{0})<740 \; \text{mm}, \; m(\tilde{g})=1.3 \; \text{TeV} \\ &6 < c\tau(\tilde{\chi}_1^{0})<480 \; \text{mm}, \; m(\tilde{g})=1.1 \; \text{TeV} \end{split}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{c} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu\nu \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow t\tau v_{e}, e\tau \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}q \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		- Yes Yes ets - ets - 4 b - 4 b - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 20.3	\tilde{y}_{τ} \tilde{q}, \tilde{s} $\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{1}^{\pm}$ \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{f}_{1} 410 GeV 450 -510 GeV \tilde{t}_{1} 0.4 -1.0 TeV	1.9 TeV 1.45 TeV eV 1.55 TeV 2.1 Te 1.65 TeV	$\begin{array}{l} \lambda_{311}'=0.11, \lambda_{132/133/233}=0.07 \\ m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \ mm \\ m(\tilde{k}_{1}^{0})>400 \mbox{GeV}, \lambda_{12k}\neq0 \ (k=1,2) \\ m(\tilde{k}_{1}^{0})>0.2 \times m(\tilde{k}_{1}^{+}), \lambda_{133}\neq0 \\ BR(t)=BR(b)=BR(c)=0\% \\ m(\tilde{k}_{1}^{0})=800 \ GeV \\ m(\tilde{k}_{1}^{0})=1 \ TeV, \lambda_{112}\neq0 \\ m(\tilde{k}_{1}^{0})=1 \ TeV, \lambda_{323}\neq0 \\ BR(\tilde{t}_{1}\rightarrow be/\mu)>20\% \end{array}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	č 510 GeV		$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325
*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on 10^{-1} 1 Mass scale [TeV]									

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

"The 2 TeV line has been reached for some scenarios"

BITY.

ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$

why effective operators

- No signal of BSM @ LHC so far
- use effective operators to parametrize physics at higher energies
 - precision electroweak
 - precision Higgs
 - precision flavor
 - B, L violation
 - coupling to the dark sector
- once deviation \Longrightarrow BSM theory
- similar to four-fermion operators in weak interactions ⇒ Standard Model

Effective Operators

- Surprisingly difficult question
- In the case of the Standard Model
 - Weinberg (1980) on *D*=6 *B*, *D*=5 *U*
 - Buchmüller-Wyler (1986) on D=6 ops
 - 80 operators for $N_f = I$, B, L conserving
 - Grzadkowski et al (2010) removed redundancies and discovered one missed
 - 59 operators for $N_f = I$, B, L conserving
 - Mahonar et al (2013) general N_f
 - Lehman-Martin (2014,15) D=7 for general N_f , D=8 for $N_f=1$ (incomplete)

