－Symmetry Breaks

－How to fix the Goldstone＇s theorem－
Arnold－Sommerfeld Colloquium，July 24，201． 9
Hitoshi Mụrayamả
Berkeley，Kavli IPMU University of Tokyo，DESY，

Symmetry

Amalie Emmy Noether 1882-1935

?

Symmetry \rightarrow Conservation law
Symmetry \leftarrow Conserved charge

parity

except for the weak interactions

100 trillion times faster than speed of light

translational symmetry

moving in the 3D map of galaxies based on observations
$\vec{F}=m \vec{a}$

$$
\begin{array}{ll}
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & \text { parity } \\
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & \text { rotation } \\
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \longrightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
a
\end{array}\right) & \text { translation }
\end{array}
$$

If the laws of physics is symmetric, what is the origin of diversity?

Spontaneous Symmetry Breaking

Spontaneous

Symmetry Breaking

- System has a symmetry G
- But its ground state respects only the subset of symmetry H
- Then there are multiple ground states degenerate in energy G/H

Halibut vs Flounder

Chirality

Control (sinistral snail)

Reiko Kuroda

Chirality

D-glucose

L-glucose

D-glucose is sugar L-glucose cannot be digested

Potential Energy

Rotational Symmetry

©Nobel Foundation

Magnet

$$
\begin{aligned}
& \begin{array}{llllll}
A & A & A & 4 & A \\
i & A & A & i & i & i
\end{array} \\
& \text { (a) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) }
\end{aligned}
$$

Phase Transition \Rightarrow Translational symmetry is broken

$$
\begin{gathered}
\psi(x) \longrightarrow e^{i \theta} \psi(x) \\
\text { Superfluid }
\end{gathered}
$$

$$
\begin{gathered}
\psi(x) \longrightarrow e^{i \theta(x)} \psi(x) \\
\text { Superconductor }
\end{gathered}
$$

$\because K A \vee L I$ Hexat

Potential Energy

$$
V=\left(x^{2}-1\right)^{2}
$$

$$
V=\left(x^{2}+y^{2}-1\right)^{2}
$$

Mystery

- Weak force is basically the same kind as the electromagnetism
- But then why is its range much shorter than the size of nuclei?

Higgs boson decays into two photons

superconductors

Goldstone's theorem

- When a continuous symmetry is spontaneously broken, there appear the same number of massless particles (gapless excitations) as the number of broken symmetries
- Their dispersion relation is
 linear

$$
E \propto p
$$

Nambu-Goldstone Bosons

Particle numbers

- U(I) symmetry

$$
\begin{aligned}
& \psi(x) \rightarrow e^{i \theta} \psi(x) \\
& N=\int d x \psi^{*} \psi
\end{aligned}
$$

- Ginzburg-Landau theory
$V=-\mu \psi^{*} \psi+\lambda\left(\psi^{*} \psi\right)^{2}$
$\langle 0| \psi|0\rangle \neq 0$
- $G=U(I), H=0$
- ${ }^{4} \mathrm{He}$ superfluid
- scalar BEC

Heisenberg models

- Antiferromagnet $H=+J \sum_{\langle i, j\rangle} \vec{s}_{i} \cdot \vec{s}_{j} \quad 2 \mathrm{NGBs}$

- Ferromagnet

$$
H=-J \sum_{\langle i, j\rangle} \vec{s}_{i} \cdot \vec{s}_{j}
$$

I NGB

Both $G / H=S O(3) / S O(2)=S^{2}$

Spontaneous Symmetry Breaking with Abnormal Number of Nambu-Goldstone Bosons and Kaon Condensate

Departm
fe e

PHYSICAL REVIEW D 70, 014006 (2004)

Abnormal number of Nambu-Goldstone bosons in the color-asymmetric dense color superconducting phase of a Nambu-Jona-Lasinio-type model

D. Blaschke*

Fachbereich Physik, Universität Rostock, D-18051 Rostock, Germany
Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia

PHYSICAL REVIEW A 74, 033604 (2006)
Superfluidity in a three-flavor Fermi gas with SU(3) symmetry
Lianyi He, Meng Jin, and Pengfei Zhuang
Physics Department, Tsinghua University, Beijing 100084, China (Received 26 April 2006; published 8 September 2006)
We investigate the superfluidity and the associated Nambu-Goldstone modes in a three-flavor atomic Fermi gas with $\operatorname{SU}(3)$ global symmetry. The s-wave pairing occurs in flavor antitriplet channel due to the Pauli principle, and the superfluid state contains both gapped and gapless fermionic excitations. Corresponding to the spontaneous breaking of the $S U(3)$ symmetry to a $S U(2)$ symmetry with five broken generators, there are only three Nambu-Goldstone modes, one is with linear dispersion law and two are with quadratic dispersion law. The other two expected Nambu-Goldstone modes become massive with a mass gap of the order of the fermion energy gap in a wide coupling range. The abnormal number of Nambu-Goldstone modes, he quadratic dispersion law, and the mass gap have significant effect on the low-temperature thermodynamics of the matter.

DOI: 10.1103/PhysRevA.74.033604
PACS number(s): 03.75.Ss, 05.30.Fk, 74.20.Fg, 34.90.+q

nducting

he usual the five ly three form an ts are in yystems, of NG ting the rks are

Spontaneous Breaking of Lie and Current Algebras

Yoichiro Nambu ${ }^{1}$

Received December 26, 2002; accepted January 29, 2003

Abstract

The anomalous properties of Nambu-Goldstone bosons, found by Miransky and others in the symmetry breaking induced by a chemical potential, are attributed to the SSB of Lie and current algebras. Ferromagnetism, antiferromagnetism, and their relativistic analogs are discussed as examples. ${ }^{2}$

KEY WORDS: Symmetry breaking; Nambu-Goldstone boson; color superconductivity; chemical potential; ferromganetism; Lorentz symmetry; current algebra.

1. INTRODUCTION AND SUMMARY

In general the number of the Nambu-Goldstone (NG) bosons associated with a spontaneous symmetry breaking (SSB) $G \rightarrow H$ is equal to the number of symmetry generators Q_{i} in the coset G / H. In the absence of a gauge field, their energy ω goes as a power k^{γ} of wave number. In a relativistic theory, $\gamma=1$ necessarily unless Lorentz invariance is broken.

There are, however, exceptions to the above "theorem." ${ }^{(1-5)}$ Recently

Ask questions!

Haruki Watanabe

Heisenberg Magnets

- Antiferromagnet

$$
\langle 0| S_{z}|0\rangle=0
$$

- Ferromagnet

$$
\langle 0| S_{z}|0\rangle=-i\langle 0|\left[S_{x}, S_{y}\right]|0\rangle \neq 0
$$

Two rotations are "canonically conjugate" cf. $[x, p]=i \hbar$ two operators describe one degree of freedom
π^{a} : Nambu-Goldstone field lives on space of ground states: G / H

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}} & =c_{a}(\pi) \dot{\pi}^{a}+\bar{g}_{a b}(\pi) \dot{\pi}^{a} \dot{\pi}^{b}-g_{a b}(\pi) \nabla_{i} \pi^{a} \nabla_{i} \pi^{b} \\
L & =p \dot{q}
\end{aligned}
$$

two NG fields are canonically conjugate to each other
a pair describes one degree of freedom

$$
\begin{gathered}
\rho_{a b}=\frac{-i}{V}\langle 0|\left[Q^{a}, Q^{b}\right]|0\rangle \\
n_{N G B}=n_{A}+n_{B}=n_{B G}-\frac{1}{2} \operatorname{rank} \rho
\end{gathered}
$$

We could completely classify on what patterns of symmetry breaking allow for the first term

