
Anyons
Beyond Bosons and Fermions
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In quantum theory the notion of identity 
reaches a new level of precision and has 
profound dynamical significance.  

Traditionally, the world has been divided 
between bosons (Bose-Einstein statistics) 
and fermions (Fermi-Dirac statistics).  
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Recently we’ve come to understand that there 
are other possibilities, generically called 
“anyons”.

Anyons are realized in simple models and in 
some known material systems.  They may open 
new possibilities for quantum engineering 
(topological quantum computing, “anyonics”).   
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Bosons and Fermions
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If two identical particles start at A, B and end at 
A´, B´, we must consider both (A→ A´, B → B´) 
and (A→ B´, B → A´) as possible accounts of 
what happened.

For bosons we add the amplitudes, for fermions 
we subtract the amplitudes.
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(*By focusing on squares of amplitudes, we can 
assume A´ = A, B´ = B.*)

The “direct” and “exchange” processes are 
topologically distinct, so their relative weight is 
not determined classically.

Since (exchange)2 = direct, consistency seems 
to restrict the possible relative weights to ± 1. 
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Braid Group
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One can have quantum-mechanical systems 
with reduced dimensionality.

In one space dimension, the notion of 
quantum statistics collapses.

In two space dimensions, there is a richer 
topology of trajectories.
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While in 3 dimensions a double winding can 
be continuously deformed to triviality, in 2 
dimensions that is not so.  (Belt trick.)

The governing group is the braid group, 
instead of the permutation group.  
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Flux-Particle Anyons
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The braid group admits 1-dimensional 
unitary representations with any phase eiθ.  
These define the classic anyons.   

There is a nice dynamical realization of such 
anyons using flux and charge.  It is related to 
the Aharonov-Bohm effect.

12Wednesday, May 29, 2013



13Wednesday, May 29, 2013



Flux-charge composites will, in general, be 
anyons.
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Note:

In two dimensions, one can have flux 
“points”. 

The statistical interaction is essentially 
topological. One can capture it by 
attaching cuts to the flux points.  When 
charged particles pass through the cuts, 
the amplitude for the trajectory gets 
multiplied by a phase. 
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A natural context for abelian anyons is gauge 
theories broken down to an abelian group, 
which may be finite.

Ordinary superconductors provide one 
(limited) example, with U(1) → Z2.   

The fractional quantum Hall effect provides a 
rich set of examples.   In the 1/m states, the 
quasiparticles are anyons with θ = 2π/m.  
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In principle, one can observe the anyon 
phase directly using interferometry, similar to 
what is done with SQUIDs.   

One is detecting the “dynamical flux” 
associated with mutant statistics, in place of 
ordinary magnetic flux.  

18Wednesday, May 29, 2013



If the residual discrete gauge group is non-
abelian, one will have nonabelian representations 
of the braid group, i.e. nonabelian anyons. 

Nonabelian anyons are generally associated with 
ground-state degeneracy that grows 
exponentially with the number of anyons. 

By moving them around in physical space, one 
navigates their quantum states in a controlled 
way exploring a large Hilbert space.
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quasiparticle 
island
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Majorana Anyons
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Another promising approach to producing 
usable anyons is through circuits based on 
Majorana modes.  This brings in some new 
and pretty ideas.  

I will begin by reviewing the basic “Kitaev 
wire” construction. 
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a†j , ak 1 ≤ j, k ≤ N

{aj , ak} = {a†j , a
†
k} = 0

{a†j , ak} = δjk

γ2j−1 = aj + a†j

γ2j =
aj − a†j

i
{γk, γl} = 2 δkl
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H0 = − i

N�

j=1

γ2j−1γ2j

H1 = − i

N−1�

j=1

γ2jγ2j+1
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In terms of the a-operators: 

H0  is simply occupation number. 

H1  is a combination of normal and 
superconducting hopping terms.
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Like H0 , H1  can be written as a sum of 
occupation numbers, but of peculiar 
quasiparticles, not the original electrons.
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Most importantly, H1  does not contain γ1 or 
γ2N  at all.  Those operators create “Majorana 
modes” localized at the two ends.  

Note that γ1 and γ2N  are hermitean and 
square to 1.  This is quite different from 
conventional fermions (or bosons).   
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Kitaev showed that H1 is representative of a 
universality class.   In general the Majorana 
modes extend over several lattice sites, but 
are exponentially localized, and have 
exponentially small energy.  

The effective Hamiltonian is 0, but there is an 
algebra of hermitean operators

b2
L = 1 ; b2

R = 1 ; {bL, bR} = 0
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If we join two wire ends, we get an effective 
interaction Hint. ∝	 i bL bR .  That produces 
another occupation number; the Majorana 
modes are gone.  

Now consider a junction of three wire ends.  
Is there a Majorana mode at the junction?  
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H = − i(α b1b2 + β b2b3 + γ b3b1)

{bj , bk} = 2 δjk

*Note that we only include polynomials that are even in 
the bj, on physical grounds.*
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We can realize the Clifford algebra using 
Pauli matrices, bj →σj.   

But this does not yield a Majorana mode.  
The spectrum of this sum of σj  is just ±(|α|2 

+ |β|2 + |γ|2)1/2.   
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Actually, the same problem arises for 
“junctions” with one end!  

Something is missing ... 

These representations lose the distinction 
between even and odd powers of bj s!
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To get the physics right, we must capture the 
implications of conservation of electron 
number parity P.  
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{P, bj} = 0

P “ = ” (−1)Ne

[P,Heff.] = 0

P 2 = 1
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Now consider the special operator

It satisfies

Γ2 = 1
[Heff.,Γ ] = 0

{P,Γ } = 0

Γ ≡ i b1b2b3
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Γ has the right properties to create a 
Majorana mode:  

It is hermitean and squares to 1

It commutes with the Hamiltonian 

Importantly: it is not a function of the 
Hamiltonian!
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“Majorana doubling” occurs not only for the ground 
state, but for all states, through the action of Γ. 

If we diagonalize both H and P,  then Γ connects 
degenerate states with P = ±1.

The junction spectrum is reminiscent of Kramers 
doubling.
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A similar construction works for a junction of any 
odd number of wire ends.   It does not depend on 
any single-particle approximation.  

Indeed, Γ is associated with the product wave 
function.

Γ-operations, when extended to several locations, 
implement a mutant (Grassmann→Clifford: 
“quantum”) form of supersymmetry, with anyons.  
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Majorana modes occur in other contexts, 
besides wire ends.  

When they are attached to flux-points, they 
make nonabelian anyons. 
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