Quantum Optics \&

(Mesoscopic) Condensed Matter

Peter Zoller

Innsbruck:
K. Hammerer
M. Wallquist
C. Genes
A. Glätzle

AMO - mesoscopic solid state
collaborations:
M. Lukin + P. Rabl (Harvard)
E. Polzik (NBI)
Jun Ye (JILA)
H.J. Kimble (Caltech)
F. Marquardt (LMU)
P. Treutlein (LMU)

IQOQI
AUSTRIAN ACADEMY OF SCIENCES

SFB
Coherent Control of Quantum Systems
€ U networks

Outline

- Quantum Noise \& Quantum Optics
- a mini-tutorial
- Atoms in Optical Lattices + "Nano-"Mechanical Mirrors / Membranes

- Measurement of Atomic Currents via Light
V. Steixner, K Hammerer, A Daley, PZ
in preparation

Mini-Tutorial:

Quantum Optics and Quantum Noise

- Stochastic Schrödinger equations (\& quantum trajectories)
- cascaded quantum systems etc.

"system 1" drives "system 2"
Stochastic Schrödinger equations with time delays
(in a way not found in Quantum Noise, CW Gardiner \& PZ)

Quantum Optics: Open Quantum Systems

- open quantum system

role of the environment:
- noise and dissipation (decoherence)
- quantum optics ... tool: state preparation
- e.g. laser cooling, optical pumping
bath / reservoir: harmonic oscillators
- quantum optics
- radiation field
- [Bogoliubov excitation, spin bath]

Quantum Optics: Continuous Measurement

- open quantum system

role of the environment:
- continuous observation
quantum optical tools and techniques:
- Quantum Markov processes
- Master Equation
- (Quantum) Stochastic Schrödinger Equation
- Quantum Trajectories

Generic Quantum Optical Model

$$
H=H_{\mathrm{sys}}+H_{B}+H_{\mathrm{int}}
$$

$$
H_{B}=\int_{\omega_{0}-\vartheta}^{\omega_{0}+\vartheta} d \omega \omega b^{\dagger}(\omega) b(\omega) \quad \text { bath of oscillators }
$$

$$
\left[b(\omega), b^{\dagger}\left(\omega^{\prime}\right)\right]=\delta\left(\omega-\omega^{\prime}\right)
$$

$H_{\mathrm{int}}=i \int_{\omega_{0}-\vartheta}^{\omega_{0}+\vartheta} d \omega \kappa(\omega)\left[b^{\dagger}(\omega) c-c^{\dagger} b(\omega)\right]$
system "quantum jump" operator
\checkmark Rotating wave approximation
\checkmark Markov / white noise

Example: spontaneous emission from two level system

> photodetector

$$
c=|g\rangle\langle e| \equiv \sigma^{-}
$$

Generic Quantum Optical Model

Generic Quantum Optical Model

interaction picture

$$
\begin{aligned}
& H=H_{\mathrm{sys}}+H / 反+H_{\mathrm{int}} \\
& H_{B}=\int_{\omega_{0}-\vartheta}^{\omega_{0}+\vartheta} d \omega \omega b^{\dagger}(\omega) b(\omega) \quad \text { bath of oscillators } \\
& \uparrow \\
& \quad\left[b(\omega), b^{\dagger}\left(\omega^{\prime}\right)\right]=\delta\left(\omega-\omega^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& H_{\text {int }}(t)=i \int_{\omega_{0}-\vartheta}^{\omega_{0}+\vartheta} \frac{d \omega \kappa(\omega)}{\left[b^{\dagger}(\omega) e^{i \omega t} c-c^{\dagger} b(\omega) e^{-i \omega t}\right]} \\
& \text { - noise operator: "quantum noiselets" } \\
& \qquad b(t):=\frac{1}{\sqrt{2 \pi}} \int_{\omega_{0}-\vartheta}^{\omega_{0}+\vartheta} b(\omega) e^{-i\left(\omega-\omega_{0}\right) t} d \omega
\end{aligned}
$$

- "white noise" commutator

$$
\left[b(t), b^{\dagger}(s)\right]=\delta_{s}(t-s)
$$

Generic Quantum Optical Model

Stratonovich Quantum Stochastic Schrödinger Equation (QSSE)
(S) $\quad \frac{d}{d t}|\Psi(t)\rangle=\left\{-i H_{\mathrm{sys}}+\sqrt{\gamma} b^{\dagger}(t) c-\sqrt{\gamma} c^{\dagger} b(t)\right\}|\Psi(t)\rangle$

- noise operator: "quantum noiselets"

$$
b(t):=\frac{1}{\sqrt{2 \pi}} \int_{\omega_{0}-\vartheta}^{\omega_{0}+\vartheta} b(\omega) e^{-i\left(\omega-\omega_{0}\right) t} d \omega
$$