Applications

example	coset space	BG	NGB	rank ρ	theorem
anti-ferromagnet	$\bigcirc(3) / O(2)$	2	2	0	$2=2-0$
ferromagnet	$\bigcirc(3) / O(2)$	2	1	2	I=2-I
superfluid ${ }^{4} \mathrm{He}$	U(1)	1	I	0	I=1-0
superfluid ${ }^{3} \mathrm{He} \mathrm{B}$ phase	$\mathrm{O}(3) \times \mathrm{O}(3) \times \mathrm{U}(1) / \mathrm{O}(2)$	4	4	0	$4=4-0$
(in magnetic field)	$\mathrm{O}(2) \mathrm{xO}(3) \mathrm{xU}(\mathrm{I}) / \mathrm{O}(2)$	4	3	2	$3=4-1$
BEC ($\mathrm{F}=0$)	$\mathrm{U}(\mathrm{I})$	I	I	0	I=1-0
BEC ($\mathrm{F}=\mathrm{I}$) polar	$\bigcirc(3) \times U(1) / U(1)$	3	3	0	$3=3-0$
BEC ($F=1$) ferro	$\mathrm{O}(3) \mathrm{xU}(1) / \mathrm{SO}(2)$	3	2	2	2=3-1
3-comp. Fermi liquid	U(3)/U(2)	5	3	4	3=5-2
neutron star	U(I)	I	1	0	I=1-0
kaon cond. $(\mu=0)$	$\mathrm{U}(2) / \mathrm{U}(1)$	3	3	0	$3=3-0$
kaon cond. $(\mu \neq 0)$	$\mathrm{U}(2) / \mathrm{U}(1)$	3	2	2	2=3-1
crystal	$\mathrm{R}^{3} / \mathrm{Z}^{3}$	3	3	0	3=3-0
(in magnetic field)	R^{3} / Z^{3}	3	2	2	$2=3-1$

spotlighting exceptional research

Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance

Haruki Watanabe ${ }^{1,2, *}$ and Hitoshi Murayama ${ }^{1,3,4, \dagger}$
${ }^{1}$ Department of Physics, University of California, Berkeley, California 94720, USA
${ }^{2}$ Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan
${ }^{3}$ Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
${ }^{4}$ Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583, Japan (Received 3 March 2012; published 21 June 2012)

Using the effective Lagrangian approach, we clarify general issues about Nambu-Goldstone bosons without Lorentz invariance. We show how to count their number and study their dispersion relations. Their number is less than the number of broken generators when some of them form canonically conjugate pairs. The pairing occurs when the generators have a nonzero expectation value of their commutator. For non-semi-simple algebras, central extensions are possible. The underlying geometry of the coset space in general is partially symplectic.

presymplectic structure on homogeneous spaces

Low-E Effective L

- consider $\Pi^{\mathrm{a}}(\mathrm{x})$ fields: $\mathrm{R}^{3,1} \rightarrow \mathrm{G} / \mathrm{H}$ ("pions")
- Write action $S=\int \mathrm{d}^{4} \mathrm{x} L(\pi, \partial \pi)$
which is G-invariant
- expand in powers of derivative, keep low orders (often up to the second order)

$$
\begin{gathered}
\mathcal{L}_{\mathrm{eff}}=g_{a b}(\pi) \partial_{\mu} \pi^{a} \partial^{\mu} \pi^{b} \\
\mathcal{L}_{\mathrm{eff}}=c_{a}(\pi) \dot{\pi}^{a}+\bar{g}_{a b}(\pi) \dot{\pi}^{a} \dot{\pi}^{b}-g_{a b}(\pi) \nabla_{i} \pi^{a} \nabla_{i} \pi^{b}
\end{gathered}
$$

Leutwyler

General formula

$$
\mathcal{L}_{\mathrm{eff}}=c_{a}(\pi) \dot{\pi}^{a}+\bar{g}_{a b}(\pi) \dot{\pi}^{a} \dot{\pi}^{b}-g_{a b}(\pi) \nabla_{i} \pi^{a} \nabla_{i} \pi^{b}
$$

- Define a commutator among broken generators

$$
\rho_{a b}=\frac{-i}{V}\langle 0|\left[Q^{a}, Q^{b}\right]|0\rangle \quad c_{a} \dot{\pi}^{a} \approx \frac{1}{2} \rho_{a b} \pi^{b} \dot{\pi}^{a}
$$

- $n_{B}=I / 2$ rank ρ counts the number of canonically conjugate pairs (Type-B) generically $E \propto p^{2}$ - each pair describes one d.o.f.
- the remainder $n_{A}=n_{B G}-2 n_{B}$
- stand-alone NGB d.o.f. (Type-A) Eenerically $\quad E \propto p$

$$
n_{N G B}=n_{A}+n_{B}=n_{B G}-\frac{1}{2} \operatorname{rank} \rho
$$

$$
\begin{aligned}
& \text { - } 3 \text { broken generators } \\
& \text { - I NGB with } E \propto p \\
& \langle\psi\rangle=v\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right)=v\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\mathcal{L}_{\mathrm{eff}}=c_{a}(\pi) \dot{\pi}^{a}+\bar{g}_{a b}(\pi) \dot{\pi}^{a} \dot{\pi}^{b}-g_{a b}(\pi) \nabla_{i} \pi^{a} \nabla_{i} \pi^{b}
$$

