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Symmetry



Amalie Emmy Noether
1882-1935

Symmetry → Conservation law
Symmetry ← Conserved charge



parity

except for the weak interactions



rotational symmetry



moving in the 3D map of galaxies based on observations

100 trillion times faster than speed of light

translational symmetry
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If the laws of physics is symmetric, what is the origin of diversity?



Spontaneous 
Symmetry Breaking



Spontaneous 
Symmetry Breaking

• System has a symmetry G

• But its ground state 
respects only the subset of 
symmetry H

• Then there are multiple 
ground states degenerate 
in energy G/H





Halibut vs Flounder



Chirality

Reiko Kuroda



Chirality

D-glucose is sugar
L-glucose cannot be digested



Potential Energy
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Rotational Symmetry
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discovery that he is now awarded the Nobel Prize in Physics. To begin with, Nambu worked on 
theoretical calculations of another remarkable phenomenon in physics, superconductivity, when 
electric currents suddenly fl ow without any resistance. Spontaneous symmetry violation that 
described superconductivity was later translated by Nambu into the world of elementary partic-
les, and his mathematical tools now permeate all theories concerning the Standard Model.

We can witness more banal spontaneous symmetry violations in everyday life. A pencil standing on 
its point leads a completely symmetrical existence in which all directions are equal. But this sym-
metry is lost when it falls over – now only one direction counts. On the other hand, its condition has 
become more stable, the pencil cannot fall any further, it has reached its lowest level of energy. 

A vacuum has the lowest possible energy level in the cosmos. In fact, a vacuum in physics is pre-
cisely a state with the lowest possible energy. But it is not empty by any means. Since the arrival 
of quantum physics, a vacuum is defi ned as full of a bubbling soup of particles that pop up, 
only to immediately disappear again in ubiquitously present but invisible quantum fi elds. We 
are surrounded by many different quantum fi elds across  space; the four fundamental forces of 
nature are also described as fi elds. One of them, the gravitational fi eld, is known to us all. It is 
the one that keeps us down on earth and determines what is up and what is down.

Nambu realised at an early date that the properties of a vacuum are of interest for studies 
of spontaneous broken symmetry. A vacuum, that is, the lowest state of energy, does not cor-
respond to the most symmetrical state. As with the fallen pencil, the symmetry of the quantum 
fi eld has been broken and only one of many possible fi eld directions has been chosen. In recent 
decades, Nambu’s methods of treating spontaneous symmetry violation in the Standard Model 
have been refi ned; they are frequently used today to calculate the effects of the strong force.

Higgs provides mass 

The question of the mass of elementary particles has also been answered by spontaneous broken 
symmetry of the hypothetical Higgs fi eld. It is thought that at the Big Bang the fi eld was perfectly 
symmetrical and all the particles had zero mass. But the Higgs fi eld, like the pencil standing on its 
point, was not stable, so when the universe cooled down, the fi eld dropped to its lowest energy level, 
its own vacuum according to the quantum defi nition. Its symmetry disappeared and the Higgs fi eld 
became a sort of syrup for elementary particles; they absorbed different amounts of the fi eld and got 
different masses. Some, like the photons, were not attracted and remained without mass; but why 
the electrons acquired mass at all is quite a different question that no one has answered yet.

Spontaneous broken symmetry. The world of this pencil is completely  symmetrical. All directions are exactly 
equal. But this symmetry is lost when the pencil falls over. Now only one direction holds. The symmetry that 
existed  before is hidden behind the fallen pencil.

©Nobel Foundation



Magnet



Frozen

Phase Transition ⇒ Translational symmetry is broken



Superfluid
 (x) �! ei✓ (x)



Superconductor
 (x) �! ei✓(x) (x)
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Mystery

• Weak force is basically 
the same kind as the 
electromagnetism

• But then why is its range 
much shorter than the 
size of nuclei?



Higgs boson decays into two photons



Independence Day
July 4, 2012
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superconductors
Other ways of Shaking:
Hit the supercond. with femotsec. pulse
of Terahz. radiation and probe
the recovery of the gap by another optical pulse.
Watch oscillations as function of time at the Higgs freq.

Higgs Amplitude Mode in BCS Superconductors Nb1-xTixN 
induced by Terahertz Pulse Excitation

Ryusuke Matsunaga et al. (2013)
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THz pulse

Ryo Shimano



Goldstone’s theorem

• When a continuous 
symmetry is spontaneously 
broken, there appear the 
same number of massless 
particles (gapless 
excitations) as the number 
of broken symmetries

• Their dispersion relation is 
linear

E / p

Nambu-Goldstone Bosons



crystal

longitudinal

transverse

⟹phonon, E=csT p

⟹phonon, E=csL p



Particle numbers

• U(1) symmetry

• Ginzburg-Landau theory

• G=U(1), H=0

• 4He superfluid

• scalar BEC

V = �µ ⇤ + �( ⇤ )2

Figure 4: Taken from D.G. Henshaw and A.D.B. Woods, Phys. Rev., 121,
1266 (1961).

14

Figure 3: The measured excitation spectrum !(k) of a trapped Bose-Einstein
condensate. The solid line is the Bogoliubov spectrum with no free parame-
ters, in the local density approximation (LDA) for µ = 1.91 kHz. The dashed
line is the parabolic free-particle spectrum. For most points, the error bars
are not visible on the scale of the figure. The inset shows the linear phonon
regime. Taken from J. Steinhauser et al ., Phys. Rev. Lett., 88, 120407
(2002).

After quantization, this becomes a quasi-particle (elementary excitation of a
collective system) called phonon with the energy E = cs|~p|.

On the other hand, at large momentum, the dispersion relation Eq. (51)
can be approxiimated as

E(~p) ' ~p2

2m
+ µ + O(~p2)�1 (53)

and hence it is the same as the single particle excitation except the o↵set
µ = c2

sm. This is called the excitation in the free-particle regime.
In the case of liquid 4He, the interaction is quite strong and the linearized

analysis fails. The dispersion relation rises linearly in the phonon-regime but
it turns around the develops a minimum called “roton” (see Fig. 4). As
far as I know, there is no first-principle calculation of this spectrum. The
interaction is too strong for the perturbation theory to be valid to make
reliable quantitative predictions.