- "white noise" commutator

$$
\left[b(t), b^{\dagger}(s)\right]=\delta_{s}(t-s)
$$

- initial condition $|\Psi(0)\rangle=\left|\psi_{\text {sys }}\right\rangle \otimes|\mathrm{vac}\rangle$

Generic Quantum Optical Model

Stratonovich Quantum Stochastic Schrödinger Equation (QSSE)
(S) $\quad \frac{d}{d t}|\Psi(t)\rangle=\left\{-i H_{\mathrm{sys}}+\sqrt{\gamma} b^{\dagger}(t) c-\sqrt{\gamma} c^{\dagger} b(t)\right\}|\Psi(t)\rangle$

Discussion / Interpretation: derive ...

- quantum trajectories ... and conversion to Ito QSSE
- master equation
Coarse Grained Integration of the QSSE

$$
\leftrightarrow
$$

Coarse Grained Integration of the QSSE

photodetector
The first time step: up to order $\mathcal{O}(\Delta t)$

$$
\begin{aligned}
|\Psi(\Delta t)\rangle & =\left\{\hat{1}-i H_{\mathrm{sys}} \Delta t+\sqrt{\gamma} c \int_{0}^{\Delta t} b^{\dagger}(t) d t-\sqrt{\gamma} c^{\dagger} \int_{0}^{\Delta t} b(t) d t\right. \\
& \left.+(-i)^{2} \gamma c^{\dagger} c \int_{0}^{\Delta t} d t \int_{0}^{t_{2}} d t^{\prime} b(t) b^{\dagger}\left(t^{\prime}\right)+\ldots+\ldots\right\}|\Psi(0)\rangle
\end{aligned}
$$

Coarse Grained Integration of the QSSE

$\Delta t>1 / \vartheta$

photodetector
The first time step: up to order $\mathcal{O}(\Delta t)$

$$
\begin{gathered}
|\Psi(\Delta t)\rangle=\left\{\hat{1}-i H_{\mathrm{sys}} \Delta t+\sqrt{\gamma} c \int_{0}^{\Delta t} b^{\dagger}(t) d t-\sqrt{\gamma} c^{\dagger} \int_{0}^{\Delta t} b(t) d t\right. \\
+(-i)^{2} \gamma c^{\dagger} c \int_{0}^{\Delta t} d t \int_{0}^{t_{2}} \frac{d t^{\prime} \frac{b(t) b^{\dagger}\left(t^{\prime}\right)}{\uparrow}+\ldots|\Psi(0)\rangle}{} \begin{array}{l}
\\
{\left[b(t), b^{\dagger}\left(t^{\prime}\right)\right]=\delta_{s}\left(t-t^{\prime}\right)}
\end{array}\left|\psi_{\mathrm{sys}}\right\rangle \otimes|\mathrm{vac}\rangle
\end{gathered}
$$

second order term gives $\mathcal{O}(\Delta t)$

Coarse Grained Integration of the QSSE

```
\[
\Delta t>1 / \vartheta
\]
\[
\leftrightarrow
\]
```


The first time step: up to order $\mathcal{O}(\Delta t)$

$$
|\Psi(\Delta t)\rangle=\left\{\hat{1}-i H_{\mathrm{eff}} \Delta t+\sqrt{\gamma} c \Delta B^{\dagger}(0)\right\}|\Psi(0)\rangle
$$

superposition state of "no photon" and "one photon"

$$
H_{\mathrm{eff}}=H_{\mathrm{sys}}-\frac{i}{2} \gamma c^{\dagger} c
$$

- noise increment

$$
\Delta B(t):=\int_{t}^{t+\Delta t} b(s) d s
$$

Coarse Grained Integration of the QSSE
$\Delta t>1 / \vartheta$
\leftrightarrow

photodetector
... and similar for other time steps

- Ito Quantum Stochastic Schrödinger Equation
(I) $\quad d t|\Psi(t)\rangle=\left\{-i H_{\text {sys }} d t+\sqrt{\gamma} d B^{\dagger}(t) c\right\}|\Psi(t)\rangle \quad\left(|\Psi(0)\rangle=\left|\psi_{\text {sys }}\right\rangle \otimes \mid\right.$ vac $\left.\rangle\right)$
with Ito rules

$$
\Delta B(t) \Delta B^{\dagger}(t)|\mathrm{vac}\rangle=\Delta t|\mathrm{vac}\rangle \quad \longrightarrow \quad d B(t) d B^{\dagger}(t)=d t
$$