- What is $c_{a}(\pi)$?
- it defines one-form $c_{l}=c_{a}(\pi) d \pi^{a}$ on G / H
- L must be G-invariant up to a surface term

$$
\mathcal{L}_{V_{i}} c=i_{V_{i}} d c+d\left(i_{V_{i}} c\right)=d e_{i}+d\left(i_{V_{i}} c\right) \quad d e_{i}=i_{V_{i}} \omega
$$

- the Noether current picks up surface term

$$
j_{i}^{0}=-\bar{g}_{a b} h_{i}^{a} \dot{\pi}^{b}+e_{i}
$$

- in the ground state = stationary:

$$
\langle 0| j_{i}^{0}|0\rangle=e_{i}(0)
$$

- it is "charge density" of the ground state

Presymplectic Geometry assumption: $H^{2}(\mathfrak{g})=0$

closed G-inv

$$
d c=\pi^{*} \omega_{2}
$$

Type A
$E \propto p$
symplectic homogeneous
$\omega_{2} G / U \longleftarrow \begin{aligned} & \text { Type } B \\ & E \propto p^{2}\end{aligned}$
$\omega_{2}=\frac{1}{2} \rho_{a b} d \pi^{a} \wedge d \pi^{b}+O(\pi)^{3} \quad \rho_{a b}=\frac{-i}{V}\langle 0|\left[Q^{a}, Q^{b}\right]|0\rangle$
NGBs for generators a and b are symplectic pairs and describe a single degree of freedom

$$
\operatorname{dim} G-\operatorname{dim} H=n_{A}+2 n_{B}
$$

allows for complete classification of possibilities

Bon-Yao Chu (I974)

Corollary 2
If the second dimension cohomology group $H^{2}(\mathbb{G})$ of the Lie algebra \mathfrak{g} for a connected Lie group G is trivial, then every left-invariant closed 2 -form on G induces a symplectic homogeneous space.
$H^{2}(\mathbb{I})=0$ for semi-simple groups

Classification of

presymplectic structures

- Borel (I954): G compact semi-simple, TcG a torus, U centralizer of T, then G / U Kähler - Note Kähler manifolds are symplectic
- For a given G / H, find all $U \supset H$
- Project G / H to G / U, with fiber U/H
- pull back symplectic form on G / U to G / H
- If G is not semi-simple, it has $U(I)^{k}$ factors, and possible central extensions are

$$
\operatorname{dim} H^{2}\left(\mathfrak{u}(1)^{k}\right)=\frac{1}{2} k(k-1)
$$

Classification of

presymplectic structures

- For example, $G=S O(n)$
- First consider flag manifold $\mathrm{SO}(n) / \mathrm{U}(\mathrm{I})^{r}$
$\rho_{a b}=\operatorname{diag}(\overbrace{0, \cdots, 0}^{m}, \overbrace{\alpha_{1}, \cdots \alpha_{1}}^{n_{1}}, \cdots \overbrace{\alpha_{k}, \cdots \alpha_{k}}^{n_{k}}) \otimes i \sigma_{2}$
- $\rho_{a b}$ generates a torus T
- $\rho_{a b}$ breaks $\mathrm{SO}(n)$ to $U=S O(m) \times U\left(n_{1}\right) \times \ldots \times U\left(n_{k}\right), \quad n=m+\sum_{k} 2 n_{k}$
- $\mathrm{SO}(n) / U$ is Kähler and symplectic
- Type-B NGBs live on SO(n)/U
- Type-A NGBs live on U/U(I)r
- For more general H, only consider UכH

no-go theorem

- Not every NGBs can be paired as Type-B
- SU(3)/U(I) ${ }^{2}$: Kähler and symplectic

