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Abstract:

Projective limits of topological spaces are a well known tool for the construction of quan-
tum configuration spaces in loop quantum gravity, where the latter appear as the spectra
of certain C∗-algebras. In this thesis this construction is embedded in a general theory. It
is shown, that expressing a quantum configuration space as a projective limit corresponds
always dually to an inductive limit construction on the corresponding C∗-algebra. After-
wards it is investigated in the case of C∗-dynamical systems, which construction on the
C∗-side corresponds to a quotient of the quantum configuration space by a group action
and moreover the compatibility of those notions with inductive and projective limits is
investigated. Further the representation theory of inductive limit C∗-algebras is analyzed
and it is shown that cyclic representations of an inductive limit C∗-algebra arise precisely
as an inductive limit of the GNS representations of the members of the inductive family.
Finally those concepts are applied in the theories of polymer quantization and loop quan-
tum gravity, where the corresponding algebras of configuration variables are expressed as
inductive limits of more elementary C∗-algebras. Furthermore the quantum configura-
tion spaces are calculated using the spectra of the elementary C∗-algebras as well as the
methods presented earlier in this thesis.
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1. Introduction

In mathematics it is a typical approach, to define mathematical objects using easier objects
involved in some construction. Elementary examples for this procedure are for example
quotient spaces, where complicated spaces arise as quotients of more elementary spaces
by non trivial equivalence relations or manifolds, which are defined by patching together
euclidean spaces. So called inductive and projective limits follow the same philosophy:
Inductive systems are rather large commutative diagrams consisting out of ”easy” objects
and embeddings of the objects into each other. The inductive limit of such a diagram is
now an object, which could be understood as a minimal object in which the whole diagram
can be embedded. Dually, a projective system consists out of objects and projections and
its projective limit is in some sense the minimal object that ”projects” on the diagram.
The defining property of inductive and projective systems, which gives them a special role
in the zoo of colimits and limits, is, that the objects in the diagram are associated to the
elements of a directed, partially ordered set and that the occuring maps have to satisfy
some compatibility relations according to the order structure of the partially ordered set.
In this thesis we consider the case of inductive limits of C∗-algebras, i.e. we consider
inductive limits of ”simple” C∗-algebras to obtain more complicated ones.

It is now a typical question in mathematics, to which extent properties of the simple
objects involved in a construction mirror themselves in properties of the complicated ob-
ject obtained by the construction. In the example of quotient spaces one could ask for
example, in which situations the quotient space is Hausdorff, given that the total space
is Hausdorff. In this thesis we focus on spectral properties of abelian, unital C∗-algebras
and want to understand, to which extent spectral properties of the ”simple constituents”
determine spectral properties of the ”complicated” inductive limit C∗-algebra.

At this stage it is convenient to explain more accurately what is meant by ”spectral
properties of a C∗-algebra”. Therefore recall first a well known formulation of the spectral
theorem from functional analysis:

Theorem 1 (cp. Thm. 29.2.1 of [31])
Let A be a bounded, normal operator on a Hilbert space H. Let σ(A) be the spectrum of
A. Then there exists a unitary operator

U : H →
⊕
i∈I

L2(σ(A), dµi)

where dµi are regular Borel measures on σ(A) such that UaU−1 becomes the multiplication
operator λ· on each subspace L2(σ(A), dµi).

This gives a different characterization of the spectrum of an operator: On the one hand
it can be seen as a generalized concept for eigenvalues. On the other hand it can be seen
as the domain of a L2 space, on which the operator can be represented by a multiplication
operator. This motivates the following intuitive meaning of the word ”spectrum” in the
context of abelian, unital C∗-algebras:
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1. Introduction

Intuition: The spectrum of an abelian, unital C∗-algebra U is a topological
space ∆(U), such that U can be represented by multiplication operators on
L2(∆(U), dµ) for some measure dµ. I.e.: For each a ∈ U there exists a function
ǎ ∈ C(∆(U)) such that the map π : a 7→ ǎ(λ)· is a representation for U.

In the second chapter the spectrum of a C∗-algebra will be defined in a different way.
But we will show the statement of above intuitive definition by showing a so called spectral
theorem for abelian, unital C∗-algebras, which states, that any abelian, unital C∗-algebra
can be represented by multiplication operators on a L2 space over its spectrum. After
this short discussion one should have understood, what is meant by spectral properties of
a C∗-algebra U: Herewith the structure of the spectrum ∆(U) and the structure of the
representation by multiplication operators over the spectrum is meant. Hence the first
basic question of this thesis is:

Question 1: How are the spectra of an inductive family of C∗-algebras related
to the spectrum of the corresponding inductive limit C∗-algebra and how are
the corresponding representations by multiplication operators related to each
other?

At this stage it is convenient to recall, that C∗-algebras arise in quantum field theory as
algebras of observables. A representation of such an algebra of observables gives then an
algebra of operators on a Hilbert space. For example, this can be used to calculate expec-
tation values, cross sections, or other observable quantities. Now one of the cornerstones of
modern physics is the gauge principle, which in this situation incorporates the statement,
that a postulated set of observables is often overcomplete in the sense, that it distinguishes
physically indistinguishable states. Further the gauge principle claims, that this redun-
dancy is mediated by a gauge group in the sense, that the physical configuration space is
given by the quotient of some ”overcomplete” space by a gauge group action. Dually this
means, that physically realizable observables modelled on the overcomplete space have to
be invariant under the gauge group action. This example motivates the introduction of
group actions on C∗-algebras, which will be denoted by C∗-dynamical systems. In this
case, the algebra of invariant observables corresponds to the so called fixed point algebra
of a C∗-dynamical system. This motivates the second basic question of this thesis:

Question 2: How is the spectrum of the fixed point subalgebra (i.e. the spectrum
of the algebra of invariant elements) of a C∗-algebra related to the spectrum of
the full C∗-algebra?

As explained above, we use inductive limits of C∗-algebras to construct complicated C∗-
algebras using more elementary ones. Further we wish at this point, that this construction
is also a useful one in the case of C∗-dynamical systems. Namely, that a C∗-dynamical
system can be defined as an inductive limit of C∗-dynamical systems and moreover that
the fixed point algebra of the latter can be calculated using only the fixed point algebras
of the former. This gives the third big question of this thesis:

Question 3: How do C∗-dynamical systems behave under inductive limits and
is it possible to calculate the fixed point subalgebra of an inductive limit C∗-
algebra using only the fixed point subalgebras of its constituents?

If the answers of above questions would give, that the spectral and fixed point prop-
erties of inductive limit C∗-algebras are determined in a convenient way totally by the
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corresponding properties of their constituent C∗-algebras and that the spectrum of the
fixed point algebra is determined in a convenient way by the spectrum of the full algebra,
then we would have a powerful machinery to calculate spectra of complicated C∗-algebras
which arise as inductive limits. We will see later on, that the situation becomes even
more convenient, since the construction which relates the spectrum of an inductive limit
C∗-algebra to the spectra of its constituents is much better controllable than the inductive
limit construction in the case of C∗-algebras itself. The reason for this is, that the latter
incorporates a completion, which is always a reason for bad feelings.

After reading so much abstract nonsense, the impatient physicist may asks himself:
What is that good for? To clarify this question, we want to give a perspective on the
physical meaning of the spectrum of a C∗-algebra. Therefore consider the case of quantum
mechanics with a single degree of freedom. The classical phase space P of this system
is coordinatized by two canonical coordinates p, q : P → R which satisfy the following
Poisson bracket relations:

{q, p} = 1

{p, p} = {q, q} = 0

By the postulate of canonical quantization, we now want to find a representation of p, q
by operators p̂, q̂ on a Hilbert space H, satisfying the canonical commutation relations:

[q̂, p̂] = i~
[p̂, p̂] = [q̂, q̂] = 0

One such representation is given by the Schrödinger representation, where the Hilbert
space is choosen to be H = L2(R, dλ) and the operators are represented by:

q̂ = λ·

p̂ = −i~ d

dλ

Especially we see, that q̂ is represented by the multiplication operator λ·. In this situation
R can be called the quantum configuration space of the system, since square integrable
functions over R give the quantum states of the system. By comparing this situation with
above intuitive definition for the spectrum of a C∗-algebra, one obtains, that the spectrum
of the algebra of configuration variables can be understood as the quantum configuration
space over which the quantum system is modelled as a L2 space together with a representa-
tion of the C∗-algebra of configuration variables by multiplication operators. Further one
can show, that this special representation is in the sense universal, that any representation
of this algebra is a direct sum of such representations. Hence the spectrum of a C∗-algebra
of observables determines exactly the quantum configuration space whose corresponding
states are all distinguishable by the postulated algebra of physical configuration variables
without being overcomplete. This fact can be illustrated in the case of gauge theories:
The spectrum of the full C∗-algebra of configuration variables is in general larger than
the spectrum of the fixed point subalgebra, since the first is the quantum configuration
space whose corresponding states can be distinguished by measurements corresponding
to all observables, while the latter determines the states which can be distinguished by
measurements of gauge invariant observables only.
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1. Introduction

Hence the methods developed in this thesis can be useful to compute quantum configu-
ration spaces of quantum systems, whose algebras of configuration variables are expressible
as inductive limit C∗-algebras. Before talking about physical theories where such construc-
tions are indeed useful, we want to give the following ”algorithm” for the computation of
quantum configuration spaces of such physical systems, which is motivated by the methods
of this thesis (Please note, that the choices made in 1. and 2. are far from being unique:
Different choices of polarizations correspond to different abelian, unital subalgebras of the
full quantum algebra and hence give in general different spectra!):

1. Choose a set of classical configuration variables with vanishing Poisson bracket (i.e.
choose a polarization of the phase space, cp. [32]).

2. Define an abelian, unital C∗-algebra of quantum configuration variables using this
classical Poisson algebra.

3. Express the C∗-algebra as an inductive limit of more elementary C∗-algebras.

4. Calculate the spectra of the constituents.

5. Calculate the spectrum of the full algebra using the methods developed in this thesis.

Of course this algorithm would not be very useful, if there was no physical system whose
quantum algebra is expressible as an inductive limit C∗-algebra. But fortunately this is
the case in loop quantum gravity and related theories. Here projective techniques are a
well known tool for the construction of quantum configuration spaces and used from the
90s on (cp. [6], [5], [33]). But somehow, a coherent theory, if and how this projective
limits of topological spaces are related to constructions on the C∗-side, was lacking. This
situation was the original motivation to deal with the subjects presented here. Further the
final purpose of this thesis is to fill this gap and illustrate the relevance of the investigated
concepts in the case of loop quantum gravity.

We now want to give an overview over the content of this thesis. The first part deals with
the spectral theory of inductive limit C∗-algebras and C∗-dynamical systems. Therefore
in the second section fundamental notions regarding the theory of operator algebras are
introduced. The ”first question” from above is answered in the third section. Therefore
inductive and projective limits are introduced and applied on Banach spaces, compact
Hausdorff spaces, Hilbert spaces, C∗-algebras, algebras of continuous functions and mea-
sure spaces. Further the behaviour of important concepts in C∗-theory, as spectra, states,
representations and the Gel’fand transform, under inductive limits and projective lim-
its is analyzed. Finally a structure theorem (the above mentioned spectral theorem) for
cyclic representations is given. The fourth section deals with the above mentioned ”second
question” and ”third question”. Therefore group actions on compact Hausdorff spaces as
well as C∗-dynamical systems are introduced and it is shown, that the spectrum of the
fixed point algebra is given by the quotient of the spectrum of the full algebra by some
induced group action. Afterwards the compatibility of those concepts with inductive and
projective limits is analyzed. In the second part of this thesis the general theory devel-
oped in first part is applied to the cases of polymer quantization of the real scalar field
and loop quantization of gravity. The former is a quantization procedure for scalar fields,
which mimicks important features of full loop quantum gravity and could be regarded as
a toy example for loop quantization. In both sections the quantum configuration spaces
are calculated by following the above stated algorithm, which gives - among other things
- an inductive limit decomposition of the corresponding quantum algebras. In the last
section the results of this thesis are discussed and possible directions for further research
are presented.
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Part I.

Spectral Theory of Inductive Limit
C∗-Algebras
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2. A Crash Course in Operator Algebras

This chapter provides a brief introduction to the theory of operator algebras. In the
first section the most important types of operator algebras, including Banach- and C∗-
algebras, are introduced and elementary facts are presented for later use. In the second
section the notion of the spectrum of an operator algebra is introduced and related no-
tions are presented. In the third section the important case of abelian, unital C∗-algebras
is insvestigated and its connection to the algebra of continuous functions on compact
Hausdorff spaces is discussed. In the next two sections the notions of states and represen-
tations are introduced, yielding the necessary background for the introduction of the GNS-
construction, which is presented in the following section. Finally a spectral theorem for
C∗-algebras is shown, which gives a different characterization of the GNS-representation
in terms of multiplication operators and L2 spaces. The main references for this section
are [31], [19], [10]. Except of the last section, this section contains almost no proofs, since
the introduced concepts and objects are elementary in the theory of C∗-algebras and can
be found in almost any book on operator algebras.

2.1. Basic Definitions and Basic Facts

First we want to define the very basic notions related to operator algebras:

Definition 1 (Basic notions, cp. [19], [10])
Let U be a vector space over K ∈ {R,C}. Then:

1. An algebra is a tuple (U, ·) where U is a vector space and · : U × U → U, (a, b) 7→
a · b =: ab is a multiplication map for which the following holds:

a) ∀a, b, c ∈ U : (ab)c = a(bc) (Associativity)

b) ∀a1, a2, b ∈ U,∀α, β ∈ K : b(α1a1 + α2a2) = α1ba1 + α2ba2

c) ∀a1, a2, b ∈ U,∀α, β ∈ K : (α1a1 + α2a2)b = α1a1b+ α2a2b

2. An algebra (U, ·) is called abelian, iff ∀a, b ∈ U : [a, b] = ab− ba = 0.

3. An algebra is called unital, iff there is a 1 ∈ U with ∀a ∈ U : 1a = a1 = a. In this
case we often denote the identity also by 1U.

4. A linear subspace B ⊂ U is called a subalgebra, iff ∀a, b ∈ B : ab ∈ B.

5. A subalgebra J ⊂ U is called a left (right) ideal, iff ∀a ∈ U, b ∈ J : ab ∈ J (ba ∈ J).
An ideal which is a left and a right ideal is called a two-sided ideal.

6. An ideal (of either kind) is called maximal, iff there is no other ideal containing it
except for U itself.

7. An involution on an complex algebra U is a map ∗ : U→ U, a 7→ a∗ satisfying:

a) ∀a, b ∈ U, α, β ∈ C : (αa+ βb)∗ = ᾱa∗ + β̄b∗ (antilinear)
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2. A Crash Course in Operator Algebras

b) ∀a, b ∈ U : (ab)∗ = b∗a∗.

c) ∀a ∈ U : (a∗)∗ = a

8. An algebra/subalgebra/ideal which is equipped with an involution is called a ∗-algebra/∗-
subalgebra/∗-ideal.

9. A morphism (∗-morphism) is a linear map φ : U→ B between algebras (∗-algebras)
which preserves the multiplicative (and involutive) structure, i.e. ∀a, b ∈ U : φ(a)φ(b) =
ab (and φ(a∗) = φ(a)∗).

10. An isomorphism (∗-isomorphism) is a bijective morphism (∗-morphism).

11. An unital morphism (∗-morphism) is a morphism (∗-morphism) which preserves the
unit-element.

12. A normed algebra U is an algebra together with a norm ‖ · ‖ : U → R+, such that
∀a, b ∈ U : ‖ab‖ ≤ ‖a‖‖b‖. If U is a ∗-algebra, we further demand ∀a ∈ U : ‖a∗‖ =
‖a‖. If it is an unital algebra, we further demand ‖1U‖ = 1.

13. A normed algebra (∗-algebra) is called a Banach algebra (Banach ∗-algebra), if it is
complete as a normed space.

14. A C∗-algebra is a Banach ∗-algebra U such that the C∗-property ∀a ∈ U : ‖a∗a‖ =
‖a‖2 holds.

We further have the following elementary Lemma:

Lemma 1 (∗-morphisms are norm decreasing, cp. Cor. II.1.6.6 of [9])
Let U1,U2 be C∗-algebras with norms ‖ · ‖1 and ‖ · ‖2 respectively and let φ : U1 → U2 be a
∗-morphism. Then: φ is norm decreasing, i.e.

∀a ∈ U1 : ‖φ(a)‖2 ≤ ‖a‖1

and hence also bounded.

We now want to define the notion of a quotient algebra

Definition 2 (Quotient algebra, cp. Sec. 2.1.1 of [10])
Let U be C∗-algebra and I ⊂ U be a closed, 2-sided ideal. Then define the quotient algebra
of U by I to be the linear space U/I together with the norm

∀[a] ∈ U/I : ‖[a]‖U/I = inf
b∈I
‖a+ b‖U

and the ∗-algebra structure:

∀a, b ∈ C : [a] · [b] = [ab]

∀a ∈ C : [a]∗ = [a∗]

We then have:

Lemma 2 (Well definedness of quotient, cp. Prop. 2.2.19 of [10])
Let I be a closed, two-sided ideal of a C∗-algebra U. Then:

8
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1. I is self-adjoint, i.e. I∗ = I.