The linear dispersion in the phonon regime is important because it is the
very reason for superfluidity. Suppose the condensate is flowing with velocity
~v past a macroscopic obstruction of mass M . It is more convenient to go to
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N =

Z
dx ⇤ 

h0| |0i 6= 0



Supernova remnant (Crab Nebula)



Heisenberg models
H = +J

X

hi,ji

~si · ~sj

H = �J

X

hi,ji

~si · ~sj

2 NGBs

1 NGB

E / p

E / p2

Both G/H = SO(3)/SO(2) = S2

• Antiferromagnet

• Ferromagnet



two NGBs?

No!

the only mode
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Spontaneous Symmetry Breaking with Abnormal Number
of Nambu-Goldstone Bosons and Kaon Condensate

V. A. Miransky*
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7

I. A. Shovkovy*
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455
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We describe a class of relativistic models incorporating a finite density of matter in which spontaneous
breakdown of continuous symmetries leads to a lesser number of Nambu-Goldstone bosons than that
required by the Goldstone theorem. This class, in particular, describes the dynamics of the kaon con-
densate in the color-flavor locked phase of high density QCD. We describe the spectrum of low energy
excitations in this dynamics and show that, despite the presence of a condensate and gapless excitations,
this system is not a superfluid.

DOI: 10.1103/PhysRevLett.88.111601 PACS numbers: 11.30.Qc, 12.38.Aw, 21.65.+f

The Goldstone theorem is a cornerstone of the phenome-
non of spontaneous breakdown of continuous global sym-
metries. It is applicable both to relativistic field theories
with exact Lorentz symmetry [1] and to most condensed
matter systems [2] where this symmetry is absent. How-
ever, there is an important difference between these two
cases. While in Lorentz invariant systems, the Goldstone
theorem is universally valid, it is not so in condensed
matter systems. For example, it does not apply to con-
densed matter systems with long range interactions [2].
From the technical viewpoint, the difference is connected
with a kinetic term, and derivative terms, in general, in a
Lagrangian density: while their form is severely restricted
by the Lorentz symmetry, it is much more flexible in sys-
tems where this symmetry is absent.

In this Letter, we describe the phenomenon of sponta-
neous symmetry breaking of continuous symmetries with
an abnormal number of Nambu-Goldstone (NG) bosons
taking place at a sufficiently high density of matter in a
class of models without long range interactions. Here by
“abnormal” we understand that the number of gapless NG
bosons is less than the number of the generators in the coset
space G!H , where G is a symmetry of the action and H
is a symmetry of the ground state. On the other hand,
as we shall see below, the degeneracy of the ground state
remains conventional: it is described by transformations
connected with all the generators from the coset space. It
is noticeable that this class of models describes a recently
suggested [3–5] scenario with a kaon condensate in the
color-flavor locked (CFL) phase of high density QCD [6].

We illustrate this phenomenon in a toy model with the
following Lagrangian density:

L ! "≠0 1 im#Fy"≠0 2 im#F
2 y2 ≠iF

y≠iF 2 m 2 FyF 2 l"FyF#2 , (1)

where F is a complex doublet field and y is a velocity
parameter. Since here the Lorentz symmetry is broken
by the terms with the chemical potential m, the velocity

y # 1 in general. The chemical potential m is provided
by external conditions (to be specific, we take m . 0) [7].
The above Lagrangian density is invariant under global
SU"2 # 3 U"1 #. The SU"2 # is treated as the isospin group I
and the U"1 # is associated with hypercharge Y . The electric
charge is Q ! I3 1 Y . This model describes the essence
of the dynamics of the kaon condensate [4] (see below).

When m , m , it is straightforward to derive the tree
level spectrum of the physical degrees of freedom. To this
end, we switch to the momentum space by decomposing
all four real components of the F field in plane waves.
Then, the quadratic part of the above Lagrangian density
takes the following form:

L "2 #"v, q# !
1
2

" f!
1 f!

2 #M
µ

f1

f2

∂

1
1
2

" f̃!
1 f̃!

2 #M̃
µ

f̃1

f̃2

∂

, (2)

where the real and imaginary parts of each component
of the doublet were introduced, FT ! 1 !

p
2 "f1 1 if2 ,

f̃1 1 if̃2 #. Note that their Fourier transforms satisfy
f!

i "v, "k# ! fi"2v, 2"k# and f̃!
i "v, "k# ! f̃i"2v, 2"k#.

The matrices M and M̃ in Eq. (2) read
µ

v2 1 m2 2 m 2 2 y2 q2 2 imv
22 imv v2 1 m2 2 m 2 2 y2 q2

∂

.

(3)

The dispersion relations of the particles are determined
from the equation Det"M # ! 0. Explicitly, this equation
reads

$"v 2 m#2 2 m 2 2 y2 q2 % 3

$"v 1 m#2 2 m 2 2 y2 q2 % ! 0 ; (4)

i.e., the particle’s dispersion relations are

v1 ! ṽ1 ! 6"
p

m 2 1 y2 q2 1 m# , (5)

v2 ! ṽ2 ! 6"
p

m 2 1 y2 q2 2 m# . (6)
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Abnormal number of Nambu-Goldstone bosons in the color-asymmetric dense color
superconducting phase of a Nambu–Jona-Lasinio–type model

D. Blaschke*
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We consider an extended Nambu–Jona-Lasinio model including both (qq̄) and !qq" interactions with two
light-quark flavors in the presence of a single !quark density" chemical potential. In the color superconducting
phase of the quark matter the color SUc(3) symmetry is spontaneously broken down to SUc(2). If the usual
counting of Goldstone bosons would apply, five Nambu-Goldstone !NG" bosons corresponding to the five
broken color generators should appear in the mass spectrum. Unlike that expectation, we find only three
gapless diquark excitations of quark matter. One of them is an SUc(2) singlet; the remaining two form an
SUc(2) !anti"doublet and have a quadratic dispersion law in the small momentum limit. These results are in
agreement with the Nielsen-Chadha theorem, according to which NG bosons in Lorentz-noninvariant systems,
having a quadratic dispersion law, must be counted differently. The origin of the abnormal number of NG
bosons is shown to be related to a nonvanishing expectation value of the color charge operator Q8 reflecting the
lack of color neutrality of the ground state. Finally, by requiring color neutrality, two massive diquarks are
argued to become massless, resulting in a normal number of five NG bosons with the usual linear dispersion
laws.

