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Outline

• Quantum Noise & Quantum Optics
- a mini-tutorial

• Atoms in Optical Lattices + “Nano-”Mechanical Mirrors / Membranes

2

nanomechanics 

+ AMO interfacesatoms
optical lattice

oscillator

cryo UHV

(long distance)

Raman laser

|↓�

|↑�

• Measurement of Atomic Currents via Light

KHammerer, K. Stannigel, C. Genes, M. Wallquist, PZ. (Innsbruck)
P. Treutlein, S. Camerer, D. Hunger, T. W. Hänsch (LMU)
in preparation

V. Steixner, K Hammerer, A Daley, PZ
in preparation

more details: K. Hammerer 
in his talk on Feb 5
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Mini-Tutorial:

Quantum Optics and Quantum Noise
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- Stochastic Schrödinger equations (& quantum trajectories)
- cascaded quantum systems etc.

unidirectional coupling

system 1:
"source"

system 2:
"driven 
system"

in 1 out 1         ´        in 2 out 2

“system 1” drives “system 2”

Stochastic Schrödinger equations with time delays

(in a way not found in Quantum Noise, CW Gardiner & PZ)
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Quantum Optics: Open Quantum Systems

• open quantum system
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Quantum Optics: Open Quantum System

• open quantum system

role of the environment:

• noise and dissipation (decoherence)

• quantum optics ... tool: state preparation

- e.g. laser cooling, optical pumping

bath / reservoir: harmonic oscillators

• quantum optics

- radiation field

- [Bogoliubov excitation, spin bath]

Quantum Optics: Open Quantum System

• open quantum system

role of the environment:

• noise and dissipation (decoherence)

• quantum optics ... tool: state preparation

- e.g. laser cooling, optical pumping

bath / reservoir: harmonic oscillators

• quantum optics

- radiation field

- [Bogoliubov excitation, spin bath]

system environment / 
bath

drive
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Quantum Optics: Continuous Measurement

• open quantum system

5

systemdrive
in

out
time

environment click ~ quantum jump
Quantum Optics: Open Quantum System

role of the environment:

• continuous observation

quantum optical tools and techniques:

• Quantum Markov processes

• Master Equation

• (Quantum) Stochastic Schrödinger Equation

- Quantum Trajectories
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Generic Quantum Optical Model
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system environment / 
bath bath of oscillators

Review: From the Quantum Stochastic Schrödinger Equation to the
Master Equation

Standard Quantum Optical Model

Hamiltonian

Hamiltonian of the system + bath

H = Hsys +HB +Hint

system Hamiltonian

Hsys

bath

HB =

ˆ ω0+ϑ

ω0−ϑ
dω ω b

†(ω)b(ω)

and bosonic �
b(ω), b†(ω�)

�
= δ(ω − ω�)
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Review: From the Quantum Stochastic Schrödinger Equation to the
Master Equation

Standard Quantum Optical Model

Hamiltonian

Hamiltonian of the system + bath

H = Hsys +HB +Hint

system Hamiltonian

Hsys

bath

HB =

ˆ ω0+ϑ

ω0−ϑ
dω ω b

†(ω)b(ω)

and bosonic �
b(ω), b†(ω�)

�
= δ(ω − ω�)

Example: spontaneous emission 
from two level system

|g〉

|e〉

! photon

photodetector

!

c = |g� �e| ≡ σ−

interaction Hamiltonian

Hint = i

ˆ ω0+ϑ

ω0−ϑ
dωκ(ω)

�
b
†(ω)c− c

†
b(ω)

�

in RWA with c a system operator

Schrödinger Equation

The state vector of the composite system obeys the Schrödinger equation
d

dt
|Ψ(t)� = −iH|Ψ(t)�

with initial condition |Ψ(0)� = |ψsys� ⊗ |vac�
Quantum Stochastic Schrödinger Equation (Stratonovich)

(S)
d

dt
|Ψ(t)� =

�
−iHsys +

√
γb†(t)c−√

γc†b(t)
�
|Ψ(t)�

• noise operator: “quantum noiselets”

b(t) :=
1√
2π

ˆ ω0+ϑ

ω0−ϑ
b(ω)e−i(ω−ω0)tdω

 Rotating wave approximation
 Markov / white noise

system “quantum jump” 
operator
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Generic Quantum Optical Model
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Generic Quantum Optical Model
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Review: From the Quantum Stochastic Schrödinger Equation to the
Master Equation

Standard Quantum Optical Model

Hamiltonian

Hamiltonian of the system + bath

H = Hsys +HB +Hint

system Hamiltonian

Hsys

bath

HB =

ˆ ω0+ϑ

ω0−ϑ
dω ω b

†(ω)b(ω)

and bosonic �
b(ω), b†(ω�)

�
= δ(ω − ω�)

interaction picture

interaction Hamiltonian

Hint = i

ˆ ω0+ϑ

ω0−ϑ
dωκ(ω)

�
b
†(ω)c− c

†
b(ω)

�

in RWA with c a system operator

Hint(t) = i

ˆ ω0+ϑ

ω0−ϑ
dωκ(ω)