$$\begin{split} \widehat{H}_{6} &= H^{3}H^{\dagger\,3} + u^{\dagger}Q^{\dagger}HH^{\dagger\,2} + 2Q^{2}Q^{\dagger\,2} + Q^{\dagger\,3}L^{\dagger} + Q^{3}L + 2QQ^{\dagger}LL^{\dagger} + L^{2}L^{\dagger\,2} + uQH^{2}H^{\dagger} \\ &+ 2uu^{\dagger}QQ^{\dagger} + uu^{\dagger}LL^{\dagger} + u^{2}u^{\dagger\,2} + e^{\dagger}u^{\dagger}Q^{2} + e^{\dagger}L^{\dagger}H^{2}H^{\dagger} + 2e^{\dagger}u^{\dagger}Q^{\dagger}L^{\dagger} + eLHH^{\dagger\,2} + euQ^{\dagger\,2} \\ &+ 2euQL + ee^{\dagger}QQ^{\dagger} + ee^{\dagger}LL^{\dagger} + ee^{\dagger}uu^{\dagger} + e^{2}e^{\dagger\,2} + d^{\dagger}Q^{\dagger}H^{2}H^{\dagger} + 2d^{\dagger}u^{\dagger}Q^{\dagger\,2} + d^{\dagger}u^{\dagger}QL \\ &+ d^{\dagger}e^{\dagger}u^{\dagger\,2} + d^{\dagger}eQ^{\dagger}L + dQHH^{\dagger\,2} + 2duQ^{2} + duQ^{\dagger}L^{\dagger} + de^{\dagger}QL^{\dagger} + deu^{2} + 2dd^{\dagger}QQ^{\dagger} + dd^{\dagger}LL^{\dagger} \\ &+ 2dd^{\dagger}uu^{\dagger} + dd^{\dagger}ee^{\dagger} + d^{2}d^{\dagger\,2} + u^{\dagger}Q^{\dagger}H^{\dagger}G_{R} + d^{\dagger}Q^{\dagger}HG_{R} + HH^{\dagger}G_{R}^{2} + G_{R}^{3} + uQHG_{L} \\ &+ dQH^{\dagger}G_{L} + HH^{\dagger}G_{L}^{2} + G_{L}^{3} + u^{\dagger}Q^{\dagger}H^{\dagger}W_{R} + e^{\dagger}L^{\dagger}HW_{R} + d^{\dagger}Q^{\dagger}HW_{R} + HH^{\dagger}W_{R}^{2} + W_{R}^{3} \\ &+ uQHW_{L} + eLH^{\dagger}W_{L} + dQH^{\dagger}W_{L} + HH^{\dagger}W_{L}^{2} + W_{L}^{3} + u^{\dagger}Q^{\dagger}H^{\dagger}B_{R} + e^{\dagger}L^{\dagger}HB_{R} \\ &+ d^{\dagger}Q^{\dagger}HB_{R} + HH^{\dagger}B_{R}W_{R} + HH^{\dagger}B_{R}^{2} + uQHB_{L} + eLH^{\dagger}B_{L} + dQH^{\dagger}B_{L} + HH^{\dagger}B_{L}W_{L} \\ &+ HH^{\dagger}B_{L}^{2} + 2QQ^{\dagger}HH^{\dagger}\mathcal{D} + 2LL^{\dagger}HH^{\dagger}\mathcal{D} + uu^{\dagger}HH^{\dagger}\mathcal{D} + ee^{\dagger}HH^{\dagger}\mathcal{D} + d^{\dagger}uH^{2}\mathcal{D} + du^{\dagger}H^{\dagger^{2}\mathcal{D} \\ &+ dd^{\dagger}HH^{\dagger}\mathcal{D} + 2H^{2}H^{\dagger^{2}\mathcal{D}^{2} \,. \end{split}$$

\mathcal{D} : space time derivative

redundancies

- effective operators are invariants under the gauge group, Lorentz group, etc
- their classifications go back to Hilbert, Weyl
- applied to superpotentials, Standard Model
- but so far no general discussions on operators with derivatives
- two sources of redundancies
 - equation of motion (EOM)
 - integration by parts (IBP)

K

Simplest Example

- scalars four-point at $O(p^2)$: 4(4+1)/2=10 $(\partial_{\mu}\partial_{\mu}\varphi_i)\varphi_j\varphi_k\varphi_l$ $(\partial_{\mu}\varphi_i)(\partial_{\mu}\varphi_j)\varphi_k\varphi_l$
- $\partial^2 \phi_i = m_i^2 \phi_i$ removes the first class: 4
- We know only 2 out of 6 are independent

• s, t, u, s+t+u= $m_1^2 + m_2^2 + m_3^2 + m_4^2$

 $(\partial_{\mu}\varphi_{i})(\partial_{\mu}\varphi_{j})\varphi_{k}\varphi_{l} - \varphi_{i}\varphi_{j}(\partial_{\mu}\varphi_{k})(\partial_{\mu}\varphi_{l}) = \frac{1}{2}\partial^{2}(\varphi_{i}\varphi_{j})(\varphi_{k}\varphi_{l}) - \frac{1}{2}(\varphi_{i}\varphi_{j})\partial^{2}(\varphi_{k}\varphi_{l}) \approx 0$ $\partial_{\mu}\varphi_{i}\partial_{\mu}\varphi_{j}\varphi_{k}\varphi_{l} + \partial_{\mu}\varphi_{i}\varphi_{j}\partial_{\mu}\varphi_{k}\varphi_{l} + \partial_{\mu}\varphi_{i}\varphi_{j}\varphi_{k}\partial_{\mu}\varphi_{l} = \partial_{\mu}\varphi_{i}\partial_{\mu}(\varphi_{j}\varphi_{k}\varphi_{l}) \approx 0$

 In addition, there are only d linearly independent momenta in d-dimensions for higher-point functions

