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When CFT has global symmetry, 
it is interesting to understand the 
decomposition of its Hilbert space 
into irreducible representations 
of the symmetry. 

I would like to present universal 
results about the decomposition, 
applicable to any unitary CFT.
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I will discuss the high energy asymptotic 
behaviors of the density of states and the three-
point functions of conformal field theory and their 
decompositions with respect to symmetries. 

Based on:

• with Harlow [2109.03838]
• with Kang, Lee [2206.14814]
• with Benjamin, Lee, Simmons-Duffin [2306.08031]
• with Pal, Sun, Zhang [in progress]
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The dimensional analysis shows that the canonical partition function 
of any unitary quantum field theory in 𝒅𝒅 spacetime dimensions 
behaves as,

Tr 𝑒𝑒−𝛽𝛽𝛽𝛽 ≈ exp( 𝑓𝑓 𝑇𝑇𝑑𝑑−1 + ⋯ ) ( 𝛽𝛽 = 1/𝑇𝑇 → 0) .

For 𝑑𝑑 = 2, the coefficient 𝑓𝑓 is 𝜋𝜋2

3
𝑐𝑐, the Cardy formula.  

The purpose of this talk is to refine this formula with respect to 
symmetry and answer the question:

We also derive a behavior of correlation functions of these high 
energy states. 

How is the high energy Hilbert space decomposed into 
irreducible representations of global and spacetime symmetries? 
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The dimensional analysis shows that the canonical partition function 
of any unitary quantum field theory in 𝒅𝒅 spacetime dimensions 
behaves as,

Tr 𝑒𝑒−𝛽𝛽𝛽𝛽 ≈ exp( 𝑓𝑓 𝑇𝑇𝑑𝑑−1 + ⋯ ) ( 𝛽𝛽 = 1/𝑇𝑇 → 0) .

For 𝑑𝑑 = 2, the coefficient 𝑓𝑓 is 𝜋𝜋2

3
𝑐𝑐, the Cardy formula.  

The purpose of this talk is to refine this formula with respect to 
symmetry and answer the question:

We also derive a behavior of correlation functions of these high 
energy states. 

How is the high energy Hilbert space decomposed into 
irreducible representations of global and spacetime symmetries? 
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Asymptotic Density of States in High Energy
resolved with respect to Global Symmetry

When the global symmetry 𝐺𝐺 is a finite group, we will show 

𝜌𝜌 Δ,𝑅𝑅 ≈ dim 𝑅𝑅 2

𝐺𝐺
𝜌𝜌(Δ),    Δ ≫ 1

Harlow + H.O.: 2111.04725

Tr 𝑈𝑈 𝑔𝑔 𝑒𝑒−𝛽𝛽𝛽𝛽

Tr 𝑒𝑒−𝛽𝛽𝛽𝛽
≈ 𝛿𝛿 𝑔𝑔, 1 ,

This means that the density of high energy states 𝜌𝜌(Δ,𝑅𝑅)
transforming in the irreducible representation 𝑅𝑅 is,

in the limit of 𝛽𝛽 = 1/𝑇𝑇 → 0.

.
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Asymptotic Density of States in High Energy
resolved with respect to Global Symmetry

When the internal symmetry  𝐺𝐺 is a compact Lie group, we show 

This means that the density of high energy states 𝜌𝜌(Δ,𝑅𝑅)
transforming in the irreducible representation 𝑅𝑅 is,

for 𝛽𝛽 = 1/𝑇𝑇 → 0.

.

Tr 𝑈𝑈 𝑔𝑔 𝑒𝑒−𝛽𝛽𝛽𝛽

Tr 𝑒𝑒−𝛽𝛽𝛽𝛽
≈

4𝜋𝜋
𝑏𝑏 𝑇𝑇𝑑𝑑−1

dim 𝐺𝐺/2

�
𝑅𝑅

dim𝑅𝑅 � 𝜒𝜒𝑅𝑅 𝑔𝑔 exp −
𝑐𝑐2(𝑅𝑅)
𝑏𝑏 𝑇𝑇𝑑𝑑−1

Kang, Lee + H.O.: 2111.04725

𝜌𝜌 Δ,𝑅𝑅 ≈ dim𝑅𝑅 2 4𝜋𝜋
𝑏𝑏𝑏Δ(𝑑𝑑−1)/𝑑𝑑

dim 𝐺𝐺/2

exp −
𝑐𝑐2(𝑅𝑅)

𝑏𝑏𝑏Δ(𝑑𝑑−1)/𝑑𝑑 𝜌𝜌 Δ
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Asymptotic Density of States in High Energy
resolved with respect to Global Symmetry

The density of high energy states 𝜌𝜌(Δ,𝑅𝑅) transforming 
in the irreducible representation 𝑅𝑅 is,

𝜌𝜌 Δ,𝑅𝑅 ≈
dim𝑅𝑅 2

𝐺𝐺
𝜌𝜌(Δ)

𝜌𝜌 Δ,𝑅𝑅 ≈ dim𝑅𝑅 2 4𝜋𝜋
𝑏𝑏𝑏Δ(𝑑𝑑−1)/𝑑𝑑

dim 𝐺𝐺/2

exp −
𝑐𝑐2(𝑅𝑅)

𝑏𝑏𝑏Δ(𝑑𝑑−1)/𝑑𝑑 𝜌𝜌 Δ

,   when 𝐺𝐺 is a finite group. 

when 𝐺𝐺 is a compact Lie group. 