2. U/I as defined in the last definition is a C∗-algebra.

3. If U is unital with unit 1U, then U/I is unital with unit [1U].

Proof. 1.) and 2.) are proven in [10].
3.) Follows directly, since [1U] · [a] = [1Ua] = [a] and [a] · [1U] = [a1U] = [a].

We further have the following very elementary fact:

Remark 1 (Facts regarding the unit)
Let U be an unital C∗-algebra with unit 1U. Then:

1. 1∗ = 1

2. 1U is the unique unit element of U.

Proof. 1.) 1∗A = (A∗1)∗ = A∗∗ = A.
2.) Let 1′ ∈ U be another unit. Then: 1′ = 1′1U = 1U.

We now show, that ∗-isomorphisms are automatically unital. But please have in mind,
that this does not hold for ∗-morphisms in general!

Remark 2 (∗-isomorphisms are unital)
Let U1,U2 be two C∗-algebras. Let φ : U1 → U2 be a ∗-isomorphism. Then: φ is unital.

Proof. Therefore let b ∈ U2 and 1U1 be the unique unit of U1. Observe:

φ (1U1) b = φ
(
1φ−1(b)

)
= b

bφ (1U1) = φ
(
φ−1(b)1U1

)
= b

And hence φ (1U1) is the unique unit element in U2. Hence φ is unital.

We further want to introduce two important examples of C∗-algebras. We will see later,
that basically all C∗-algebras arise in the following way:

Example 1 (C∗-algebra of bounded operators on a Hilbert space, cp. Ex. 2.1.2 of [10])
Let H be a Hilbert space with norm ‖ · ‖H. Define further the operator norm for linear
operators on H via:

‖ · ‖B(H) := sup
f∈H\{0}

‖ · f‖H
‖f‖H

Now definew
B(H) := {T : H → H|T is linear and ‖T‖B(H) <∞}

which is equipped with the linear structure

∀α, β ∈ C : ∀T1, T2 ∈ B(H) : ∀f ∈ H : (αT1 + βT2)f := αT1f + βT2f

and the algebra structure

∀T1, T2 ∈ B(H) : (T1T2)f := (T1f)(T2f)

and an involution given by the adjoint operation. Then B(H) is a C∗-algebra.

9



2. A Crash Course in Operator Algebras

Example 2 (C∗-algebra of continuous functions on a compact Hausdorff space, cp. Ex.
2.1.4 of [10])
Let X be a compact Hausdorff space and let C(X) := C(X,C) be the set of complex-valued
continuous functions on X. We equip C(X) with a linear structure via:

∀α, β ∈ C : ∀f1, f2 ∈ C(X) : ∀x ∈ X : (αf1 + βf2)(x) := αf1(x) + βf2(x)

Further we equip C(X) with a ∗-algebra structure via:

∀f1, f2 ∈ C(X) : ∀x ∈ X : (f1f2)(x) := f1(x)f2(x) ∀f ∈ C(X) : f∗(x) := f(x)

Finally we define the norm on C(X) as the sup norm ‖ · ‖∞:

∀f ∈ C(X) : ‖f‖∞ := sup
x∈X
|f(x)|

Then C(X) is a abelian, unital C∗-algebra with unit element

1C(X) : X → C, x 7→ 1

2.2. The Spectrum

We define further the following more advanced notion:

Definition 3 (Spectrum, cp. Ch. 27 of [31])
Let U be a C∗-algebra. Then define the spectrum of U, denoted by ∆(U), as:

∆(U) := {χ : U→ C|χ is non-zero *-morphism}

Further elements of ∆(U) are called characters.

Further we have the following elementary fact:

Remark 3
Let U be an unital C∗-algebra and let χ ∈ ∆(U). Then: χ(1U) = 1.

Proof. Since χ is nonzero and linear, it is necessarily surjective. Hence for all z ∈ C there
is a a ∈ U with χ(a) = z. Hence z = χ(a) = χ(a1) = χ(a)χ(1U) = z1 and with the same
argumentation z = χ(1U)z. Hence χ(1U) = 1.

2.3. The Case of Abelian Unital C∗-Algebras

We now want to investigate the case of unital, abelian C∗-algebras. One the one hand the
theory of those algebras is very beautiful, on the other hand it is one of the cornerstones
of this thesis. As the other sections in this crash course, this section is also very brief. A
more thorough introduction can be found in [31] and deeper threatments can be found in
[19] and [10].

First we want to upgrade the spectrum of an abelian, unital C∗-algebra to a normed
space:

10
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Definition 4 (cp. Ch. 27 of [31])
Let U be an abelian, unital C∗-algebra with spectrum ∆(U). Then define a norm on U via:

∀χ ∈ ∆(U) : ‖χ‖ = sup
a∈U\{0}

|χ(a)|
‖a‖

With this we have:

Proposition 1 (cp. Ch. 27 of [31])
Let U be an abelian, unital C∗-algebra with spectrum ∆(U). Then:

1. ‖ · ‖ defines a norm on U.

2. ∆(U) ⊂ U′, where U′ is the topological dual of U.

3. ∀χ ∈ ∆(U) : ‖χ‖ ≤ 1.

We use this to topologize ∆(U):

Definition 5 (Gel’fand topology, cp. Ch. 27 of [31])
Let U be an abelian, unital C∗-algebra with spectrum ∆(U). We then define the Gel’fand
topology on ∆(U) ⊂ U′ as the weak ∗-topology inherited from U′.

With this we have the following very important theorem, which establishes the duality
between unital, abelian C∗-Algebras and compact Hausdorff spaces:

Theorem 2 (Spectra of abelian, unital C∗ algebras are compact and Hausdorff, cp. Ch.
27 of [31])
Let U be an abelian, unital C∗-algebra. Then its spectrum ∆(U) together with the Gel’fand
topology is a compact Hausdorff space.

We now introduce the Gel’fand transform, which makes the duality between abelian,
unital C∗-algebras and the algebra of continuous functions on their spectrum explicit:

Definition 6 (Gel’fand transform)
Let U be an abelian, unital C∗-algebra. Then the Gel’fand transform is defined as:

G : U→ C(∆(U)), a 7→ (G(a) : χ 7→ G(a)(χ) := χ(a))

For convenience the Gel’fand transform is also often denoted by ·̌, i.e.

∀a ∈ U : ∀χ ∈ ∆(U) : ǎ(χ) := G(a)(χ) = χ(a)

We now have the following very important theorem:

Theorem 3 (Gel’fand transform is isomorphism, cp. Ch. 27 [31])
Let U be an abelian, unital C∗-algebra. Then the Gel’fand transform is an isometric ∗-
isomorphism between U and the C∗-algebra of continuous functions C (∆(U)). That it is
isometric means explicitly:

∀a ∈ U : ‖a‖ = sup
χ∈∆(U)

|χ(a)| = ‖ǎ‖∞

Further it is automatically unital as a ∗-isomorphism.

11
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Further the following holds for the prototypical example of continuous functions over
compact Hausdorff spaces:

Lemma 3 (Spectrum of the algebra of continuous functions, cp. Cor. 27.2.6 of [31])
Let X be a compact Hausdorff space. Let C(X) be the C∗-algebra of continuous functions
over X introduced in example 2.
Then: ∆ (C(X)) = X.

2.4. States and Representations

We first introduce the notion of states on C∗-algebras:

Definition 7 (State, cp. [10], [31])
Let U be a C∗-algebra. Then a state is a linear functional ω ∈ U′ such that:

1. ∀a ∈ U : ω(a∗a) ≥ 0.

2. ‖ω‖ = 1.

If U is unital, we further require, that ω(1U) = 1.

We now introduce the notion of representations of C∗-algebras:

Definition 8 (Representation, cp. [10])
Let U be a C∗-algebra. Then a representation of U is a tuple (H, π) (or for short π), where
H is a Hilbert space and π : H → B(H) is a ∗-morphism.

We now introduce some further properties of representations:

Definition 9 (Further properties of representations, cp. [31], [10])
Let U be a C∗-algebra and (H, π) be a representation of U. Then:

1. π is called faithful, iff π is injective, i.e. iff kerπ = {0}.

2. A linear subspace H1 ⊂ H is called invariant under π iff π(U)H1 ⊆ H1.

3. π is called irreducible, iff there is no non-trivial closed subspace of H which is in-
variant under π(U).

4. A vector Ω ∈ H is called cyclic for π, iff the set {π(a)Ω ⊂ H|a ∈ U} is dense in H.
In this case we call the tuple (H, π,Ω) a cyclic representation.

Further we have as a special case of lemma 1, that representations are norm-decreasing:

Corollar 1
Let U be a C∗-algebra and (H, π) be a representation. Then:

∀a ∈ U : ‖π(a)‖ ≤ ‖a‖

Proof. Follows directly with lemma 1.

We finally want to introduce some further concepts:
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Definition 10 (Subrepresentation, trivial part, non-degenerate representation, cp. [10])
Let U be a C∗-algebra and (H, π) be a representation. Then:

1. Let H1 ⊆ H be a closed invariant subspace and P1 be the projector on H1. Then
the tuple (H1, π1) with ∀a ∈ U : π1(a) = P1π1(a)P1 is a representation of U, called a
subrepresentation.

2. The trivial part of (H, π) is the subrepresentation (H0, π0) with:

H0 := {f ∈ H|∀a ∈ U : π(a)f = 0}
π0 = 0

3. (H, π) is called non-degenerate iff it has no trivial part, i.e. iff H0 = {0}

We now want to introduce direct sums of representations:

Definition 11 (Direct sums of representations, cp. [10])
Let U be a C∗-algebra and (Hi, πi)i∈I be a family of representations. We then define the
direct sum representation

(⊕
i∈I Hi,

⊕
i∈I πi

)
as follows:

1.
⊕

i∈I Hi is the usual direct sum of Hilbert spaces.

2. π =
⊕

i∈I πi is such that for all a ∈ A it holds, that for f ∈ Hi: π(a)f = πi(a)f

Finally we have the following important theorem:

Theorem 4 (cp. Prop. 2.3.6 of [10])
Let U be a C∗-algebra and (H, π) be a non-degenerate representation of U. Then: (H, π)
is a direct sum of a family of cyclic representations.

2.5. The GNS Construction

In this section we introduce the Gel’fand-Newmark-Siegel construction, which associates
to each unital C∗-algebra and to each state a cyclic representation.

Theorem 5 (Gel’fand-Newmark-Siegel, cp. Ch. 2.3.3 of [10])
Let U be an unital C∗-algebra and ω be a state on U. Then: There exists a cyclic repre-
sentation (Hω, πω,Ωω) of U such that

∀a ∈ U : ω(a) = 〈Ωω, πω(a)Ωω〉

In addition, the representation is unique up to unitary equivalence.

We want to sketch the proof, since it is of great importance.

Proof. We first want to construct a linear space V, an inner product on V and a vector
Ω ∈ V, such that above identity holds.

We therefore observe, that ker(ω) is an two-sided ideal in U such that we set V =
U/ker(ω). The linear structure on this space is given by [a] + [b] = [a+ b] and λ[a] = [λa].
Then the sesquilinear form defined by

∀a, b ∈ U : 〈[a], [b]〉 = ω(a∗b)

13



2. A Crash Course in Operator Algebras

is well defined and indeed an inner product.

We now guess the vector Ω̃ω as Ω̃ω = [1]. Further we define define a conjectured
representation on V as:

π : U→ Hom(V,V), a 7→ ([b] 7→ [ab])

We then see directly:

∀a ∈ U : 〈Ω̃ω, π(a)Ω̃ω〉 = ω(a)

We then define H as the completion of V. The corresponding equivalence class of
Ω̃ω will be denoted by Ωω. Further the represenation π defined above induces a unique
representation on H, which will be denoted by πω, since V ⊂ H is dense.

We now want to sketch, how to show uniqueness. Therefore let (H′ω, π′ω,Ω′ω) be another
cyclic representation with above property. We then define a unitary map U : Hω → H′ω by
πω(a)Ωω 7→ π′ω(a)Ω. It can be indeed shown, that this defines a unitary transformation.

This gives directly the following easy corollar:

Corollar 2 (Uniqueness of the GNS representation)
Let (H, π,Ω) be a cyclic representation. Then: (H, π,Ω) is unitary equivalent to the GNS-
representation (Hω, πω,Ωω) with ω defined via:

∀a ∈ U : ω(a) = 〈Ω, π(a)Ω〉

Proof. For this to hold, ω must define a state. That this is indeed the case is shown in
Ch. 2.3.2 of [10].

Finally we have the following structure theorem:

Theorem 6 (Structure theorem for representations of C∗-algebras)
Let U be a C∗-algebra and (H, π) be a non-degenerate representation. Then: There exists
a family of states (ωi)i∈I on U such that

H =
⊕
i∈I
Hωi

π =
⊕
i∈I

πωi

where (Hωi , πωi ,Ωωi)i∈I are the corresponding GNS-representations.

Proof. Follows directly with corollar 2 and theorem 4.

2.6. Spectral Theory of C∗-Algebras

In this section we want to prove a spectral theorem for C∗-algebras. Therefore first recall
the Riesz-Markov theorem:

Theorem 7 (Riesz-Markov, cp. Cor. 25.1.16 of [31])
Let X be a compact Hausdorff space. Let Λ : C(X) → C be a positive, continuous, linear
functional with Λ(1C(X)) = 1.
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Then: There is a unique regular, Borel probability measure µ on X together with the Borel
σ-algebra on X, such that:

∀f ∈ C(X) : Λ(f) =

∫
X
fdµ

Now we prove first a Lemma, which incorporates the basic statement of the later proven
spectral theorem and is basically a special case of the GNS representation:

Lemma 4 (cp. Ch. 29.2 of [31])
Let U be an unital, abelian C∗-algebra and let ω be a state on U.
Then: The tuple (Hω, πω,Ωω) with

1. Hω = L2(∆(U), dµω) with dµω being the spectral measure defined via

∀b ∈ U :

∫
∆(U)

dµω b̌ = ω(b)

, where ·̌ denotes the Gel’fand-transform,

2. π : U→ B(Hω), a 7→ π(a) with π(a) : f 7→ b̌ · f ,

3. Ωω = 1C(∆(U))

is a cyclic representation. Further any cyclic representation (H′, π′,Ω′) which satisfies

∀a ∈ U : ω(a) = 〈Ω′, π′(a)Ω′〉

(especially the GNS-representation) is unitarily equivalent to this representation.

Proof. With Riesz-Markov Theorem, we can define the space L2(∆(U), dµω), where the
Measure is defined via

∀f ∈ C(∆(U)) :

∫
∆(U)

dµωf = ω(G−1f) (2.1)

and where G−1 denotes the inverse Gel’fand transform. It can be easily shown, that
ω ◦ G−1 is a positive, continuous, linear functional. Since the Gel’fand transform is an
isomorphism, eq. (2.1) is equivalent to:

∀b ∈ U :

∫
∆(U)

dµω b̌ = ω(b)

We now show, that

π : U→ B(H), a 7→ π(a)

π(a) : H → H, f 7→ b̌ · f

defines a representation. Therefore observe first, that for all a ∈ U it holds, that π(a) is
bounded:

Let f ∈ H = L2(∆(U), dµΩ). Then:

‖π(a)f‖2 =

∫
∆(U)

dµΩ|ǎf |2

=

∫
∆(U)

dµΩ|f |2|ǎ|2

≤ ‖ǎ‖2∞‖f‖2
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And hence π(a) ∈ B(H). Further observe, that π is a ∗-morphism, since the Gel’fand
transform is a ∗-morphism.

We now show, that Ωω = 1C(∆(U)) ∈ L2(∆(U), dµω) is cyclic for π(U). But this holds
directly, because of π(U) · 1C(∆(U)) = C(∆(U)) ⊂ L2(∆(U), dµΩ), which holds, since the
Gel’fand transformation is a ∗-isomorphism.

Unitary equivalence follows directly with corollar 2, since the following holds:

∀a ∈ U : 〈Ωω, πω(a)Ωω〉 =

∫
∆(U)

dµω1C(∆(U))ǎ1C(∆(U)) = ω(a)

This completes the proof.

Now recall from theorem 4, that each representation is unitarily equivalent to a di-
rect sum of cyclic representations. With this and with lemma 4 the following ”spectral
theorem” follows directly:

Theorem 8 (Spectral theorem for abelian, unital C∗-algebras, cp. Ch. 29.2 of [31])
Let (U, π) be an abelian, unital C∗-algebra and let (H, π) be a non-degenerate representa-
tion. Then: There is a family of states (ωi)i∈I such that

H =
⊕
i∈I
Hωi

π =
⊕
i∈I

πωi

where (Hωi , πωi ,Ωωi) denotes the cyclic representation from lemma 4 corresponding to the
state ωi.

Proof. Theorem 4 gives, that we have a family of cyclic representations (Hi, πi,Ωi)i∈I such
that

H =
⊕
i∈I
Hωi

π =
⊕
i∈I

πωi

holds. From corollar 2 we know, that ωi with ∀a ∈ U : ωi(a) := 〈Ωi, πi(ωi)Ωi〉 defines
indeed a state on U. Further we have with this and with lemma 4, that those cyclic
representations are indeed isomorphic to the cyclic representations (Hωi , πωi ,Ωωi) defined
in lemma 4.