Main idea

- Take kinetic terms as the zeroth order Lagrangian $(\partial \phi)^2$, $\bar{\psi} i \partial \psi$, $(F_{\mu\nu})^2$
- Classically, it is conformally invariant under SO(4,2)≃SO(6,C)
- Operator-State correspondence in CFT tells us that operators fall into representations of the conformal group
 - equation of motion: short multiplets
 - remove total derivatives: primary states

Master formula

gauge invariants

- integration over the conformal group picks only the primary states and Lorentz scalars
- expand it in power series in ϕ_i and p to find operators at given order in them
- Possible for any Lorentz-inv "free" QFT

*There are corrections for operators d≤4 due to lack of orthonormality among characters for short multiplets

Standard Model

 $\chi H[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi scal[t, \alpha, \beta] * u1[3, x] * su2f[y];$ $\chi Hd[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi scal[t, \alpha, \beta] * u1[-3, x] * su2fb[y];$ $\chi Q[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi fermL[t, \alpha, \beta] * u1[1, x] * su2f[y] * su3f[z1, z2];$ $\chi Qd[t_, \alpha_, \beta_, x_, y_, z1_, z2_] :=$

 $\chi \text{fermR[t, \alpha, \beta] * u1[-1, x] * su2fb[y] * su3fb[z1, z2];}$ $\chi u[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi \text{fermL[t, \alpha, \beta] * u1[-4, x] * su3fb[z1, z2];}$ $\chi u[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi \text{fermR[t, \alpha, \beta] * u1[4, x] * su3fb[z1, z2];}$ $\chi d[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi \text{fermL[t, \alpha, \beta] * u1[2, x] * su3fb[z1, z2];}$ $\chi dd[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi \text{fermR[t, \alpha, \beta] * u1[-2, x] * su3fb[z1, z2];}$ $\chi L[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi \text{fermR[t, \alpha, \beta] * u1[-3, x] * su2f[y];}$ $\chi Ld[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi \text{fermR[t, \alpha, \beta] * u1[3, x] * su2fb[y];}$ $\chi e[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi \text{fermR[t, \alpha, \beta] * u1[6, x];}$ $\chi ed[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi \text{fermR[t, \alpha, \beta] * u1[-6, x];}$ $\chi B1[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi fsR[t, \alpha, \beta];$ $\chi W1[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi fsR[t, \alpha, \beta] * su2ad[y];$ $\chi W1[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi fsR[t, \alpha, \beta] * su3ad[z1, z2];$ $\chi G1[t_, \alpha_, \beta_, x_, y_, z1_, z2_] := \chi fsR[t, \alpha, \beta] * su3ad[z1, z2];$

 ∞

n =

 $H(p,\phi_1,\cdots,\phi_n) = \int d\mu_{\text{conformal}} d\mu_{\text{gauge}} \sum p^n \chi^*_{[n;0]} \prod PE[\phi_i \chi_i(q,\alpha,\beta)]$

🗰 Terminal Shell Edit View Window Help

💽 🚳 韖 🎍 📴 🐥 🕚 ∦ 💷 <> 🎺 🋜 🖣 100% 🖾 🔛 Wed Jul 5 1:03:08 AM 🛛 Hitoshi Murayama 🔍 🌏 😑