Quantum Trajectories

Entangled state of system and bath: photon emission

$$
\begin{aligned}
|\Psi(t)\rangle & =\left|\psi_{\text {sys }}(t \mid)\right\rangle|\mathrm{vac}\rangle \\
& +\sum_{t_{1}}\left|\psi_{\text {sys }}\left(t \mid t_{1}\right)\right\rangle \Delta B^{\dagger}\left(t_{1}\right)|\mathrm{vac}\rangle
\end{aligned}
$$

$$
+\ldots
$$

$+\sum_{t_{n}>\ldots>t_{1}}\left|\psi_{\text {sys }}\left(t \mid t_{n}, \ldots, t_{1}\right)\right\rangle \Delta B^{\dagger}\left(t_{n}\right) \ldots \Delta B^{\dagger}\left(t_{1}\right)|\mathrm{vac}\rangle$ $+\ldots$

click:
"quantum jump" = effect of detecting a photon on system

$$
\left|\psi_{\mathrm{sys}}(t)\right\rangle \rightarrow \sqrt{\gamma}\left|\psi_{\mathrm{sys}}(t)\right\rangle
$$

no click:

$$
\left|\psi_{\text {sys }}(0)\right\rangle \rightarrow e^{-i H_{\text {eff }} t}\left|\psi_{\text {sys }}(0)\right\rangle
$$

Master Equation

- open quantum system

- Reduced system density operator: $\rho(t):=\operatorname{Tr}_{B}|\Psi(t)\rangle\langle\Psi(t)|$
- Master Equation: Lindblad form

$$
\begin{aligned}
\dot{\rho}(t)=-i[& \left.H_{\text {sys }}, \rho(t)\right] \\
& +\frac{1}{2} \gamma\left(2 c \rho(t) c^{\dagger}-c^{\dagger} c \rho(t)-\rho(t) c^{\dagger} c\right)
\end{aligned}
$$

Cascaded Quantum Systems

- Quantum Stochastic Schrödinger Equation
- Master Equation

Cascaded Quantum Systems

- Quantum Stochastic Schrödinger Equation
- Master Equation

Cascaded Systems: the Model

Hamiltonian

$$
\begin{gathered}
H=H_{\mathrm{sys}}(1)+H_{\mathrm{sys}}(2)+H_{\mathrm{B}}+H_{\mathrm{int}} \\
H_{B}=\int_{\omega_{0}-\vartheta}^{\omega_{0}+\vartheta} d \omega \omega b^{\dagger}(\omega) b(\omega)
\end{gathered}
$$

interaction part

$$
\begin{aligned}
H_{\mathrm{int}}= & i \hbar \int d \omega \kappa_{1}(\omega)\left[b^{\dagger}(\omega) \underline{e^{-i \omega / c x_{1}}} c_{1}-c_{1}^{\dagger} b(\omega) e^{+i \omega / c x_{1}}\right] \\
& +i \hbar \int d \omega \kappa_{2}(\omega)\left[b^{\dagger}(\omega) \underline{e^{-i \omega / c x_{2}}} c_{2}-c_{2}^{\dagger} b(\omega) e^{+i \omega / c x_{2}}\right] \quad\left(x_{2}>x_{1}\right)
\end{aligned}
$$

Cascaded Systems: the Model

Stratonovich Quantum Stochastic Schrödinger Equation with time delays
(S) $\quad \frac{d}{d t}|\Psi(t)\rangle \quad=\left\{-i\left(H_{\mathrm{sys}}(1)+H_{\mathrm{sys}}(2)\right) \quad+\sqrt{\gamma_{1}}\left[b^{\dagger}(t) c_{1}-b(t) c_{1}^{\dagger}\right]\right.$
$\left.+\sqrt{\gamma_{2}}\left[b^{\dagger}(t-\tau) c_{2}-b(t-\tau) c_{2}^{\dagger}\right]\right\}|\Psi(t)\rangle$
where time ordering / delays reflects causality

Scaling: $\sqrt{\gamma_{i}} c_{i} \rightarrow c_{i}$

Coarse Grained Integration of the QSSE

$\Delta t>1 / \vartheta$

First time step: (for time delay $\tau \rightarrow 0^{+}$)

$$
\begin{aligned}
&|\Psi(\Delta t)\rangle=\left\{\hat{1}-i H_{\mathrm{sys}} \Delta t+\sqrt{\gamma} c \int_{0}^{\Delta t} b^{\dagger}(t) d t-\sqrt{\gamma} c^{\dagger} \int_{0}^{\Delta t} b(t) d t\right. \\
&+(-i)^{2} \int_{0}^{\Delta t} d t_{1} \int_{0}^{t_{2}} d t_{2}\left(-b\left(t_{1}\right) c_{1}^{\dagger}-b\left(t_{1}^{-}\right) c_{2}^{\dagger}\right)\left(b^{\dagger}\left(t_{2}\right) c_{1}+b^{\dagger}\left(t_{2}^{-}\right) c_{2}\right)|\Psi(0)\rangle \\
& \uparrow\left(-\frac{1}{2} c_{1}^{\dagger} c_{1}+0-c_{2}^{\dagger} c_{1}-\frac{1}{2} c_{2}^{\dagger} c_{2}\right)|\mathrm{vac}\rangle \Delta t \\
& \text { causality \& interaction }
\end{aligned}
$$