DOI: 10.1103/PhysRevD.70.014006 PACS number!s": 12.39.!x, 11.30.Qc, 21.65."f

I. INTRODUCTION

It is well known that, in accordance with the Goldstone
theorem #1,2$, N Nambu-Goldstone !NG" bosons appear in
Lorentz-invariant systems if an internal continuous symme-
try group G is spontaneously broken down to a subgroup H
!here N is the number of generators in the coset space G/H);
i.e., the number of NG modes is equal to the number of
broken generators. However, in Lorentz-noninvariant sys-
tems the number of NG bosons can be less than N. In this
case, the counting of NG bosons is regulated by the Nielsen-
Chadha !NC" theorem #3$: Let n1 and n2 be the numbers of
gapless excitations that in the limit of long wavelengths have
the dispersion laws E%!p! ! and E%!p! !2, respectively; then,
N&n1"2n2. !Here, E is the energy and p! is the three-
momentum of the particle." In particular, this theorem is
valid for relativistically covariant theories as well, since in
this case !i" the total number of NG bosons equals N, the
number of broken symmetry generators #2$; !ii" evidently,

the dispersion law for these N massless excitations looks like
E%!p! !, thus N#n1.
Recently, in some relativistic models describing the dy-

namics of the kaon condensate in the color-flavor-locked
phase of dense quark matter, an abnormal number of NG
bosons has been revealed #4,5$. The same is true for models
with a massive relativistic vector fields interaction in the
presence of a chemical potential #6$. Since the Lorentz in-
variance is broken in this case and some of the gapless ex-
citations have a quadratic dispersion law, there are no con-
tradictions with either Goldstone or NC theorems. The
superfluid 3He in the A phase #7$ and ferromagnets #8,9$ are
other known examples of condensed-matter systems with an
abnormal number of NG bosons.
In the present paper, we demonstrate the abnormal num-

ber of NG bosons in the dense color superconducting phase
!2SC" of quark matter for a simple version of the Nambu–
Jona-Lasinio !NJL" model with two light quarks and a single
!quark number" chemical potential. In this phase, which can
be realized naturally only at sufficiently large values of the
chemical potential (300 MeV&'$1 GeV), the initial color
SUc(3) symmetry is spontaneously broken down to the
SUc(2) group. Hence, in accordance with the usual counting
of the Goldstone theorem, one might expect five NG bosons,
corresponding to the five broken symmetry generators, to

*Electronic address: david.blaschke@physik.uni-rostock.de
†Electronic address: debert@physik.hu-berlin.de
‡Electronic address: kklim@mx.ihep.su
§Electronic address: yudichev@thsun1.jinr.ru

PHYSICAL REVIEW D 70, 014006 !2004"

0556-2821/2004/70!1"/014006!11"/$22.50 ©2004 The American Physical Society70 014006-1

Superfluidity in a three-flavor Fermi gas with SU„3… symmetry

Lianyi He, Meng Jin, and Pengfei Zhuang
Physics Department, Tsinghua University, Beijing 100084, China

!Received 26 April 2006; published 8 September 2006"

We investigate the superfluidity and the associated Nambu-Goldstone modes in a three-flavor atomic Fermi
gas with SU!3" global symmetry. The s-wave pairing occurs in flavor antitriplet channel due to the Pauli
principle, and the superfluid state contains both gapped and gapless fermionic excitations. Corresponding to the
spontaneous breaking of the SU!3" symmetry to a SU!2" symmetry with five broken generators, there are only
three Nambu-Goldstone modes, one is with linear dispersion law and two are with quadratic dispersion law.
The other two expected Nambu-Goldstone modes become massive with a mass gap of the order of the fermion
energy gap in a wide coupling range. The abnormal number of Nambu-Goldstone modes, the quadratic dis-
persion law, and the mass gap have significant effect on the low-temperature thermodynamics of the matter.

DOI: 10.1103/PhysRevA.74.033604 PACS number!s": 03.75.Ss, 05.30.Fk, 74.20.Fg, 34.90.!q

I. INTRODUCTION

The superfluidity in strongly interacting atomic Fermi gas
and the associated BCS-BEC !Bose-Einstein Condensation"
crossover phenomena #1–3$ have been observed in experi-
ments #4–7$ via the method of Feshbach resonance. The ex-
perimental study of superfluidity in atomic Fermi gas may be
important for us to understand the solid-state phenomena
such as high-temperature superconductivity, and may give
some clue to search for the ground state of the dense quark
matter and nuclear matter. In the past years, most theoretical
and experimental studies concentrated on the two-flavor sys-
tems such as a 6Li gas with the two lowest hyperfine states.
!In this paper, we use the word “flavor” in particle physics to
denote the internal degrees of freedom of the fermionic at-
oms." Compared to electrons in solids, atomic systems offer
more internal degrees of freedom. For alkali atoms, nuclear
spin I and electron spin S are combined in a hyperfine state
with total angular momentum F. While typical electronic
systems are constrained to a SU!2" spin rotational symmetry,
the total angular momentum F can be larger than 1/2, result-
ing in 2F+1 hyperfine states differing by their azimuthal
quantum number mF. Therefore, the atomic Fermi gas can
provide us a way to study the superfluidity with broken sym-
metry higher than the U!1" one. In this paper, we will focus
on a three-flavor system with a SU!3" global symmetry. Such
a system has been investigated in some works #8–10$.