Type-A	Type-B	$n_{A}+2 n_{B}=6$
6	0	6
4	+	6
2	2	6
0	3	6

n_{A}	n_{B}	U
30	0	.
20	5	$\mathrm{SU}(5) \times \mathrm{U}(1)$
14	8	$\mathrm{SU}(4) \times \mathrm{SU}(2) \times \mathrm{U}(1)$
12	9	$\mathrm{SU}(4) \times \mathrm{U}(1)^{2}$
12	9	$\mathrm{SU}(3)^{2} \times \mathrm{U}(1)$
8	11	$\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)^{2}$
6	12	$\mathrm{SU}(3) \times \mathrm{U}(1)^{3}$
6	12	$\mathrm{SU}(2)^{3} \times \mathrm{U}(1)^{2}$
4	13	$\mathrm{SU}(2)^{2} \times \mathrm{U}(1)^{3}$
2	14	$\mathrm{SU}(2) \times \mathrm{U}(1)^{4}$
0	15	$\mathrm{U}(1)^{5}$

TABLE III. Possible number of type-A and type-B NGBs for $\mathrm{SU}(6) / \mathrm{U}(1)^{5}$.

n_{A}	n_{B}	U
40	0	\cdot
24	8	$\mathrm{SO}(8) \times \mathrm{U}(1)$
20	10	$\mathrm{U}(5)$
14	13	$\mathrm{SO}(6) \times \mathrm{U}(2)$
12	14	$\mathrm{SO}(6) \times \mathrm{U}(1)^{2}$
12	14	$\mathrm{U}(4) \times \mathrm{U}(1)$
10	15	$\mathrm{SO}(4) \times \mathrm{U}(3)$
8	16	$\mathrm{U}(3) \times \mathrm{U}(2)$
6	17	$\mathrm{SO}(4) \times \mathrm{U}(2) \times \mathrm{U}(1)$
6	17	$\mathrm{U}(3) \times \mathrm{U}(1)^{2}$
4	18	$\mathrm{SO}(4) \times \mathrm{U}(1)^{3}$
4	18	$\mathrm{U}(2)^{2} \times \mathrm{U}(1)$
2	19	$\mathrm{U}(2) \times \mathrm{U}(1)^{3}$
0	30	$\mathrm{U}(1)^{5}$

TABLE IV. Possible number of type-A and type-B NGBs for $\mathrm{SO}(10) / \mathrm{U}(1)^{5}$.

n_{A}	n_{B}	$U \subset \mathrm{SO}(11)$	$U \subset \mathrm{Sp}(5)$
50	0	\cdot	\cdot
32	9	$\mathrm{SO}(9) \times \mathrm{U}(1)$	$\mathrm{Sp}(4) \times \mathrm{U}(1)$
20	15	$\mathrm{SO}(7) \times \mathrm{U}(2)$	$\mathrm{Sp}(3) \times \mathrm{U}(2)$
20	15	$\mathrm{U}(5)$	$\mathrm{U}(5)$
18	16	$\mathrm{SO}(7) \times \mathrm{U}(1)^{2}$	$\mathrm{Sp}(3) \times \mathrm{U}(1)^{2}$
14	18	$\mathrm{SO}(5) \times \mathrm{U}(3)$	$\mathrm{Sp}(2) \times \mathrm{U}(3)$
14	18	$\mathrm{SO}(3) \times \mathrm{U}(4)$	$\mathrm{Sp}(1) \times \mathrm{U}(4)$
12	19	$\mathrm{U}(4) \times \mathrm{U}(1)$	$\mathrm{U}(4) \times \mathrm{U}(1)$
10	20	$\mathrm{SO}(5) \times \mathrm{U}(2) \times \mathrm{U}(1)$	$\mathrm{Sp}(2) \times \mathrm{U}(2) \times \mathrm{U}(1)$
8	21	$\mathrm{SO}(5) \times \mathrm{U}(1)^{3}$	$\mathrm{Sp}(2) \times \mathrm{U}(1)^{3}$
8	21	$\mathrm{SO}(3) \times \mathrm{U}(3) \times \mathrm{U}(1)$	$\mathrm{Sp}(1) \times \mathrm{U}(3) \times \mathrm{U}(1)$
8	21	$\mathrm{U}(3) \times \mathrm{U}(2)$	$\mathrm{U}(3) \times \mathrm{U}(2)$
6	22	$\mathrm{SO}(3) \times \mathrm{U}(2)^{2}$	$\mathrm{Sp}(1) \times \mathrm{U}(2)^{2}$
6	22	$\mathrm{U}(3) \times \mathrm{U}(1)^{2}$	$\mathrm{U}(3) \times \mathrm{U}(1)^{2}$
4	23	$\mathrm{SO}(3) \times \mathrm{U}(2) \times \mathrm{U}(1)^{2}$	$\mathrm{Sp}(1) \times \mathrm{U}(2) \times \mathrm{U}(1)^{2}$
4	23	$\mathrm{U}(2)^{2} \times \mathrm{U}(1)$	$\mathrm{U}(2)^{2} \times \mathrm{U}(1)$
2	24	$\mathrm{SO}(3) \times \mathrm{U}(1)^{4}$	$\mathrm{Sp}(1) \times \mathrm{U}(1)^{4}$
2	24	$\mathrm{U}(2) \times \mathrm{U}(1)^{3}$	$\mathrm{U}(2) \times \mathrm{U}(1)^{3}$
0	25	$\mathrm{U}(1)^{5}$	$\mathrm{U}(1)^{5}$