Finally, motivated by the outcome of lemma 4 and theorem 8, we want to give this class
of representations a name:

Definition 12 (Gel’fand representation)
Let U be an abelian, unital C∗-Algebra with spectrum ∆(U). Let dµ be a regular, Borel
probalbility measure on ∆(U). Then a representation (L2(∆(U), dµ), π) of U

π : U→ B(Hω), a 7→ π(a)

with
π(a) : f 7→ b̌ · f

is called a Gel’fand representation of U.
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The purpose of chapter 3 is now to analyze, to which extent above spectral theorem is
compatible with so called inductive limits of C∗-algebras and projective limits of compact
Hausdorff spaces.
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3. Spectral Theory of Inductive Limit
C∗-Algebras

This chapter provides a thorough treatment of the spectral theory of inductive limit C∗-
algebras. Therefore in the first section inductive and projective limits in arbitrary cate-
gories are introduced and as important examples the cases of Banach spaces and compact
Hausdorff spaces are analyzed. In the next section the case of Hilbert spaces, orthonormal
bases and operators thereon are analyzed. The third section introduces the concept of in-
ductive limits of C∗-algebras. Further it is shown, how the spectrum of the inductive limit
C∗-algebra can be expressed in terms of the spectra of the inductive family. In the next
section the case of continuous functions on compact Hausdorff spaces is considered and
concepts that appeared in the earlier sections are illustrated at this important example.
The next section investigates the inductive limit of L2 spaces and dually the projective
limit of measure spaces. Finally it is shown, that the L2 space over a projective limit of
measure spaces is isometrically isomorphic to the inductive limit of the L2 spaces over the
projective family of measure spaces. The next section finally introduces inductive limits
of states and representations and examines the behaviour of the Gel’fand transform under
inductive limits. In the last section finally versions of lemma 4 and theorem 8 are proven
for inductive limits of C∗-algebras.

For the first two chapters the main references are given by [31], [27]. The basic notions
presented in the third and sixth section can be also found in [18] and [35]. The basic
concepts of the fifth sections can be found in [31]. Since the appearing concepts are the
basis of the proof of our final spectral theorem, all proofs are performed in depth. Further
theorems without a reference are new to the best of the author’s knowledge. A proof of
theorem 18 can be found also in [30], but the proof presented here is slightly different and
more detailed. Further important results of this section are the equivalence of different
notions of cylindrical functions (lemma 14), the compatibility of L2 spaces with projec-
tive and inductive limits (theorem 22), the compatibility of the Gel’fand transform and
Gel’fand representation with inductive limits (lemma 17 and theorem 25) and finally the
compatibility of lemma 4 and theorem 8 with inductive and projective limits, which is
proven in the last section.

Finally the author wants to emphasize, that in this section the morphisms in the category
of compact Hausdorff spaces are considered as surjective and the morphisms in the category
of Hilbert spaces and C∗-algebras are dually considered to be isometries. The more general
case of arbitrary continuous maps in the first case and contracting maps in the second case
needs further investigation.

3.1. Inductive and Projective Limits

In this section the notions of inductive and projective limits are introduced for arbitrary
categories. Afterwards we will prove the existence of inductive limits in the category of
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Banach spaces and the existence of projective limits in the category of compact Hausdorff
spaces. Those proofs will be performed elaborately, since they are the basis of all proofs
in this section. In the case of Banach spaces we define the morphisms of this category as
isometries, since we consider also only the case of isometries later on and in our application
to loop quantum gravity and polymer quantization.

3.1.1. Inductive and Projective Limits in Arbitrary Categories

We first define the following notion:

Definition 13 (Label Set, cp. Ch. 1 of [27])
A label set is a tuple (L,≤), that is a partially ordered, directed set. This means:

1. ≤ is reflexive, symmetric and transitive.

2. ∀γ, γ′ ∈ L : ∃γ̂ ∈ L : γ, γ′ ≤ γ̂.

We now define the notions of inductive systems and inductive limits:

Definition 14 (Inductive system, inductive limit, cp. [22], [27], [31])
Let C be a category and (L,≤) be a label set. Then:

1. A family of tuples (Xγ , φγ′γ)γ,γ′∈L is called an inductive system, iff

a) ∀γ ∈ L : Xγ ∈ obj(C).
b) ∀γ′ ≥ γ ∈ L : φγ′γ ∈ mor(Xγ , Xγ′) s.th.:

i. ∀γ ∈ L : φγγ = id.

ii. ∀γ′′ ≥ γ′ ≥ γ ∈ L : φγ′′γ′ ◦ φγ′γ = φγ′′γ.

2. An object lim→Xγ ∈ obj(C) together with a family of morphisms (φγ ∈ mor(Xγ , lim→Xγ))γ∈L
is called the inductive limit of an inductive system (Xγ , φγ′γ)γ,γ′∈L iff

a) ∀γ′ ≥ γ ∈ L : φγ′ ◦ φγ′γ = φγ

b) For each other Y ∈ obj(C) together with a family of morphisms (φ̃γ ∈ mor(Xγ , Y ))γ∈L,
such that this property holds, there is a unique morphism u ∈ mor(lim→Xγ , Y ),
such that anything commutes (universal property).

The dual concept is the concept of projective families and projective limits:

Definition 15 (Projective system, projective limit, cp. [22], [27], [31])
Let C be a category and (L,≤) be a label set. Then:

1. A tuple (Xγ , pγγ′)γ,γ′∈L is called projective system, iff

a) ∀γ ∈ L : Xγ ∈ obj(C).
b) ∀γ′ ≥ γ ∈ L : pγγ′ ∈ mor(Xγ′ , Xγ) s.th.:

i. ∀γ ∈ L : pγγ = id.

ii. ∀γ′′ ≥ γ′ ≥ γ ∈ L : pγγ′ ◦ pγ′γ′′ = pγγ′′.

2. An object lim←Xγ ∈ obj(C) together with a family of morphisms (pγ ∈ mor(lim←Xγ , Xγ))γ∈L
is called the projective limit of a projective system system (Xγ , pγγ′)γ,γ′∈L iff

a) ∀γ′ ≥ γ ∈ L : pγ = pγγ′ ◦ pγ′
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b) For each other Y ∈ obj(C) together with a family of morphisms (p̃γ ∈ mor(Y,Xγ))γ∈L
such that this property holds, there is a unique morphism u ∈ mor(Y, lim←Xγ),
such that anything commutes (universal property).

We now want to show the following theorem:

Theorem 9 (Inductive/Projective Limits are Unique, cp. Ch. III.3 and Ch. III.4 of [22])
Let C be a category. Then:

1. Let (Xγ , φγ′γ)γ,γ′∈L be an inductive system in C. Then: If its inductive limit exists,
then it is unique.

2. Let (Xγ , φγ′γ)γ,γ′∈L be a projective system in C. Then: If its projective limit exists,
then it is unique.

Proof. 1.) We now show, that the inductive limit is unique. Therefore let (X, (φ̃γ)γ∈L),
(Y, φ̄γ)γ∈L) be two inductive limits of above inductive family. By the universal property
we have two unique universal morphisms u : Y → X and ũ : X → Y . Further we have
by the universal property two unique universal morphisms a : X → X and b : Y → Y .
Since the identity maps idX : X → X and idY : Y → Y satisfy the universal property,
we have, that a = idX and b = idY . Further we have, that the maps ũ ◦ u : Y → Y and
u ◦ ũ : X → X satisfy the universal property, and hence we have, that ũ ◦ u = idY and
u ◦ ũ = idX . Hence u is an isomorphism in C with inverse ũ.

2.) We now show, that the projective limit is unique. Therefore let (X, (p̃γ)γ∈L),
(Y, (p̄γ))γ∈L be two projective limits of above projective family. By the universal property
we have two unique universal morphisms u : X → Y and ũ : Y → X. Further we have
by the universal property two unique universal morphisms a : X → X, b : Y → Y . Since
the identity maps idX : X → X and idY : Y → Y satisfy the universal property, we
have, that a = idX and b = idY . Further we have, that the maps ũ ◦ u : X → X and
u ◦ ũ : Y → Y satisfy the universal property, and hence we have, that ũ ◦ u = idX and
u ◦ ũ = idY . Hence u is an isomorphism in C with inverse ũ.

3.1.2. Inductive Limits in the Category of Banach Spaces

In this paragraph we want to investigate inductive limits in the category of Banach spaces.
This is very important for the rest of this thesis, since Hilbert spaces and C∗-algebras are
both Banach spaces.

But first we need two Lemmata. The first of those is the well known bounded linear
transformation theorem:

Lemma 5 (Bounded Linear Transformation Theorem, cp. Thm. II.1.5 of [36])
Let B1, B2 be Banach spaces and let V1 ⊂ B1 be a dense subset. Let further T : B1 → B2

be a bounded linear operator. Then there is a unique bounded extension T̃ : B1 → B2.
Further ‖T̃‖ = ‖T‖ and T̃ is an isometry, if T is an isometry.

Proof. Let f ∈ B1 and (fn)n∈N ⊂ V1 be a sequence with limn→∞ fn = f . Then T̃ is
defined via:

T̃ f := lim
n→∞

Tfn

That this really defines a bounded extension, that ‖T‖ = ‖T̃‖ holds and that the extension
is unique can be shown easily (cp. [36]) . That the extension is an isometry if T is an
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isometry follows, since the norm is continuous on Banach spaces:

‖T̃ f‖ = ‖ lim
n→∞

Tfn‖

= lim
n→∞

‖Tfn‖

= lim
n→∞

‖fn‖

= ‖f‖

In the following we will often refer to this theorem just by ”BLT”. For later use we
need further the following special case of above theorem, which gives also a criterion for
bijectivity of the unique, bounded extension:

Lemma 6
Let B1, B2 be Banach spaces and let V1 ⊂ B1, V2 ⊂ B2 be dense subsets. Let further
T : V1 → V2 be a bounded, bijective linear isometry. Then the unique bounded extension
T̃ : B1 → B2 from the BLT theorem is a bijective, linear isometry.

Proof. Please recall from the proof of the last theorem, that the unique bounded exten-
sion T̃ of T is given by the following construction: Let f ∈ B1 and (fn)n∈N ⊂ V1 with
limn→∞ fn = f . Then T̃ f := limn→∞ Tfn.
First observe, that the unique extension T̃ is an isometry by lemma 5.
Recall now, that isometries are automatically injective (cp. Problem 2.5 of [21]). Since
the unique extension T̃ is an isometry, we then have directly, that T̃ is injective.
We now show surjectivity: Let g ∈ B2. Then there is a sequence (gn)n∈N ⊂ V2 with
gn → g, since V2 ⊂ B2 is dense. Then T−1gn = fn defines a sequence in V1 by bijectivity
of T . Since T is an isometry, we further have, that fn is Cauchy in B1, and hence converges
in B1. We now have:

T̃
(

lim
n→∞

fn

)
:= lim

n→∞
Tfn = lim

n→∞
TT−1gn = lim

n→∞
gn = g

and hence surjectivity of T̃ follows. Hence the claim follows.

Now we investigate the inductive limit in the category of Banach spaces.

Theorem 10 (cp. Ex. 11.5.26 of [18] for a Hilbert space version)
Let Ban be the category whose objects are Banach spaces and whose morphisms are isome-
tries. Then the inductive limit exists in this category and is unique.

Proof. Let (Bγ , ψγ′γ)γ,γ′∈L be an inductive family of Banach spaces.

Assertion 1: Set X := {(fγ)γ∈L ∈
∏
γ∈LBγ | supγ∈L ‖fγ‖γ < ∞} and define a norm on

X via ‖ · ‖ : X → R, (fγ)γ∈L 7→ supγ∈L ‖fγ‖γ and a linear structure by (αfγ + βgγ)γ∈L =
α(fγ)γ∈L + β(gγ)γ∈L. Then: X is a Banach space.

Proof of Assertion 1:
That ‖ · ‖ defines a norm on X can be shown easily.
We first show the following statement: Let

(
(fmγ )γ∈L

)
m∈N

be a Cauchy sequence in X.
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Then fmγ is a Cauchy sequence in Bγ for all γ ∈ L.
Therefore let

(
(fmγ )γ∈L

)
m∈N

⊂ X be Cauchy, i.e.:

∀ε > 0 : ∃N ∈ N : ∀m,n > N :
∥∥∥((fmγ )γ∈L

)
m
−
(
(fmγ )γ∈L

)
n

∥∥∥ ≤ ε
Then the following holds:

‖fmγ − fnγ ‖γ ≤ sup
γ∈L
‖fmγ − fnγ ‖γ =

∥∥∥((fmγ )γ∈L
)
m
−
(
(fmγ )γ∈L

)
n

∥∥∥ ≤ ε
Hence (fmγ )m∈N is a Cauchy sequence in Bγ for all γ ∈ L.
We now show, that a Cauchy sequence in X whose components in Bγ converge towards a
gγ ∈ Bγ converges towards (gγ)γ∈L in X. The argument is similar to the argument, that
the space of bounded functions with values in a Banach space is complete in the sup norm:
Let ε > 0. Then there is a N ∈ N such that∥∥∥((fmγ )γ∈L

)
m
−
(
(fmγ )γ∈L

)
n

∥∥∥ < ε

for all m,n > N . Further there is for any γ ∈ L a mγ > N such that∥∥fmγγ − gγ
∥∥
γ
< ε

Hence we have for all γ ∈ L and for each n > N :

‖fnγ − gγ‖γ ≤ ‖fmγ − f
mγ
γ ‖γ + ‖fmγγ − gγ‖γ

≤
∥∥∥((fmγ )γ∈L

)
m
−
(
(fmγ )γ∈L

)
mγ

∥∥∥+ ‖fmγγ − gγ‖γ

≤ 2ε

and hence X is complete and hence a Banach space. Hence Assertion 1 holds.

Assertion 2: Define a map jγ : Bγ → X for all γ ∈ L via

jγ : Bγ → X, fγ 7→ (fβ)β∈L

where

fβ =

{
ψβγfγ β ≥ γ

0 else

Then: jγ is an isometric, linear embedding.

Proof of Assertion 2: We first show, that jγ is an isometry: Since ψγ′γ is an isometry
we have

∀β ≥ γ : ‖fβ‖β = ‖ψβγfγ‖β = ‖fγ‖γ ≥ 0

further for all other β we have, that ‖fβ‖β = 0 holds. Hence we have

‖jγfγ‖ = ‖(fβ)β∈L‖ = sup
β∈L
‖fβ‖β = ‖fγ‖γ

Hence jγ is an isometry. By this we also have, that it jγ is injective. Linearity follows also
directly, since ψγ′γ is linear. Hence Assertion 2 holds.

Please observe, that jγ does not satisfy jγ′ ◦ ψγ′γ = jγ . Therefore we want to find a
closed subspace X0, s.th. jγ satisfies this condition on the quotient space!
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Assertion 3: Set X0 = {(fγ)γ∈L ∈ X|The net (‖fγ‖γ)γ∈L ⊂ [0,∞) converges to 0}. Then
X0 ⊂ X is a closed subspace.

If this assertion is true, we have, that X/X0 is a Banach space with respect to the usual
norm on quotient spaces ‖ · ‖X/X0

= infy∈X0 ‖ · −y‖X (cp. Ch. I.3 of [36]).

Proof of Assertion 3: We first show, that it is a linear subspace: Let (fγ), (gγ) ∈ X0 and
α, β ∈ C. Then:

0 ≤ ‖αfγ + βgγ‖ ≤ |α|‖fγ‖γ + |β|‖gγ‖γ → 0

Hence it is a subspace. We now show, that it is closed. Therefore let (fγ)γ∈L ∈ X\X0, i.e.

sup
γ∈L
‖fγ‖γ∈L <∞∧

∃ε̃ > 0 : ∀γ0 ∈ L : ∃γ ≥ γ0 : ‖fγ‖γ ≥ ε̃ (3.1)

Now define the following neighborhood of (fγ)γ∈L:

(fγ)γ∈L ∈ U :=

∏
γ∈L

U ε̃
2
(fγ)

 ∩ X

Please observe, that U is open in X, since it is the restriction of a product of open sets.
We now want to show, that U ∩ X0 = ∅. Therefore let (gγ)γ∈L ∈ U . We then have
∀γ ∈ L : gγ ∈ U ε̃

2
(fγ) and with this:

∀γ ∈ L : ‖gγ‖γ = ‖gγ − fγ + fγ‖
≥ |‖fγ‖ − ‖gγ − fγ‖| (3.2)

Now let γ0 ∈ L. We then have γ ≥ γ0 s.th. ‖fγ‖γ ≥ ε̃ by eq. (3.1). Further we have
‖gγ − fγ‖γ < ε̃

2 , since gγ ∈ U ε̃
2
(fγ). With this and with eq. (3.2) we obtain:

‖gγ‖γ ≥ ε̃−
ε̃

2
=
ε̃

2

And hence we have shown:

∃ε > 0 : ∀γ0 ∈ L : ∃γ ≥ γ0 : ‖gγ‖γ ≥ ε

Hence (gγ)γ∈L /∈ X0, and hence X0 is closed.

