UNIVERSITY OF MARYLAND

Scaling down the laws of thermodynamics
What do the laws of thermodynamics look like when applied to very small systems?

Chris Jarzynski
Institute for Physical Science and Technology
Department of Chemistry \& Biochemistry
Department of Physics

Macroscopic and microscopic machines

steam engine

RCSB Protein
Data Bank

New features of thermodynamics at the nanoscale

- Prominence of fluctuations

New features of thermodynamics at the nanoscale

- Prominence of fluctuations
- "Violations" of the second law

New features of thermodynamics at the nanoscale

- Prominence of fluctuations
happy - "Violations" of the second law
Humpty • Blurred arrow of time

New features of thermodynamics at the nanoscale

- Prominence of fluctuations
- "Violations" of the second law
- Blurred arrow of time
- Feedback control \& information processing

New features of thermodynamics at the nanoscale

- Prominence of fluctuations
- "Violations" of the second law
- Blurred arrow of time
- Feedback control \& information processing
- Strong system-environment coupling

Macro- and nanoscale thermodynamic processes

Irreversible process (rubber band):

1. Begin in equilibrium

$$
\lambda=\mathrm{A}
$$

2. Stretch the system
$\lambda: A \rightarrow B$
$\mathrm{W}=$ work performed $\geq \Delta \mathrm{F}=\mathrm{F}_{\mathrm{B}}-\mathrm{F}_{\mathrm{A}}$
3. End in equilibrium $\lambda=\mathrm{B}$

Macro- and nanoscale thermodynamic processes

Irreversible process (RNA):

1. Begin in equilibrium
2. Stretch the system

$$
\lambda=\mathrm{A}
$$

$$
<\mathrm{W}\rangle=\text { average work } \geq \Delta \mathrm{F}=\mathrm{F}_{\mathrm{B}}-\mathrm{F}_{\mathrm{A}}
$$

3. End in equilibrium $\lambda=\mathrm{B}$

Macro- and nanoscale thermodynamic processes

Macro- and nanoscale thermodynamic processes

Fluctuations in W satisfy unexpected laws.

Fluctuation theorems / non-equilibrium work relations

$$
\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F} \quad \text { C.J., PRL 78, } 2690 \text { (1997) }
$$

Fluctuations in W satisfy unexpected laws.

Fluctuation theorems / non-equilibrium work relations

$$
\begin{array}{ll}
\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F} & \text { C.J., PRL 78, } 2690 \text { (1997) } \tag{1997}\\
\frac{\rho_{F}(+W)}{\rho_{R}(-W)}=\exp [\beta(W-\Delta F)] & \begin{array}{r}
\text { Crooks, PRE 60, 2721 (1999) } \\
{[J \text { Stat Phys 90, 1481 (1998)] }}
\end{array}
\end{array}
$$

Unfolding \& refolding of ribosomal RNA

$$
\frac{\rho_{\text {unfold }}(+W)}{\rho_{\text {refold }}(-W)}=\exp [\beta(W-\Delta F)]
$$

Quantum nonequilibrium work relation $\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F}$ Mukamel, PRL 90, 170604 (2003)
Kurchan, cond-mat/0007360 ; Tasaki, cond-mat/0009244

$$
\begin{aligned}
& E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) \\
& W=\hbar \omega\left(n_{f}-n_{i}\right)=\hbar \omega \Delta n
\end{aligned}
$$

An et al, Nat. Phys. 11, 193 (2015)

Quantum nonequilibrium work relation $\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F}$ Mukamel, PRL 90, 170604 (2003)
Kurchan, cond-mat/0007360 ; Tasaki, cond-mat/0009244

$$
\begin{aligned}
& E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) \\
& W=\hbar \omega\left(n_{f}-n_{i}\right)=\hbar \omega \Delta n
\end{aligned}
$$

An et al,
Nat. Phys. 11, 193 (2015)

Further experimental verification

Mechanical oscillator
Douarche et al, EPL 70, 593 (2005)

Trapped colloidal particle Blickle et al, PRL 96, 070603 (2006)

Protein unfolding
Harris, Song and Kiang,
PRL 99, 068101 (2007)

Single electron box
Saira et al, PRL 109, 180601 (2012)
\& others ...

Implications for the Second Law

$$
\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F} \quad \text { implies }\left\{\begin{array}{c}
\langle W\rangle \geq \Delta F \\
\operatorname{Pr}[W \leq \Delta F-\zeta] \leq \exp \left(-\zeta / k_{B} T\right)
\end{array}\right.
$$

Implications for the Second Law

Implications for the Second Law

$$
\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F} \quad \text { implies }\left\{\begin{array}{c}
\langle W\rangle \geq \Delta F \\
\operatorname{Pr}[W \leq \Delta F-\zeta] \leq \exp \left(-\zeta / k_{B} T\right)
\end{array}\right.
$$

What is the probability that the 2nd law

Guessing the direction of the arrow of time

C.J., Annu Rev Cond Matt Phys 2, 329 (2011)