TABLE V. Possible number of type-A and type-B NGBs for $\mathrm{SO}(11) / \mathrm{U}(1)^{5}$ and $\mathrm{Sp}(5) / \mathrm{U}(1)^{5}$.

List of possible U for G with rank=5

Anthony Leggett

It has long been appreciated that an important consequence of the phenomenon of spontaneously broken symmetry, whether occurring in particle physics or in the physics of condensed matter, is the existence of the long-wavelength collective excitations known as NambuGoldstone (NG) bosons. However, while in particle physics the constraints imposed by Lorentz invariance make the enumeration and classification of these bosons a relatively simple matter, in the condensed matter area the situation has been more obscure; while in any given case one can usually work out their nature and spectra, a generally applicable technique has been lacking. In their paper Watanabe and Murayama have now derived a beautiful general relation between the number of broken generators, the rank of the matrix of commutators of the generators and the number of NG bosons. This relation reproduces the relevant results for all known cases and gives a simple framework for discussing any currently unknown form of ordering which may be discovered in the future.

stability@T=0 in d+Idim

- Type A:
- scaling

$$
\pi^{\prime a}(a \vec{x}, a t)=a^{(1-d) / 2} \pi^{a}(\vec{x}, t)
$$

- interaction

$$
\nabla_{i} \pi^{a} \nabla_{i} \pi^{b} \pi^{c} \sim a^{-(d-1) / 2}
$$

- IR free for $d \geq 2$ (no SSB in $d=I$)
- Type B:
- scaling

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}= \rho_{a b} \pi^{a} \dot{\pi}^{b}-g_{a b} \nabla_{i} \pi^{a} \nabla \pi^{b} \\
& \vec{x}^{\prime}=a \vec{x}, t^{\prime}=a^{2} t
\end{aligned}
$$

- interaction

$$
\begin{gathered}
\mathcal{L}_{\mathrm{eff}}=\bar{g}_{a b} \dot{\pi}^{a} \dot{\pi}^{b}-g_{a b} \nabla_{i} \pi^{a} \nabla \pi^{b} \\
\vec{x}^{\prime}=a \vec{x}, t^{\prime}=a t
\end{gathered}
$$

gapped (pseudo) NGB

- If the symmetry is broken by external fields etc, we can predict the gap exactly

\[

\]

ferromagnet and anti-ferromagnet in a constant magnetic field relativistic BECs, kaon condensation
QCD with chemical potential for isospin

skyrmion

- Consider a Heisenberg ferromagnet
- On a two-dimensional plane, non-trivial maps $\mathbb{R}^{2} \rightarrow S^{2}$ classified by $\pi_{2}\left(S^{2}\right)=\mathbb{Z}$
- skyrmion has moduli:
- translations in x and y directions
- dilation
- rotation
- derive effective Lagrangian for moduli
- momenta don't commute!

$$
\left[P_{x}, P_{y}\right]=i \hbar 4 \pi s N_{\text {skyrmion }}
$$

possible for general holomorphic maps $\mathbb{C} \rightarrow$ Kähler

Space-Time Symmetry

- When a symmetry has to do with spacetime, the number of NGBs are reduced
- crystal: translations and rotations are both spontaneously broken $R^{0 i}=\epsilon_{i j k} x^{j} T^{0 k}$
- they are both generated by the energymomentum tensor
- would-be NGBs for rotations are the same excitations as those for translations (phonons)