�
b
†(ω)eiωt

c− c
†
b(ω)e−iωt

�

Schrödinger Equation

The state vector of the composite system obeys the Schrödinger equation

d

dt
|Ψ(t)� = −iH|Ψ(t)�

with initial condition |Ψ(0)� = |ψsys� ⊗ |vac�

Quantum Stochastic Schrödinger Equation (Stratonovich)

(S)
d

dt
|Ψ(t)� =

�
−iHsys +

√
γb†(t)c−√

γc†b(t)
�
|Ψ(t)�

system frequency

reservoir bandwidth

• noise operator: “quantum noiselets”

b(t) :=
1√
2π

ˆ ω0+ϑ

ω0−ϑ
b(ω)e−i(ω−ω0)tdω

• “white noise” commutator
�
b(t), b†(s)

�
= δs(t− s)

• initial condition |Ψ(0)� = |ψsys� ⊗ |vac�
Discussion / Interpretation: derive ...

• quantum trajectories ... and conversion to Ito QSSE
• master equation
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Generic Quantum Optical Model
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system environment / 
bath

• noise operator: “quantum noiselets”

b(t) :=
1√
2π

ˆ ω0+ϑ

ω0−ϑ
b(ω)e−i(ω−ω0)tdω

• “white noise” commutator
�
b(t), b†(s)

�
= δs(t− s)

• initial condition |Ψ(0)� = |ψsys� ⊗ |vac�
Discussion / Interpretation: derive ...

• quantum trajectories ... and conversion to Ito QSSE
• master equation

interaction Hamiltonian

Hint = i

ˆ ω0+ϑ

ω0−ϑ
dωκ(ω)
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b
†(ω)c− c

†
b(ω)

�

in RWA with c a system operator
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dωκ(ω)

�
b
†(ω)eiωt

c− c
†
b(ω)e−iωt

�

Schrödinger Equation

The state vector of the composite system obeys the Schrödinger equation

d

dt
|Ψ(t)� = −iH|Ψ(t)�

with initial condition |Ψ(0)� = |ψsys� ⊗ |vac�

Stratonovich Quantum Stochastic Schrödinger Equation (QSSE)

(S)
d

dt
|Ψ(t)� =

�
−iHsys +

√
γb†(t)c−√

γc†b(t)
�
|Ψ(t)�
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Generic Quantum Optical Model
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Coarse Grained Integration of the QSSE
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time

∆t > 1/ϑ

|g〉

|e〉

! ! photon

photodetector

system + reservoir

Stroboscopic Intergration of the QSSE

The first time step

|Ψ(∆t)� =
�
1̂− iHsys∆t+

√
γ c

ˆ ∆t

0
b
†(t) dt−√

γc†
ˆ ∆t

0
b(t) dt

+ (−i)2 γc†c

ˆ ∆t

0
dt

ˆ t2

0
dt

�
b(t)b†(t�) + . . . + . . .} |Ψ(0)�

|Ψ(∆t)� =
�
1̂− iHeff ∆t+

√
γ c∆B

†(0)
�
|Ψ(0)�

|Ψ(0)� = |ψsys� ⊗ |vac�

• effective (non-Hermitian) system Hamiltonian

Heff = Hsys −
i

2
γc†c
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Coarse Grained Integration of the QSSE
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time

∆t > 1/ϑ

|g〉

|e〉

! ! photon

photodetector
Stroboscopic Intergration of the QSSE

The first time step: up to order O(∆t)

|Ψ(∆t)� =
�
1̂− iHsys∆t+

√
γ c

ˆ ∆t

0
b
†(t) dt−√

γc†
ˆ ∆t

0
b(t) dt

+ (−i)2 γc†c

ˆ ∆t

0
dt

ˆ t2

0
dt

�
b(t)b†(t�) + . . . + . . .} |Ψ(0)�

|Ψ(∆t)� =
�
1̂− iHeff ∆t+

√
γ c∆B

†(0)
�
|Ψ(0)�

|Ψ(0)� = |ψsys� ⊗ |vac�

• effective (non-Hermitian) system Hamiltonian

Heff = Hsys −
i

2
γc†c

• increment of input operators as an integral of the white noise operator b(s).

∆B(t) :=

ˆ t+∆t

t
b(s) ds
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Coarse Grained Integration of the QSSE
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Stroboscopic Intergration of the QSSE
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�)

second order term gives O(∆t)

• effective (non-Hermitian) system Hamiltonian

Heff = Hsys −
i

2
γc†c
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Coarse Grained Integration of the QSSE
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time
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• effective (non-Hermitian) system Hamiltonian

Heff = Hsys −
i

2
γc†c

• increment of input operators as an integral of the white noise operator b(s).