Cascaded Systems

Master Equation:

Version 1: Lindblad form

$$
\frac{d}{d t} \rho=-i\left(H_{\mathrm{eff}} \rho-\rho H_{\mathrm{eff}}^{\dagger}\right)+\frac{1}{2}\left(2 c \rho c^{\dagger}-c^{\dagger} c \rho-\rho c^{\dagger} c\right)
$$

with jump operator $c \equiv c_{1}+c_{2}$ and

$$
H_{\mathrm{eff}}=H_{\mathrm{sys}}-i \frac{1}{2}\left(c_{1}^{\dagger} c_{2}-c_{2}^{\dagger} c_{1}\right)-i \frac{1}{2} c^{\dagger} c \quad \text { interaction }
$$

more details: K. Hammerer in his talk on Feb 5

AMO - Solid State: Hybrid Systems

- Free space coupling between nanomechanical mirror + atomic ensemble

"Opto-nanomechanics"

- system: High-quality mechanical oscillators coupled to high-quality, highfinesse optical cavities
- goal: see quantum effects \& applications in quantum technologies
- ground state cooling of the oscillator
- entanglement ...
- why? ... fundamental / applications

Micromirrors

Aspelmeyer (Vienna) Heidmann (Paris)

Micromembranes

Harris (Yale)
Kimble (Caltech)

Microtoroids

Kippenberg (MPQ) Weig (LMU) Vahala (Caletch) Bowen (UQ)

Gravitational Interferometers

Danzmann, Schnabel (MPIG,Hannover) Mavalvala (LIGO,MIT)

Atoms in Optical Lattices

- Atoms in optical lattice: standard setup

Atoms in Optical Lattices

- Atoms in optical lattice: standard setup

here:

Optical Lattices with Micro-Mirrors / Membranes

- Optical lattice by retro-reflection of a single beam on a partially reflective oscillating micro-mirror/membrane

radiation field
- long distance interaction mediated
by quantum fluctuations of the light
composite quantum dynamics:
mirror + light + atomic motion: coherent coupling vs. dissipation we can engineer "atomic reservoirs" e.g. laser cooling

1. Naive Semiclassical: Coherent Couplings

- Classical light / optical potential [valid for an ideal mirror]
- Physical picture / expectations:
- Membrane vibrations shift phase of field: shift of potential shakes atoms

Field modes with boundary condition $E(z) \sim \sin \left[k\left(z-z_{\text {mec }}\right)\right]$
Lattice potential $\quad V\left(z_{j}\right)=\frac{m \omega_{\mathrm{at}}^{2}}{2}\left(z_{j}-z_{\mathrm{mec}}\right)^{2} \sim z_{j} z_{\text {mec }}$
Effective coupling

$$
H_{\mathrm{int}}=\sum_{j} g_{0}\left(a_{j}+a_{j}^{\dagger}\right)\left(a_{\mathrm{mec}}+a_{\mathrm{mec}}^{\dagger}\right)
$$

$$
g_{0}=\frac{\omega_{\mathrm{at}}}{2} \frac{\ell_{\mathrm{mec}}}{\ell_{\mathrm{at}}} \quad \frac{\ell_{\mathrm{mec}}}{\ell_{\mathrm{at}}}=\sqrt{\frac{m_{\mathrm{at}} \omega_{\mathrm{at}}}{m_{\mathrm{mec}} \omega_{\mathrm{mec}}}} \sim \sqrt{\frac{m_{\mathrm{at}}}{m_{\mathrm{mec}}}} \sim 10^{-7}
$$

- "naive" approach

$$
H_{\mathrm{int}}=\sum_{j} g_{0}\left(a_{j}+a_{j}^{\dagger}\right)\left(a_{\mathrm{mec}}+a_{\mathrm{mec}}^{\dagger}\right)
$$

Collectively enhanced coupling to com mode

$$
\begin{aligned}
a_{\mathrm{com}} & =\frac{1}{\sqrt{N}} \sum_{j} a_{j} \\
H_{\mathrm{int}} & =g\left(a_{\mathrm{com}}+a_{\mathrm{com}}^{\dagger}\right)\left(a_{\mathrm{mec}}+a_{\mathrm{mec}}^{\dagger}\right)
\end{aligned} \quad g=g_{0} \sqrt{N_{\mathrm{at}}}
$$

- retardation / causality (?)