•

•

Harlow + H.O.: 2111.04725

Kang, Lee + H.O.: 2206.14814

,
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Asymptotic Density of States in High Energy
resolved with respect to Global Symmetry

By the AdS/CFT correspondence, these formulae also teach us about 
charged black holes. For example, if the theory contains fermions, 
a half of large black hole microstates are fermionic. 

𝜌𝜌 Δ,𝑅𝑅 ≈
dim𝑅𝑅 2

𝐺𝐺
𝜌𝜌(Δ)

𝜌𝜌 Δ,𝑅𝑅 ≈ dim𝑅𝑅 2 4𝜋𝜋
𝑏𝑏𝑏Δ(𝑑𝑑−1)/𝑑𝑑

dim 𝐺𝐺/2

exp −
𝑐𝑐2(𝑅𝑅)

𝑏𝑏𝑏Δ(𝑑𝑑−1)/𝑑𝑑 𝜌𝜌 Δ

,   when 𝐺𝐺 is a finite group. 

when 𝐺𝐺 is a compact Lie group. 

Harlow + H.O.: 2111.04725

Kang, Lee + H.O.: 2206.14814

,
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Asymptotic Density of States in High Energy
resolved with respect to Spacetime Symmetry

Tr 𝑒𝑒−𝛽𝛽(𝛽𝛽+𝑖𝑖Ω⋅𝐿𝐿) = ∫0
∞ ∑ℓ=0∞ 𝜌𝜌𝑑𝑑 Δ, ℓ 𝑒𝑒−𝛽𝛽 Δ+𝜀𝜀𝑑𝑑 +𝑖𝑖𝛽𝛽Ω⋅ℓ 𝑑𝑑Δ, 

where 𝐻𝐻 and 𝐿𝐿 are the Hamiltonian and the angular momentum on 𝑆𝑆𝑑𝑑−1, 
𝜌𝜌𝑑𝑑 Δ, ℓ is the density of local operators with scaling dimension Δ and spin ℓ, 

𝜀𝜀𝑑𝑑 =
𝑑𝑑 − 1 ‼

(−2)𝑑𝑑/2 𝑎𝑎𝑑𝑑 𝑇𝑇𝜇𝜇
𝜇𝜇 = 𝑎𝑎𝑑𝑑

(−4𝜋𝜋)𝑑𝑑/2 𝐸𝐸𝑑𝑑 + ⋯for 𝑑𝑑: even,     and 

𝜀𝜀𝑑𝑑 = 0 for 𝑑𝑑: odd. For example,  𝜀𝜀𝑑𝑑=2 = −
𝑐𝑐

12

Euler density

and 𝜀𝜀𝑑𝑑 is the Casimir energy on 𝑆𝑆𝑑𝑑−1 given by,
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Asymptotic Density of States in High Energy
resolved with respect to Spacetime Symmetry

For Δ, ℓ ≫ 1 and Δ − ℓ ∼ 𝑓𝑓Δ,

𝜌𝜌𝑑𝑑 Δ, ℓ ≈ exp �
𝑑𝑑

𝑑𝑑 − 1
(Δ + 𝜀𝜀𝑑𝑑)

𝑑𝑑−1
𝑑𝑑

𝑓𝑓 𝑑𝑑 − 1 vol 𝑆𝑆𝑑𝑑−1

2
1 + 1 +

𝑑𝑑 − 3 𝑑𝑑 − 1 ℓ2

(Δ + 𝜀𝜀𝑑𝑑)2

1/𝑑𝑑

�×
𝑑𝑑 − 2
𝑑𝑑 − 3

−
1

𝑑𝑑 − 3
1 +

𝑑𝑑 − 3 𝑑𝑑 − 1 ℓ2

(Δ + 𝜀𝜀𝑑𝑑)2

1−2/𝑑𝑑

.

When 𝑑𝑑 = 2, this becomes,  

𝜌𝜌𝑑𝑑=2 Δ, ℓ ≈ exp
2𝑐𝑐

3
𝜋𝜋

Δ+ℓ−𝑐𝑐/12

2
+

Δ−ℓ−𝑐𝑐/12

2
,

reproducing the Cardy formula.

Shaghoulian: 1512.06855
Benjamin, Lee, Simmons-Duffin + H.O.: 2306.08031
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Symmetry-Resolved Density of States

• 𝜌𝜌𝑑𝑑 Δ, ℓ ≈ exp �
𝑑𝑑

𝑑𝑑 − 1
(Δ + 𝜀𝜀𝑑𝑑)

𝑑𝑑−1
𝑑𝑑

𝑓𝑓 𝑑𝑑 − 1 vol 𝑆𝑆𝑑𝑑−1

2
1 + 1 +

𝑑𝑑 − 3 𝑑𝑑 − 1 ℓ2

(Δ + 𝜀𝜀𝑑𝑑)2

1/𝑑𝑑

for spacetime spin ℓ. Shaghoulian: 1512.06855
Benjamin, Lee, Simmons-Duffin + H.O.: 2306.08031

�×
𝑑𝑑 − 2
𝑑𝑑 − 3

−
1

𝑑𝑑 − 3
1 +

𝑑𝑑 − 3 𝑑𝑑 − 1 ℓ2

(Δ + 𝜀𝜀𝑑𝑑)2

1−2/𝑑𝑑

.