∆B(t) :=

ˆ t+∆t

t
b(s) ds

Stroboscopic Intergration of the QSSE

The first time step: up to order O(∆t)

|Ψ(∆t)� =
�
1̂− iHsys∆t+

√
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ˆ ∆t

0
b
†(t) dt−√

γc†
ˆ ∆t

0
b(t) dt

+ (−i)2 γc†c
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0
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0
dt

�
b(t)b†(t�) + . . . |Ψ(0)�

|Ψ(∆t)� =
�
1̂− iHeff ∆t+
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�
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|Ψ(0)� = |ψsys� ⊗ |vac�
�
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= δs(t− t

�)

second order term gives O(∆t)

• effective (non-Hermitian) system Hamiltonian

Heff = Hsys −
i

2
γc†c

time

one photon

no photon

time• effective system Hamiltonian

Heff = Hsys −
i

2
γc†c

• noise increment

∆B(t) :=

ˆ t+∆t

t
b(s) ds

Properties

• points “to the future”
• ∆B(t)|vac� = 0

• canoncial commutation relations

�
∆B(t),∆B

†(t�)
�
=

�
∆t t = t

�

0 t �= t
�

• one photon wave packet

∆B
†(t)√
∆t

|vac� ≡ |1�t

superposition  state of  “no 
photon” and “one photon”
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Coarse Grained Integration of the QSSE
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time

∆t > 1/ϑ

|g〉

|e〉

! ! photon

photodetector

• effective system Hamiltonian

Heff = Hsys −
i

2
γc†c

• noise increment

∆B(t) :=

ˆ t+∆t

t
b(s) ds

Properties ∆B(t):
• points “to the future”
• ∆B(t)|vac� = 0

• commutator
�
∆B(t),∆B

†(t�)
�
=

�
∆t t = t

�

0 t �= t
�

• one photon wave packet ∆B†(t)√
∆t

|vac� ≡ |1�t

... and similar for other time steps

Ito Quantum Stochastic Schrödinger Equation & Master Equation

• Ito Quantum Stochastic Schrödinger Equation

(I) dt |Ψ(t)� =
�
−iHsysdt+

√
γdB†(t)c

�
|Ψ(t)� (|Ψ(0)� = |ψsys� ⊗ |vac�)

with Ito rules

∆B(t)∆B
†(t) |vac� = ∆t |vac� −→ dB(t)dB†(t) = dt

• Reduced system density operator: ρ(t) := TrB |Ψ(t)��Ψ(t)|
• Master Equation: Lindblad form

ρ̇(t) = −i [Hsys, ρ(t)]

+
1

2
γ
�
2cρ(t)c† − c

†
cρ(t)− ρ(t)c†c

�
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Quantum Trajectories
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Quantum Trajectories

Entangled state of system and bath:

|Ψ(t)� = |ψsys(t|)�|vac�

+
�

t1

|ψsys(t|t1)�∆B†(t1)|vac�

+ . . .

+
�

tn>...>t1

|ψsys(t|tn, . . . , t1)�∆B†(tn) . . .∆B†(t1)|vac�

+ . . .

... with system wave functions

|ψsys(t|tn, . . . , t1)� = e−iHeff (t−tn)√γce−iHeff (tn−tn−1) . . .

. . . e−iHeff (t2−t1)√γce−iHeff t1 |ψsys(0)�
etc.

• photon emission / detection associated with quantum jump: |ψsys(t)� →
√
γc |{�ψsys(t)}

• no emission / detection: non-hermitian evolution |ψsys(0)� → e−iHeff t|ψsys(0)�
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. . . e−iHeff (t2−t1)√γce−iHeff t1 |ψsys(0)�
etc.

• photon emission / detection associated with quantum jump: |ψsys(t)� →
√
γc |{�ψsys(t)}

• no emission / detection: non-hermitian evolution |ψsys(0)� → e−iHeff t|ψsys(0)�

Quantum Trajectories

Entangled state of system and bath:

|Ψ(t)� = |ψsys(t|)�|vac�

+
�

t1

|ψsys(t|t1)�∆B†(t1)|vac�

+ . . .

+
�

tn>...>t1

|ψsys(t|tn, . . . , t1)�∆B†(tn) . . .∆B†(t1)|vac�

+ . . .

... with system wave functions

|ψsys(t|tn, . . . , t1)� = e−iHeff (t−tn)√γce−iHeff (tn−tn−1) . . .

. . . e−iHeff (t2−t1)√γce−iHeff t1 |ψsys(0)�
etc.

• photon emission / detection associated with quantum jump: |ψsys(t)� →
√
γc |{�ψsys(t)}

• no emission / detection: non-hermitian evolution |ψsys(0)� → e−iHeff t|ψsys(0)�

 system wave function for count 
trajectory t1, t2, etc.

 gives photon count statistics

can be simulated as a stochastic 
c-number Schrödinger equation no click:

click:
“quantum jump” = effect of 
detecting a photon on system

Quantum Trajectories

Entangled state of system and bath:

|Ψ(t)� = |ψsys(t|)�|vac�

+
�

t1

|ψsys(t|t1)�∆B†(t1)|vac�

+ . . .

+
�

tn>...>t1

|ψsys(t|tn, . . . , t1)�∆B†(tn) . . .∆B†(t1)|vac�

+ . . .

... with system wave functions

|ψsys(t|tn, . . . , t1)� = e−iHeff (t−tn)√γce−iHeff (tn−tn−1) . . .

. . . e−iHeff (t2−t1)√γce−iHeff t1 |ψsys(0)�
etc.