Hitoshi-no-MacBook-Pro.local 44: form hssm6.frm

É Terminal Shell Edit View Window Help

💽 🚳 😂 🎍 📴 🐥 🕚 🛞 🛅 🔶 📢 🎓 🛋 100% 🖾 🔜 Wed Jul 5 1:06:42 AM 🛛 Hitoshi Murayama 🔍 🌏 😑

Hitoshi-no-MacBook-Pro.local 49: form hssm8.frm

Ŧ

D=8 operators

2*L^2*Ld^2*t^2 + 2*ee*ed*L*Ld*t^2 + ee^2*ed^2*t^2 + 2*d*dd*L*Ld*t^2 + 2* $d^{d} = e^{d^{t}} + 2 d^{2} d^{2} + u d^{2} d^{2} + u d^{2} d^{2} + 2 u^{2} +$ *ud*ee*ed*t^2 + 4*u*ud*d*dd*t^2 + u^2*d*ee*t^2 + 2*u^2*ud^2*t^2 + 2*0d* dd*ee*L*t^2 + 3*0d*ud*ed*Ld*t^2 + 2*0d*u*d*Ld*t^2 + 3*0d^2*ud*dd*t^2 + Qd^2*u*ee*t^2 + Qd^3*Ld*t^2 + 2*Q*d*ed*Ld*t^2 + 2*Q*ud*dd*L*t^2 + 3*Q*u* ee*L*t^2 + 4*0*0d*L*Ld*t^2 + 2*0*0d*ee*ed*t^2 + 4*0*0d*d*dd*t^2 + 4*0*0d $u^{t^2} + Q^{2*}ud^{t^2} + Q^{2*}ud^{t^2} + 3^{t^2}u^{t^2} + 4^{t^2} + 4^{t^2}u^{t^2} + Q^{3*}L^{t^2}$ + Wr*L^2*Ld^2 + Wr*ee*ed*L*Ld + Wr*d*dd*L*Ld + Wr*u*ud*L*Ld + Wr*Qd*dd* ee*L + 3*Wr*Od*ud*ed*Ld + Wr*Od*u*d*Ld + 3*Wr*Od^2*ud*dd + Wr*Od^2*u*ee + 2*Wr*0d^3*Ld + Wr*0*d*ed*Ld + Wr*0*ud*dd*L + 3*Wr*0*0d*L*Ld + Wr*0*0d *ee*ed + 2*Wr*0*0d*d*dd + 2*Wr*0*0d*u*ud + 2*Wr*0^2*0d^2 + Wr^2*L*Ld*t + Wr^2*0*0d*t + 2*Wr^4 + Wl*L^2*Ld^2 + Wl*ee*ed*L*Ld + Wl*d*dd*L*Ld + Wl*u*ud*L*Ld + Wl*Od*dd*ee*L + Wl*Od*u*d*Ld + Wl*O*d*ed*Ld + Wl*O*ud*dd* L + 3*Wl*0*u*ee*L + 3*Wl*0*0d*L*Ld + Wl*0*0d*ee*ed + 2*Wl*0*0d*d*dd + 2* Wl*0*0d*u*ud + Wl*0^2*ud*ed + 3*Wl*0^2*u*d + 2*Wl*0^2*0d^2 + 2*Wl*0^3*L + 2*Wl*Wr*L*Ld*t + Wl*Wr*ee*ed*t + Wl*Wr*d*dd*t + Wl*Wr*u*ud*t + 2*Wl* Wr*0*0d*t + Wl^2*L*Ld*t + Wl^2*0*0d*t + 2*Wl^2*Wr^2 + 2*Wl^4 + Gr*d*dd*L *Ld + Gr*d*dd*ee*ed + Gr*d^2*dd^2 + 3*Gr*ud^2*dd*ed + Gr*u*ud*L*Ld + Gr* u*ud*ee*ed + 4*Gr*u*ud*d*dd + Gr*u^2*ud^2 + Gr*0d*dd*ee*L + 3*Gr*0d*ud* ed*Ld + 2*Gr*0d*u*d*Ld + 6*Gr*0d^2*ud*dd + Gr*0d^2*u*ee + 2*Gr*0d^3*Ld + Gr*0*d*ed*Ld + 2*Gr*0*ud*dd*L + 2*Gr*0*0d*L*Ld + Gr*0*0d*ee*ed + 4*Gr *0*0d*d*dd + 4*Gr*0*0d*u*ud + Gr*0^2*ud*ed + 2*Gr*0^2*0d^2 + Gr*Wr*0*0d* t + Gr*Wl*O*Od*t + Gr^2*d*dd*t + Gr^2*u*ud*t + Gr^2*0*Od*t + 2*Gr^2*Wr^2 + Gr^2*Wl^2 + 3*Gr^4 + Gl*d*dd*L*Ld + Gl*d*dd*ee*ed + Gl*d^2*dd^2 + Gl* u*ud*L*Ld + Gl*u*ud*ee*ed + 4*Gl*u*ud*d*dd + 3*Gl*u^2*d*ee + Gl*u^2*ud^2 + Gl*Qd*dd*ee*L + 2*Gl*Qd*u*d*Ld + Gl*Qd^2*u*ee + Gl*Q*d*ed*Ld + 2*Gl*Q *ud*dd*L + 3*Gl*0*u*ee*L + 2*Gl*0*0d*L*Ld + Gl*0*0d*ee*ed + 4*Gl*0*0d*d* dd + 4*Gl*Q*Qd*u*ud + Gl*Q^2*ud*ed + 6*Gl*Q^2*u*d + 2*Gl*Q^2*Qd^2 + 2*Gl *Q^3*L + Gl*Wr*Q*Qd*t + Gl*Wl*Q*Qd*t + Gl*Gr*L*Ld*t + Gl*Gr*ee*ed*t + 3* Gl*Gr*d*dd*t + 3*Gl*Gr*u*ud*t + 3*Gl*Gr*0*0d*t + Gl*Gr*Wl*Wr + Gl^2*d*dd *t + Gl^2*u*ud*t + Gl^2*0*0d*t + Gl^2*Wr^2 + 2*Gl^2*Wl^2 + 3*Gl^2*Gr^2 + 3*Gl^4 + Br*ee*ed*L*Ld + Br*d*dd*L*Ld + Br*d*dd*ee*ed + 2*Br*ud^2*dd* ed + Br*u*ud*L*Ld + Br*u*ud*ee*ed + 2*Br*u*ud*d*dd + Br*Od*dd*ee*L + 3* Br*0d*ud*ed*Ld + Br*0d*u*d*Ld + 3*Br*0d^2*ud*dd + Br*0d^3*Ld + Br*0*d*ed *Ld + Br*Q*ud*dd*L + 2*Br*Q*Qd*L*Ld + Br*Q*Qd*ee*ed + 2*Br*Q*Qd*d*dd + 2 *Br*O*Od*u*ud + Br*O^2*ud*ed + Br*Wr*L*Ld*t + Br*Wr*O*Od*t + Br*Wl*L*Ld* t + Br*Wl*O*Od*t + Br*Gr*d*dd*t + Br*Gr*u*ud*t + Br*Gr*O*Od*t + Br*Gr^3 + Br*Gl*d*dd*t + Br*Gl*u*ud*t + Br*Gl*0*0d*t + Br*Gl^2*Gr + 2*Br^2*Wr^2 + Br^2*Wl^2 + 2*Br^2*Gr^2 + Br^2*Gl^2 + Br^4 + Bl*ee*ed*L*Ld + Bl*d*dd* L*Ld + Bl*d*dd*ee*ed + Bl*u*ud*L*Ld + Bl*u*ud*ee*ed + 2*Bl*u*ud*d*dd + 2*Bl*u^2*d*ee + Bl*Qd*dd*ee*L + Bl*Qd*u*d*Ld + Bl*Qd^2*u*ee + Bl*Q*d*ed* Ld + Bl*0*ud*dd*L + 3*Bl*0*u*ee*L + 2*Bl*0*0d*L*Ld + Bl*0*0d*ee*ed + 2* Bl*Q*Qd*d*dd + 2*Bl*Q*Qd*u*ud + 3*Bl*Q^2*u*d + Bl*Q^3*L + Bl*Wr*L*Ld*t + Bl*Wr*O*Od*t + Bl*Wl*L*Ld*t + Bl*Wl*O*Od*t + Bl*Gr*d*dd*t + Bl*Gr*u* ud*t + Bl*Gr*Q*Qd*t + Bl*Gl*d*dd*t + Bl*Gl*u*ud*t + Bl*Gl*Q*Qd*t + Bl*Gl *Gr^2 + Bl*Gl^3 + Bl*Br*L*Ld*t + Bl*Br*ee*ed*t + Bl*Br*d*dd*t + Bl*Br*u* ud*t + Bl*Br*O*Od*t + Bl*Br*Wl*Wr + Bl*Br*Gl*Gr + Bl^2*Wr^2 + 2*Bl^2* W1^2 + B1^2*Gr^2 + 2*B1^2*G1^2 + B1^2*Br^2 + B1^4 + 3*Hd*ee*L^2*Ld*t + Hd*ee^2*ed*L*t + 3*Hd*d*dd*ee*L*t + 3*Hd*ud*d*ed*Ld*t + 2*Hd*ud^2*dd*L*t + 2*Hd*u*d^2*Ld*t + 3*Hd*u*ud*ee*L*t + 6*Hd*0d*ud*L*Ld*t + 3*Hd*0d*ud* ee*ed*t + 6*Hd*0d*ud*d*dd*t + 3*Hd*0d*u*d*ee*t + 3*Hd*0d*u*ud^2*t + 3*Hd *Qd^2*d*Ld*t + Hd*Qd^3*ee*t + 6*Hd*Q*d*L*Ld*t + 3*Hd*Q*d*ee*ed*t + 3*Hd* Q*d^2*dd*t + 2*Hd*Q*ud^2*ed*t + 6*Hd*Q*u*ud*d*t + 6*Hd*Q*Qd*ee*L*t + 6* Hd*0*0d^2*ud*t + 3*Hd*0^2*ud*L*t + 6*Hd*0^2*0d*d*t + Hd*Wr*ee*L*t^2 + 2* Hd*Wr*Qd*ud*t^2 + Hd*Wr*Q*d*t^2 + Hd*Wr^2*ee*L + 2*Hd*Wr^2*Qd*ud + Hd* Wr^2*0*d + 2*Hd*Wl*ee*L*t^2 + Hd*Wl*0d*ud*t^2 + 2*Hd*Wl*0*d*t^2 + 2*Hd* W1^2*ee*L + Hd*W1^2*Od*ud + 2*Hd*W1^2*O*d + 2*Hd*Gr*Od*ud*t^2 + Hd*Gr*O* d*t^2 + 2*Hd*Gr*Wr*Od*ud + Hd*Gr*Wr*O*d + Hd*Gr^2*ee*L + 3*Hd*Gr^2*Od*ud + 2*Hd*Gr^2*O*d + Hd*Gl*Od*ud*t^2 + 2*Hd*Gl*O*d*t^2 + Hd*Gl*Wl*Od*ud + 2*Hd*G1*W1*O*d + Hd*G1^2*ee*L + 2*Hd*G1^2*Od*ud + 3*Hd*G1^2*O*d + Hd*Br* ee*L*t^2 + 2*Hd*Br*0d*ud*t^2 + Hd*Br*0*d*t^2 + Hd*Br*Wr*ee*L + 2*Hd*Br*