It is well-known that, associated with the spontaneous
breaking of a global symmetry, there should be correspond-
ing Nambu-Goldstone !NG" bosons. Such NG bosons domi-
nate the low-temperature thermodynamics of the system. Ac-
cording to the Goldstone theorem #11,12$, if an internal
continuous symmetry group is spontaneously broken down
to a subgroup with N broken generators, N NG bosons ap-
pear in Lorentz-invariant systems, i.e., the number of NG
bosons is equal to the number of broken generators. How-
ever, from the Nielsen-Chadha !NC" theorem #13$, for sys-
tems without Lorentz invariance the number of NG bosons
can be less than the number of broken generators. Let N1 and
N2 be the numbers of gapless excitations which have, respec-
tively, the dispersion laws "%&p!& and "%&p!&2 in the limit of
long wavelength, the number of broken generators satisfies

the relation N# N1+2N2. For the equality between the num-
ber of NG bosons and the number of the broken generators,
there is an important criterion: If '#Qi ,Qj$(=0 for any two
broken generators Qi and Qj, i , j=1,2 , . . . ,N, the number of
NG bosons is equal to the number of the broken generators
#14$.

For the three-flavor Fermi gas with SU!3" symmetry we
will consider in this paper, the ground state of the system
contains both gapped and gapless fermionic excitations.
When the SU!3" symmetry is spontaneously broken to a
SU!2" subgroup with five broken generators, we will show
with an explicit calculation that there are only three NG
modes. Among them, one has linear dispersion law and the
other two have quadratic dispersion law. The reason for the
abnormal number of NG modes and the appearance of qua-
dratic dispersion law is found to be the fact that the condition
'#Qi ,Qj$(=0 is not satisfied due to the density imbalance
between the gapped and gapless fermions.

The abnormal number of NG modes and the nonlinear
dispersion law were widely discussed in relativistic field
theory at finite density #14–16$. They were also found in the
study of two-flavor color superconductivity in the Nambu–
Jona-Lasinio model #17$ where the condition '#Qi ,Qj$(=0 is
not satisfied due to the lack of color neutrality. However, the
abnormal number of NG bosons cannot be realized in super-
fluid quark matter and has no observable effect, since the
color neutrality should be imposed via some mechanism
such as gluon condensation and the NG bosons should be
eaten up by the gluons via the Higgs mechanism. In atomic
Fermi gas, there is no constraint like the color neutrality, and
the NG modes are physical degrees of freedom which domi-
nate the low temperature thermodynamics of the system. The
theoretic prediction of the NG modes may be tested in future
experiments via the measurement of the thermodynamic
quantities. In addition, the mass gap of the two massive col-
lective modes found in #17$ is very small compared with the
quark energy gap, while the corresponding mass gap in the
three-flavor Fermi gas is of the order of the fermion energy
gap, which makes remarkable effect on the low-temperature
thermodynamics.

The paper is organized as follows. In Sec. II, we set up the
model for the three-flavor Fermi gas with SU!3" global sym-

PHYSICAL REVIEW A 74, 033604 !2006"
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Spontaneous Breaking of Lie and Current Algebras
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The anomalous properties of Nambu–Goldstone bosons, found by Miransky
and others in the symmetry breaking induced by a chemical potential, are
attributed to the SSB of Lie and current algebras. Ferromagnetism, antiferro-
magnetism, and their relativistic analogs are discussed as examples.2

KEY WORDS: Symmetry breaking; Nambu–Goldstone boson; color super-
conductivity; chemical potential; ferromganetism; Lorentz symmetry; current
algebra.

1. INTRODUCTION AND SUMMARY

In general the number of the Nambu–Goldstone (NG) bosons associated
with a spontaneous symmetry breaking (SSB) GQH is equal to the
number of symmetry generators Qi in the coset G/H. In the absence of a
gauge field, their energy w goes as a power kc of wave number. In a rela-
tivistic theory, c=1 necessarily unless Lorentz invariance is broken.
There are, however, exceptions to the above ‘‘theorem.’’ (1–5) Recently

one was found to occur in connection with color superconductivity in high
density quark matter, where finite quark masses act like a chemical poten-
tial, and can trigger a kaon condensation. Two of the expected three NG
modes coalesce into one, with c=2. I would like to give a dynamical
explanation to the phenomenon.
I will first state the main result, which has a general validity. Suppose

a symmetry generator (charge) Q develops a vacuum expectation value
OQP=C. If two other charges Qi, Qj are such that their commutator
[Qi, Qj]=iQ, then their corresponding zero modes Zi, Zj behave like
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Heisenberg Magnets

• Antiferromagnet

• Ferromagnet

2 NGBs

1 NGB

Two rotations are “canonically conjugate” cf. [x, p]=i ħ
two operators describe one degree of freedom

h0|Sz|0i = 0

h0|Sz|0i = �ih0|[Sx, Sy]|0i 6= 0



Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

πa: Nambu-Goldstone field
lives on space of ground states: G/H

L = pq̇ �H(p, q)

We could completely classify on what patterns of
symmetry breaking allow for the first term

nNGB = nA + nB = nBG � 1

2
rank⇢

⇢ab =
�i

V
h0|[Qa, Qb]|0i

two NG fields are canonically conjugate to each other
a pair describes one degree of freedom



Applications
example coset space BG NGB rank ρ theorem

anti-ferromagnet O(3)/O(2) 2 2 0 2=2-0
ferromagnet O(3)/O(2) 2 1 2 1=2-1

superfluid 4He U(1) 1 1 0 1=1-0
superfluid 3He B phase O(3)xO(3)xU(1)/O(2) 4 4 0 4=4-0

(in magnetic field) O(2)xO(3)xU(1)/O(2) 4 3 2 3=4-1
BEC (F=0) U(1) 1 1 0 1=1-0

BEC (F=1) polar O(3)xU(1)/U(1) 3 3 0 3=3-0
BEC (F=1) ferro O(3)xU(1)/SO(2) 3 2 2 2=3-1

3-comp. Fermi liquid U(3)/U(2) 5 3 4 3=5-2
neutron star U(1) 1 1 0 1=1-0

kaon cond. (µ=0) U(2)/U(1) 3 3 0 3=3-0
kaon cond. (µ≠0) U(2)/U(1) 3 2 2 2=3-1

crystal R3/Z3 3 3 0 3=3-0
(in magnetic field) R3/Z3 3 2 2 2=3-1

nNGB = nBG � 1

2
rank⇢
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Using the effective Lagrangian approach, we clarify general issues about Nambu-Goldstone bosons

without Lorentz invariance. We show how to count their number and study their dispersion relations. Their

number is less than the number of broken generators when some of them form canonically conjugate pairs.