• photon emission / detection associated with quantum jump: |ψsys(t)� →
√
γ |ψsys(t)�

• no emission / detection: non-hermitian evolution |ψsys(0)� → e−iHeff t|ψsys(0)�

Quantum Trajectories

Entangled state of system and bath:

|Ψ(t)� = |ψsys(t|)�|vac�

+
�

t1

|ψsys(t|t1)�∆B†(t1)|vac�

+ . . .

+
�

tn>...>t1

|ψsys(t|tn, . . . , t1)�∆B†(tn) . . .∆B†(t1)|vac�

+ . . .

... with system wave functions

|ψsys(t|tn, . . . , t1)� = e−iHeff (t−tn)√γce−iHeff (tn−tn−1) . . .

. . . e−iHeff (t2−t1)√γce−iHeff t1 |ψsys(0)�
etc.

• photon emission / detection associated with quantum jump: |ψsys(t)� →
√
γ |ψsys(t)�

• no emission / detection: non-hermitian evolution |ψsys(0)� → e−iHeff t|ψsys(0)�

…

…

photon emission
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Master Equation

• open quantum system

systemdrive
in

out we do not read 
the measurements

quantum jump operators

Ito Quantum Stochastic Schrödinger Equation & Master Equation

• Ito Quantum Stochastic Schrödinger Equation

(I) dt |Ψ(t)� =
�
−iHsysdt+

√
γdB†(t)c

�
|Ψ(t)� (|Ψ(0)� = |ψsys� ⊗ |vac�)

with Ito rules

∆B(t)∆B
†(t) |vac� = ∆t |vac� −→ dB(t)dB†(t) = dt

• Reduced system density operator: ρ(t) := TrB |Ψ(t)��Ψ(t)|
• Master Equation: Lindblad form

ρ̇(t) = −i [Hsys, ρ(t)]

+
1

2
γ
�
2cρ(t)c† − c

†
cρ(t)− ρ(t)c†c

�

Ito Quantum Stochastic Schrödinger Equation & Master Equation

• Ito Quantum Stochastic Schrödinger Equation

(I) dt |Ψ(t)� =
�
−iHsysdt+

√
γdB†(t)c

�
|Ψ(t)� (|Ψ(0)� = |ψsys� ⊗ |vac�)

with Ito rules

∆B(t)∆B
†(t) |vac� = ∆t |vac� −→ dB(t)dB†(t) = dt

• Reduced system density operator: ρ(t) := TrB |Ψ(t)��Ψ(t)|
• Master Equation: Lindblad form

ρ̇(t) = −i [Hsys, ρ(t)]

+
1

2
γ
�
2cρ(t)c† − c

†
cρ(t)− ρ(t)c†c

�

17
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Cascaded Quantum Systems

18

• Quantum Stochastic Schrödinger Equation

• Master Equation

unidirectional coupling

system 1:
"source"

system 2:
"driven 
system"

in 1 out 1         ´        in 2 out 2
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Cascaded Quantum Systems

19

• Quantum Stochastic Schrödinger Equation

• Master Equation

system 1:
"source"

system 2:
"driven system"

in 1

out 1         ´        in 2

out 2 time

counts

photon counting

unidirectional coupling
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Cascaded Systems: the Model

20

unidirectional coupling

system 1:
"source"

system 2:
"driven 
system"

in 1 out 1         ´        in 2 out 2

Cascaded Quantum Systems

Cascaded quantum systems: first system drives in a unidirectional coupling a
second quantum system

Hamiltonian

H = Hsys(1) +Hsys(2) +HB +Hint

HB =

ˆ ω0+ϑ

ω0−ϑ
dω ω b

†(ω)b(ω)

interaction part

Hint = i�
´
dωκ1(ω)

�
b
†(ω)e−iω/cx1c1 − c

†
1b(ω)e

+iω/cx1

�

+i�
´
dωκ2(ω)

�
b
†(ω)e−iω/cx2c2 − c

†
2b(ω)e

+iω/cx2

�
(x2 > x1)

interaction picture

Hint(t) = i
√
γ1

�
b
†(t)c1 − b(t)c†1

�
+ i

√
γ2

�
b
†(t− τ)c2 − b(t− τ)c†2

�
(τ → 0+)
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Cascaded Systems: the Model

21

unidirectional coupling

system 1:
"source"

system 2:
"driven 
system"

in 1 out 1         ´        in 2 out 2

time delay

where time ordering / delays reflects causality

b(t) =
1√
2π

ˆ +ϑ

−ϑ
dωb (ω)e−ı(ω−ω0)t

Stratonovich Quantum Stochastic Schrödinger Equation with time delays

(S)
d

dt
|Ψ(t)� = {−i (Hsys(1) +Hsys(2)) +

√
γ1

�
b
†(t)c1 − b(t)c†1

�

+
√
γ2

�
b
†(t− τ)c2 − b(t− τ)c†2

��
|Ψ(t)�

(τ → 0+)