f =

Wr*Od*ud + Hd*Br*Wr*O*d + 2*Hd*Br*Gr*Od*ud + Hd*Br*Gr*O*d + Hd*Br^2*ee*L + Hd*Br^2*Qd*ud + Hd*Br^2*Q*d + 2*Hd*Bl*ee*L*t^2 + Hd*Bl*Qd*ud*t^2 + 2* Hd*Bl*O*d*t^2 + 2*Hd*Bl*Wl*ee*L + Hd*Bl*Wl*Od*ud + 2*Hd*Bl*Wl*O*d + Hd* Bl*Gl*Od*ud + 2*Hd*Bl*Gl*O*d + Hd*Bl^2*ee*L + Hd*Bl^2*Od*ud + Hd*Bl^2*O* d + Hd^2*ee^2*L^2 + Hd^2*ud*d*t^3 + Hd^2*ud*d*L*Ld + Hd^2*0d*ud*ee*L + 2 *Hd^2*Qd^2*ud^2 + 2*Hd^2*Q*d*ee*L + 2*Hd^2*Q*Qd*ud*d + 2*Hd^2*Q^2*d^2 + Hd^2*Wr*ud*d*t + Hd^2*Wl*ud*d*t + Hd^2*Gr*ud*d*t + Hd^2*Gl*ud*d*t + Hd^2 *Br*ud*d*t + Hd^2*Bl*ud*d*t + 3*H*ed*L*Ld^2*t + H*ee*ed^2*Ld*t + 3*H*d* dd*ed*Ld*t + 2*H*ud*dd^2*L*t + 3*H*u*dd*ee*L*t + 3*H*u*ud*ed*Ld*t + 2*H* u^2*d*Ld*t + 6*H*Od*dd*L*Ld*t + 3*H*Od*dd*ee*ed*t + 3*H*Od*dd^2*t + 6* H*0d*u*ud*dd*t + 2*H*0d*u^2*ee*t + 3*H*0d^2*u*Ld*t + 3*H*0*ud*dd*ed*t + 6*H*0*u*L*Ld*t + 3*H*0*u*ee*ed*t + 6*H*0*u*d*dd*t + 3*H*0*u^2*ud*t + 6*H *0*0d*ed*Ld*t + 6*H*0*0d^2*dd*t + 3*H*0^2*dd*L*t + 6*H*0^2*0d*u*t + H* 0^3*ed*t + 2*H*Wr*ed*Ld*t^2 + 2*H*Wr*0d*dd*t^2 + H*Wr*0*u*t^2 + 2*H*Wr^2 *ed*Ld + 2*H*Wr^2*Od*dd + H*Wr^2*O*u + H*Wl*ed*Ld*t^2 + H*Wl*0d*dd*t^2 + 2*H*Wl*O*u*t^2 + H*Wl^2*ed*Ld + H*Wl^2*Od*dd + 2*H*Wl^2*O*u + 2*H*Gr* Qd*dd*t^2 + H*Gr*0*u*t^2 + 2*H*Gr*Wr*Qd*dd + H*Gr*Wr*0*u + H*Gr^2*ed*Ld + 3*H*Gr^2*0d*dd + 2*H*Gr^2*0*u + H*Gl*0d*dd*t^2 + 2*H*Gl*0*u*t^2 + H* Gl*Wl*Qd*dd + 2*H*Gl*Wl*Q*u + H*Gl^2*ed*Ld + 2*H*Gl^2*Qd*dd + 3*H*Gl^2*Q *u + 2*H*Br*ed*Ld*t^2 + 2*H*Br*0d*dd*t^2 + H*Br*0*u*t^2 + 2*H*Br*Wr*ed* Ld + 2*H*Br*Wr*Od*dd + H*Br*Wr*O*u + 2*H*Br*Gr*Od*dd + H*Br*Gr*O*u + H* Br^2*ed*Ld + H*Br^2*Od*dd + H*Br^2*O*u + H*Bl*ed*Ld*t^2 + H*Bl*Od*dd*t^2 + 2*H*Bl*Q*u*t^2 + H*Bl*Wl*ed*Ld + H*Bl*Wl*Qd*dd + 2*H*Bl*Wl*O*u + H*Bl *Gl*Od*dd + 2*H*Bl*Gl*O*u + H*Bl^2*ed*Ld + H*Bl^2*Od*dd + H*Bl^2*O*u + 4 *H*Hd*L*Ld*t^3 + 2*H*Hd*L^2*Ld^2 + 2*H*Hd*ee*ed*t^3 + 2*H*Hd*ee*ed*L*Ld + H*Hd*ee^2*ed^2 + 2*H*Hd*d*dd*t^3 + 2*H*Hd*d*dd*L*Ld + H*Hd*d*dd*ee*ed + H*Hd*d^2*dd^2 + H*Hd*ud^2*dd*ed + 2*H*Hd*u*ud*t^3 + 2*H*Hd*u*ud*L*Ld + $H^{Hd^{u^{2}}}$ + $H^{U^{2}}$ + H^{U 2*H*Hd*Qd*dd*ee*L + 4*H*Hd*Qd*ud*ed*Ld + 2*H*Hd*Qd*u*d*Ld + 4*H*Hd*Qd^2* ud*dd + H*Hd*0d^2*u*ee + 2*H*Hd*0d^3*Ld + 2*H*Hd*0*d*ed*Ld + 2*H*Hd*0*ud *dd*L + 4*H*Hd*0*u*ee*L + 4*H*Hd*0*0d*t^3 + 5*H*Hd*0*0d*L*Ld + 2*H*Hd*0* Qd*ee*ed + 4*H*Hd*Q*Qd*d*dd + 4*H*Hd*Q*Qd*u*ud + H*Hd*Q^2*ud*ed + 4*H*Hd *0^2*u*d + 