Assertion 4: Let π : X→ X/X0 be the canonical projection. Define ψγ : Bγ → X/X0 via
ψγ = π ◦ jγ . Then ψγ is a linear isometry and ψγ′ ◦ ψγ′γ = ψγ .

Proof of Assertion 4: We first show, that for fγ ∈ Xγ it holds, that jγfγ−jγ′ψγ′γfγ ∈ X0,
since then ψ′γ ◦ ψγ′γ = ψγ follows.

Let fγ ∈ Bγ . Then jγfγ = (fβ)β∈L with

fβ =

{
ψβγfγ β ≥ γ

0 else
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Further we have jγ′ ◦ ψγ′γfγ = (f̃β)β∈L with

f̃β =


ψβγ′ψγ′γfγ ∀β ≥ γ′

0 ∀γ′ > β ≥ γ
0 else

Hence we have

(fβ − f̃β) =


0 ∀β > γ′

ψβγfγ ∀γ′ > β ≥ γ
0 else

Hence:

‖fβ − f̃β‖β =


0 ∀β > γ′

‖fγ‖γ ∀γ′ > β ≥ γ
0 else

And hence fβ − f̃β ∈ X0.
Now we want to show, that ψγ is an isometry. Therefore we first show: ∀ε > 0 : ∀γ ∈ L :
∀fγ ∈ Bγ : ∃(gγ)γ∈L ∈ X0 : ‖jγfγ − (gγ)γ∈L‖ > ‖fγ‖γ − ε. Therefore let (g̃γ) ∈ X0. Hence
we have that ∀ε > 0 : ∃γ0 ∈ L : ∀γ ≥ γ0 : ‖g̃γ‖γ < ε. Now define (gγ)γ∈L ∈ X0 as:

gγ =

{
g̃γ γ ≥ γ0

0 else

Then we have ‖(gγ)γ∈L‖X < ε and hence:

‖jγfγ − (gγ)γ∈L‖X ≥ |‖jγfγ‖X − ‖(gγ)γ∈L‖X|
≥ |‖jγfγ‖X − ε|
= |‖fγ‖γ − ε|

On the other hand we obtain with the same argumentation ‖jγfγ− (gγ)γ∈L‖X ≤ ‖fγ‖γ + ε
and hence we have for all ε > 0:

‖fγ‖γ + ε > inf
g∈X0

‖jγfγ − (gγ)γ∈L‖ > ‖fγ‖γ − ε

and hence ψγ is an isometry. Linearity follows directly with the linearity of jγ and the
linearity of π and hence Assertion 4 holds.

Assertion 5: im(ψγ) ⊂ X/X0 is a closed subspace and ∀γ′ ≥ γ : im(ψγ) ⊆ im(ψγ′).

Proof of Assertion 5: Since ψγ′ is an isometry and Bγ is complete, we have, that im(ψγ)
is complete and hence a closed subspace. Let further γ′ ≥ γ. Then ψγ′ ◦ ψγ′γ = ψγ . Let
fγ ∈ Bγ . Then:

ψγ(fγ) = ψγ′(ψγ′γfγ)

And hence we have ψγ(fγ) ∈ im(ψγ′) and hence im(ψγ) ⊂ im(ψγ′).

Assertion 6 (basically a Lemma): Let L be a Label set and D be a Banach space. Let
(Dγ)γ∈L ⊂ D be a family of closed subspsaces with ∀γ′ ≥ γ : Dγ ⊆ Dγ′ . Then:⋃

γ∈L
Dγ ⊂ D

is a closed subspace and hence defines a Banach space.
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Proof of Assertion 6:
Since ∀γ ∈ L : Dγ ⊂ D we have

⋃
γ∈LDγ ⊂ D. Since D is closed, we have, that⋃

γ∈LDγ ⊂ D is a closed subspace of a Banach space. Hence it is a Banach space.

Assertion 7: Let A be a Banach space together with maps ψ̃γ : Bγ → A with ∀γ′ ≥
γ : ψ̃γ′ ◦ ψγ′γ = ψ̃γ . Define further lim→Bγ :=

⋃
γ∈L im(ψγ). Then there is a unique

morphism u : lim→Bγ → A such that everything commutes.

Proof of Assertion 7: We define the conjectured universal morphism on the dense set⋃
γ∈L im(ψγ) ⊂ lim→Bγ . Let f ∈

⋃
γ∈L im(ψγ). Hence there is a γ ∈ L with f ∈ im(ψγ).

Since ψγ is isometry, it is injective and hence there is a unique fγ ∈ Bγ with ψγ(fγ) = f .
Then set u(f) = ψ̃γ(fγ).

We now show, that this is independent of γ: Let γ′ ∈ L be s.th. f ∈ im(ψγ′). Let
further fγ′ ∈ Bγ′ with ψγ′(fγ′). Since L is a directed set, there is a upper bound γ̂ ∈ L
with γ, γ′ ≤ γ̂. We then have:

ψ̃γ(fγ) = ψ̃γ̂(ψγ̂γfγ) = ψ̃γ̂(ψγ̂γ′fγ′) = ψ̃γ′(fγ′)

That it is a linear isometry follows, since ψγ and ψ̃γ are linear isometries. Hence it is also
bounded and hence we can define u via the unique extension using BLT.
We now prove, that u is unique. Therefore it is sufficient, that it is unique on

⋃
γ∈L im(ψγ).

Assume we have a map u′ :
⋃
γ∈L im(ψγ) → Y with u′ 6= u. Then there must be a

f ∈
⋃
γ∈L im(ψγ) such that u(f) 6= u′(f). But we now have by commutativity, that for

all γ ∈ L: u′(f) = ψ̃γ(ψ−1(f)) = u(f) and hence u is unique on
⋃
γ∈L im(ψγ) and hence

unique on lim→Xγ .

Hence the inductive limit in the category of Banach spaces is given by the tuple
(lim→Bγ , ψγ) as defined above. Uniqueness follows with theorem 9.

We now show the following Lemma, which is quite important for further applications:

Theorem 11 (cp. Ex. 11.5.26 of [18] for a Hilbert space version)
Let (Bγ , ψγ′γ)γ,γ′∈L be an inductive family of Banach spaces and (lim→Bγ , ψγ) be its
inductive limit. Let A be a Banach space together with maps ψ̃γ : Bγ → A s.th.

1. ∀γ ∈ L : ψ̃γ is an isometry.

2. ∀γ′ ≥ γ ∈ L : ψ̃γ′ ◦ ψγ′γ = ψ̃γ.

3.
⋃
γ∈L im(ψ̃γ) is dense in A.

Then the universal map u : lim→Bγ → A is a bijective isometry. Hence lim→Bγ and A
are isomorphic as Banach spaces.

Proof. Please recall first, how the universal map is constructed.
Let f ∈

⋃
γ∈L im(ψγ). Then ∃γ ∈ L : ∃1fγ ∈ Bγ : ψγ(fγ) = f and we set for those

γ ∈ L: ψ−1
γ (f) = fγ . Now define the universal map as u(f) = ψ̃γ ◦ ψ−1

γ (f).
Now we want to show, that this u defines a bijective isometry

u :
⋃
γ∈L

im(ψγ)→
⋃
γ∈L

im(ψ̃γ)
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, since then it extends by lemma 6 uniquely to an bijective isometry ũ : lim→Bγ → A.

First observe, that u is a composition of isometries and hence an isometry. Hence it is
also injective. Now towards surjectivity: Let g ∈

⋃
γ∈L im(ψ̃γ). Then there is γ ∈ L with

gγ ∈ Bγ such that g = ψ̃γgγ . We further have ψγ(gγ) ∈ im(ψγ) ⊂
⋃
γ∈L im(ψγ). Further

we have u(ψγ(gγ)) = g by construction of the universal map and hence the assertion
follows. Now the claim follows by lemma 6.

We now want to show the following easy corollar. On the one hand it provides a nice
example, and on the other hand we will need it later in our discussion on polymer and
loop quantization:

Corollar 3
Let B be a Banach space, L be a label set and (Bγ)γ∈L be a family of Banach spaces with:

1. ∀γ ∈ L : Bγ ⊂ B is a linear subspace.

2. ∀γ ≤ γ′ ∈ L : Bγ ⊂ Bγ′.

Then:

1. (Bγ , iγγ′)γ′≥γ∈L, with iγγ′ : Bγ ↪→ Bγ′ being the canonical injection, is an inductive
system in the category of Banach spaces.

2. The inductive limit of this inductive family is given by:

lim
→
Bγ =

⋃
γ∈L

Bγ ⊂ B

together with the obvious maps iγ : Bγ → lim→Bγ.

Proof. (1) The claim follows directly, since each iγ′γ is an isometry by definition and we
have also for γ′′ ≥ γ′ ≥ γ ∈ L directly:

iγ′′γ′ ◦ iγ′γ = iγ′′γ

iγγ = id.

(2) The canonically defined map

iγ : Bγ ↪→
⋃
γ∈L

Bγ ⊂ B

is an isometry and hence also injective. Further we have, that
⋃
γ∈L im(iγ) =

⋃
γ∈LBγ is

dense in
⋃
γ∈LBγ . We have also directly, that

iγ′ ◦ iγ′γ = iγ

for all γ′ ≥ γ ∈ L and hence the claim follows with theorem 11.

3.1.3. Projective Limits in the Category of Compact Hausdorff Spaces

We show the following theorem:
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Theorem 12 (cp. [27] for 1.) and [17] for 2.) with L = N)
Let Top be the category whose objects are topological spaces and whose morphisms are con-
tinuous surjections. Further let CH be the category whose objects are compact Hausdorff
spaces and whose morphisms are continuous surjections. Then:

1. The projective limit exists in Top and is unique.

2. The projective limit exists in CH and is unique.

Proof. 1.) Let (Xγ , pγγ′)γ,γ′∈L be a projective family of topological spaces. We first
construct the conjectured projective limit as

lim
←
Xγ :=

(xγ)γ∈L ∈
∏
γ∈L

Xγ

∣∣∣∣∣∣∀γ′ ≥ γ : pγγ′xγ′ = xγ

 ⊂∏
γ∈L

Xγ

topologized by the subspace topology of the product topology. We further define maps
pγ : lim←Xγ → Xγ as

pγ = πγ ◦ i
, where πγ :

∏
γ∈LXγ → Xγ is the canonical projection and i : lim←Xγ ↪→

∏
γ∈LXγ is

the canonical embedding. Continuity of pγ is clear, since πγ and i are continuous. Further
(pγ)γ∈L satisfies the composition property of the projective limit, since for (xγ)γ∈L ∈
lim←Xγ we have pγγ′xγ′ = xγ and further pγ ((xγ)γ∈L) = xγ and pγ′ ((xγ)γ∈L) = xγ′ ,
which gives pγγ′ ◦ pγ′ = pγ .

We now show the universal property: Let Y be a topological space and let (p̃γ)γ∈L) be
a family of projections with:

∀γ′ ≥ γ : p̃γ ◦ pγγ′ = p̃γ′

Then construct a map
u : Y → lim

←
Xγ , y 7→ (p̃γ(y))γ∈L

We now have to show, that this map is well defined and continuous.
We first show well definedness: Let y ∈ Y . Now pγγ′ ◦ p̃γ′(y) = p̃γ(y) by above. Hence

we have u(y) ∈ lim←Xγ .
Now continuity: Since the topology on lim←Xγ is given by the subspace topology of the

product topology, u is continuous, iff for all γ ∈ L it holds, that the map ψγ ◦i◦u : Y → Xγ

is continuous. Now we have, that πγ◦i = pγ and hence, we have to show, that ∀γ ∈ L : pγ◦u
is continuous. But now pγ ◦ u = p̃γ holds and hence pγ ◦ u is continuous, since p̃γ is.

Uniqueness follows with theorem 9.
2.) We now want to show, that lim→Xγ is a compact Hausdorff space, if the Xγ are

compact Hausdorff spaces.
First we have, that arbitrary products of Hausdorff spaces are Hausdorff, and subspaces

of Hausdorff spaces are also Hausdorff. We hence have, that lim←Xγ ⊆
∏
γ∈LXγ is

Hausdorff.
Further we have the following fact: Let Y be a compact Hausdorff space and X ⊂ Y .

Then X is compact iff X is closed in Y . Therefore we want to show, that lim←Xγ is
closed in

∏
γ∈LXγ , since then compactness follows. Therefore define for γ, γ′ ∈ L with

γ ≤ γ′ the following set:

C(γ′, γ) =

(xγ)γ∈L ∈
∏
γ∈L

Xγ

∣∣∣∣∣∣pγγ′xγ′ = xγ


We now show:
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Assertion 1: lim←Xγ =
⋂
γ′≥γ∈LC(γ′, γ).

Proof of Assertion 1: We have:

lim
←
Xγ =

(xγ)γ∈L ∈
∏
γ∈L

Xγ

∣∣∣∣∣∣∀γ′ ≥ γ ∈ L : pγγ′xγ′ = xγ


Further we have by the definition of the intersection:

⋂
γ′≥γ∈L

C(γ′, γ) =

(xγ)γ∈L ∈
∏
γ∈L

Xγ

∣∣∣∣∣∣∀γ′ ≥ γ ∈ L : pγγ′xγ′ = xγ


and hence both sets are equal.

Assertion 2: C(γ′, γ) is closed for all γ′ ≥ γ ∈ L.

Proof of Assertion 2: Let x ∈
(∏

γ∈LXγ

)
\ C(γ′, γ), i.e.:

(xγ)γ∈L ∈
∏
γ∈L

Xγ ∧ pγγ′xγ′ 6= xγ

By the Hausdorff property, we hence have two neighborhoods

xγ ∈ U ⊂ Xγ

pγγ′xγ′ ∈ Ṽ ⊂ Xγ

such that U ∩ Ṽ = ∅ since pγγ′xγ′ 6= xγ .
With this we obtain an open set V ⊂ Xγ′ via

∀xγ′ ∈ V : p−1
γγ′(Ṽ ) ⊂ Xγ′

which has the property
∀xγ′ ∈ V : pγγ′xγ′ /∈ U

, since pγγ′(V ) ∩ U = Ṽ ∩ U = ∅.
Now let for α ∈ L \ {γ, γ′} Uα ⊂ Xα be an arbitrary open neighborhood of xα and set

further Uγ = U and Uγ′ = V . Now define

O =
∏
α∈L

Uα

, which is open as a product of open sets. Further ∀α ∈ L : xα ∈ Uα by construction, and
hence it is a neighborhood of x.

Now let (yγ)γ∈L ∈ O. Especially we have yγ ∈ U and yγ′ ∈ V . Now by above argumen-
tation we have:

pγγ′yγ′ 6= yγ ⇒ (yγ)γ∈L ∈

∏
γ∈L

Xγ

 \ C(γ′, γ)

Hence
(∏

γ∈LXγ

)
\ C(γ′, γ) is open, and hence the claim of the theorem follows, since

arbitrary intersections of closed sets are closed.
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Further we show the following Lemma for later use:

Lemma 7
Let (Xγ , pγγ′)γ,γ′∈L be an projective family of topological spaces. Let X be a topological
space. Let f : X → lim←Xγ be a map. Then: f is continuous if and only if pγ ◦ f is
continuous for all γ ∈ L

Proof. We have topologized the projective limit via the subspace topology of the product
topology. Hence we have, that f : X → lim←Xγ is continuous if and only if i ◦ f :
X →

∏
γ∈LXγ is continuous, where i : lim←Xγ ↪→

∏
γ∈LXγ is the canonical injection.

Further we have, that this map is continuous if and only if for all γ ∈ L we have, that
πγ ◦ i ◦ f : X → Xγ is continuous, where πγ :

∏
γ∈LXγ → Xγ is the canonical projection.

Since pγ = πγ ◦ i, the claim follows.

3.2. Inductive Limits of Hilbert Spaces I: Hilbert Spaces and
Operators

In this section we will prove the existence of inductive limits in the category of Hilbert
spaces. Further we will define the notion of inductive families of bounded and unbounded
operators, define the notion of inductive limits thereof and show their existence.

We first recall the following theorem:

Lemma 8 (Parallelogram law, cp. Thm. V.1.7 of [36])
Let (X, ‖ · ‖) be a Banach space. Then the norm ‖ · ‖ is induced by an inner product if and
only if the parallelogram law

∀x, y ∈ X : ‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
holds. In this case the inner product that induces ‖ · ‖ is given by the polarization identity:

∀x, y ∈ X : 〈x, y〉 =
1

4

(
‖y + x‖2 − ‖y − x‖2 − i‖y + ix‖2 + i‖y − ix‖2

)
Now we show, that the inductive limit of Hilbert spaces exists and is unique:

Theorem 13 (Inductive limit exists in the Category of Hilbert spaces, cp. Ex. 11.5.26 of
[18])
Let Hil be the category whose objects are Hilbert spaces and whose morphisms are linear
isometries. Then the inductive limit exists in this category and is unique.