Scaling: √γi ci → ci

where time ordering / delays reflects causality

b(t) =
1√
2π

ˆ +ϑ

−ϑ
dωb (ω)e−ı(ω−ω0)t

Stratonovich Quantum Stochastic Schrödinger Equation with time delays

(S)
d

dt
|Ψ(t)� = {−i (Hsys(1) +Hsys(2)) +

√
γ1

�
b
†(t)c1 − b(t)c†1

�

+
√
γ2

�
b
†(t− τ)c2 − b(t− τ)c†2

��
|Ψ(t)�

(τ → 0+)

Scaling: √γi ci → ci

where time ordering / delays reflects causality

b(t) =
1√
2π

ˆ +ϑ

−ϑ
dωb (ω)e−ı(ω−ω0)t

Stratonovich Quantum Stochastic Schrödinger Equation with time delays

(S)
d

dt
|Ψ(t)� = {−i (Hsys(1) +Hsys(2)) +

√
γ1

�
b
†(t)c1 − b(t)c†1

�

+
√
γ2

�
b
†(t− τ)c2 − b(t− τ)c†2

��
|Ψ(t)�

(τ → 0+)

Scaling: √γi ci → ci
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Coarse Grained Integration of the QSSE

22

time

∆t > 1/ϑStroboscopic Integration

|ψsys� ⊗ |vac�

First time step: (for time delay τ → 0+)

|Ψ(∆t)� =
�
1̂− iHsys∆t+

√
γ c

ˆ ∆t

0
b
†(t) dt−√

γc†
ˆ ∆t

0
b(t) dt

+ (−i)2 γc†c

ˆ ∆t

0
dt

ˆ t2

0
dt

�
b(t)b†(t�) + . . . + . . .} |Ψ(0)�

|Ψ(∆t)� =
�
1̂− iHeff ∆t+

√
γ c∆B

†(0)
�
|Ψ(0)�

• effective (non-Hermitian) system Hamiltonian

Heff = Hsys(1) +Hsys(2)− i
1

2
c
†
1c1 − i

1

2
c
†
2c2 − ic

†
2c1

=

�
Hsys(1) +Hsys(2) + i

1

2

�
c
†
1 c2 − c

†
2c1

��
− i

1

2
(c†1 + c

†
2)(c1 + c2)

Stroboscopic Integration

|ψsys� ⊗ |vac�

First time step: (for time delay τ → 0+)

|Ψ(∆t)� =
�
1̂− iHsys∆t+

√
γ c

ˆ ∆t

0
b
†(t) dt−√

γc†
ˆ ∆t

0
b(t) dt

+ (−i)2
ˆ ∆t

0
dt1

ˆ t2

0
dt2

�
−b(t1)c

†
1 − b(t−1 )c

†
2

� �
b
†(t2)c1 + b

†(t−2 )c2
�
|Ψ(0)�

�
−1

2
c
†
1c1 + 0− c

†
2c1 −

1

2
c
†
2c2

�
|vac�∆t

|Ψ(∆t)� =
�
1̂− iHeff ∆t+

√
γ c∆B

†(0)
�
|Ψ(0)�

Stroboscopic Integration

|ψsys� ⊗ |vac�

First time step: (for time delay τ → 0+)

|Ψ(∆t)� =
�
1̂− iHsys∆t+

√
γ c

ˆ ∆t

0
b
†(t) dt−√

γc†
ˆ ∆t

0
b(t) dt

+ (−i)2
ˆ ∆t

0
dt1

ˆ t2

0
dt2

�
−b(t1)c

†
1 − b(t−1 )c

†
2

� �
b
†(t2)c1 + b

†(t−2 )c2
�
|Ψ(0)�

�
−1

2
c
†
1c1 + 0− c

†
2c1 −

1

2
c
†
2c2

�
|vac�∆t

|Ψ(∆t)� =
�
1̂− iHeff ∆t+

√
γ c∆B

†(0)
�
|Ψ(0)�causality & interaction

unidirectional coupling

system 1:
"source"

system 2:
"driven 
system"

in 1 out 1         ´        in 2 out 2
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Cascaded Systems

23

system 1:
"source"

system 2:
"driven system"

in 1

out 1         ´        in 2

out 2 time

counts

photon counting

unidirectional coupling

Master Equation:

• effective (non-Hermitian) system Hamiltonian

Heff = Hsys(1) +Hsys(2)− i
1

2
c
†
1c1 − i

1

2
c
†
2c2 − ic

†
2c1

=

�
Hsys(1) +Hsys(2) + i

1

2

�
c
†
1 c2 − c

†
2c1

��
− i

1

2
(c†1 + c

†
2)(c1 + c2)

• Ito equation (no time delay)

d|Ψ(t)� = |Ψ(t+ dt)� − |Ψ(t)�
=

�
1̂− iHeffdt+ ( c1 + c2) dB

†(t)
�
|Ψ(0)�

Master Equation for Cascaded Quantum Systems

Version 1: Lindblad form
d

dt
ρ = −i

�
Heffρ− ρH†

eff

�
+

1

2

�
2cρc† − c

†
cρ− ρc†c

�

with jump operator c ≡ c1 + c2 and

Heff = Hsys + i
1

2

�
c
†
1c2 − c

†
2c1

�
− i

1

2
c
†
c

coherent
interaction
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AMO - Solid State: Hybrid Systems

AMO

solid statequantum 
info

“hybrid”