Noether constraints

Examples

- Ginzburg-Landau theory
$V=-\mu \psi^{*} \psi+\lambda\left(\psi^{*} \psi\right)^{2}$
- $G=U(I), H=0$
- ${ }^{4}$ He superfluid
- scalar BEC $\langle 0| \psi|0\rangle \neq 0$
- $\mathbf{U}(\mathrm{I}) \psi(\vec{x}, t) \rightarrow e^{i \theta} \psi(\vec{x}, t)$
- Galilean boost

$$
\psi(\vec{x}, t) \rightarrow e^{i\left(m \vec{x} \cdot \vec{x}-\frac{1}{2} m \vec{v}^{2} t\right)} \psi(\vec{x}-\vec{v} t, t)
$$

- both broken $n_{B G}=1+3=4$
$B^{i \mu}=t T^{i \mu}-m x^{i} j^{\mu}$
\Rightarrow no separate NGBs for Galilean boosts

vortex lattice

- rotate a (2d) BEC
- vortices form a triangular lattice
- broken: U(I), $P_{x, y}, J_{z}$
- only one Type-A NGB with

$$
E \propto p^{2}
$$

- called Tkachenko mode
$T^{0 i}=m j^{i}-2 m \Omega \epsilon^{i j} x^{j} j^{0}$
we have a precise effective Lagrangian for this

NGB as dark matter

- Nambu proposed pions are light because of spontaneous symmetry breaking
- Perhaps dark matter is also just like pions?
- Then it would interact with itself!

$$
\begin{array}{cc}
\text { MiraCes } & n_{\mathrm{DM}} \\
\qquad \mathrm{SM} & 4.4 \times 10^{-10} \frac{\mathrm{GeV}}{m_{\mathrm{DM}}} \\
& \left\langle\sigma_{2 \rightarrow 2} v\right\rangle \approx \frac{\alpha^{2}}{m^{2}} \\
& \alpha \approx 10^{-2} \\
\text { SM } & m \approx 300 \mathrm{GeV} \\
& \text { WIMP miracle! }
\end{array}
$$

SIMP miracle!

self interaction

- $\sigma / m \sim \mathrm{~cm}^{2} / \mathrm{g}$ $\sim 10^{-24} \mathrm{~cm}^{2} / 300 \mathrm{MeV}$
- flattens the cusps in NFW profile
- suppresses substructur
- actually desirable for dwarf galaxies?

SIDM

Spergel \& Steinhardt (2000)
now complete theory

EFT

~10272000
 String Landscape
 $|\nabla V|>c V$

(meta)-stable
positive vacuum energy

Swampland

$$
w=-1+\frac{2 c^{2}}{3+c^{2}}
$$

Obied, Ooguri, Spodyneiko, Vafa, arXiv:1806.08362

shift symmetry

- incorporate into supergravity
- shift symmetry (monodwomy) in Kähler
- $Q \rightarrow Q+i \alpha$
- $K\left(Q, Q^{*}\right)=K\left(Q+Q^{*}\right) \approx\left(Q+Q^{*}\right)^{2 / 2}$
$V=e^{K}\left(\left(K_{i} W+W_{i}\right)^{*} K_{\bar{i}}^{-1 j}\left(K_{j} W+W_{j}\right)-3|W|^{2}\right)$
$=|W /|^{2}-3 m_{3 / 2}\left(W(Q)+W^{*}(Q)\right)$
- need $m_{3 / 2} W(Q) \sim m_{3 / 2} \wedge^{3} \sim H_{0}{ }^{2}$
- any potential can be lifted to supergravity
- also radiatively stable $\delta K \sim m_{3 / 2}{ }^{2} \Lambda^{6}$
$\delta m^{2} \sim m_{3 / 2}{ }^{4}{ }^{6}$
- no fifth force through Q-Higgs mixing

Chien-1 Chiand HM, arXiv-1808.02279

$\mathcal{L}_{\mathrm{eff}}=c_{a}(\pi) \dot{\pi}^{a}+\bar{g}_{a b}(\pi) \dot{\pi}^{a} \dot{\pi}^{b}-g_{a b}(\pi) \nabla_{i} \pi^{a} \nabla_{i} \pi^{b}$