𝜌𝜌 Δ,𝑅𝑅 ≈
dim𝑅𝑅 2

𝐺𝐺
𝜌𝜌(Δ)

𝜌𝜌 Δ,𝑅𝑅 ≈ dim𝑅𝑅 2 4𝜋𝜋
𝑏𝑏𝑏Δ(𝑑𝑑−1)/𝑑𝑑

dim 𝐺𝐺/2

exp −
𝑐𝑐2(𝑅𝑅)

𝑏𝑏𝑏Δ(𝑑𝑑−1)/𝑑𝑑 𝜌𝜌 Δ

,   when 𝐺𝐺 is a finite group. 

when 𝐺𝐺 is a compact Lie group. 

•

•

Harlow + H.O.: 2111.04725

Kang, Lee + H.O.: 2111.04725

,
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Three-Point Function at Large Conformal Dimensions

𝒪𝒪1(𝑥𝑥1)𝒪𝒪2(𝑥𝑥2)𝒪𝒪3(𝑥𝑥3) = �𝑐𝑐123𝑠𝑠 𝑉𝑉𝑠𝑠 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ,

𝑑𝑑 = 2
𝑐𝑐123 𝜌𝜌 Δ, ℓ1 𝜌𝜌 Δ, ℓ2 𝜌𝜌 Δ, ℓ3 ≈

3
2

3Δ 213/2𝑓𝑓𝑒𝑒
9
4 𝜋𝜋2𝑓𝑓2Δ 1/3

39/2𝜋𝜋1/2Δ5/2

𝑑𝑑 = 3

𝑐𝑐123𝑠𝑠 𝜌𝜌 Δ, ℓ1 𝜌𝜌 Δ, ℓ2 𝜌𝜌 Δ, ℓ3 ≈
3
2

3Δ 249/8𝑓𝑓9/8𝑒𝑒
3
2 2𝜋𝜋𝑓𝑓Δ 1/2

319/4𝜋𝜋1/4Δ31/8

× �
𝑖𝑖=1

3

(2ℓ𝑖𝑖 + 1)
2ℓ𝑖𝑖

ℓ𝑖𝑖 + 𝑞𝑞𝐼𝐼𝑠𝑠 = 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 : conformal block parameters

Benjamin, Lee, Simmons-Duffin + H.O.: 2306.08031 13/42



The single parameter 𝒇𝒇 controls all of these.

Three-point function at 𝑑𝑑 = 2

𝒄𝒄123 𝜌𝜌 Δ, ℓ1 𝜌𝜌 Δ, ℓ2 𝜌𝜌 Δ, ℓ3 ≈
3
2

3Δ 213/2𝒇𝒇𝑒𝑒
9
4 𝜋𝜋2𝒇𝒇2Δ 1/3

39/2𝜋𝜋1/2Δ5/2

Three-point function at 𝑑𝑑 = 3

𝒄𝒄123𝑠𝑠 𝜌𝜌 Δ, ℓ1 𝜌𝜌 Δ, ℓ2 𝜌𝜌 Δ, ℓ3 ≈
3
2

3Δ 249/8𝒇𝒇9/8𝑒𝑒
3
2 2𝜋𝜋𝒇𝒇Δ 1/2

319/4𝜋𝜋1/4Δ31/8
�
𝑖𝑖=1

3

(2ℓ𝑖𝑖 + 1)
2ℓ𝑖𝑖

ℓ𝑖𝑖 + 𝑞𝑞𝐼𝐼

Benjamin, Lee, Simmons-Duffin + H.O., 2306.08031

exp
𝑑𝑑

𝑑𝑑 − 1
(Δ + 𝜀𝜀𝑑𝑑)

𝑑𝑑−1
𝑑𝑑

𝒇𝒇 𝑑𝑑 − 1 vol 𝑆𝑆𝑑𝑑−1

2
1 + 1 +

𝑑𝑑 − 3 𝑑𝑑 − 1 ℓ2

(Δ + 𝜀𝜀𝑑𝑑)2

1/𝑑𝑑

�×
𝑑𝑑 − 2
𝑑𝑑 − 3

−
1

𝑑𝑑 − 3
1 +

𝑑𝑑 − 3 𝑑𝑑 − 1 ℓ2

(Δ + 𝜀𝜀𝑑𝑑)2

1−2/𝑑𝑑

.