Proof. Let (Hγ , ψγ′γ)γ,γ′∈L be an inductive family of Hilbert spaces. Then let (lim→Hγ , (ψγ)γ∈L)
be the inductive limit of (Hγ , ψγ′γ)γ,γ′∈L as a inductive family of Banach spaces. We now
show, that the norm on lim→Hγ satisfies the parallelogram law. We do this in two steps.
First we show, that the parallelogram law is satisfied on

⋃
γ∈L im(ψγ). Then we show,

that the parallelogram law holds on a Banach space, if it is satisfied on a dense subspace.
First consider f, g ∈

⋃
γ∈L im(ψγ). Hence we have γ1, γ2 ∈ L and fγ1 ∈ Hγ1 , gγ2 ∈ Hγ2

such that f = ψγ1(fγ1) and g = ψγ2(gγ2). Now, since L is a label set we have a γ̂ ≥ γ1, γ2

and further we have:

f =ψγ1(fγ1) = ψγ̂ψγ̂γ1(fγ1) = ψγ̂(fγ̂)

g =ψγ2(gγ2) = ψγ̂ψγ̂γ2(gγ2) = ψγ̂(gγ̂)
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with fγ̂ := ψγ̂γ1fγ1 and gγ̂ := ψγ̂γ2gγ2 . We now have:

‖f + g‖2 + ‖f − g‖2 = ‖ψγ̂(fγ̂ + gγ̂)‖+ ‖ψγ̂(fγ̂ − gγ̂)‖
= ‖fγ̂ + gγ̂‖γ̂ + ‖fγ̂ − gγ̂‖γ̂
= 2

(
‖fγ̂‖2γ̂ + ‖gγ̂‖2γ̂

)
= 2

(
‖ψγ̂(fγ̂)‖2 + ‖ψγ̂(gγ̂)‖2

)
= 2

(
‖f‖2 + ‖g‖2

)
Where we have used, that the parallelogram law holds on Hγ̂ and that ψγ̂ is an isometry.

We now show, that if B is a Banach space and A ⊂ B is a dense subset on which the
parallelogram law holds, then the parallelogram law holds on B.

Therefore let f, g ∈ B and (fn)n∈N, (gn)n∈N ⊂ A be sequences with fn → f and gn → g
for n→∞. We then have directly:

‖fn + gn‖2 + ‖fn − gn‖2 = 2
(
‖fn‖2 + ‖gn‖2

)
and hence

‖f + g‖2 + ‖f − g‖2 = lim
n→∞

(
‖fn + gn‖2 + ‖fn − gn‖2

)
= lim

n→∞
2
(
‖fn‖2 + ‖gn‖2

)
= 2

(
‖f‖2 + ‖g‖2

)
and hence the claim follows.

With this the assertion is proven.

We now want to understand, how orthonormal bases behave under inductive limits:

Theorem 14 (Inductive limit of orthonormal bases)
Let (Hγ , ψγ′γ)γ,γ′∈L be an inductive system of Hilbert spaces and let (Sγ)γ∈L be a family
of orthonormal bases with:

1. For each γ ∈ L it holds, that Sγ is an orthonormal base of Hγ.

2. For each γ′ ≥ γ ∈ L we have, that ψγ′γSγ ⊂ Sγ′.

Then:
S :=

⋃
γ∈L

ψγ(Sγ)

is an orthonormal base for lim→Hγ.

Proof. We first show, that S is an orthonormal system, i.e. ∀ei ∈ S : ‖ei‖ = 1 and
∀ei 6= ej ∈ S : 〈ei, ej〉 = 0 (cp. Def. V.4.1 of [36]). This is quite easy to show:

Let ei ∈ S. Then there is a γ ∈ L and a e
(γ)
i ∈ Sγ ⊂ Hγ with ψγ(e

(γ)
i ) = ei. Since Sγ is

orthonormal base and ψγ is an isometry, we have ‖ei‖ = ‖ψγ(e
(γ)
i )‖ = ‖e(γ)

i ‖γ = 1.

Now let ei, ej ∈ S. Then there are γ1, γ2 ∈ L and e
(γ1)
i ∈ Sγ1 , e

(γ2)
j ∈ Sγ2 with

ψγ1(e
(γ1)
i ) = ei and ψγ2(eγ2j ) = ej . Now there is, since L is a label set, a γ̂ with γ̂ ≥ γ1, γ2.

With this we have:

ei = ψγ1(e
(γ1)
i ) = ψγ̂ψγ̂γ1e

(γ1)
i = ψγ̂e

(γ̂)
i

ej = ψγ2(e
(γ2)
j ) = ψγ̂ψγ̂γ2e

(γ2)
j = ψγ̂e

(γ̂)
j
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With e
(γ̂)
i = ψγ̂γ1e

(γ1)
i and eγ̂j = ψγ̂γ2e

γ2
j . We then have since ψγ̂ is isometry and Sγ̂ is

orthonormal base, that:

〈ei, ej〉 = 〈ψγ̂(e
(γ̂)
i ), ψγ̂(e

(γ̂)
j )〉

= 〈e(γ̂)
i , e

(γ̂)
j 〉γ̂

= 0

And hence we have shown, that S is an orthonormal system.
Now the following holds: An orthonormal system S of an Hilbertspace H is an orthonor-

mal basis if and only if linS = H (cp. Thm V.4.9 of [36]). Hence we show, that linS is
dense in lim→Hγ .

Therefore we first show, that lin(S) ⊂
⋃
γ∈L im(ψγ) is dense in the latter. Therefore let

f ∈
⋃
γ∈L im(ψγ). I.e. we have a γ ∈ L and a fγ ∈ Hγ with ψγ(fγ) = f . Now we have a

sequence (eγn)n∈N ∈ lin(Sγ) with eγn → fγ since Sγ is ONB for Hγ . With this we have:

‖ψγ(eγn)− f‖ = ‖ψγ(eγn − fγ)‖
= ‖eγn − fγ‖γ < ε

and hence ψγ(eγn)→ f in
⋃
γ∈L im(ψγ). Further we have that (ψγ(eγn))n∈N ⊂ ψγ(linSγ) =

linψγ(Sγ) ⊂ lin(S). And hence the claim follows, since denseness is transitive.

For later use we show the following theorem:

Corollar 4 (cp. Ex. 11.5.26 of [18])
Let (Hγ , ψγ′γ)γ,γ′∈L be an inductive family of Hilbert spaces and (lim→Hγ , ψγ) be its in-
ductive limit. Let K be a Hilbert space together with linear maps ψ̃γ : Hγ → K s.th.

1. ∀γ ∈ L : ψ̃γ is an isometry.

2. ∀γ′ ≥ γ ∈ L : ψ̃γ′ ◦ ψγ′γ = ψ̃γ.

3.
⋃
γ∈L im(ψ̃γ) is dense in K.

Then the universal map u : lim→Hγ → K is a bijective isometry. Hence lim→Hγ and K
are unitary equivalent.

Proof. This follows directly with theorem 11 and by the fact that bijective isometries
between Hilbert spaces are automatically unitary.

We now want to introduce the notion of an inductive family of operators:

Definition 16 (Inductive system and inductive limit of bounded operators, cp. Ex.
11.5.27 of [18])
Let (Bγ , ψγ′γ)γ,γ′∈L be an inductive system of Banach spaces. Then:

1. An inductive family of bounded operators is a family (Tγ)γ∈L with

a) ∀γ ∈ L : Tγ ∈ B(Bγ)

b) supγ∈L ‖Tγ‖ <∞
c) There is a γ0 ∈ L such that ∀γ′ ≥ γ ≥ γ0 it holds, that T ′γ ◦ ψγ′γ = ψγ′γ ◦ Tγ.

2. The inductive limit of above inductive family of operators is an operator lim→ Tγ ∈
B(lim→Bγ) such that for all γ ≥ γ0 it holds, that T ◦ ψγ = ψγ ◦ Tγ.
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One then can show:

Theorem 15 (cp. Ex. 11.5.27 of [18])
Let (Tγ)γ≥γ0∈L be an inductive family of bounded operators on an inductive family of
Banach spaces (Bγ , ψγ′γ)γ,γ′∈L. Then its inductive limit exists and is unique.

Proof. We define the conjectured inductive limit on
⋃
γ∈L im(ψγ) as follows: Let f ∈⋃

γ∈L im(ψγ). Then set:

(lim
→
Tγ)f =

{
ψγTγψ

−1
γ (f) ifγ ≥ γ0

0 else

That this is independent of the choice of γ follows from the fact, that L is directed by the
usual discussion. We now have to show, that this defines a bounded operator, that it is
an inductive limit and that the inductive limit is unique.

We first show, that lim→ Tγ ∈ B(lim→Bγ ). Therefore recall, that the ψγ are isometries.
Hence we have for f ∈ im(ψγ) with γ ≥ γ0:

‖ lim
→
Tγf‖lim→Bγ = ‖ψγTγψ−1

γ f‖γ = ‖Tγψ−1
γ ‖γ

and ‖ lim→ Tγf‖lim→Bγ = 0 otherwise. Hence we have:

‖Tγ‖ ≤ sup
γ∈L

sup
fγ∈Bγ

‖Tγfγ‖γ
‖fγ‖γ

= sup
γ∈L
‖Tγ‖ <∞

Hence its unique extension exists and is bounded by BLT.
Further lim→ Tγ is really an inductive limit, since:

(lim
→
Tγ) ◦ ψγ = ψγTγψ

−1
γ ◦ ψγ = ψγTγ

Now assume, that there is another bounded operator R on lim→Bγ with Rψγ = ψγTγ
and R 6= lim→ Tγ . By Rψγ = ψγTγ we have, that R = lim→ Tγ on

⋃
γ∈L imψγ since:

∀f ∈ im(ψγ) : Rf = Rφγaγ = φγTγfγ = Tφγfγ = Ta

Where we have set fγ = ψ−1
γ (f). But by BLT we would then have R = lim→ Tγ .

Hence the assertion follows.

3.3. Inductive Limits of C∗-Algebras I: C∗-Algebras and their
Spectra

We need first versions of lemma 5 and lemma 6 for C∗-algebras.

Lemma 9 (BLT for C∗-algebras)
Let U1 and U2 be C∗-algebras and let V1 ⊂ U1 be a dense ∗-subalgebra. Let further φ :
V1 → U2 be a ∗-morphism.
Then:

1. There is a unique ∗-morphism φ̃ : U1 → U2 which extends φ.
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2. Further φ̃ is an isometry if φ is an isometry.

3. Let U1 and U2 be unital. Let further the unit of U1 be contained in V1. Let φ be
unital. Then φ̃ is unital.

Proof. Let a, b ∈ U1 and (an)n∈N, (bn)n∈N ⊂ V1 with an → a and bn → b.
Then observe first, that anbn → ab holds, since:

0 ≤ ‖anbn − ab‖
= ‖anbn − anb+ anb− ab‖
≤ ‖anbn − anb‖+ ‖anb− ab‖
≤ ‖an‖‖bn − b‖+ ‖b‖‖an − a‖

≤
(

sup
n∈N
‖an‖

)
‖bn − b‖+ ‖b‖‖an − a‖ → 0

And further a∗n → a∗ holds, since:

0 ≤ ‖a∗n − a∗‖ = ‖(an − a)∗‖ = ‖an − a‖ → 0

Hence we have

lim
n→∞

anbn =
(

lim
n→∞

an

)(
lim
n→∞

bn

)
lim
n→∞

a∗n =
(

lim
n→∞

an

)∗
We now have with lemma 5, that the unique extension of φ s defined via φ̃ : U1 →

U2, c 7→ φ̃c = limn→∞ φcn for a sequence (cn)n∈N ⊂ V1 with limn→∞ cn = c. Further
it is independent of the choice of the sequence. We now show, that φ̃ is a ∗-morphism.
Therefore observe:

φ̃(ab) = lim
n→∞

φ̃(anbn) = lim
n→∞

(φan)(φbn) =
(

lim
n→∞

φan

)(
lim
n→∞

φbn

)
= (φ̃a)(φ̃b)

and

(φ̃a∗) = lim
n→∞

(φa∗n) = lim
n→∞

(φan)∗ = φ̃(a)∗

2.) We know from lemma 5, that this holds.

3.)We have, that φ̃
∣∣∣
V1

= φ holds. Further the identity of U1 is contained in V1 and φ is

unital. Hence the assertion follows directly.

We now want to show a version of lemma 6 for C∗-algebras:

Lemma 10
Let U1, U2 be C∗-algebras and let V1 ⊂ U1, V2 ⊂ U2 be dense ∗-subalgebras. Let further
φ : V1 → V2 be a bounded, isometric. ∗-isomorphism. Then the unique bounded extension
φ̃ : U1 → U2 from the lemma 10 is an isometric ∗-isomorphism. Further, if the unit of U1

is contained in V1 and φ is unital, then φ̃ is unital.

Proof. It follows by lemma 6, that φ̃ is a bijective isometry. Further it follows by lemma 9,
that it is a ∗-morphism. Further it follows by lemma 9, that it is unital in the unital case.
Hence the claim follows.
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We now want to show, that the inductive limit exists in the category of C∗-Algebras:

Theorem 16 (cp. App. L of [35])
Let Cst be the category, whose objects are C∗-algebras and whose morphisms are isometric
∗-morphisms. Then the inductive limit exists in this category and is unique. Let further
Cst1 be the category, whose objects are unital C∗-algebras and whose morphisms are unital
isometric ∗-morphisms. Then the inductive limit exists also in this category and is unique.
Finally the inductive limit of an inductive family of abelian C∗-algebras is abelian.

Proof. Let (Uγ , φγ′γ)γ′,γ∈L be an inductive family of C∗-algebras. Now let (lim→ Uγ , (φγ)γ∈L)
be the inductive limit of this inductive family in the category of Banach spaces.We now
want to show, that this defines also an inductive limit in the categories Cst and Cst1.

Assertion 1: X from the proof of theorem 10 is a C∗-algebra w.r.t. the pointwise ∗-
algebra structure and the sup norm. In the case of Cst1 it is further unital.

Proof of Assertion 1: Since X is a Banach space, it remains to show, that it defines a
normed ∗-algebra satisfying the C∗-property. We therefore define a ∗-algebra structure on
X via

∀(aγ)γ∈L, ∀(bγ)γ∈L ∈ lim
→

Uγ : (aγ)γ∈L(bγ)γ∈L = (aγbγ)γ∈L

∀(aγ)γ∈L ∈ lim
→

Uγ : (aγ)∗γ∈L = (a∗γ)γ∈L

which is well defined, since

sup
γ∈L
‖aγbγ‖γ ≤

(
sup
γ∈L
‖aγ‖γ

)(
sup
γ∈L
‖bγ‖γ

)
<∞

sup
γ∈L
‖x∗γ‖γ = sup

γ∈L
‖xγ‖γ <∞

It can be easily checked, that this satisfies the property of a ∗-algebra. Further the C∗-
property also follows directly, since:

sup
γ∈L
‖a∗γaγ‖γ = sup

γ∈L
‖aγ‖2 =

(
sup
γ∈L
‖aγ‖

)2

In the unital case it can be easily checked, that (1γ)γ∈L is a unit for X, where 1γ are the
units of the Uγ . Further

sup
γ∈L
‖1γ‖γ = 1 <∞

and hence 1γ ∈ X.

Assertion 2: X0 from the proof of theorem 10 is a norm-closed 2-sided ideal in X.

Proof of Assertion 2: That it defines a subalgebra can be shown easily, since it can be
easily shown, that

∀α, β ∈ C : lim ‖aγ‖γ = lim ‖bγ‖γ = 0⇒ lim ‖αaγ + βbγ‖γ = 0
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, since ‖αaγ + βbγ‖γ ≤ |α|‖aγ‖γ + |β|‖bγ‖γ and further

lim ‖aγ‖γ = lim ‖bγ‖γ = 0⇒ lim ‖aγbγ‖γ = 0

, since ‖aγbγ‖γ ≤ ‖aγ‖γ‖bγ‖γ and finally

lim ‖aγ‖γ = 0⇒ lim ‖a∗γ‖γ = 0

, since ‖a∗γ‖ = ‖aγ‖. Further it follows directly, that it defines a two-sided ideal. Therefore
let (aγ) ∈ X and (bγ) ∈ X0. Then

0 ≤ ‖aγbγ‖γ ≤ ‖aγ‖γ‖bγ‖γ ≤ ‖aγ‖γ‖bγ‖γ → 0

since ‖(aγ)γ∈L‖ <∞. Hence it is a right ideal. That it is a left ideal follows analogously.
That it is norm-closed follows was already shown in theorem 10.

Assertion 3: X/X0 is a C∗-algebra and φγ := ψγUγ → X/X0 as defined in assertion 4 of
theorem 10 is a morphism in the category Cst, i.e. an isometric ∗-morphism. Further for
∀γ′ ≥ γ ∈ L it holds, that φγ′ ◦φγ′γ = φγ . Finally we have in the case of Cst1, that X/X0

and φγ are unital.