• Free space coupling between nanomechanical mirror + atomic ensemble

atoms
optical lattice

oscillator

K. Hammerer, K. Stannigel, C. Genes, M. Wallquist, PZ
P. Treutlein, S. Camerer, D. Hunger, T. W. Hänsch

in preparation

cryo UHV

(long distance)

more details: K. Hammerer 
in his talk on Feb 5
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“Opto-nanomechanics”
• system: High-quality mechanical oscillators coupled to high-quality, high-

finesse optical cavities

• goal: see quantum effects & applications in quantum technologies
- ground state cooling of the oscillator
- entanglement …
- why? … fundamental / applications

25

Aspelmeyer (Vienna)
Heidmann (Paris)

Kippenberg (MPQ)
Weig (LMU)

Vahala (Caletch)
Bowen (UQ)

Harris (Yale)
Kimble (Caltech)

MicromembranesMicromirrors Microtoroids

Danzmann, Schnabel 
(MPIG,Hannover)

Mavalvala (LIGO,MIT)

Gravitational
Interferometers
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Atoms in Optical Lattices

• Atoms in optical lattice: standard setup

26

atoms in optical lattice

laser

fixed mirror

radiation field

• quantum motion
- near resonant lattice: laser cooling
- far offresonant lattice: Hubbard models

• classical lattice potential: laser
• spontaneous emission:
      laser cooling / decoherence

• (thermal) noise
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Atoms in Optical Lattices

• Atoms in optical lattice: standard setup

27

See however:
back action of atoms on lattice beams 
observed in:
G. Raithel et al. PRL 81 3615 (1998)
N.V. Morrow et al. PRL 88 093003 (2002)

atoms in optical lattice

laser

fixed mirror

radiation field

• quantum motion
- near resonant lattice: laser cooling
- far offresonant lattice: Hubbard models

• classical lattice potential: laser
• spontaneous emission:
      laser cooling / decoherence

• (thermal) noise
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Optical Lattices with Micro-Mirrors / Membranes

• Optical lattice by retro-reflection of a single beam on a partially reflective
    oscillating micro–mirror/membrane

28

atoms in optical lattice

laser light

mirror /  membrane

radiation field

• quantum motion• quantum oscillator
• [noise]

• long distance interaction mediated 
by quantum fluctuations of the light

here:

composite quantum dynamics:
mirror + light + atomic motion: coherent coupling vs. dissipation
we can engineer “atomic reservoirs” e.g. laser cooling
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1. Naive Semiclassical: Coherent Couplings

• Classical light / optical potential [valid for an ideal mirror]

29

• Physical picture / expectations:
– Membrane vibrations shift phase of field: shift of potential shakes atoms

Field modes with boundary condition 

Lattice potential

Effective coupling

Monday, February 1, 2010



• “naive” approach

• retardation / causality (?)

30

Collectively enhanced coupling to com mode

how to the atoms and 
mirror talk to each other? … by exchange of photons
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2. Quantum Treatment

• Hamiltonian: including membrane, atoms and electro-magnetic field as 
degree of freedom

31

… membrane + atoms

…optical potential for atoms

…radiation pressure
    potential for membrane

~ intensity on left – intensity on right side

anything coherent laser field vacuum

• here: 1D model (actually 3D ...)
Monday, February 1, 2010



• Electric Field modes:

• laser as classical driving field: displacement

• lowest order quantum fluctuations ...

32

E(z) = ER(z) + EL(z)

E+
α (z, t) = E

�
dωAα(k, z)bω,αe

−iωt (α = L,R)

bω,R → αδ(ω − ωl) + bω,R

mode function

(laser driving R mode)

Rem.: for an ideal mirror only the R mode appears

N�

j=1

µ2

�δE
−(zj , t)E

+(zj , t) = V0

N�

j=1

sin2(kzj)+quantum noise

V0 =
µ2E2α2

√
r

�δ
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Quantum Stochastic Schrödinger Equation

• Linearization around laser amplitude: keep terms linear and quadratic in 

• Interpretation as Stratonovich QSSE with time delays.

33

…at advanced time

…at time

…at retarded time

• Convert to Ito QSSE & master equation

ideal mirror

atomic motion unbalance laser beams

mirror motion: phase modulation

membrane  & atomic motion: sidebands

time delays: retardation & causality
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Quantum Stochastic Schrödinger Equation

• Linearization around laser amplitude: keep terms linear and quadratic in 

• Interpretation as Stratonovich QSSE with time delays.

33

…at advanced time

…at time

…at retarded time

• Convert to Ito QSSE & master equation

ideal mirror

atomic motion unbalance laser beams

mirror motion: phase modulation

membrane  & atomic motion: sidebands

time delays: retardation & causality
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Quantum Stochastic Schrödinger Equation

• Linearization around laser amplitude: keep terms linear and quadratic in 

• Interpretation as Stratonovich QSSE with time delays.

33

…at advanced time

…at time

…at retarded time

• Convert to Ito QSSE & master equation

ideal mirror

atomic motion unbalance laser beams

mirror motion: phase modulation

membrane  & atomic motion: sidebands

time delays: retardation & causality
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Quantum Stochastic Schrödinger Equation

• Linearization around laser amplitude: keep terms linear and quadratic in 

• Interpretation as Stratonovich QSSE with time delays.