𝝆𝝆𝒅𝒅 Δ, ℓ ≈

Density of states for any 𝑑𝑑
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Proof Method
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• Generalized Noether Theorem

• Thermal Effective Field Theory
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Generalized Noether Theorem:
If the symmetry 𝐺𝐺 is a compact Lie group, for every element 𝑔𝑔 ∈ 𝐺𝐺,
there is a one-form operator 𝐽𝐽 on the Hilbert space which is 
conserved, 𝑑𝑑∗𝐽𝐽 = 0.

For any region R of a Cauchy surface, we can define a unitary operator 
𝑈𝑈 𝑔𝑔,𝑅𝑅 to implement the symmetry on the Hilbert space by,

𝑈𝑈 𝑔𝑔,𝑅𝑅 = exp � ∗𝐽𝐽

If 𝑅𝑅 is a union of disjoint subregions, 𝑅𝑅 = ∪𝑖𝑖 𝑅𝑅𝑖𝑖

𝑈𝑈 𝑔𝑔,𝑅𝑅 = ⨂𝑖𝑖 𝑈𝑈(𝑔𝑔,𝑅𝑅𝑖𝑖)

𝑅𝑅
.
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Generalized Noether Theorem:

 It is obvious for continuous symmetry with a Noether current. 
 The theorem also holds for discrete symmetry.

𝑈𝑈 𝑔𝑔,𝑅𝑅 = ⨂𝑖𝑖 𝑈𝑈(𝑔𝑔,𝑅𝑅𝑖𝑖)

When 𝑅𝑅 is a union of disjoint subregions,

For a region R of a Cauchy surface, we can define a unitary operator 
𝑈𝑈 𝑔𝑔,𝑅𝑅 for every element 𝑔𝑔 of the symmetry group 𝐺𝐺.

𝑅𝑅 = ∪𝑖𝑖 𝑅𝑅𝑖𝑖
this unitary operator can be expressed as a product of operators 
associated to each region:

.

,
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Generalized Noether Theorem:

𝑈𝑈 𝑔𝑔,𝑅𝑅 = ⨂𝑖𝑖 𝑈𝑈(𝑔𝑔,𝑅𝑅𝑖𝑖)

When 𝑅𝑅 is a union of disjoint subregions,

For a region R of a Cauchy surface, we can define a unitary operator 
𝑈𝑈 𝑔𝑔,𝑅𝑅 for every element 𝑔𝑔 of the symmetry group 𝐺𝐺.

𝑅𝑅 = ∪𝑖𝑖 𝑅𝑅𝑖𝑖
this unitary operator can be expressed as a product of operators 
associated to each region:

.

,

In my colloquium on Wednesday,
I discussed its application to quantum gravity.
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No Global Symmetry in AdS Quamtum Gravity

If a gravitational theory has global symmetry, 
there must be a bulk local operator that transforms 
faithfully into another local operator. 

x

Symmetry generator,

commute with the local operator
at x in the bulk.

Contradiction

𝑈𝑈 𝑔𝑔,𝑅𝑅 = ⨂𝑖𝑖 𝑈𝑈(𝑔𝑔,𝑅𝑅𝑖𝑖)

Harlow + H.O.:1810.05337
1810.05338 
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Thermal Effective 
Field Theory
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Thermal Effective Field Theory

Consider a background gauge field coupled to 𝐺𝐺 on 𝑆𝑆𝛽𝛽
1 × Σ𝑑𝑑−1.

At high temperature, we can write down a low energy effective 
action by dimensionally reducing on 𝑆𝑆𝛽𝛽

1,

𝑆𝑆eff = �
Σ𝑑𝑑−1

𝐺𝐺𝑑𝑑𝑥𝑥𝑑𝑑−1 𝑇𝑇𝑑𝑑−1𝑉𝑉 𝑔𝑔 + ⋯

where 𝑔𝑔 ∈ 𝐺𝐺 is the holonomy around 𝑆𝑆𝛽𝛽
1. 

The kinetic terms such as  𝜕𝜕𝜙𝜙 2 and 𝐹𝐹2 are suppressed by 1/𝑇𝑇2.

,

By diffeomorphism invariance, the potential 𝑉𝑉 𝑔𝑔 at high 
temperature is independent of the geometry of Σ𝑑𝑑−1.
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Thermal Effective Field Theory