Proof of Assertion 3: That φγ is an isometry in the category Ban satisfying φγ′ ◦φγ′γ =
φγ was already shown in theorem 10. We now show, that it is a ∗-morphism. Therefore
we first show, that jγ is a ∗-morphism. This follows directly, since φγ′γ and the trivial
map aγ 7→ 0 are ∗-morphisms. Hence φγ = π ◦ jγ is a ∗-morphism as a composition of
∗-morphisms. Now consider the unital case: That X/X0 is a unital C∗-algebra follows
directly with lemma 2. We now show, that φγ is unital. Therefore let 1γ ∈ Uγ be the unit
element. We then have jγ(1γ) = (aβ)β∈L with :

aβ =

{
φβγ1γ β ≥ γ

0 else

Since φβγ is unital for all β ≥ γ ∈ L, we have, that φβγ1γ = 1β. Let now 1 = (1γ)γ∈L be
the unit in X. Then:

(1− (aβ)β∈L)β =

{
0 β ≥ γ
1 else

Hence the net
(
‖ (1− (aβ)β∈L)β ‖

)
β∈L

converges to 0 and hence π ◦ jγ(1γ) = 1. Hence

φγ is unital.

Assertion 4: im(φγ) ⊂ X/X0 is a closed sub-algebra and ∀γ′ ≥ γ : im(φγ) ⊂ im(φγ′). In
the case of Cst1 im(φγ) is unital.

Proof of assertion 4: Since Uγ is closed C∗-algebra and φγ is an isometric ∗-morphism,
we have, that im(φγ) is closed subalgebra. That im(φγ) is unital in the unital case, follows
since φγ and Uγ are unital. That im(φγ) ⊂ im(φγ′) for γ′ ≥ γ was already shown in the
proof of theorem 10.
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Assertion 5 (basically a lemma): Let Z be a C∗-algebra and let Zγ ⊂ Z be a family of
C∗-subalgebras with ∀γ′ ≥ γ : Zγ ⊆ Zγ′ . Then⋃

γ∈L
Zγ ⊂ Z

defines an C∗-algebra. Further, if Z is unital and the Zγ are unital, then
⋃
γ∈L Zγ is also

unital.

Proof of Assertion 5: We already know, that
⋃
γ∈L Zγ is a closed subspace and hence a

Banach space. We now have to show, that it is closed under the ∗-algebraic structure:
Let b, a ∈

⋃
γ∈L Zγ . Then there are sequences (am)m∈N, (bm)m∈N ⊂

⋃
γ∈L Zγ with am → a

and bm → b for m→∞. Then:

0 ≤ ‖ambm − ab‖ = ‖ambm − amb+ amb− ab‖
≤ ‖ambm − amb‖+ ‖amb− ab‖
≤ ‖am‖‖bm − b‖+ ‖am − a‖‖b‖

≤
(

sup
m∈N
‖am‖

)
‖bm − b‖+ ‖am − a‖‖b‖

→ 0

and hence ambm → ab for m → ∞. Now we have to show, that ambm ∈
⋃
γ∈L Zγ for all

m ∈ N. Since am, bm ∈
⋃
γ∈L Zγ it follows that there are γ, γ′ with am ∈ Zγ and bm ∈ Zγ′ .

Since L is a directed set, there is a γ̂ ∈ L which is an upper bound for γ and γ′ and hence
am, bm ∈ Zγ̂ . Since the latter is a C∗-algebra, we have, that ambm ∈ Zγ̂ ⊂

⋃
γ∈L Zγ . That

it is closed under involution follows directly since ‖a∗m − a∗‖ = ‖(am − a)∗‖ = ‖am − a‖.
The C∗-property follows, since

⋃
γ∈L Zγ ⊂ Z and the latter is a C∗-algebra. In the unital

case it holds, that Z is unital and by uniqueness of the unit element hence we have, that
the units of Z and Zγ coincide. Hence 1Z ∈ Zγ ⊂

⋃
γ∈L Zγ ⊂ Z.

Assertion 6: The unique morphism u from the proof of theorem 10 is an isometric ∗-
morphism. In the case of Cst1 it is also unital.

Proof of Assertion 6: We have already shown in theorem 10, that u is unique, linear and
isometric. We now show, that it defines a ∗-morphism. Therefore let a, b ∈

⋃
γ∈L im(φγ).

Hence we have a γ̂ ∈ L with a, b ∈ im(φγ̂). Then we have, that there are aγ̂ , bγ̂ ∈ Uγ̂
with φγ̂(aγ̂) = a, φγ̂(bγ̂) = b and further φγ̂(aγ̂bγ̂) = ab since φγ̂ is ∗-morphism. Since
it is further isometric and hence injective, we have that φ−1

γ̂ (ab) = aγ̂bγ̂ . With the same

argumentation we have φ−1
γ̂ (a∗) = a∗γ̂ . Hence φ−1

γ is a ∗-morphism on a dense subset.
Hence u is defined as a composition of isometric ∗-morphisms on a dense ∗-subalgebra,
and hence the claim follows with lemma 9. Finally it is unital in the unital case, since φγ
is unital and hence φ−1

γ (1) = 1γ .

With this we have, that lim→ Uγ :=
⋃
γ∈L im(φγ) together with the maps φγ defines the

inductive limit of the inductive system of C∗-algebras (Uγ , φγ′γ)γ,γ′∈L. Uniqueness was
discussed in theorem 10.

Now consider finally the abelian case. Therefore let a, b ∈ lim→ Uγ =
⋃
γ∈L im(φγ).

Hence ab− ba ∈ lim→ Uγ . Further there are sequences (am)m∈N, (bm)m∈N ⊂
⋃
γ∈L im(φγ)

such that am → a and bm → b for m → ∞. Now we have, that ambm → ab and
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bmam → ba. Hence we have ambm − bmam = [am, bm] → [a, b]. Now observe, that for
each am, bm there is a γ̂ ∈ L with am, bm ∈ im(φγ) and ambm − bmam ∈ im(φγ̂). Further
we have, that im(φγ̂) is closed abelian subalgebra by Assertion 5. Hence we have that
ambm − bmam = [am, bm] = 0→ 0 = [a, b]. Hence the inductive limit is abelian.

We now show the analoga of theorem 11 and corollar 3:

Theorem 17 (cp. Ex. 11.5.26 of [18])
Let (Uγ , φγ′γ)γ,γ′∈L be an inductive family of C∗-algebras and (lim→ Uγ , (φγ)γ∈L) be its
inductive limit. Let P be a C∗-algebra together with maps φ̃γ : Uγ → P s.th.

1. ∀γ ∈ L : φ̃γ is an isometric ∗-morphism

2. ∀γ′ ≥ γ ∈ L : φ̃γ′ ◦ φγ′γ = φ̃γ.

3.
⋃
γ∈L im(φ̃γ) is dense in P.

Then the universal map u : lim→ Uγ → P is an isometric ∗-isomorphism. Hence lim→ U
and P are isomorphic. If further Uγ , φγ′γ ,P, φ̃γ are unital, then u is also unital.

Proof. The proof of theorem 11 gives, that u is a bijective isometry. We hence have to
show, that it is a ∗-morphism. Since the universal map was shown to be an ∗-morphism,
the claim follows with lemma 6 directly. In the unital case we have also shown, that u is
unital. Further the map extends with lemma 6 to a unital map. Hence the claim follows
also in the unital case.

We now want to investigate, as in the case of Banach spaces, an easy example, which is
illustrative by its own right, but also is needed in further applications:

Lemma 11 (cp. [35])
Let U be a C∗-algebra, let L be a label set and let (Uγ)γinL be a family of C∗-algebras with:

1. ∀γ ∈ L : Uγ ⊂ U is a subalgebra.

2. ∀γ ≤ γ′ ∈ L : Uγ ⊂ Uγ′

Then:

1. (Uγ , iγγ′)γ′,γ∈L, with iγγ′ : Uγ ↪→ Uγ′ being the canonical injection, is an inductive
system in the category of C∗-algebras.

2. The inductive limit of this inductive family is given by:

lim
→

Uγ =
⋃
γ∈L

Uγ ⊂ U

together with the obvious maps iγ : Uγ → lim→ Uγ.

3. 1.) and 2.) hold also in Cst1.

Proof. 1.) Since the canonical injection is induced by the embedding of a subalgebra, it
is a ∗-morphism.
2.) We first show, that

⋃
γ∈L Uγ ⊂ Uγ is a pre C∗-algebra. Therefore observe first, that⋃

γ∈L Uγ is closed under the algebraic operations: Let γ, γ′ ∈ L and aγ ∈ Uγ , bγ ∈ Uγ′ .
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Then there is a γ̂ ≥ γ, γ′ such that aγ̂ = iγ̂γaγ = aγ ∈ Uγ̂ and the analogous statement is
true for bγ′ . Then we have:

aγbγ′ = aγ̂bγ̂ ∈ Uγ̂

αaγ + βbγ′ = αaγ̂ + βbγ̂ ∈ Uγ̂

Hence
⋃
γ∈L Uγ is algebraically closed. Since the norm is inherited from U it is automati-

cally a pre C∗-algebra. Hence
⋃
γ∈L Uγ is a C∗-algebra. Further the canonical injection is

automatically an ∗-morphism, since it is induced by the inclusion of a subalgebra. Since
automatically iγ′ ◦iγ′γ = iγ holds and

⋃
γ∈L Uγ is by definition dense in

⋃
γ∈L Uγ , the claim

follows with theorem 17.
3.)

⋃
γ∈L Uγ is unital, since it is an union of unital subalgebras and since the unit element

is unique on U. By the uniqueness of the unit element, it also follows, that the iγ and iγ′γ
are unital ∗-morphisms.

Now we want to investigate, how the spectrum of the inductive limit of unital, commuta-
tive C∗-algebras is related to the projective limit of the corresponding spectra. Therefore
we state first a well-known theorem from general topology:

Lemma 12 (Urysohn’s Lemma, cp. [13])
Let X be a compact Hausdorff space and X1, X2 ⊂ X be disjoint and closed. Then there
is a continuous map f : X → R, such that

∀x ∈ X1 :f(x) = 0

∀x ∈ X2 :f(x) = 1

∀x ∈ X \ (X1 ∪X2) :f(x) ∈ [0, 1]

We now show, that an injective ∗-morphism between unital, commutative C∗-algebras
induces a dual continuous surjection between the spectra:

Lemma 13
Let P, U be unital, commutative C∗-algebras and i : P ↪→ U be an injective, unital ∗-
morphism. Then: The map i∗ : ∆(U)→ ∆(P) defined as

i∗ : ∆(U)→ ∆(P), χU 7→ χU ◦ i

is surjective.

Proof. First observe, that im(i∗) ⊂ ∆(P) follows, since χU ◦ i(1P) 6= 0 for ∀χU ∈ ∆(U)
follows by unitality of U,P and i. We further show, that i∗ is continuous in Gel’fand
topology. Therefore let (χn)n∈I ⊂ ∆(U) be a net with limχn = χ ∈ ∆(U). This means:

∀a ∈ U : ∀ε > 0∃N ∈ I : ∀n ≥ N : |χn(a)− χ(a)| < ε (3.3)

Now we have, that i(P) ⊂ U and further by injnectivity of I for all a ∈ i(P) there is
exactly one b ∈ P with i(b) = a. Hence eq. (3.3) implies:

∀b ∈ P : ∀ε > 0 : ∃N ∈ I : ∀n ≥ N : |χn(i(b))− χ(i(b))| < ε

Hence we have lim i∗χn = χ and hence i∗ is continuous.
We now know, that ∆(U) and ∆(P) are compact as the spectra of unital C∗-algebras.

Hence i∗(∆(U)) is closed, since i∗ is continuous. Hence we can find a function f , which
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vanishes on i∗(∆(U)) but does not vanish on all ∆(P) by lemma 12. We have, that the
inverse Gel’fand transform of this function is a nonzero element ofP, since f does not
vanish on all ∆(P).

But now we have that f(i∗χ) = 0 holds for all χ ∈ ∆(U), by lemma 12. This gives, that
for all χ ∈ ∆(U) i∗χ(f̌) must hold. Now we have:

i∗χ(f̌) = χ
(
i(f̌)

)
Since the spectrum of U is the set of all non-zero ∗-morphisms, we know:

∀χ ∈ ∆(U) : χ(i(f̌)) = 0⇒ i(f̌) = 0

Since i is injective, we know, that i(f̌) = 0⇒ f̌ = 0, which is a contradiction.

We now use this to show the central theorem of this section:

Theorem 18 (cp. [30])
Let (Uγ , φγ′γ) be an inductive family in Cst1. Then:

(
∆(Uγ), pγγ′

)
γ,γ′∈L with ∀γ′ ≥ γ :

pγγ′ : ∆(U′γ) → ∆(Uγ), χγ′ 7→ χγ′ ◦ φγ′γ is a projective family in the category of compact
Hausdorff spaces and further

∆
(

lim
→

Uγ

)
= lim
←

∆(Uγ)

holds.

Proof. We first show, that
(
∆(Uγ), pγγ′

)
γ,γ′∈L defines a projective family. Therefore we

have to show, that pγγ′ as defined above is surjective, continuous in Gel’fand topology and
fullfills the composition properties demanded in the definition of a projective family.

That pγγ′ is surjective and continuous follows directly with the last lemma, since pγγ′ =
φ∗γ′γ and φγ′γ is injective and unital.

Further observe: pγγ(χ) = χ◦φγγ = χ and pγγ′ ◦pγ′γ′′(χ) = χ◦φγ′′γ′ ◦φγ′γ = χ◦φγ′′γ =
pγγ′′(χ), and hence it satisfies the composition properties of a projective family.

We now want to show, that ∆(lim→ Uγ) = lim←∆(Uγ). We therefore construct first the
conjectured homeomorphism Ψ.

Let χ̄ ∈ lim←∆(Uγ). Then define ∗-morphism χ :
⋃
γ im(φγ)→ C via χ = (pγχ̄)φ−1

γ (·).
Now we have by lemma 9, that there is an unique extension χ̃ of χ defined on all lim→ Uγ .
We then map Ψ : χ̄ 7→ χ̃. That its definition is independent of the choice of γ follows from
the usual discussion using the property, that the label set is directed. We now show, that
the Ψ is bijective and that its inverse Ψ−1 is continuous. Since lim←∆(Uγ) and ∆(lim→ Uγ)
are both compact Hausdorff spaces, it then follows, that the mapping is a homeomorphism.

We first show injectivity. Let χ̄1 6= χ̄2. Recall, that the projective limit is given by

lim
←

∆(Uγ) =

(xγ)γ∈L ∈
∏
γ∈L

∆(Uγ)

∣∣∣∣∣∣∀γ′ ≥ γ : pγγ′χγ′ = χγ


pγ : lim

←
∆(Uγ)→ ∆(Uγ), (xγ)γ∈L 7→ xγ
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Hence χ̄1 6= χ̄2 means, that there is a γ ∈ L with pγχ̄1 6= pγχ̄2. Hence we have for
a ∈ im(φγ) ⊂

⋃
γ∈L im(φγ) that (pγχ̄1)φ−1

γ (a) 6= (pγχ̄2)φ−1
γ (a), and hence Ψ(χ̄1) 6= Ψ(χ̄2).

Hence the map is injective.

Now we show surjectivity. Let χ̃ ∈ ∆(lim→ Uγ). We then obtain a family (χγ)γ∈L via

χγ = χ̃ ◦ φγ

We now have for this family, that χγ ∈ ∆(Uγ), since χ̃ is a non-zero ∗-homomorphism
and φγ is an unital ∗-morphism. Further pγγ′χγ′ = χγ for all γ′ ≥ γ follows , since
pγγ′ = φ∗γ′γ and since (Uγ , φγ′γ)γ,γ′∈L is an inductive system. Hence we have, that
χ̄ = (χγ)γ∈L ∈ lim←∆(Uγ) and Ψ(χ̄) = χ̃. Hence the map is surjective.

We now show continuity. Therefore observe, that we have constructed an inverse in the
proof of surjectivity. We have:

Ψ : lim
←

∆(Uγ)→ ∆(lim
→

Uγ), χ̄ 7→ ˜(pγχ̄)φ−1
γ (·)

Ψ−1 : ∆(lim
→

Uγ)→ lim
←

∆(Uγ), χ̃ 7→ (χ̃ ◦ φγ)γ∈L

where the big tilde denotes the unique extension given by lemma 9. We now show, that
for all γ ∈ L it holds, that pγ ◦Ψ−1 is continuous. Then the claim follows with lemma 7.

Therefore let (χ̃n)n∈I be a net in ∆(lim→ Uγ) with lim χ̃n = χ̃ ∈ ∆(lim→ Uγ), i.e.:

∀a ∈ lim
→

Uγ : ∀ε > 0∃N ∈ I : ∀n ≥ N : |χ̃n(a)− χ̃(a)| < ε (3.4)

Now observe fist, that pγ ◦ Ψ−1(χ̃n) = χ̃n ◦ φγ . Since ∀aγ ∈ Uγ : φγ(aγ) ∈ lim→ Uγ , we
have that eq. (3.4) implies directly

∀aγ ∈ Uγ : ∀ε > 0∃N ∈ I : ∀n ≥ N :|(pγ ◦Ψ−1χ̃n)(aγ)− (pγ ◦Ψ−1χ̃)(aγ)

=|χ̃n ◦ φγ(aγ)− χ̃ ◦ φγ(aγ)| < ε

and hence pγ ◦ Ψ−1 is continuous. Hence Ψ−1 is bijective and continuous and hence a
homeomorphism.