The pairing occurs when the generators have a nonzero expectation value of their commutator. For non-

semi-simple algebras, central extensions are possible. The underlying geometry of the coset space in

general is partially symplectic.

DOI: 10.1103/PhysRevLett.108.251602 PACS numbers: 11.30.Qc, 14.80.Va

Introduction.—Spontaneous symmetry breaking (SSB)
is ubiquitous in nature. The examples include magnets,
superfluids, phonons, Bose-Einstein condensates (BECs),
neutron stars, and cosmological phase transitions. When
continuous and global symmetries are spontaneously bro-
ken, the Nambu-Goldstone theorem [1– 3] ensures the ex-
istence of gapless excitation modes, i.e., Nambu-Goldstone
bosons (NGBs). Since the long-distance behavior of sys-
tems with SSB is dominated by NGBs, it is clearly impor-
tant to have general theorems on their number of degrees of
freedom and dispersion relations.

In Lorentz-invariant systems, the number of NGBs nNGB
is always equal to the number of broken generators nBG.
All of them have the identical linear dispersion ! ¼ cjkj.
However, once we discard the Lorentz invariance, the
situation varies from one system to another.

Until recently, systematic studies on NGBs without
Lorentz invariance have been limited. (See Ref. [4] for a
recent review.) Nielsen and Chadha [5] classified NGBs
into two types: type-I (II) NGBs have dispersion relations
proportional to odd (even) powers of their momenta in the
long-wavelength limit. They proved nI þ 2nII # nBG,
where nI (nII) is the number of type-I (II) NGBs. Schäfer
et al. [6] showed that nNGB is exactly equal to nBG if
h0j½Qi;Qj%j0ivanishes for all pairs of the symmetry gen-
eratorsQi. A similar observation is given in Ref. [7]. Given
these results, Brauner and one of us (H.W.) [8] conjectured

nBG & nNGB ¼ 1

2
rank!; (1)

!ij ' lim
!!1

&i

!
h0j½Qi;Qj%j0i; (2)

where ! is the spatial volume of the system.
In this Letter, we clarify these long-standing questions

about the NGBs in Lorentz-noninvariant systems by proving

the conjecture and showing the equality in the Nielsen-
Chadha theorem with an improved definition using effective
LagrangiansLeff . We also clarify how the central extension
of the Lie algebra makes a contribution to ! [9].
Coset space.—When a symmetry group G is sponta-

neously broken into its subgroup H, the set of ground
states forms the coset space G=H where two elements
of G are identified if g1 ¼ g2h for 9h 2 H. Every point
on this space is equivalent under the action of G, and
we pick one as the origin. The unbroken group H leaves
the origin fixed, while the broken symmetries move the
origin to any other point. The infinitesimal action of G
is given in terms of vector fields hi ¼ hi

a@a ði ¼
1; . . . ; dimGÞ on G=H, where @a ¼ @

@"a with the local
coordinate system f"ag (a ¼ 1; . . . ; nBG ¼ dimG&
dimH) around the origin. The infinitesimal transforma-
tions hi satisfy the Lie algebra ½hi;hj% ¼ fkijhk. We

can always pick the coordinate system such that "a’s
transform linearly under H, namely, that hi ¼
"bRpðTiÞab@a, where RpðTiÞ is a representation of H
[10]. On the other hand, the broken generators are
realized nonlinearly, hb ¼ hb

að"Þ@a with hb
að0Þ ' Xb

a.
Since broken generators form a basis of the tangent
space at the origin, the matrix X must be full-rank
and hence invertible.
The long-distance excitations are described by the

NGB fields "aðxÞ that map the space-time into G=H.
We now write down its Leff in a systematic expansion
in powers of derivatives, because higher derivative terms
are less important at long distances.
Effective Lagrangians without Lorentz invariance.—We

discuss theLeff for the NGB degrees of freedom following
Refs. [11,12]. Under global symmetry G, the NGBs trans-
form as #"a ¼ $ihi

a where $i are infinitesimal parame-
ters. However, we do not make $i local (gauge) unlike in
these papers because it puts unnecessary restrictions on

PRL 108, 251602 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
22 JUNE 2012

0031-9007=12=108(25)=251602(5) 251602-1 ! 2012 American Physical Society
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Low-E Effective L

• consider πa(x) fields: R3,1 → G/H (“pions”)

• Write action S=∫d4x L(π,∂π)             
which is G-invariant

• expand in powers of derivative, keep low 
orders (often up to the second order)

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

Le↵ = gab(⇡)@µ⇡
a@µ⇡b

Leutwyler



General formula

• Define a commutator among broken 
generators 

• nB = 1/2 rank ρ counts the number of 
canonically conjugate pairs (Type-B)
• each pair describes one d.o.f.

• the remainder nA = nBG – 2nB 
• stand-alone NGB d.o.f. (Type-A)

nNGB = nA + nB = nBG � 1

2
rank⇢

⇢ab =
�i

V
h0|[Qa, Qb]|0i

generically E / p2

generically E / p

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b

ca⇡̇
a ⇡ 1

2
⇢ab⇡

b⇡̇a



spinor BEC

• BEC of F=1 atoms (ferromagnetic)

• SO(3)xU(1) 

• G/H=RP3

• 3 broken generators

• 1 NGB with E∝p

• 1 NGB with E∝p2
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FIG. 1. Magnon dispersion relation measured with magnon contrast interferometry. (a) We initialize the system with a standing
wave of magnons, in which the magnetization vector is periodically tilted in space (top row). For small tilt angles ✓, the magnon
density is proportional to the atomic density in the |mF = 0i hyperfine state, shown in images. Here, k = 2⇡/(15.4 µm) and
the scalebar is 50 µm. (b) From this initial state, the spatial modulation in the magnon density (open black circles) oscillates
in time at frequency 2(!(k) � !(0)) (fit, solid red line). (c, bottom) The dispersion relation versus k. Least-squares fit of
the contrast oscillation frequency from single (filled black circles) or several values of ✓ (open blue squares) are corrected for
frequency shifts due to the finite magnon populations (such frequency shift is shown in the inset, along with a linear fit). The
fitted quadratic dispersion relation (red dashed line) lies below the free-atom dispersion relation (solid black line). (c, top)
Fractional deviation of data from the free-atom result. Data are fit to quadratic (k2) (red dashed line) and power law (k↵)
models for ↵=2.04(1)stat (orange dot-dashed line). The error bars show 1� statistical uncertainty.

magnon spectrum of � = ~!L, where !L = 2⇡ ⇥ 80
kHz is the Larmor frequency, but this gap is accounted
for completely by considering the system in a rotating
frame; in this frame, the magnons remain gapless[18].