33

…at advanced time

…at time

…at retarded time

• Convert to Ito QSSE & master equation

ideal mirror

atomic motion unbalance laser beams

mirror motion: phase modulation

membrane  & atomic motion: sidebands

time delays: retardation & causality
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Quantum Stochastic Schrödinger Equation

• Linearization around laser amplitude: keep terms linear and quadratic in 

• Interpretation as Stratonovich QSSE with time delays.

34

…at advanced time

…at time

…at retarded time

• Convert to Ito QSSE & master equation

ideal mirror

… unbalance laser beams

… phase modulation
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Markovian Master Equation

• Equivalent Markovian Master Equation

35

Hamiltonian term for
coherent atom-membrane

interaction at strength

Lindblad terms describing radiation pressure
induced momentum diffusion of membrane, eg

 and atoms at rates

agrees with

K. Karrai PRL 100, 240801 (2008)
Gordon, Ashkin, Cohen Tannoudji….



optical “spring” between membrane 
and atomic COM motion
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Application: Sympathetic Cooling of a Mirror via Atoms

• Master Equation including thermal bath for membrane, laser cooling of atoms

36

T

heating of membrane mode
due to coupling to thermal reservoir

rate

equilibrium thermal occupation

laser cooling of atoms
to motional ground state

rate 

laser cooling
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37

Numbers

• SiN membrane: 100µm×100µm×50nm, ωm = 2π × 1.3MHz, mm = 4 ×
10−13kg, Q = 107 at T � 2K, r = 0.31 at λ = 780nm (87Rb)

• Lattice beam with power P = 4mW and a waist 100µm, detuning δ = 2π ×
1GHz, so that ωat � ωm. Thus for N � 107 atoms we have a coherent coupling

g = ωat

�
matN

mm
� 10 kHz

• Decoherence
- radiation pressure noise: γdiff

m = 10 Hz

- atomic momentum diffusion rate in the lattice γdiff
at = 35 Hz

- membrane thermal decoherence at rate γth
m = 4MHz at room temperature,

or γth
m = 4KHz at T = 300mK

• Raman sideband cooling of atoms at a (fast) rate γcool
at = 10 kHz

• Coherent coupling regime accessible: ωm = ωat � g � γcool
at � γdiff

m(at)
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Application: Sympathetic Cooling of a Mirror via Atoms

38

asdf

• Cooling efficiency: Consider γcool
at � g, then one finds a rate equation after

adiabatic elimination of atoms

d

dt
�a†mam� = −Γm(�a†mam� − n̄ss)

with an effective cooling rate Γm = γm + rg2/4γcool
at and a final occupation

n̄ss ≡ �a†mam�ss �
γm
Γm

n̄+
γcool
at

4ω2
m

asdf

• Cooling efficiency: Consider γcool
at � g, then one finds a rate equation after

adiabatic elimination of atoms

d

dt
�a†mam� = −Γm(�a†mam� − n̄ss)

with an effective cooling rate Γm = γm + rg2/4γcool
at and a final occupation

n̄ss ≡ �a†mam�ss �
γm
Γm

n̄+
γcool
at

4ω2
m

• Cooling factor f = n̄/n̄ss vs. ef-

fective coupling g and Raman side-

band laser cooling γcool
at (ωm = ωat)

for ωm = 2π × 1.3MHz and Qm =
107, momentum diffusion γdiff

m(at) =

10−5ωm.

• For g � γcool
at � 10kHz we find f =

2× 104, and n̄ss < 1 for T = 1K.

4
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FIG. 3: Cooling factor f = n̄/n̄ss versus effective coupling g be-
tween the atomic COM motion and the membrane vibrations and
rate of Raman sideband laser cooling γcool

at , as determined from an
exact numerical solution of the effective master equation (3) for a
resonant system ωm = ωat and a mode of the membrane with
ωm = 2π × 1.3MHz and Qm = 107. The calculation includes
momentum diffusion at small rates γdiff

m(at) = 10−5ωm. The param-
eters g � γcool

at � 10kHz discussed in the text provide a cooling
factor of 2 × 104, which yields a steady state occupation n̄ss below
one if the system is precooled to below 1K. At room temperature the
sympathetic cooling effect will be still clearly observable.

limit γcool
at � g. In this case we can eliminate the atomic

COM mode adiabatically along the lines of the treatments
of the equivalent problem of optomechanical laser cooling
[CITE]. For the mean occupation one finds a rate equation
d
dt �a

†
mam� = −Γm(�a†mam� − n̄ss) with an effective cooling

rate Γm = γm + rg2
/4γcool

at and a final occupation

n̄ss �
γm

Γm
n̄ +

γcool
at

4ω2
m

.

For large enough cooling rate the thermal contribution can be
suppressed and the limitation is only due to Stokes-scattering
processes. As is laser cooling of ions or optomechanics,
this can be suppressed in the resolved sideband limit, which
amounts here to have γcool

at � ωm. Under this condition
ground state cooling is possible.