how to the atoms and
mirror talk to each other? ... by exchange of photons

2. Quantum Treatment

- Hamiltonian: including membrane, atoms and electro-magnetic field as degree of freedom

$$
\begin{aligned}
H= & \left(\frac{\hat{p}_{\mathrm{m}}^{2}}{2 m_{\mathrm{m}}}+\frac{m \omega_{\mathrm{m}}^{2}}{2} \hat{z}_{\mathrm{m}}^{2}\right)+\sum_{j} \frac{\hat{p}_{j}^{2}}{2 m_{\mathrm{at}}} \\
& -\sum_{j} \frac{\mu^{2}}{\hbar \delta} \hat{E}^{-}\left(\hat{z}_{j}, t\right) \hat{E}^{+}\left(\hat{z}_{j}, t\right)
\end{aligned}
$$

$$
-\frac{\epsilon_{0} A\left(n^{2}-1\right)}{2}\left[\hat{E}^{-}\left(-\frac{l}{2}\right) \hat{E}^{+}\left(-\frac{l}{2}\right)-\hat{E}^{-}\left(\frac{l}{2}\right) \hat{E}^{+}\left(\frac{l}{2}\right)\right] \hat{z}_{\mathrm{m}} \quad \begin{aligned}
& \text {..radiation pressure } \\
& \text { potential for memb }
\end{aligned}
$$

~ intensity on left - intensity on right side

$$
|\Psi\rangle=\left|\psi_{\mathrm{m}, \mathrm{at}}\right\rangle \otimes\left|\alpha_{\text {laser }}\right\rangle \otimes|\mathrm{vac}\rangle
$$

$$
=\text { anything } \otimes \text { coherent laser field } \otimes \text { vacuum }
$$

... membrane + atoms
...optical potential for atoms potential for membrane

$$
i \hbar \frac{d}{d t}|\Psi(t)\rangle=H|\Psi(t)\rangle
$$

- here: 1D model (actually 3D ...)
- Electric Field modes:

$$
\begin{gathered}
E(z)=E_{R}(z)+E_{L}(z) \\
E_{\alpha}^{+}(z, t)=\mathcal{E} \int_{\text {mode function }} d \omega A_{\alpha}(k, z) b_{\omega, \alpha} e^{-i \omega t} \quad(\alpha=L, R)
\end{gathered}
$$

L-field

- laser as classical driving field: displacement

$$
\begin{gathered}
b_{\omega, R} \rightarrow \alpha \delta\left(\omega-\omega_{l}\right)+b_{\omega, R} \quad \text { (laser driving R mode) } \\
\sum_{j=1}^{N} \frac{\mu^{2}}{\hbar \delta} E^{-}\left(z_{j}, t\right) E^{+}\left(z_{j}, t\right)=V_{0} \sum_{j=1}^{N} \sin ^{2}\left(k z_{j}\right)+\text { quantum noise } \\
V_{0}=\frac{\mu^{2} \mathcal{E}^{2} \alpha^{2} \sqrt{\mathfrak{r}}}{\hbar \delta}
\end{gathered}
$$

- lowest order quantum fluctuations ...

Rem.: for an ideal mirror only the R mode appears

Quantum Stochastic Schrödinger Equation

- Linearization around laser amplitude: keep terms linear and quadratic in $\alpha_{\text {laser }}$
- Interpretation as Stratonovich QSSE with time delays.

ideal mirror

$$
\begin{aligned}
i \hbar \frac{d}{d t}|\Psi\rangle= & H\left(t, t^{-}, t^{+}\right)|\Psi\rangle \\
= & \left\{H_{\mathrm{m}}+H_{\mathrm{at}}\right. \\
& -i g_{\mathrm{at}, R} z_{\mathrm{at}}\left[b_{R}\left(t^{+}\right)-b_{R}^{\dagger}\left(t^{+}\right)\right] \\
& +g_{\mathrm{m}, R} z_{\mathrm{m}}\left[b_{R}(t)+b_{R}^{\dagger}(t)\right]+ \\
& +i g_{\mathrm{at}, R} z_{\mathrm{at}}\left[b_{R}\left(t^{-}\right)-b_{R}^{\dagger}\left(t^{-}\right)\right]+
\end{aligned}
$$

$$
\begin{array}{ll}
\stackrel{\leftarrow}{\rightleftarrows} & \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
\end{array}
$$

atomic motion unbalance laser beams mirror motion: phase modulation membrane \& atomic motion: sidebands time delays: retardation \& causality