3*H*Hd*0^2*0d^2 + 2*H*Hd*0^3*L + 6*H*Hd*Wr*L*Ld*t + 2*H*Hd*Wr *ee*ed*t + 2*H*Hd*Wr*d*dd*t + 2*H*Hd*Wr*u*ud*t + 6*H*Hd*Wr*0*Od*t + 2*H* Hd*Wr^2*t^2 + H*Hd*Wr^3 + 6*H*Hd*Wl*L*Ld*t + 2*H*Hd*Wl*ee*ed*t + 2*H*Hd* Wl*d*dd*t + 2*H*Hd*Wl*u*ud*t + 6*H*Hd*Wl*Q*Qd*t + 2*H*Hd*Wl*Wr*t^2 + 2*H *Hd*Wl^2*t^2 + H*Hd*Wl^3 + 2*H*Hd*Gr*d*dd*t + 2*H*Hd*Gr*u*ud*t + 4*H*Hd* Gr*0*0d*t + H*Hd*Gr^2*t^2 + H*Hd*Gr^3 + 2*H*Hd*Gl*d*dd*t + 2*H*Hd*Gl*u* ud*t + 4*H*Hd*Gl*0*0d*t + H*Hd*Gl*Gr*t^2 + H*Hd*Gl^2 + H*Hd*Gl^3 + 4 *H*Hd*Br*L*Ld*t + 2*H*Hd*Br*ee*ed*t + 2*H*Hd*Br*d*dd*t + 2*H*Hd*Br*u*ud* t + 4*H*Hd*Br*0*0d*t + 2*H*Hd*Br*Wr*t^2 + H*Hd*Br*Wr^2 + H*Hd*Br*Wl*t^2 + H*Hd*Br^2*t^2 + 4*H*Hd*Bl*L*Ld*t + 2*H*Hd*Bl*ee*ed*t + 2*H*Hd*Bl*d*dd *t + 2*H*Hd*Bl*u*ud*t + 4*H*Hd*Bl*0*Od*t + H*Hd*Bl*Wr*t^2 + 2*H*Hd*Bl*Wl *t^2 + H*Hd*Bl*Wl^2 + H*Hd*Bl*Br*t^2 + H*Hd*Bl^2*t^2 + 6*H*Hd^2*ee*L*t^2 + 6*H*Hd^2*Od*ud*t^2 + 6*H*Hd^2*O*d*t^2 + 2*H*Hd^2*Wr*Od*ud + 2*H*Hd^2* Wl*ee*L + 2*H*Hd^2*Wl*Q*d + H*Hd^2*Gr*Qd*ud + H*Hd^2*Gl*Q*d + H*Hd^2*Br* Od*ud + H*Hd^2*Bl*ee*L + H*Hd^2*Bl*0*d + H*Hd^3*ud*d*t + H^2*ed^2*Ld^2 + H^2*u*dd*t^3 + H^2*u*dd*L*Ld + 2*H^2*0d*dd*ed*Ld + 2*H^2*0d^2*dd^2 + H^2*0*u*ed*Ld + 2*H^2*0*0d*u*dd + 2*H^2*0^2*u^2 + H^2*Wr*u*dd*t + H^2*Wl *u*dd*t + H^2*Gr*u*dd*t + H^2*Gl*u*dd*t + H^2*Br*u*dd*t + H^2*Bl*u*dd*t + 6*H^2*Hd*ed*Ld*t^2 + 6*H^2*Hd*0d*dd*t^2 + 6*H^2*Hd*0*u*t^2 + 2*H^2*Hd *Wr*ed*Ld + 2*H^2*Hd*Wr*Od*dd + 2*H^2*Hd*Wl*O*u + H^2*Hd*Gr*Od*dd + H^2* Hd*Gl*Q*u + H^2*Hd*Br*ed*Ld + H^2*Hd*Br*Qd*dd + H^2*Hd*Bl*Q*u + 3*H^2* Hd^2*t^4 + 4*H^2*Hd^2*L*Ld*t + H^2*Hd^2*ee*ed*t + H^2*Hd^2*d*dd*t + H^2* $Hd^2*u^{t} + 4^{H}^2*Hd^2*0^{t} + 2^{H}^2*Hd^2*Wr^{t}^2 + 2^{H}^2*Wr^{t}^2 + 2^{H}^2*Wr^{t}^2$ 2*H^2*Hd^2*Wl*t^2 + 2*H^2*Hd^2*Wl^2 + H^2*Hd^2*Gr^2 + H^2*Hd^2*Gl^2 + H^2*Hd^2*Br*t^2 + H^2*Hd^2*Br*Wr + H^2*Hd^2*Br^2 + H^2*Hd^2*Bl*t^2 + H^2 *Hd^2*Bl*Wl + H^2*Hd^2*Bl^2 + H^2*Hd^3*ee*L + H^2*Hd^3*0d*ud + H^2*Hd^3* 0*d + H^3*Hd*u*dd*t + H^3*Hd^2*ed*Ld + H^3*Hd^2*0d*dd + H^3*Hd^2*0*u + 2 *H^3*Hd^3*t^2 + H^4*Hd^4;

993 of them for $N_{f=1}$

Conclusions

- Nailed the question of classifying effective operators in any given Lorentz-inv theory
- Also for chiral Lagrangians
- useful techniques for matching
- careful mapping to observables
- hope for deviations from Standard Model
- inverse problem to identify BSM physics