3.4. Inductive Limits of C∗-Algebras II: The Case of the
C∗-Algebra of Continuous Functions

In this section we want to investigate the behaviour of the algebra of continuous functions
on compact Hausdorff spaces under inductive limits. On the one hand this example can
be understood as an important illustration of the concepts of the last section. On the
other hand, it is something like the defining example, since any abelian, unital C∗-algebra
is isomorphic to the algebra of continuous functions over some compact Hausdorff space.

But first we state the famous theorem of Stone and Weierstrass, since this is used for
the proofs in this section.

Theorem 19 (Stone-Weierstrass, cp. Thm. 5.7 of [28])
Let X be a compact Hausdorff space and C(X) be the C∗-algebra of complex valued func-
tions on X together with the sup norm defined in example 2. Let further C ⊂ C(X) be a
subalgebra with:
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1. C is a ∗-subalgebra of C(X).

2. ∀f ∈ C : f∗ ∈ U.

3. C seperates points on X, i.e. ∀x, y ∈ C : x 6= y : ∃f ∈ U : f(x) 6= f(y).

4. ∀x ∈ X∃f ∈ C : f(x) 6= 0.

Then: C is dense in C(X).

With this we show:

Theorem 20
Let (Xγ , pγγ′)γ,γ′∈L be a projective family of compact Hausdorff spaces with projective limit
(lim←Xγ , pγ). Then:

1. (C(Xγ), φγ′γ = p∗γγ′)γ≤γ′∈L is an inductive family of abelian, unital C∗-algebras,
where:

p∗γγ′ : C(Xγ)→ C(Xγ′), fγ 7→ fγ ◦ pγγ′

2. The inductive limit of this inductive family is given by

lim
→
C(Xγ) = C(lim

←
Xγ)

together with the maps

φγ := p∗γ : C(Xγ) 7→ C(lim
←
Xγ), fγ 7→ fγ ◦ pγ

Proof. 1.) That each C(Xγ) is an abelian, unital C∗-algebra for compact Hausdorff spaces
Xγ was already stated in example 2. That φγ′γ is well-defined is also clear, since fγ ◦ pγγ′
is continuous as a composition of continuous functions.

That it is a ∗-morphism follows also easy:

∀fγ , gγ ∈ C(Xγ) : (fγgγ) ◦ pγγ′ = (fγ ◦ pγγ′)(gγ ◦ pγγ′)
∀fγ , gγ ∈ C(Xγ),∀α, β ∈ C : (αfγ + βgγ) ◦ pγγ′ = α(fγ ◦ pγγ′) + β(gγ ◦ pγγ′)
∀fγ ∈ C(Xγ) : (f∗γ ◦ pγγ′) = (fγ ◦ pγγ′)∗

That φγ′γ is isometric follows directly, since pγγ′ is surjective:

‖fγ ◦ pγγ′‖γ′ = sup
xγ′∈Xγ′

|(fγ ◦ pγγ′)(xγ′)|

= sup
xγ∈pγγ′ (Xγ′ )=Xγ

|fγ(xγ)|

= ‖fγ‖γ

That φγ′γ is unital follows also directly: Let 1γ : Xγ 7→ C, xγ 7→ 1 be the unique unit
element of C(Xγ). We then have 1γ ◦ pγγ′ : Xγ′ 7→ C, xγ′ 7→ 1 and hence φγ′γ1γ = 1γ′ .
Further the composition property demanded in the definition of an inductive family follows
directly from the composition property of pγγ′ :

φγ′′γ′ ◦ φγ′γ = f ◦ pγγ′ ◦ pγ′γ′′ = f ◦ pγγ′′ = φγ′′γf
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Hence the assertion is shown.
(2) We want to use theorem 17. Therefore we first have to show, that for all γ ∈ L it
holds, that φγ is an isometric, unital ∗-morphism. Further we have to show, that for all
γ′ ≥ γ ∈ L φγ′ ◦ φγ′γ = φγ holds and finally, that

⋃
γ∈L im(φγ) is dense in C(lim←Xγ).

That φγ is an isometric unital ∗-morphism and satisfies the composition properties follows
by the same argumentation as in 1.). It remains to show, that

⋃
γ∈L im(φγ) is dense in

C(lim←Xγ). Therefore we use the theorem 19. I.e. we want to show, that the algebra

Cyl′(lim
←
Xγ) :=

⋃
γ∈L

p∗γC(Xγ) ⊆ C(lim
←
Xγ)

satisfies the prerequisits of theorem 19 in C(lim←Xγ).

Therefore we show first, that it is point-separating on lim←Xγ . Therefore let (xγ)γ∈L 6=
(yγ)γ∈L ∈ lim←Xγ . Now this means, that there is a γ ∈ L with xγ 6= yγ . We now have,
that C(Xγ) is point-separating on Xγ , i.e. ∃fγ ∈ C(Xγ) : fγ(xγ) 6= fγ(yγ). Now we have
φγfγ = fγ ◦ pγ ∈ Cyl′(lim←Xγ) and further:

φγfγ((xγ)γ∈L) = fγ ◦ pγ((xγ)γ∈L) = fγ(xγ) 6=
φγfγ((yγ)γ∈L) = fγ ◦ pγ((yγ)γ∈L) = fγ(yγ)

Hence Cyl′(lim←Xγ) separates points on C(lim←Xγ ).

Now we show, that ∀f ∈ Cyl′(lim←Xγ) : f∗ ∈ Cyl′(lim←Xγ). Therefore let f ∈
Cyl′(lim←Xγ). Hence there is a γ ∈ L and a fγ ∈ C(Xγ) such that f = fγ ◦ pγ . Now we
have f∗γ ∈ C(Xγ) and f∗ = f∗γ ◦ pγ . Hence f∗ ∈ Cyl′(lim←Xγ).

Finally we want to show, that ∀x ∈ lim←Xγ : ∃f ∈ Cyl′(lim←Xγ) : f(x) 6= 0. Therefore
let (xγ)γ∈L ∈ lim←Xγ . Now choose any γ ∈ L. Define the function 1γ : Xγ → {1}, x 7→ 1
which exists on compact Hausdorff spaces. Then 1(xγ) 6= 0 and hence φγ1γ((xγ)γ∈L) 6= 0.

Finally we want to show, that Cyl′(lim←Xγ) is a subalgebra. Therefore we have to
show, that it is closed under the ∗-algebra structure. But this follows directly since for
each γ ∈ L it holds, that C(Xγ) is a C∗-Algebra.

In the literature one often encounters the concept of so called cylindrical functions. We
want to introduce this concept here as well and want to understand its connection to the
concepts presented in this thesis:

Definition 17 (Cylindrical function, cp. [31], [6])
Let (Xγ , pγγ′)γ,γ′∈L be a projective family of compact Hausdorff spaces and let (lim←Xγ , pγ)
be its inductive limit. Then define the set of Cylindrical functions corresponding to this
family as:

Cyl(lim
←
Xγ) :=

⋃
γ∈L

C(Xγ)

/
∼

with
fγ1 ∼ fγ2 ⇔ ∀γ̂ ≥ γ1, γ2 : p∗γ1γ̂fγ1 = p∗γ2γ̂fγ2

for γ1, γ2 ∈ L and fγ1 ∈ C(Xγ1), fγ2 ∈ C(Xγ2). We further define according to the
construction in the last theorem:

Cyl′(lim
←
Xγ) :=

⋃
γ∈L

im(p∗γ) ⊂ C(lim
←
Xγ)
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Please observe that we have shown in the proof of theorem 20:

Corollar 5
Let (Xγ , pγγ′)γ≤γ′∈L be a projective family of compact Hausdorff spaces and let (lim←Xγ , pγ)
be its inductive limit. Then: Cyl′(lim←Xγ) is dense in lim→C(Xγ) = C(lim→Xγ).

We now have the following lemma:

Lemma 14
Let (Xγ , pγγ′)γ,γ′∈L be a projective family of compact Hausdorff spaces and let (lim←Xγ , (pγ)γ∈L)
be its inductive limit. Then:

1. Cyl(lim←Xγ) is an unital ∗-algebra and the canonical projection π :
⋃
γ∈LC(Xγ)→

Cyl(lim←Xγ) is an isometric ∗-morphism.

2. Cyl′(lim←Xγ) is an unital ∗-algebra.

3. Cyl(lim←Xγ) and Cyl′(lim←Xγ) are isometrically isomorphic as ∗-algebras.

4. Cyl(lim←Xγ) and Cyl′(lim←Xγ) are dense in C(Xγ).

Proof. 1.) We first define a ∗-algebra structure on Cyl(lim←Xγ): Let γ1, γ2 ∈ L and
γ̂ ≥ γ1, γ2. Let further α, β ∈ C and fγ1 ∈ C(Xγ1) and gγ2 ∈ C(Xγ2). Let further ‖ · ‖γ
denote the sup norm on C(Xγ). Then define:

‖[fγ1 ]‖ := ‖fγ1‖γ1 (3.5)

[fγ1 ] · [gγ2 ] := [(p∗γ1γ̂fγ1) · (p∗γ2γ̂gγ2)] (3.6)

α[fγ1 ] + β[gγ2 ] := [αp∗γ1γ̂fγ1 + βp∗γ2γ̂gγ2 ] (3.7)

[fγ1 ]∗ := [f∗γ1 ] (3.8)

We now have to show, that all this is well-defined.

We first show that eq. (3.5) is well defined. Therefore let fγ1 ∈ C(Xγ1), gγ2 ∈ C(Xγ2)
and fγ1 , gγ2 ∈ [fγ1 ]. Then for γ̂ ≥ γ1, γ2 it holds, that:

p∗γ1γ̂fγ1 = p∗γ2γ̂gγ2

Hence especially:
‖p∗γ1γ̂fγ1‖ = ‖p∗γ2γ̂gγ2‖

And since ∀γ′ ≥ γ : p∗γγ′ : C(Xγ) → C(Xγ′) is an isometry, as it was shown in the proof
of theorem 20, ‖ · ‖ defines a norm on Cyl(lim←Xγ).
We now only show, that eq. (3.6) is well defined. Then well definedness of eq. (3.7) and
eq. (3.8) follow by the same argumentation. We first show, that it is independet of the
choice of a upper bound γ̂. Therefore let α̂ ≥ γ1, γ2 and α̂ 6= γ̂. Now let β̂ ≥ α̂, γ̂. Then:

p∗
γ̂β̂

(
(p∗γ1γ̂fγ1)(p∗γ2γ̂gγ2)

)
= (p∗

γ1β̂
fγ1)(p∗

γ2β̂
gγ2) =

p∗
α̂β̂

(
(p∗γ1α̂fγ1)(p∗γ2α̂gγ2)

)
= (p∗

γ1β̂
fγ1)(p∗

γ2β̂
gγ2)

And hence (p∗
γ1β̂
fγ1)(p∗

γ2β̂
gγ2) ∼ (pγ1γ̂fγ1)(p∗γ2γ̂gγ2). We now show, that the definition is

independent of the representant. Therefore let f̃γ̃1 ∈ [fγ1 ] and g̃γ̃2 ∈ [gγ2 ]. Then for
γ̃ ≥ γ̃1, γ̃2:

[fγ1 ][gγ2 ] = [(p∗γ̃1γ̃ f̃γ̃1)(p∗γ̃2γ̃ g̃γ̃2)]
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Now let β ≥ γ̃, γ̂. Then:

p∗γ̃β

(
pγ̃1γ̃ f̃γ̃1)(p∗γ̃2γ̃ g̃γ̃2)

)
= (p∗γ̃1β f̃γ̃1)(p∗γ̃2β g̃γ̃2)

p∗γ̂β
(
pγ1γ̂fγ1)(p∗γ2γ̂gγ2)

)
= (p∗γ1βfγ1)(p∗γ2βgγ2)

Now f̃γ̃1 ∼ fγ1 and g̃γ̃2 ∼ gγ2 . With this we have p∗γ1βfγ1 = p∗γ̃1β f̃tildeγ1 and hence the mul-
tiplication is independent of the representant. As already stated above, well definedness
of eq. (3.7) and eq. (3.8) follow analogously.

Finally we show, that π|C(Xγ) is isometric ∗-morphism for all γ ∈ L. Since we have

already shown, that for all γ ∈ L ‖[fγ ]‖ = ‖fγ‖γ holds, we have, that π is isometric. That
it is a ∗-morphism follows directly by the definition of the ∗-structure on Cyl(‖im←Xγ),
since e.g. for the multiplication π(fγgγ) = [fγgγ ] = [fγ ][gγ ] holds.

Finally it can be easily shown, that [1C(Xγ)] defines a unit for Cyl(lim←Xγ), since for
all γ′ ∈ L it holds, that 1C(Xγ′ )

∈ [1C(Xγ)], since p∗γγ′ is unital.

2.) We have already discussed in the proof of theorem 20, that Cyl′(lim←Xγ) is a
∗-subalgebra of C(lim←Xγ) and hence a ∗-algebra. That it is unital follows, since p∗γ is
unital, as discussed in the proof of theorem 20.

3.) We define a map:

Ψ : Cyl′(lim
←
Xγ)→ Cyl(lim

←
Xγ), p∗γ(fγ) 7→ π(fγ)

We have to show, that the map is a bijective, isometric ∗-morphism.

We first show, that it is well-defined. Therefore let fγ1 ∈ C(Xγ1) and fγ2 ∈ C(Xγ2)
with p∗γ1fγ1 = p∗γ2fγ2 . Let now γ̂ ≥ γ1, γ2. Then: p∗γ1 = p∗γ̂ ◦ p∗γiγ̂ . This gives futher:

p∗γ̂fγ̂ = p∗γ1fγ1 = p∗γ2fγ2 = p∗γ̂ f̃γ̂

Where we have defined fγ̂ := p∗γ1γ̂fγ1 and f̃γ̂ := p∗γ2γ̂fγ2 . Since p∗γ̂ is an injective isometry,

as shown in the proof of theorem 20, this gives, that fγ̂ = f̃γ̂ . Hence we have, that for
all γ̂ ≥ γ1, γ2 it holds, that p∗γ1γ̂fγ1 = p∗γ2γ̂ which gives π(fγ1) = π(fγ2). Hence Ψ is right-

unique. It is left-total by definition of Cyl′(lim←Xγ). Hence Ψ is well-defined.

Surjectivity follows directly by the fact, that π is surjective as a quotient map. Further
Ψ is an isometric ∗-morphism, since p∗γ and π are isometric ∗-morphism. Hence the claim
follows.

4.) Since it was proven in the last theorem, that Cyl′(lim←Xγ) is dense in C(lim←Xγ),
this follows with (3.).

3.5. Inductive Limits of Hilbert Spaces II: Measure Spaces and
L2 Spaces

We first want to define the category of measure spaces as used in this thesis:
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Definition 18
Let MH be the category whose objects are tuples of the form (X,σ, dµ) (or (X, dµ) for
short), such that

1. X is a compact Hausdorff space,

2. σ is the σ-algebra of Borel sets thereon,

3. dµ is a regular, Borel probability measure on (X,σ)

and whose morphisms are continuous surjections p : (X1, dµ1) → (X2, dµ2) for which
additionally

p∗µ1 := µ1 ◦ p−1 = µ2

holds.

We now show the following theorem:

Theorem 21 (Projective limit exists in the category of measure spaces, cp. [31])
The projective limit exists in MH and is unique. In this case the projective limit measure
space is denoted by (lim←Xγ , d lim← µγ).

Proof. Let
(
(Xγ , σγ , µγ), pγγ′

)
γ,γ′∈L be a projective family inMH. Let further lim←Xγ to-

gether with maps pγ be the unique projective limit of the projective family (Xγ , pγγ′)γ,γ′∈L
in the category of compact Hausdorff spaces. Let σ be the Borel σ-algebra thereon. We
now want to construct a measure µ on (lim←Xγ , σ) satisfying pγ∗µ = µγ . We therefore
define the following functional:

Λ : Cyl(lim
←
X)→ C, [fγ ] 7→

∫
Xγ

fγdµγ

We now show, that this functional is continuous, positive and independent of the choice
of a representative. Continuity follows, since Cyl(lim←X) is a unital C∗-algebra, and
functionals on subsets of unital C∗-algebras are automatically continuous (cp. p. 221 of
[31]). Further also independence of the choice of a representative follows directly by the
usual discussion using, that L is a directed, partially ordered set. Positivity follows, since
each dµγ is a probability measure and the normalization Λ(1Cyl(lim←Xγ)) = 1 follows,
since each dµγ is a probability measure and since the unit on Cyl(lim←Xγ) is given by

[1C(Xγ). By lemma 5 Λ can be extended unambiguously to a functional on Cyl(lim←X)
which gives by lemma 14 a positive, normalized functional on C(lim←(X)). Then claim
then follows by theorem 7.

We finally show the following compatibility theorem:

Theorem 22
Let

(
(Xγ , dµγ), pγγ′

)
γ′≥γ∈L be a projective family of Measure spaces. Then:

1.
(
L2(Xγ , dµγ), ψγ′γ := p∗γγ′

)
γ′≥γ∈L

is an inductive family in the category of Hilbert

spaces.