You are shown a movie depicting a thermodynamic process, $A \rightarrow B$.
Task: determine whether you are viewing the events in the order in which they actually occurred, or a movie run backward of the reverse process.
Two hypotheses:
The molecule was stretched (F) The molecule was contracted (R)

$$
L(F \mid W)=\frac{1}{1+\exp [-\beta(W-\Delta F)]}
$$

Shirts et al, PRL 91, 140601 (2003), Maragakis et al, JCP 129, 024102 (2008)

Guessing the direction of the arrow of time

C.J., Annu Rev Cond Matt Phys 2, 329 (2011)

You are shown a movie depicting a thermodynamic process, $A \rightarrow B$.
Task: determine whether you are viewing the events in the order in which they actually occurred, or a movie run backward of the reverse process.

Feedback control

autonomous

non-autonomous

Maxwell's demon

"... the energy in A is increased and that in B diminished; that is, the hot system has got hotter and the cold colder and yet no work has been done, only the intelligence of a very observant and neat-fingered being has been employed"
J.C. Maxwell, letter to P.G. Tait, Dec. 11, 1867 non-autonomous feedback control

Maxwell's demon

Is a "mechanical" Maxwell demon possible?
M. Smoluchowski, Phys Z 13, 1069 (1912) no!
R.P. Feynman, Lectures
autonomous feedback control

Maxwell's demon

Is a "mechanical" Maxwell demon possible?
R. Landauer, IBM J Res Dev 5, 183 (1961)
O. Penrose, Foundations of Statistical Mechanics (1970) yes, but ...
C.H. Bennett, Int J Theor Physics 21, 905 (1982)
autonomous feedback control

Second Law of Thermodynamics

... with measurement and feedback

$$
\begin{array}{cl}
\langle W\rangle \geq \Delta F-k_{B} T\langle I\rangle & \text { Sagawa \& Ueda, PRL 100, 080403 (2008) } \\
\left\langle e^{-\beta W-I}\right\rangle=e^{-\beta \Delta F} & \text { Sagawa \& Ueda, PRL 104, 090602 (2010) } \\
\text { experiment: } & \text { Toyabe et al, Nature Phys 6, } 988 \text { (2010) }
\end{array}
$$

Strong system-environment coupling

$$
W \geq \Delta F \quad\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F} \quad \frac{\rho_{F}(+W)}{\rho_{R}(-W)}=\exp [\beta(W-\Delta F)]
$$

- $\Delta \mathrm{F}$ (Helmholtz) or $\Delta \mathrm{G}$ (Gibbs) ? macro: $\mathrm{G}=\mathrm{F}+\mathrm{PV}$
- How to define the volume of a single molecule ?
- How to define heat ? first law: $\Delta \mathrm{U}=\mathrm{W}-\mathrm{P} \Delta \mathrm{V}+\mathrm{Q}$

Total energy of sys +env:

$$
\begin{array}{r}
U_{S+E}=U_{s y s}+U_{\text {env }}+U_{\mathrm{int}} \\
\text { non-negligible! }
\end{array}
$$

Strong system-environment coupling

C.J., PRX 7, 011008 (2017)

$$
\begin{gathered}
U_{S+E}=U_{s y s}+U_{e n v}+U_{\mathrm{int}} \\
p^{e q}(s y s)=\frac{1}{Z} \exp \left[-\beta\left(U_{s y s}+\phi\right)\right]
\end{gathered}
$$

RNA molecule (sys)

$$
\phi(\underset{\uparrow}{q} ; P, T)=\begin{gathered}
\text { solvation potential } \\
\text { of mean force }
\end{gathered}
$$

microscopic configuration of molecule

$\phi(q ; P, T)=$ reversible work required to insert pebble into water

$$
=P \times V_{\text {pebble }}
$$

$V_{\text {pebble }}=\phi / P \quad$ "thermodynamic volume"

Strong system-environment coupling

C.J., PRX 7, 011008 (2017)

Seifert, PRL 116, 020601 (2016)
Strasberg \& Esposito, PRE 95, 062101 (2017)
define volume of system: $v(q ; P, T) \equiv \phi / P$
... leads to natural microscopic definitions of internal energy, enthalpy, entropy, Helmholtz \& Gibbs free energies, heat and work

First law: $\quad \Delta U_{s y s}=Q+W-P \Delta v$
Second law: $\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta G}, \frac{\rho_{F}(+W)}{\rho_{R}(-W)}=\exp [\beta(W-\Delta G)]$

$$
\langle W\rangle \geq \Delta G \quad, \quad\left\langle\int_{A}^{B} \frac{d Q}{T}\right\rangle \leq \Delta S
$$

Summary

C.J., Annu Rev Cond Matt Phys 2, 329 (2011) (classical) Campisi, Hänggi, \& Talkner, Rev Mod Phys 83, 771 (2011) (quantum) Sagawa, Progress Theor Phys 127, 1 (2012) (information processing)