𝑆𝑆eff = �
Σ𝑑𝑑−1

𝐺𝐺𝑑𝑑𝑥𝑥𝑑𝑑−1 𝑇𝑇𝑑𝑑−1𝑉𝑉 𝑔𝑔 + ⋯

By setting 𝑔𝑔 to be constant,  

Tr 𝑈𝑈 𝑔𝑔 𝑒𝑒−𝛽𝛽𝛽𝛽 ≈ 𝑒𝑒−𝑇𝑇𝑑𝑑−1 𝑉𝑉 𝑔𝑔 vol Σ𝑑𝑑−1 × Tr 𝑒𝑒−𝛽𝛽𝛽𝛽

By choosing Σ𝑑𝑑−1 = �̃�𝑆1 × Σ𝑑𝑑−2, exchanging 𝑆𝑆𝛽𝛽
1 and �̃�𝑆1, and 

rescaling the whole spacetime 𝑆𝑆𝛽𝛽
1 × �̃�𝑆1 × Σ𝑑𝑑−2 by 𝑇𝑇, 

we can identify:
𝑉𝑉 𝑔𝑔 =  tension of the domain wall 

implementing the twist by 𝑔𝑔.
24/42



Thermal Effective Field Theory

Tr 𝑈𝑈 𝑔𝑔 𝑒𝑒−𝛽𝛽𝛽𝛽 ≈ 𝑒𝑒−𝑇𝑇𝑑𝑑−1 𝑉𝑉 𝑔𝑔 vol Σ𝑑𝑑−1 × Tr 𝑒𝑒−𝛽𝛽𝛽𝛽

𝑆𝑆𝛽𝛽1

𝑇𝑇 × 𝑇𝑇𝑑𝑑−2 vol Σ𝑑𝑑−2 × 𝑉𝑉 𝑔𝑔

𝑈𝑈 𝑔𝑔

Circumference 
of rescaled �̃�𝑆1

�̃�𝑆1

Volume of 
rescaled Σ𝑑𝑑−2

Domain wall
tension

× 𝛴𝛴𝑑𝑑−2

By exchanging 𝑆𝑆𝛽𝛽
1 and �̃�𝑆1, and 

rescaling the whole space by 𝑇𝑇, 
we can interpret:
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Thermal Effective Field Theory

Tr 𝑈𝑈 𝑔𝑔 𝑒𝑒−𝛽𝛽𝛽𝛽 ≈ 𝑒𝑒−𝑇𝑇𝑑𝑑−1 𝑽𝑽 𝒈𝒈 vol Σ𝑑𝑑−1 × Tr 𝑒𝑒−𝛽𝛽𝛽𝛽

Since 𝑈𝑈 𝑔𝑔 is unitary, Tr 𝑈𝑈 𝑔𝑔 𝑒𝑒−𝛽𝛽𝛽𝛽 ≤ Tr 𝑒𝑒−𝛽𝛽𝛽𝛽 .

However, we need to show the stronger inequality 
𝑉𝑉 𝑔𝑔 > 0 when 𝑔𝑔 ≠ 1.

Therefore, 𝑉𝑉 𝑔𝑔 ≥ 0.

Equivalently, we need to show that 𝑉𝑉 𝑔𝑔 has the 
global minimum at 𝑔𝑔 = 1, where 𝑉𝑉 1 = 0. 
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The domain wall tension 𝑉𝑉 𝑔𝑔 has the global minimum at 𝒈𝒈 = 1. 

1. Generalized Noether Theorem:

 For continuous symmetry, 𝑈𝑈 𝑔𝑔,𝑅𝑅 can be expressed in terms 
of the Noether currents.

 The theorem also holds for discrete symmetry assuming the 
split property of quantum field theory.

For any bounded region R of the Minkowski
space, there is a unitary operator 𝑈𝑈 𝑔𝑔,𝑅𝑅
which implements the 𝑔𝑔-action across R.

Pal, Sun, Zhang + H.O., in preparation.

To prove this, we use:

2. Uniqueness of the Ground State in the Untwisted Sector
27/42



The domain wall tension 𝑉𝑉 𝑔𝑔 has the global minimum at 𝒈𝒈 = 1. 
Pal, Sun, Zhang + H.O., in progress

o 𝑉𝑉 𝑔𝑔 is related to ⟨0|𝑈𝑈 𝑔𝑔,𝑅𝑅 | ⟩0 .

o 𝑈𝑈 𝑔𝑔,𝑅𝑅 | ⟩0 for 𝑔𝑔 ≠ 1 is distinct from the vacuum | ⟩0 since 
a charged local operator can detect the location of 𝑅𝑅.

o Since 𝑈𝑈 𝑔𝑔,𝑅𝑅 is unitary, one can derive inequalities such 
as 0 0 > ⟨0|𝑈𝑈 𝑔𝑔,𝑅𝑅 | ⟩0 for 𝑔𝑔 ≠ 1.

𝑉𝑉 𝑔𝑔 > 0 for 𝑔𝑔 ≠ 1 follows from these observations.
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exp − 𝑇𝑇𝑑𝑑−1 𝑉𝑉 𝑔𝑔 vol Σ𝑑𝑑−1 ∝ 𝛿𝛿 𝑔𝑔, 1 at high temperature.

Since 𝑉𝑉 𝑔𝑔 has the global minimum at 𝑔𝑔 = 1,

Therefore, 

Tr 𝑈𝑈 𝑔𝑔 𝑒𝑒−𝛽𝛽𝛽𝛽 ≈ 𝛿𝛿 𝑔𝑔, 1 × Tr 𝑒𝑒−𝛽𝛽𝛽𝛽 .

For a finite group,   𝛿𝛿 𝑔𝑔, 1 = ∑𝑅𝑅
𝐝𝐝𝐝𝐝𝐝𝐝 𝑹𝑹
𝑮𝑮

𝜒𝜒𝑅𝑅 𝑔𝑔 .