Quantum Stochastic Schrödinger Equation

- Linearization around laser amplitude: keep terms linear and quadratic in $\alpha_{\text {laser }}$
- Interpretation as Stratonovich QSSE with time delays.
ideal mirror

$$
\begin{aligned}
i \hbar \frac{d}{d t}|\Psi\rangle= & H\left(t, t^{-}, t^{+}\right)|\Psi\rangle \\
= & \left\{H_{\mathrm{m}}+H_{\mathrm{at}}\right. \\
& -i g_{\mathrm{at}, R} z_{\mathrm{at}}\left[b_{R}\left(t^{+}\right)-b_{R}^{\dagger}\left(t^{+}\right)\right] \\
& +g_{\mathrm{m}, R} z_{\mathrm{m}}\left[b_{R}(t)+b_{R}^{\dagger}(t)\right]+ \\
& +i g_{\mathrm{at}, R} z_{\mathrm{at}}\left[b_{R}\left(t^{-}\right)-b_{R}^{\dagger}\left(t^{-}\right)\right]
\end{aligned}
$$

]

$$
\}|\Psi\rangle
$$

atomic motion unbalance laser beams
mirror motion: phase modulation
membrane \& atomic motion: sidebands
time delays: retardation \& causality

Quantum Stochastic Schrödinger Equation

- Linearization around laser amplitude: keep terms linear and quadratic in $\alpha_{\text {laser }}$
- Interpretation as Stratonovich QSSE with time delays.
ideal mirror

$$
\begin{align*}
i \hbar \frac{d}{d t}|\Psi\rangle= & H\left(t, t^{-}, t^{+}\right)|\Psi\rangle \\
= & \left\{H_{\mathrm{m}}+H_{\mathrm{at}}\right. \\
& -i g_{\mathrm{at}, R} z_{\mathrm{at}}\left[b_{R}\left(t^{+}\right)-b_{R}^{\dagger}\left(t^{+}\right)\right] \\
& +g_{\mathrm{m}, R} z_{\mathrm{m}}\left[b_{R}(t)+b_{R}^{\dagger}(t)\right]+ \\
& +i g_{\mathrm{at}, R} z_{\mathrm{at}}\left[b_{R}\left(t^{-}\right)-b_{R}^{\dagger}\left(t^{-}\right)\right]+
\end{align*}
$$

$$
\}|\Psi\rangle
$$

atomic motion unbalance laser beams
mirror motion: phase modulation
membrane \& atomic motion: sidebands
time delays: retardation \& causality

Quantum Stochastic Schrödinger Equation

- Linearization around laser amplitude: keep terms linear and quadratic in $\alpha_{\text {laser }}$
- Interpretation as Stratonovich QSSE with time delays.

ideal mirror

$$
\begin{aligned}
i \hbar \frac{d}{d t}|\Psi\rangle= & H\left(t, t^{-}, t^{+}\right)|\Psi\rangle \\
= & \left\{H_{\mathrm{m}}+H_{\mathrm{at}}\right. \\
& -i g_{\mathrm{at}, R} z_{\mathrm{at}}\left[b_{R}\left(t^{+}\right)-b_{R}^{\dagger}\left(t^{+}\right)\right] \\
& +g_{\mathrm{m}, R} z_{\mathrm{m}}\left[b_{R}(t)+b_{R}^{\dagger}(t)\right]+ \\
& +i g_{\mathrm{at}, R} z_{\mathrm{at}}\left[b_{R}\left(t^{-}\right)-b_{R}^{\dagger}\left(t^{-}\right)\right]+
\end{aligned}
$$

]
atomic motion unbalance laser beams mirror motion: phase modulation membrane \& atomic motion: sidebands
time delays: retardation \& causality

Quantum Stochastic Schrödinger Equation

- Linearization around laser amplitude: keep terms linear and quadratic in $\alpha_{\text {laser }}$
- Interpretation as Stratonovich QSSE with time delays. ideal mirror

$$
\begin{aligned}
i \hbar \frac{d}{d t}|\Psi\rangle= & H\left(t, t^{-}, t^{+}\right)|\Psi\rangle \\
= & \left\{H_{\mathrm{m}}+H_{\mathrm{at}}\right. \\
& -i g_{\mathrm{at}, R} z_{\mathrm{at}}\left[b_{R}\left(t^{+}\right)-b_{R}^{\dagger}\left(t^{+}\right)\right] \\
& +g_{\mathrm{m}, R} z_{\mathrm{m}}\left[b_{R}(t)+b_{R}^{\dagger}(t)\right]+\mathrm{m}^{2} \\
& +i g_{\mathrm{at}, R} z_{\mathrm{at}}\left[b_{R}\left(t^{-}\right)-b_{R}^{\dagger}\left(t^{-}\right)\right]+ \\
= & \left\{H_{\mathrm{m}}+H_{\mathrm{at}}\right. \\
& -i g_{\mathrm{at}, R} \\
& +g_{\mathrm{m}, R} \\
& +i g_{\mathrm{at}, R}
\end{aligned}
$$