We initialize the interferometer by imprinting a stand-
ing wave of magnons onto the condensate by performing
spatially varying spin rotations of the gas. To do this,
we briefly illuminate the atoms with two equal-frequency
circularly polarized light beams directed nearly perpen-
dicular to the plane of the trapped condensate and that
intersect at the small relative angle #, creating a long
wavelength intensity modulation along the condensate
axis. The optical wavevector kL = 2⇡(790.03 nm)�1 is
chosen so that the scalar ac Stark shift is zero, while the
vector ac Stark shift acts akin to a transverse magnetic
field [19]. The light intensity is modulated temporally at
the Larmor frequency of !L = 2⇡⇥80 kHz, matching the
resonance condition for a two-photon Raman transfer be-
tween Zeeman states. The varying light intensity causes
the spins to be rotated in spin space by a polar angle
✓(x, y) / I(x, y) / 1 + cos(ky), where the local intensity
of the light I(x, y) has the form of a standing wave with
wavevector k = ŷ 2kL sin(#/2). We assume here that the
intensity of each beam, with 1/e2 radius of 300 µm, is
constant and equal over the area of the condensate.

For weak excitation (|✓| ⌧ 1), the resulting magnetiza-

tion pattern is described as a ferromagnetic condensate
excited with coherent populations of magnons at three
wavevectors: 0, and ±k. Allowing these populations to
evolve with the magnon energies E(0) and E(k), respec-
tively, the contrast (Fourier power) of the magnon density
modulation at wavevector k after a time ⌧ is proportional
to cos2 [(!(k)� !(0))⌧ ] where ~!(k) = E(k). This tem-
poral modulation thus measures the magnon dispersion
relation minus the magnon energy gap. As in Ref. 16, by
obtaining our signal from the contrast of the interference
fringes, and not from their phase, we remove errors due
to the residual center-of-mass motion of the condensed
gas in which the magnons evolve.

We detect the magnon density distribution using a new
form of in situ spin-dependent imaging (Fig. 1). In each
of several consecutive images, we first apply a microwave
pulse that resonantly transfers a fraction of atoms from
one of the three Zeeman populations to the F = 2 hy-
perfine level, and then perform absorption imaging with
a short and intense pulse of light that propagates along
z and is resonant with the F = 2 ! F 0 = 3 cycling
transition on the D2 line. The imaged atoms are rapidly
expelled from the trap through light-induced forces, with
no measurable impact on the remaining atoms in the
F = 1 hyperfine level. These images give the in-trap
column densities ñmF (x, y) for each of the Zeeman sub-

Ed Marti et al
arXiv:1404.5631



LVic = iVidc+ d(iVic) = dei + d(iVic)

physical origin

• What is ca(π)?
• it defines one-form c1=ca(π) dπa on G/H
• L must be G-invariant up to a surface term

• the Noether current picks up surface term

• in the ground state = stationary:

• it is “charge density” of the ground state

dei = iVi!

j0i = �ḡabh
a
i ⇡̇

b + ei

h0|j0i |0i = ei(0)

Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b



Presymplectic Geometry

G/H F

NGBs for generators a and b are symplectic pairs
and describe a single degree of freedom

dimG� dimH = nA + 2nB

closed G-inv
d c = π*ω2

G/U

π
symplectic

homogeneousω2

!2 =
1

2
⇢abd⇡

a ^ d⇡
b +O(⇡)3

Type A
E / p

Type B
E / p2

⇢ab =
�i

V
h0|[Qa, Qb]|0i

allows for complete classification of possibilities

assumption: H2(g)=0



Bon-Yao Chu (1974)

Corollary 2

If the second dimension cohomology group 
H2(g) of the Lie algebra g for a connected 
Lie group G is trivial, then every left-invariant 
closed 2-form on G induces a symplectic 
homogeneous space.

H2(g)=0 for semi-simple groups



Classification of 
presymplectic structures
• Borel (1954): G compact semi-simple, T⊂G 

a torus, U centralizer of T, then G/U Kähler
• Note Kähler manifolds are symplectic
• For a given G/H, find all U⊃H

• Project G/H to G/U, with fiber U/H
• pull back symplectic form on G/U to G/H

• If G is not semi-simple, it has U(1)k factors, 
and possible central extensions are

dimH
2(u(1)k) =

1

2
k(k � 1)



Classification of 
presymplectic structures
• For example, G=SO(n)
• First consider flag manifold SO(n)/U(1)r

• ρab generates a torus T
• ρab breaks SO(n) to 

U=SO(m)xU(n1)x...xU(nk),   n=m+Σk2nk

• SO(n)/U is Kähler and symplectic
• Type-B NGBs live on SO(n)/U
• Type-A NGBs live on U/U(1)r

• For more general H, only consider U⊃H

⇢ab = diag(

mz }| {
0, · · · , 0,

n1z }| {
↵1, · · ·↵1, · · ·

nkz }| {
↵k, · · ·↵k)⌦ i�2



no-go theorem

• Not every NGBs can be paired as Type-B

• SU(3)/U(1)2: Kähler and symplectic

Type-A Type-B nA+2nB=6

6 0 6

4 1 6

2 2 6

0 3 6
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nA nB U

30 0 .

20 5 SU(5)× U(1)

14 8 SU(4)× SU(2)× U(1)

12 9 SU(4) ×U(1)2

12 9 SU(3)2 × U(1)

8 11 SU(3)× SU(2) ×U(1)2

6 12 SU(3) ×U(1)3

6 12 SU(2)3 × U(1)2

4 13 SU(2)2 × U(1)3

2 14 SU(2) ×U(1)4

0 15 U(1)5

TABLE III. Possible number of type-A and type-B NGBs for
SU(6)/U(1)5.

nA nB U

40 0 .