The density of high energy states 𝜌𝜌(Δ,𝑅𝑅) transforming in 𝑅𝑅 is then,  

𝜌𝜌(𝐸𝐸,𝑅𝑅) ≈ 𝐝𝐝𝐝𝐝𝐝𝐝 𝑹𝑹 𝟐𝟐

𝑮𝑮
𝜌𝜌 𝐸𝐸 .

𝑮𝑮 : Finite Group
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𝑮𝑮 : Compact Lie Group

If 𝐺𝐺 is a compact Lie group, 

𝑉𝑉 𝑒𝑒𝑖𝑖𝜙𝜙 vol 𝜕𝜕𝑅𝑅 = 𝑓𝑓 − 𝑏𝑏
4
𝜙𝜙,𝜙𝜙 + ⋯ .

Tr 𝑈𝑈 𝑔𝑔 = 𝑒𝑒𝑖𝑖𝜙𝜙 𝑒𝑒−𝛽𝛽𝛽𝛽 ≈ exp 𝑓𝑓 𝑇𝑇𝑑𝑑−1 − 𝑏𝑏
4
𝑇𝑇𝑑𝑑−1 𝜙𝜙,𝜙𝜙 + ⋯ .

Since 𝑇𝑇 d−1 dim 𝐺𝐺/2𝑒𝑒−
𝑏𝑏
4𝑇𝑇

𝑑𝑑−1 𝜙𝜙,𝜙𝜙 is a solution to the heat equation 
on the group manifold 𝐺𝐺 with τ = 1/𝑇𝑇𝑑𝑑−1 as the time variable, 

Tr 𝑈𝑈 𝑔𝑔 𝑒𝑒−𝛽𝛽𝛽𝛽

Tr 𝑒𝑒−𝛽𝛽𝛽𝛽
≈

4𝜋𝜋
𝑏𝑏 𝑇𝑇𝑑𝑑−1

dim 𝐺𝐺/2

�
𝑅𝑅

dim𝑅𝑅 � 𝜒𝜒𝑅𝑅 𝑔𝑔 exp −
𝑐𝑐2(𝑅𝑅)
𝑏𝑏 𝑇𝑇𝑑𝑑−1
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𝑮𝑮 : Compact Lie Group

Tr 𝑈𝑈 𝑔𝑔 𝑒𝑒−𝛽𝛽𝛽𝛽

Tr 𝑒𝑒−𝛽𝛽𝛽𝛽
≈

4𝜋𝜋
𝑏𝑏 𝑇𝑇𝑑𝑑−1

dim 𝐺𝐺/2

�
𝑅𝑅

dim𝑅𝑅 � 𝜒𝜒𝑅𝑅 𝑔𝑔 exp −
𝑐𝑐2(𝑅𝑅)
𝑏𝑏 𝑇𝑇𝑑𝑑−1

The density of high energy states 𝜌𝜌(Δ,𝑅𝑅) transforming 
in the irreducible representation 𝑅𝑅 is,

.
𝜌𝜌 Δ,𝑅𝑅 ≈ dim𝑅𝑅 2 4𝜋𝜋

𝑏𝑏𝑏Δ(𝑑𝑑−1)/𝑑𝑑

dim 𝐺𝐺/2

exp −
𝑐𝑐2(𝑅𝑅)

𝑏𝑏𝑏Δ(𝑑𝑑−1)/𝑑𝑑 𝜌𝜌 Δ
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Examples
We have verified  

Tr 𝑈𝑈 𝑔𝑔 = 𝑒𝑒𝑖𝑖𝜙𝜙 𝑒𝑒−𝛽𝛽𝛽𝛽 ≈ exp 𝑓𝑓 𝑇𝑇𝑑𝑑−1 − 𝑏𝑏
4
𝑇𝑇𝑑𝑑−1 𝜙𝜙,𝜙𝜙 + ⋯ .

for free field theories and holographic CFTs and computed the 
coefficients 𝑎𝑎 and 𝑏𝑏.

o For free massless scalars with 𝐺𝐺 = 𝑈𝑈(1),  

• 𝑓𝑓 = 2𝜁𝜁(𝑑𝑑) and 𝑏𝑏 = 4𝜁𝜁(𝑑𝑑 − 2) for 𝑑𝑑 ≥ 4.

o For free Weyl spinors with 𝐺𝐺 = 𝑈𝑈(1),  

• 𝑓𝑓 = 3𝜁𝜁 3 , 𝑏𝑏 = 16 log 2 for 𝑑𝑑 = 3
• 𝑓𝑓 = 𝜁𝜁 2 = 𝜋𝜋2/6, 𝑏𝑏 = 1 for 𝑑𝑑 = 2
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Examples

In holographic CFTs with non-abelian 𝐺𝐺, 
there are two types of bulk geometries relevant to 
Tr 𝑈𝑈 𝑔𝑔 𝑒𝑒−𝛽𝛽𝛽𝛽 above the Hawking-Page transition: 

1. The Reissner–Nordström solution with a commutative gauge 
field in 𝑈𝑈(1)rank 𝐺𝐺 embedded in the non-abelian theory

2. The genuinely non-abelian solution (i.e., with non-
abelian hair)

Their relative stability has been an outstanding question. 
Reviews: Volkov, Galt’sov: 9810070

Winstanley: 0801.0527

1. The Reissner–Nordström solution with a commutative 
gauge field in the non-abelian theory by 𝑈𝑈(1)rank 𝐺𝐺 ∈ 𝐺𝐺
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Examples

In holographic CFTs with non-abelian 𝐺𝐺, 
there are two types of bulk geometries relevant to 
Tr 𝑈𝑈 𝑔𝑔 𝑒𝑒−𝛽𝛽𝛽𝛽 above the Hawking-Page transition: 

• Our task is simplified since the two solutions converge 
at high temperature.