If laser cooling of atoms is switched off (γcool
at = 0), a

regime of coherent coupling becomes accessible, at least for
cryogenic temperatures, where g ≥ γth

m � γdiff
m(at). As com-

pared to the usual optomechanical setup, where the equivalent
parameter to γcool

at is the cavity decay rate which is a fixed pa-
rameter, this is a qualitatively new feature of the setup consid-
ered here. It is well known, and has been extensively studied
in various contexts [CITE], that the given coupling Hamilto-
nian ∼ xatxm – which becomes ∼ (ama

†
at + a

†
maat) in the

rotating wave approximation (ωm � g) – allows for a coher-
ent state exchange of the two systems.

We still need to explain how to transform the QSSE with
time delays to the Markovian master equation (3). We first
transform the Stratonovich QSSE to an Ito QSSE by first inte-
grating Eq. (2) up to a time t+∆t (such that ∆t � τ � 1/ϑ,

where ϑ is the bandwidth of modes) and then expand to sec-
ond order,

U(∆t)|Ψ(t)� =

�
1− i

� t+∆t

t
dt1H(t1, t−1 , t

+
1 ) (4)

−
� t+∆t

t
dt1

� t1

t
dt2H(t1, t−1 , t

+
1 )H(t2, t−2 , t

+
2 )

�
|Ψ(t)�

=
�

1− i
�
Hsys − i(2√gm,Rgat,R +√gm,Lgat,L)xmxat

�
∆t

− 1
2 (gm,R + gm,L)x2

m∆t− 1
2gat,Lx

2
at∆t (5)

+ i
√

gm,Rxm∆B
†
R +

�√
gm,Lxm − i

√
gat,Lxat

�
∆B

†
L

�
|Ψ(t)�.

We use here the Ito increments ∆Bα(t) =
� t+∆t

t dt
�
bα(t�)

and their property ∆Bα(t)|Ψ� ≡ 0 for all times. In the double
time integral care needs to be taken in dealing with the time
delays. It is easy to check that

� t+∆t
t dt1

� t1
t dt2bα(t1)b†β(t2+

δ) = θ(δ)δα,β∆t [15]. After applying this rule it is possible to
take the delay to zero, τ → 0+, as has been done in the second
step of Eq. (4). The last equation (5) can then be interpreted
as an Ito QSSE, which can in turn be converted to the mas-
ter equation (3) following standard procedures [4]. Note that
this procedure results in a seemingly collectively enhanced

atomic momentum diffusion, which is an artefact of the 1D
model adopted in Eq. (1). A more careful treatment based on
a 3D model for the coupling of atoms to the EM field cor-
rectly yields the well known individual momentum diffusion
of atoms in an optical lattice at the rate given in Eq. (3), along
with dipolar interactions which are suppressed at low densities
[16].
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Continuous Measurement of Atomic Currents

|↓�

|↑�

with: V. Steixner, A. Daley and K Hammerer
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Single Shot / Continuous Measurement of Atoms

• optical lattice

40

measure 
density via 

fluorescence

• Microscope: Greiner (Harvard), [LMU, ...]

measure 
in situ current (?)

in situ density measumrement
(“continuous obervation”)

• single atom / single site (?)
• many atoms / site (JJ array)

idea: via homodyne 
measurement
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Measurement of Atomic Currents

• laser induced tunneling

41

Raman laser

|↓�

|↑�

site 1 site 2
local oscillator

ic(t)

t
cavity

• Raman transition

H ∼ µ2E
−
2 (x)E+

1 (x)

δ
a†2a1 + h.c.

=
Ω2Ω1

δ

�
a†2a1 + h.c.

�
+

gΩ1

δ
b†(t)a†2a1 + h.c.

ic(t) ∼ γci�a†2a1 − a†ia2�+
√
γcξ(t)

Hamiltonian

homodyne current

atomic current shot noise

tunneling back action
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Toy Model: “3 Site JJ”

• external: 3 BECs

42

• internal

π

flux
ground states:
(degenerate)

left & right currents πclosed Raman cycle with      phase

HBH = −
�

i,j

Jije
−iθija†iaj +

U

2

�

j

a†2j a2j

HBH = −U

2

�

i

∂2

∂φ2
i

+ 2JN
�

�i,j�
cos(φi − φj + θij)

Bose Hubbard

Phase Model

�

i

N̂i = N̂ → Nnumber conservation:
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Toy Model: “3 Site JJ”

• motion of ficitious particle in potential

43

tun
ne

ling | �

| �

two-level atom: H = ωσx

homodyne current:

ic(t) ∼ �σz�c(t) + noise

atomic current
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Rabi oscillations between wells:
weak measurement

strong measurement:
projective measurement

Zeno effect

| �

| �

ho
m

od
yn

e 
cu

rre
nt

time
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Summary

• Quantum Noise & Quantum Optics
- a mini-tutorial

• Atoms in Optical Lattices + “Nano-”Mechanical Mirrors / Membranes

45

nanomechanics 

+ AMO interfaces
atoms

optical lattice
oscillator

cryo UHV

(long distance)

Raman laser

|↓�

|↑�

• Measurement of Atomic Currents via Light
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