24 8 SO(8)× U(1)

20 10 U(5)

14 13 SO(6)× U(2)

12 14 SO(6) ×U(1)2

12 14 U(4) ×U(1)

10 15 SO(4)× U(3)

8 16 U(3) ×U(2)

6 17 SO(4)× U(2)×U(1)

6 17 U(3)× U(1)2

4 18 SO(4) ×U(1)3

4 18 U(2)2 × U(1)

2 19 U(2)× U(1)3

0 30 U(1)5

TABLE IV. Possible number of type-A and type-B NGBs for
SO(10)/U(1)5.

For instance, one can consider SU(6)/SU(5), whose di-
mension is 35 − 24 = 11. Note that SU(6)/SU(5) =
U(6)/U(5) = S11 which was discussed in Sec. IXC. Look-
ing at the list in Table III, the only U that commutes with
SU(5) is the top two. Therefore there are two types of
presymplectic structures possible on SU(6)/SU(5). If U
is trivial, all 11 are type-A NGBs. If U = SU(5)×U(1),
B = SU(6)/SU(5) × U(1) = CP5 and there are 5 type-
B NGBs for (1/2)dimB = 5. There is only one type-A
NGB.
If the same SU(6) is broken by an order parameter in

rank-three anti-symmetric tensor, the unbroken group is
H = SU(3) × SU(3). In this case, there is no U that
commutes with H except for the trivial one. Namely
this coset space allows for no presymplectic structure and
hence nA = 19, nB = 0. However if one of the SU(3) is
further broken completely by order parameters in funda-
mental representations (at least two of them), H = SU(3)
commutes with first seven choices of U in Table III, and

nA nB U ⊂ SO(11) U ⊂ Sp(5)

50 0 . .

32 9 SO(9)× U(1) Sp(4)× U(1)

20 15 SO(7)× U(2) Sp(3)× U(2)

20 15 U(5) U(5)

18 16 SO(7)× U(1)2 Sp(3) ×U(1)2

14 18 SO(5)× U(3) Sp(2)× U(3)

14 18 SO(3)× U(4) Sp(1)× U(4)

12 19 U(4)× U(1) U(4)× U(1)

10 20 SO(5)× U(2)× U(1) Sp(2)× U(2) ×U(1)

8 21 SO(5)× U(1)3 Sp(2) ×U(1)3

8 21 SO(3)× U(3)× U(1) Sp(1)× U(3) ×U(1)

8 21 U(3)× U(2) U(3)× U(2)

6 22 SO(3)× U(2)2 Sp(1) ×U(2)2

6 22 U(3)× U(1)2 U(3)× U(1)2

4 23 SO(3)× U(2)× U(1)2 Sp(1)× U(2)× U(1)2

4 23 U(2)2 × U(1) U(2)2 × U(1)

2 24 SO(3)× U(1)4 Sp(1) ×U(1)4

2 24 U(2)× U(1)3 U(2)× U(1)3

0 25 U(1)5 U(1)5

TABLE V. Possible number of type-A and type-B NGBs for
SO(11)/U(1)5 and Sp(5)/U(1)5.

there are seven possibilities of (nA, nB) accordingly.
This way, one can work out all possibilities of (nA, nB)

for a given G and H if compact and simple. Then we
look at discrete subgroups if G or H have more than one
connected components to further eliminate some possibil-
ities. It is also straight forward to study examples with
additional U(1) factors, paying attention to possible cen-
tral extensions.
This way, one can enumerate all possible presymplectic

structures for a given G/H , and write down the most
general effective Lagrangians using the explicit forms we
found in Sec. III.

IX. EXAMPLES

Having developed a complete classification of presym-
plectic structures, we revisit popular examples of coset
spaces in the literature and show what effective La-
grangians are possible for them.

A. O(n+ 1)/O(n) = Sn

For O(n + 1)/O(n) = Sn, SO(n + 1)/SO(n) = Sn,
and O(n + 1)/[O(n) × Z2] = RPn, there is no possible
presymplectic structure for n ≥ 3. As seen in Tables IV
and V, there is no non-trivial U that commutes with
SO(n) subgroup within SO(n + 1) and hence NC = 0.
Therefore we can only have n type-A NGBs. The most

List of possible U 
for G with rank=5



Anthony Leggett
It has long been appreciated that an important consequence of the 
phenomenon of spontaneously broken symmetry, whether occurring in 
particle physics or in the physics of condensed matter, is the existence 
of the long-wavelength collective excitations known as Nambu-
Goldstone (NG) bosons. However, while in particle physics the 
constraints imposed by Lorentz invariance make the enumeration and 
classification of these bosons a relatively simple matter, in the 
condensed matter area the situation has been more obscure; while in 
any given case one can usually work out their nature and spectra, a 
generally applicable technique has been lacking.  In their paper 
Watanabe and Murayama have now derived a beautiful general 
relation between the number of broken generators, the rank of the 
matrix of commutators of the generators and the number of NG 
bosons.  This relation reproduces the relevant results for all known 
cases and gives a simple framework for discussing any currently 
unknown form of ordering which may be discovered in the future.



stability@T=0 in d+1dim

• Type A:

• scaling

• interaction

• IR free for d≥2 (no SSB in d=1)

• Type B:

• scaling

• interaction

• IR free for d≥1

~x0 = a~x, t0 = at

~x0 = a~x, t0 = a2t

Le↵ = ḡab⇡̇
a⇡̇b � gabri⇡

ar⇡b

Le↵ = ⇢ab⇡
a⇡̇b � gabri⇡

ar⇡b

⇡0a(a~x, at) = a(1�d)/2⇡a(~x, t)

⇡0a(a~x, a2t) = a�d/2⇡a(~x, t)

ri⇡
ari⇡

b⇡c ⇠ a�(d�1)/2

Apparent Violation of Coleman’s theorem

ri⇡
ari⇡

b⇡c ⇠ a�d/2



gapped (pseudo) NGB

• If the symmetry is broken by external fields 
etc, we can predict the gap exactly

nmNGB =
1

2
(rank⇢� rank⇢̃)

[Q̃a, H̃] = [Q̃a, H � µQ] = 0

[Qa, H] = 0

⇢̃ab =
�i

V
h0|[Q̃a, Q̃b]|0i

⇢ab =
�i

V
h0|[Qa, Qb]|0i

H̃(E↵|0i) = µ↵(E↵|0i)

H̃ = H � µQ

ferromagnet and anti-ferromagnet in a constant magnetic field
relativistic BECs, kaon condensation
QCD with chemical potential for isospin



skyrmion

• Consider a Heisenberg ferromagnet
• On a two-dimensional plane, non-trivial 

maps              classified by
• skyrmion has moduli: 
• translations in x and y directions
• dilation
• rotation

• derive effective Lagrangian for moduli
• momenta don’t commute!