• We found that the solution with non-abelian hair is 
more stable if we take 1/𝑇𝑇 effects into account. 

𝑓𝑓 =
4𝜋𝜋
𝑑𝑑

𝑑𝑑−1 𝑤𝑤𝑑𝑑−1ℓ𝑑𝑑−1

4𝑑𝑑𝐺𝐺𝑁𝑁
, 𝑏𝑏 =

4𝜋𝜋
𝑑𝑑

𝑑𝑑−2 4(𝑑𝑑 − 2)𝑤𝑤𝑑𝑑−1ℓ𝑑𝑑−1

𝑒𝑒2

𝐺𝐺𝑁𝑁: Newton constant, 𝑒𝑒: gauge coupling, ℓ: AdS radius, 𝑤𝑤𝑑𝑑−1: area of the unit sphere 34/42



Asymptotic Density of States in High Energy
resolved with respect to Spacetime Symmetry

• Bhattacharya, Lahiri, Longanayagam, Minwalla: 0708.1770
• Shaghoulian: 1512.06855 
• Benjamin, Lee, Simmons-Duffin + H.O.: 2306.08031

Tr 𝑒𝑒−𝛽𝛽(𝛽𝛽+𝑖𝑖Ω⋅𝐿𝐿) ≈ exp 𝐺𝐺(𝑇𝑇, Ω)
∏𝑖𝑖(1 + Ω𝑖𝑖

2)
+ ⋯

Universal behavior with respect to the angular momentum 𝑀𝑀

When Δ, ℓ ≫ 1 and Δ − ℓ ∼ 𝑓𝑓Δ, we can use the saddle-point 
approximation to invert the Laplace transform,

∫0
∞𝑑𝑑Δ ∑𝐽𝐽=0∞ 𝜌𝜌𝑑𝑑 Δ, ℓ 𝑒𝑒−𝛽𝛽 Δ+𝜀𝜀𝑑𝑑 +𝑖𝑖𝛽𝛽Ω⋅ℓ =  Tr 𝑒𝑒−𝛽𝛽(𝛽𝛽+𝑖𝑖Ω⋅𝐿𝐿) , 

to calculate 𝜌𝜌𝑑𝑑 Δ, ℓ . 
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Asymptotic Density of States in High Energy
resolved with respect to Spacetime Symmetry

For Δ, ℓ ≫ 1 and Δ − ℓ ∼ 𝑓𝑓Δ,

When 𝑑𝑑 = 2, this becomes,  

𝜌𝜌𝑑𝑑=2 Δ, ℓ ≈ exp 2𝑐𝑐
3
𝜋𝜋 Δ+ℓ−𝑐𝑐/12

2
+ Δ−ℓ−𝑐𝑐/12

2
,

reproducing the Cardy formula

𝜌𝜌𝑑𝑑 Δ, ℓ ≈ exp �
𝑑𝑑

𝑑𝑑 − 1
(Δ + 𝜀𝜀𝑑𝑑)

𝑑𝑑−1
𝑑𝑑

𝑓𝑓 𝑑𝑑 − 1 vol 𝑆𝑆𝑑𝑑−1

2
1 + 1 +

𝑑𝑑 − 3 𝑑𝑑 − 1 ℓ2

(Δ + 𝜀𝜀𝑑𝑑)2

1/𝑑𝑑

�×
𝑑𝑑 − 2
𝑑𝑑 − 3

−
1

𝑑𝑑 − 3
1 +

𝑑𝑑 − 3 𝑑𝑑 − 1 ℓ2

(Δ + 𝜀𝜀𝑑𝑑)2

1−2/𝑑𝑑

.
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Asymptotic Density of States in High Energy
resolved with respect to Spacetime Symmetry

Benjamin, Lee, Simmons-Duffin + H.O., to appear. 

for Δ, ℓ ≫ 1 and Δ − ℓ ∼ 𝑓𝑓Δ,

Higher-Dimensional Generalization of the Cardy Formula

• The formula agrees with the Kerr black hole entropy and free field calculations.
• We can also calculate sub-leading terms systematically. 