R-field
... unbalance laser beams
] ... phase modulation

$$
\}|\Psi\rangle
$$

\ldots at advanced time $t^{+}=t+d / c$

$$
\text { ...at time } t
$$

$$
\}|\Psi\rangle
$$

\ldots at retarded time $t^{-}=t+d / c$

- Convert to Ito QSSE \& master equation

Markovian Master Equation

- Equivalent Markovian Master Equation

$$
\dot{\rho}=-i\left[H_{\mathrm{m}}+H_{\mathrm{at}}+g z_{\mathrm{at}} z_{\mathrm{m}}, \rho\right]+L_{\mathrm{m}} \rho+L_{\mathrm{at}} \rho+C \rho
$$

Hamiltonian term for coherent atom-membrane interaction at strength

$$
\begin{aligned}
g & =\omega_{a t} \sqrt{\frac{N m_{\mathrm{at}}}{m_{\mathrm{m}}}} \\
& =2 \pi \cdot 10^{6} \sqrt{\frac{10^{7} 10^{-25}}{10^{-13}}} \simeq 10 \mathrm{kHZ}
\end{aligned}
$$

optical "spring" between membrane and atomic COM motion

Lindblad terms describing radiation pressure induced momentum diffusion of membrane, eg

$$
\left.\begin{array}{l}
L_{\mathrm{m}}=\gamma_{\mathrm{m}}^{\mathrm{diff}}\left(2 z_{\mathrm{m}} \rho z_{\mathrm{m}}-z_{\mathrm{m}}^{2} \rho-\rho z_{\mathrm{m}}^{2}\right) \\
\quad \text { and atoms at rates } \\
\gamma_{\mathrm{m}}^{\mathrm{diff}}, \gamma_{\mathrm{at}}^{\mathrm{diff}} \ll g \odot
\end{array}\right)
$$

Application: Sympathetic Cooling of a Mirror via Atoms

- Master Equation including thermal bath for membrane, laser cooling of atoms
$\dot{\rho}=-i\left[H_{\mathrm{m}}+H_{\mathrm{at}}+g z_{\mathrm{at}} z_{\mathrm{m}}, \rho\right]+L_{\mathrm{m}} \rho+L_{\mathrm{at}} \rho+C \rho+L_{\mathrm{m}}^{\text {heat }} \rho+L_{\mathrm{at}}^{\text {cool }} \rho$
heating of membrane mode due to coupling to thermal reservoir

$$
\text { rate } \gamma_{\mathrm{m}}^{\text {heat }}
$$

equilibrium thermal occupation $\bar{n}_{\text {initial }} \simeq \frac{k_{B} T}{\hbar \omega_{\mathrm{m}}}$
laser cooling of atoms to motional ground state
$\gamma_{\mathrm{at}}^{\text {cool }}$ rate
年

Numbers

- SiN membrane: $100 \mu \mathrm{~m} \times 100 \mu \mathrm{~m} \times 50 \mathrm{~nm}, \omega_{m}=2 \pi \times 1.3 \mathrm{MHz}, m_{m}=4 \times$ $10^{-13} \mathrm{~kg}, Q=10^{7}$ at $T \lesssim 2 \mathrm{~K}, r=0.31$ at $\lambda=780 \mathrm{~nm}\left({ }^{87} \mathrm{Rb}\right)$
- Lattice beam with power $P=4 \mathrm{~mW}$ and a waist $100 \mu \mathrm{~m}$, detuning $\delta=2 \pi \times$ 1 GHz , so that $\omega_{a t} \simeq \omega_{m}$. Thus for $N \simeq 10^{7}$ atoms we have a coherent coupling

$$
g=\omega_{a t} \sqrt{\frac{m_{a t} N}{m_{m}}} \simeq 10 \mathrm{kHz}
$$

- Decoherence
- radiation pressure noise: $\gamma_{m}^{\text {diff }}=10 \mathrm{~Hz}$
- atomic momentum diffusion rate in the lattice $\gamma_{a t}^{d i f f}=35 \mathrm{~Hz}$
- membrane thermal decoherence at rate $\gamma_{m}^{t h}=4 \mathrm{MHz}$ at room temperature, or $\gamma_{m}^{t h}=4 \mathrm{KHz}$ at $T=300 \mathrm{mK}$
- Raman sideband cooling of atoms at a (fast) rate $\gamma_{a t}^{\mathrm{cool}}=10 \mathrm{kHz}$
- Coherent coupling regime accessible: $\omega_{m}=\omega_{a t} \gg g \simeq \gamma_{a t}^{\text {cool }} \gg \gamma_{m(a t)}^{\text {diff }}$