R2 ! S2

[Px, Py] = i~ 4⇡sNskyrmion

⇡2(S
2) = Z

possible for general holomorphic maps   →Kähler C



consequence

• If you push a skyrmion, it moves sideways

L =
1

2
(xẏ � yẋ)� Fx

ẏ � F = 0

Iwasaki, Mochizuki, Nagaosa, Nature Nanotech 8, 742 (2013)



Space-Time Symmetry

• When a symmetry has to do with space-
time, the number of NGBs are reduced

• crystal: translations and rotations are both 
spontaneously broken

• they are both generated by the energy-
momentum tensor

• would-be NGBs for rotations are the same 
excitations as those for translations 
(phonons)

R0i = ✏ijkx
jT 0k

Noether constraints



Examples
• Ginzburg-Landau theory

• G=U(1), H=0

• 4He superfluid

• scalar BEC

• U(1)

• Galilean boost

• both broken nBG=1+3=4

V = �µ ⇤ + �( ⇤ )2

Figure 4: Taken from D.G. Henshaw and A.D.B. Woods, Phys. Rev., 121,
1266 (1961).

14

Figure 3: The measured excitation spectrum !(k) of a trapped Bose-Einstein
condensate. The solid line is the Bogoliubov spectrum with no free parame-
ters, in the local density approximation (LDA) for µ = 1.91 kHz. The dashed
line is the parabolic free-particle spectrum. For most points, the error bars
are not visible on the scale of the figure. The inset shows the linear phonon
regime. Taken from J. Steinhauser et al ., Phys. Rev. Lett., 88, 120407
(2002).

After quantization, this becomes a quasi-particle (elementary excitation of a
collective system) called phonon with the energy E = cs|~p|.

On the other hand, at large momentum, the dispersion relation Eq. (51)
can be approxiimated as

E(~p) ' ~p2

2m
+ µ + O(~p2)�1 (53)

and hence it is the same as the single particle excitation except the o↵set
µ = c2

sm. This is called the excitation in the free-particle regime.
In the case of liquid 4He, the interaction is quite strong and the linearized

analysis fails. The dispersion relation rises linearly in the phonon-regime but
it turns around the develops a minimum called “roton” (see Fig. 4). As
far as I know, there is no first-principle calculation of this spectrum. The
interaction is too strong for the perturbation theory to be valid to make
reliable quantitative predictions.

The linear dispersion in the phonon regime is important because it is the
very reason for superfluidity. Suppose the condensate is flowing with velocity
~v past a macroscopic obstruction of mass M . It is more convenient to go to

13

h0| |0i 6= 0

 (~x, t) ! ei✓ (~x, t)

 (~x, t) ! ei(m~x·~x� 1
2m~v2t) (~x� ~vt, t)

Biµ = tT iµ �mxijµ

⇒ no separate NGBs for Galilean boosts



vortex lattice

• rotate a (2d) BEC

• vortices form a 
triangular lattice

• broken: U(1), Px,y, Jz

• only one Type-A NGB 
with 

• called Tkachenko mode

E / p2

T 0i = mji � 2m⌦✏ijxjj0

we have a precise effective Lagrangian for this





NGB as dark matter

• Nambu proposed pions 
are light because of 
spontaneous symmetry 
breaking

• Perhaps dark matter is 
also just like pions?

• Then it would interact 
with itself!



Miracles
DM

DM

SM

SM

nDM

s
= 4.4⇥ 10�10 GeV

mDM

WIMP miracle! 

h�2!2vi ⇡
↵2

m2

↵ ⇡ 10�2

m ⇡ 300 GeV

SIMP miracle! 

DM

DM

DM

DM

DM
h�3!2v

2i ⇡ ↵3

m5

m ⇡ 300MeV

↵ ⇡ 4⇡ Hochberg, Kuflik, 
Volansky, Wacker
arXiv:1402.5143

LWZW =
�2iNc

15⇡2f5
⇡

✏µ⌫⇢�Tr⇡@µ⇡@⌫⇡@⇢⇡@�⇡ ⇡5(G/H) = Z



self interaction
• σ/m ~ cm2/g              

~10–24cm2 / 300MeV

• flattens the cusps in 
NFW profile

• suppresses substructure

• actually desirable for 
dwarf galaxies?

SIDM
Spergel & Steinhardt

(2000)
now complete theory V.H. Robles et al

arXiv:arXiv:1706.07514v1



EFT

String Landscape

Swampland

|rV | > cV
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(meta)-stable
positive vacuum energy

~10272000
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MPl4–MPl4

You are here

inconsistent



w=0

Swampland

Need mQ ~ H0 ~ 10–33 eV



shift symmetry

V = eK((KiW +Wi)
⇤K�1

ī
j(KjW +Wj)� 3|W |2)

= |WQ|2 � 3m3/2(W (Q) +W ⇤(Q))

Chien-I Chiang, HM, arXiv:1808.02279

w=0

• incorporate into supergravity
• shift symmetry (monodromy) in Kähler
• Q→Q+i α
• K(Q,Q*) = K(Q+Q*) ~ (Q+Q*)2 /2

• need m3/2W(Q)~m3/2Λ3~H02

• any potential can be lifted to supergravity
• also radiatively stable δK~m3/22Λ6 
δmQ2~m3/24Λ6

• no fifth force through Q-Higgs mixing





Le↵ = ca(⇡)⇡̇
a + ḡab(⇡)⇡̇

a⇡̇b � gab(⇡)ri⇡
ari⇡

b



Physics is fun!