𝜌𝜌𝑑𝑑 Δ, ℓ ≈ exp �
𝑑𝑑

𝑑𝑑 − 1
(Δ + 𝜀𝜀𝑑𝑑)

𝑑𝑑−1
𝑑𝑑

𝑓𝑓 𝑑𝑑 − 1 vol 𝑆𝑆𝑑𝑑−1

2
1 + 1 +

𝑑𝑑 − 3 𝑑𝑑 − 1 ℓ2

(Δ + 𝜀𝜀𝑑𝑑)2

1/𝑑𝑑

�×
𝑑𝑑 − 2
𝑑𝑑 − 3

−
1

𝑑𝑑 − 3
1 +

𝑑𝑑 − 3 𝑑𝑑 − 1 ℓ2

(Δ + 𝜀𝜀𝑑𝑑)2

1−2/𝑑𝑑

.
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Symmetry-Resolved Density of States

• 𝜌𝜌𝑑𝑑 Δ, ℓ ≈ exp �
𝑑𝑑

𝑑𝑑 − 1
(Δ + 𝜀𝜀𝑑𝑑)

𝑑𝑑−1
𝑑𝑑

𝑓𝑓 𝑑𝑑 − 1 vol 𝑆𝑆𝑑𝑑−1

2
1 + 1 +

𝑑𝑑 − 3 𝑑𝑑 − 1 ℓ2

(Δ + 𝜀𝜀𝑑𝑑)2

1/𝑑𝑑

for spacetime spin ℓ. Shaghoulian: 1512.06855
Benjamin, Lee, Simmons-Duffin + H.O.: 2306.08031

�×
𝑑𝑑 − 2
𝑑𝑑 − 3

−
1

𝑑𝑑 − 3
1 +

𝑑𝑑 − 3 𝑑𝑑 − 1 ℓ2

(Δ + 𝜀𝜀𝑑𝑑)2

1−2/𝑑𝑑

.

𝜌𝜌 Δ,𝑅𝑅 ≈
dim𝑅𝑅 2

𝐺𝐺
𝜌𝜌(Δ)

𝜌𝜌 Δ,𝑅𝑅 ≈ dim𝑅𝑅 2 4𝜋𝜋
𝑏𝑏𝑏Δ(𝑑𝑑−1)/𝑑𝑑

dim 𝐺𝐺/2

exp −
𝑐𝑐2(𝑅𝑅)

𝑏𝑏𝑏Δ(𝑑𝑑−1)/𝑑𝑑 𝜌𝜌 Δ

,   when 𝐺𝐺 is a finite group. 

when 𝐺𝐺 is a compact Lie group. 

•

•

Harlow + H.O.: 2111.04725

Kang, Lee + H.O.: 2206.14814

,
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Three-Point Function at Large Conformal Dimensions

Benjamin, Lee, Simmons-Duffin + H.O., to appear. 

𝑅𝑅𝑑𝑑𝑆𝑆𝑑𝑑−1
𝑆𝑆𝑑𝑑−1 𝑆𝑆𝑑𝑑−1

𝑅𝑅𝑑𝑑𝑆𝑆𝑑𝑑−1
𝑆𝑆𝑑𝑑−1 𝑆𝑆𝑑𝑑−1

𝛽𝛽𝑖𝑖 , �⃑�𝜃𝑖𝑖 𝑖𝑖 = 1, 2, 3

Glue three 𝑆𝑆𝑑𝑑−1’s 
by three cylinders.
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Three-Point Function at Large Conformal Dimensions

In 𝑑𝑑 > 2, three-point functions have several conformal blocks.

𝒪𝒪1(𝑥𝑥1)𝒪𝒪2(𝑥𝑥2)𝒪𝒪3(𝑥𝑥3) = �
𝑠𝑠
𝑐𝑐123𝑠𝑠 𝑉𝑉𝑠𝑠 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 .

For simplicity, let me show you the ones for 𝑑𝑑 = 2 and 3
when Δ1 = Δ2 = Δ3 = Δ.

We have a formula for general 𝑑𝑑.
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Three-Point Function at Large Conformal Dimensions

𝒪𝒪1(𝑥𝑥1)𝒪𝒪2(𝑥𝑥2)𝒪𝒪3(𝑥𝑥3) = �𝑐𝑐123𝑠𝑠 𝑉𝑉𝑠𝑠 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ,

𝑑𝑑 = 2
𝑐𝑐123 𝜌𝜌 Δ, ℓ1 𝜌𝜌 Δ, ℓ2 𝜌𝜌 Δ, ℓ3 ≈

3
2

3Δ 213/2𝑓𝑓𝑒𝑒
9
4 𝜋𝜋2𝑓𝑓2Δ 1/3

39/2𝜋𝜋1/2Δ5/2

𝑑𝑑 = 3

𝑐𝑐123𝑠𝑠 𝜌𝜌 Δ, ℓ1 𝜌𝜌 Δ, ℓ2 𝜌𝜌 Δ, ℓ3 ≈
3
2

3Δ 249/8𝑓𝑓9/8𝑒𝑒
3
2 2𝜋𝜋𝑓𝑓Δ 1/2

319/4𝜋𝜋1/4Δ31/8

× �
𝑖𝑖=1

3

(2ℓ𝑖𝑖 + 1)
2ℓ𝑖𝑖

ℓ𝑖𝑖 + 𝑞𝑞𝐼𝐼𝑠𝑠 = 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3 : conformal block parameters

Benjamin, Lee, Simmons-Duffin + H.O.: 2306.08031 41/42



Thank you 
for your attention.
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