Application: Sympathetic Cooling of a Mirror via Atoms

- Cooling efficiency: Consider $\gamma_{a t}^{\text {cool }} \gg g$, then one finds a rate equation after adiabatic elimination of atoms

$$
\frac{d}{d t}\left\langle a_{m}^{\dagger} a_{m}\right\rangle=-\Gamma_{m}\left(\left\langle a_{m}^{\dagger} a_{m}\right\rangle-\bar{n}_{s s}\right)
$$

analogous to optomechanical laser cooling I. Wilson-Rae et al., PRL 99, 093901 (2007)
F. Marquardt et al., PRL 99, 093902 (2007)
with an effective cooling rate $\Gamma_{m}=\gamma_{m}+\mathfrak{r} g^{2} / 4 \gamma_{a t}^{c o o l}$ and a final occupation

$$
\bar{n}_{s s} \equiv\left\langle a_{m}^{\dagger} a_{m}\right\rangle_{s s} \simeq \frac{\gamma_{m}}{\Gamma_{m}} \bar{n}+\frac{\gamma_{a t}^{\mathrm{cool}}}{4 \omega_{m}^{2}}
$$

- Cooling factor $f=\bar{n} / \bar{n}_{s s}$ vs. effective coupling g and Raman sideband laser cooling $\gamma_{a t}^{\text {cool }}\left(\omega_{m}=\omega_{a t}\right)$ for $\omega_{m}=2 \pi \times 1.3 \mathrm{MHz}$ and $Q_{m}=$ 10^{7}, momentum diffusion $\gamma_{m(a t)}^{\text {diff }}=$ $10^{-5} \omega_{m}$.
- For $g \simeq \gamma_{a t}^{\text {cool }} \simeq 10 \mathrm{kHz}$ we find $f=$ 2×10^{4}, and $\bar{n}_{s s}<1$ for $T=1 \mathrm{~K}$.

Continuous Measurement of Atomic Currents

with: V. Steixner, A. Daley and K Hammerer

Single Shot / Continuous Measurement of Atoms

- optical lattice

measure

$$
\begin{aligned}
& \text { measure } \\
& \text { in situ current }
\end{aligned}
$$

- single atom / single site (?)
- many atoms / site (JJ array)
idea: via homodyne measurement
- Microscope: Greiner (Harvard), [LMU, ...]

Measurement of Atomic Currents

- laser induced tunneling

Hamiltonian

$$
\begin{aligned}
& H \sim \mu^{2} \frac{E_{2}^{-}(x) E_{1}^{+}(x)}{\delta} a_{2}^{\dagger} a_{1}+\text { h.c. } \\
&=\frac{\Omega_{2} \Omega_{1}}{\delta}\left(a_{2}^{\dagger} a_{1}+\text { h.c. }\right)+\frac{g \Omega_{1}}{\delta} b^{\dagger}(t) a_{2}^{\dagger} a_{1}+\text { h.c } \\
& \text { tunneling } \quad \text { back action }
\end{aligned}
$$

homodyne current

$$
\begin{aligned}
i_{c}(t) \sim & \gamma_{c} i\left\langle a_{2}^{\dagger} a_{1}-a_{i}^{\dagger} a_{2}\right\rangle+\sqrt{\gamma_{c}} \xi(t) \\
& \text { atomic current } \quad \text { shot noise }
\end{aligned}
$$

- Raman transition

Toy Model: "3 Site JJ"

- external: 3 BECs

ground states:
(degenerate)

left \& right currents
- internal

Bose Hubbard

$$
H_{\mathrm{BH}}=-\sum_{i, j} J_{i j} e^{-i \theta_{i j}} a_{i}^{\dagger} a_{j}+\frac{U}{2} \sum_{j} a_{j}^{\dagger 2} a_{j}^{2}
$$

Phase Model

$$
\begin{aligned}
& H_{B H}=-\frac{U}{2} \sum_{i} \frac{\partial^{2}}{\partial \phi_{i}^{2}}+2 J N \sum_{\langle i, j\rangle} \cos \left(\phi_{i}-\phi_{j}+\theta_{i j}\right) \\
& \text { number conservation: } \sum_{i} \hat{N}_{i}=\hat{N} \rightarrow N
\end{aligned}
$$

Toy Model: "3 Site JJ"

- motion of ficitious particle in potential

atomic current

Rabi oscillations between wells:

Summary

- Quantum Noise \& Quantum Optics
- a mini-tutorial
- Atoms in Optical Lattices + "Nano-"Mechanical Mirrors / Membranes
oscillator \longleftrightarrow atoms
(long distance) $\left.\begin{array}{l}\text { KHammerer, K. Stannigel, C. Genes, M. Wallquist, PZ. (Innsbruck) } \\ \begin{array}{l}\text { P. Treutlein, S. Camerer, D. Hunger, T. W. Hänsch (LMU) } \\ \text { in preparation }\end{array}\end{array}\right)$ +AMO interfaces
- Measurement of Atomic Currents via Light

[^0]

[^0]: V. Steixner, K Hammerer, A Daley, PZ
 in preparation