2. lim→ L
2(Xγ , dµγ) = L2(lim←Xγ , d lim← µγ).
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Proof. (1) Please observe first, that ψγ′γ is defined on a dense subset C(Xγ) and further
it maps on a dense subset C(Xγ′). We now want to show, that ψγ′γ defines an isometry
on C(Xγ) together with the L2 norm. Therefore let f ∈ C(Xγ). Then it follows by the
change of variables formula:∫

Xγ′

ψγ′γfdµγ′ =

∫
Xγ

fd
(
pγγ′∗µγ′

)
=

∫
Xγ

fdµγ

Now it follows by lemma 5 and by denseness of C(Xγ) ⊂ L2(Xγ , dµγ), that ψγ′γ defines
an isometry ψγ′γ : L2(Xγ , dµγ) → L2(Xγ′ , dµγ′). We now want to show, that ψγ′γ sat-
isfies the composition properties demanded in the definition of an inductive family. By
uniqueness of the extension given by lemma 5, it suffices to show them on a dense set.
But since ψγ′γ := p∗γγ′ , the composition properties follow directly, since pγγ′ satisfies the
composition properties demanded in the definition of an projective family.
(2) We use the universal property of the inductive limit together with theorem 11.

Define the following maps:

ψγ : C(Xγ) ⊂ L2(Xγ , dµγ)→ L2(lim
←
Xγ , lim←

dµγ), fγ 7→ fγ ◦ pγ

where pγ : lim←Xγ → Xγ is the surjective continuous mapping corresponding to
lim←Xγ . We now have to show, that ψγ extends uniquely to L2(Xγ , dµγ) and that this
extension satisfies the prerequisits of theorem 11. Then the claim follows with theorem 11.

Assertion 1: ψγ is a isometry and extends uniquely to L2(Xγ , dµγ).

Proof of Assertion 1: We show, that ψγ is an isometry on C(Xγ) on together with the
L2 norm. Then the assertion follows with lemma 5.

Therefore:

‖ψγfγ‖ =

∫
lim←Xγ

fγ ◦ pγd lim
←
µγ

=

∫
Xγ

fγd(pγ∗ ← µγ)

=

∫
Xγ

fγdµγ

= ‖fγ‖γ

Hence we have, that ψγ is an isometry and hence extends uniquely to an isometry on
L2(Xγ , dµγ) by lemma 5.

Assertion 2: The unique bounded extension of ψγ satisfies the prerequisits of theorem 11,
i.e.

1. ∀γ ∈ L : ψγ : L2(Xγ , dµγ)→ L2(lim←Xγ , lim← dµγ) is an isometry.

2. ∀γ′ ≥ γ ∈ L : ψγ′ ◦ ψγ′γ = ψγ .

3.
⋃
γ∈L im(ψγ) is dense in L2(lim←Xγ , lim← dµγ)
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Proof of Assertion 2: Assertion 2.1 was already shown in Assertion 1.
Assertion 2.2 follows also directly, since ψγ′γ = p∗γγ′ , ψγ = p∗γ and with this:

ψγ′ψγ′γ = p∗γ′p
∗
γγ′ = p∗γ = ψγ

We now show Assertion 2.3: We know from lemma 14, that Cyl′(lim←Xγ) :=
⋃
γ∈L p

∗
γ (C(Xγ))

is dense in C(lim←Xγ) with respect to the sup norm. Further we have, that for all γ ∈ L
it holds, that C(Xγ) ⊂ L2(Xγ , dµγ). Hence Cyl′(lim←Xγ) ⊂

⋃
γ∈L im(ψγ) does hold. We

now show the following: Let X be a compact Hausdorff space and C ⊂ C(X) be dense
with respect to ‖ · ‖∞. Then it is dense with respect to ‖ · ‖2. Therefore let f ∈ C(X) and
(fn)n∈N ⊂ C with fn → f with respect to ‖ · ‖∞, i.e.

∀ε′ > 0∃N ∈ N∀n ≥ N : ‖fn − f‖∞ < ε′ (3.9)

Now we have for all f ∈ C(X):

‖f‖2 =

(∫
X
|f |2dµ

) 1
2

≤
(∫

X
dµ‖f‖2∞

) 1
2

= (V ol(X))
1
2 ‖f‖∞

Now let ε > 0. Then we have for N and n ≥ N as in eq. (3.9) for ε′ = ε√
V ol(X)

, that:

‖fn − f‖2 ≤
√
V ol(X)‖fn − f‖∞ ≤ ε

and hence C is dense in C(X) w.r.t. ‖ · ‖2.
With this we have now, that Cyl′(lim←Xγ) is dense in C(lim←Xγ) with respect to
‖ · ‖2. But since Cyl′(lim←Xγ) ⊂

⋃
γ∈L im(ψγ), we also have, that the latter is dense in

C(lim←Xγ). Now Assertion 2.3 follows, since C(lim←) is dense in L2(lim←Xγ , d lim← µγ)
and denseness is transitive.

Now the claim follows with theorem 11.

3.6. Inductive Limits of C∗-Algebras III: States, Representations
and the Gel’fand transform

In this section we want to analyze the behaviour of states, representations and the Gel’fand
transform under inductive limits.

Lemma 15 (BLT for states)
Let U be a C∗-algebra and V ⊂ C be a dense ∗-subalgebra. Let ω : V → C be a state. In
the case where U is unital, we further assume, that 1U ⊂ V .
Then: There exists a unique state ω̃ on C which extends ω.

Proof. By lemma 5 the unique extension of ω is a linear functional. Hence it remains to
show, that ω̃ is positive and that ‖ω̃‖ = 1. Further we have to show, that for the unital
case ω̃(1U) = 1 holds.
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Therefore first observe, that for a sequence (an)n∈N ⊂ V with an → a ∈ U the inequality
ω(a∗nan) ≥ 0 holds for all n ∈ N and hence ω̃(a∗a) = limn→∞ ω(a∗nan) ≥ 0.

Further observe, that ‖ω̃‖ = supa∈V \{0}
|ω(a)|
‖a‖ and that the supremum of a continuous

function over a dense subset equals the supremum over the full set. Finally in the unital
case ω̃(1U) = 1 follows since ω̃|V = ω holds.

We now define the notion of a projective family family of states:

Definition 19
Let (Uγ , φγ′γ)γ,γ′∈L be an inductive family of C∗-algebras with inductive limit (lim→ Uγ , (φγ)γ∈L).
Then:

1. A projective family of states is a family (ωγ)γ∈L such that:

a) For each γ ∈ L it holds, that ωγ is a state on Uγ.

b) ∀γ′ ≥ γ : ωγ = ωγ′ ◦ φγ′γ.

2. Let (ωγ)γ∈L be a projective family of states. Then its projective limit is a state ω on
lim→ Uγ such that ωγ = ω ◦ φγ holds for all γ ∈ L.

We now investigate existence and uniqueness of projective limits for states:

Theorem 23
Let (ωγ)γ∈L be a projective family of states corresponding to an inductive family of C∗-
algebras Uγ. Then its projective limit exists and is unqiue.

Proof. Define first the conjectured projective limit as a linear functional on the dense set⋃
γ∈L im(φγ) via

χ :
⋃
γ∈L

im(φγ)→ C, a 7→ χγ
(
φ−1
γ (a)

)
By the usual discussion this definition is independent of the choice of γ. That χ is a
positive linear functional with ‖χ‖ = 1 follows, since χγ is a state and φγ is an isometric
∗-morphism. That the unique bounded extension exists and defines a state follows with
lemma 15. Further we have, that ψγ is unital in the unital case and hence ω(1lim→ Uγ ) = 1
follows in the unital case.

Now we have to show, that this really defines a projective limit. This is indeed the case,
since:

χ ◦ φγ = χγ ◦ φ−1
γ ◦ φγ = χγ

Further we have to show, that the projective limit is unique. Therefore assume there
is another state χ̄ 6= χ on lim→ Uγ for which χ̄ ◦ φγ = χγ holds. Hence there must
be an a ∈ lim→ Uγ with χ̄(a) 6= χ(a). But now for all b ∈

⋃
γ∈L im(φγ) we have, that

χ(b) = χ ◦ φγ(bγ) = ωγ(bγ) = χ̄ ◦ φγ(bγ) = χ̄(b). Hence χ = χ̄ must hold on
⋃
γ∈L im(φγ).

Since the extension delivered by lemma 15 is unique, this gives a contradiction and hence
the projective limit is unique.

Hence the claim follows.

We now introduce the notion of inductive families in the context of representations:
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Definition 20 (cp. Ex. 11.5.28 of [18])
Let (Hγ , ψγ′γ)γ,γ′∈L be an inductive family of Hilbert spaces and (Uγ , φγ′γ)γ,γ′∈L be an
inductive family of C∗-algebras. Let further (lim→Hγ , ψγ) and (lim→ Uγ , φγ) denote the
corresponding inductive limits. Then:

1. A family (πγ)γ∈L is called an inductive family of representations, iff:

a) For each γ ∈ L we have, that πγ is a representation of Uγ on Hγ.

b) ∀γ′ ≥ γ ∈ L : ∀aγ ∈ Uγ : π(φγ′γaγ)ψγ′γ = ψγ′γπγ(aγ)

2. For an inductive family of representations (πγ)γ∈L, the inductive limit of this family
is a representation lim→ πγ of lim→ Uγ on lim→Hγ such that

∀aγ ∈ Uγ :
[
lim
→
πγ

]
(φγaγ)ψγ = ψγπγ(aγ)

Now we show first the following theorem:

Theorem 24
Let (πγ)γ∈L be an inductive family of representations corresponding to an inductive family
of C∗-algebras (Uγ , φγ′γ)γ,γ′∈L and an inductive family of Hilbert spaces (Hγ , ψγ′γ)γ,γ′∈L.
Then its projective limit exists and is unqiue.

Proof. We construct first for each γ0 ∈ L a representation of Uγ0 on lim→Hγ0 , which we
call ργ0 :

∀aγ0 ∈ Uγ0 : ργ0(aγ0) = lim
→

[πγ(φγγ0aγ0)]

Here the latter lim→ denotes an inductive limit on an inductive family of operators. We
now show the following Assertions:

Assertion 1: (πγ(φγγ0aγ0))γ≥γ0 is for each γ0 ∈ L an inductive family of operators.

Proof of Assertion 1: Since πγ is a representation mapping on B(Hγ) we have, that ∀γ ≥
γ0 : πγ(φγγ0aγ0) ∈ B(Hγ). Further we have, that representations are norm contracting
(cp. corollar 1) and hence:

sup
γ∈L
‖πγ(φγγ0aγ0)‖ ≤ sup

γ∈L
‖φγγ0aγ0‖ = ‖aγ0‖ <∞

Finally we have:

πγ′(φγ′γ0aγ0)ψγ′γ = πγ′(φγ′γφγγ0aγ0)ψγ′γ = ψγ′γπγ(φγγ0aγ0)

and hence it is an inductive family of operators.

Assertion 2: Let ρ be a representation of a C∗-algebra U on a dense subset V ⊂ H of
a Hilbert space H. Then it extends uniquely to a representation on all H. (Basically we
show, that the claim holds in the more general situation, where ρ is a representation of a
∗-algebra U on a dense subset V ⊂ H of a Hilbertspace H and ρ(U) ⊂ B(H)).
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Proof of Assertion 2: By the lemma 5 we have, that for all a ∈ U the unique extension
of π(a) for f ∈ H is given by

lim
n→∞

π(a)fn =: π(a)f

for a sequence (fn)n∈N ⊂ V with fn → f(n→∞). Since the representation is defined on
a dense subset we have:

π(αa+ βb)f = lim
n→∞

π(αa+ βb)fn

= α lim
n→∞

π(a)fn + β lim
n→∞

π(b)fn

= απ(a)f + βπ(b)f

Further

π(ab)f = lim
n→∞

π(ab)fn

= lim
n→∞

π(a)π(b)fn

= π(a)π(b)f

and:

π(a∗)f = lim
n→∞

π(a∗)fn

= lim
n→∞

π(a)∗fn

= π(a)∗f

Hence the claim follows.

Assertion 3: The map ργ0 : Uγ0 → B(lim→Hγ), aγ0 7→ lim→[πγ(φγγ0aγ0)] defines a rep-
resentation of Uγ0 on lim→Hγ .

Proof of Assertion 3: We show, that it defines a representation on
⋃
γ∈L im(ψγ). Then

the claim follows by the last assertion. We therefore have to show, that ∀f ∈
⋃
γ∈L im(ψγ)

the following holds:

1. ∀aγ0 ∈ Uγ0 : ργ0(aγ0) ∈ B
(⋃

γ∈L im(ψγ)
)

.

2. ∀α, β ∈ C : ∀aγ0 , bγ0 ∈ Uγ0 : ργ0(αaγ0 + βbγ0)f = αργ0(aγ0)f + βργ0(bγ0)f .

3. ∀aγ0 , bγ0 ∈ Uγ0 : ργ0(aγ0bγ0)f = ργ0(aγ0)ργ0(bγ0)f .

4. ∀aγ0 : ργ0(a∗γ0)f = ργ0(aγ0)∗f .

Before showing those please recall first, how the inductive limit of operators lim→[πγ(φγγ0aγ0)]
is given on

⋃
γ∈L im(ψγ):

∀aγ0 ∈ Uγ0 : ργ0(aγ0) :
⋃
γ∈L

im(ψγ)→ lim→Hγ , f 7→
{
ψγπγ(φγγ0aγ0)ψ−1

γ f if f ∈ im(φγ) ∧ γ ≥ γ0

0 else

If f ∈ im(ψγ) but γ ≥ γ0 does not hold, then 2.) - 4.) are satisfied trivially. Now let
f ∈ im(ψγ) with γ ≥ γ0. We then have that 1.) follows directly since φ and π are ∗-
morphisms and ψ is linear. 2.) follows by inserting id. = ψ−1

γ ψγ and 3.) follows, since
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ψ∗γ = ψ−1
γ holds (since ψγ is an isometry). Explicitly:

ργ0(αaγ0 + βbγ0)f = ψγπγ(φγγ0(αaγ0 + βbγ0))ψ−1
γ f

= αψγπγ(φγγ0(aγ0))ψ−1
γ f + βψγπγ(φγγ0bγ0)ψ−1

γ f

= αργ0(aγ0)f + βργ0(bγ0)f

and

ργ0(aγ0bγ0)f = ψγπγ(φγγ0aγ0bγ0)ψ−1
γ f

= ψγπγ(φγγ0aγ0)ψ−1
γ ψγπγ(φγγ0bγ0)ψγf

= ργ0(aγ0)ργ0(bγ0)f

and finally:

ργ0(a∗γ0)f = ψγπγ(φγγ0a
∗
γ0)ψ−1

γ f

= ψγπγ(φγγ0aγ0)∗ψ−1
γ f

=
(
ψγπγ(φγγ0aγ0)ψ−1

γ

)∗
f

= ργ0(aγ0)∗f

By the last assertion this gives a representation on all lim→Hγ .
Hence we have a family of representations on lim→Hγ . Now we want to use this to obtain
a representation of lim→ Uγ on lim→Hγ .

Assertion 4: Let H be a Hilbert space and U be a C∗-algebra with dense ∗-subalgebra
V ⊂ U. Let π be a representation of V on H. Then this extends to a unique representation
of U on H by defining for (an)n∈N ⊂ V with an → a:

π(a) := lim
n→∞

π(an)

Where the limit is with respect the usual operator norm.

Proof of Assertion 4: Recall, that the algebra of bounded operators on a Hilbert space
B(H) together with the operator norm forms a C∗-algebra (recall example 1). Now a
representation is just a ∗-morphism from a ∗-algebra to the C∗-algebra of bounded oper-
ators on a Hilbert space. Hence the claim follows with lemma 9 since representations are
bounded by corollar 1.

Assertion 5: The representation obtained by extending

lim
→
πγ :

⋃
γ∈L

im(ψγ)→ B(lim
→
Hγ), a ∈ im(ψγ0) 7→ ργ0(φ−1

γ0 a)

using the result of Assertion 4 is an inductive limit of the inductive family of representations
(πγ)γ∈L.
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Proof of Assertion 5: We show that for all aγ0 ∈ Uγ0 the following holds:

(lim
→
πγ)(φγ0aγ0)ψγ0 = ψγ0πγ0(aγ0)

Therefore observe:

(lim
→
πγ)(φγ0aγ0)ψγ0 = ργ0(φ−1

γ0 φγ0aγ0)ψγ0

= ργ0(aγ0)ψγ0

= lim
→

[πγ(φγγ0aγ0)]ψγ0

= ψγ0πγ0(aγ0)

Here we have used, that lim→[πγ(φγγ0aγ0)] is the inductive limit of the inductive family
of bounded operators (πγ(φγγ0aγ0))γ∈L. Hence (lim→ πγ) is an inductive limit of the
inductive family of representations (πγ)γ∈L.

Assertion 6: The inductive limit representation is unique.

Proof of Assertion 6: Assume, that there is a representation

σ : lim
→

Uγ → B(lim
→
Hγ)

such that for all aγ ∈ Uγ we have:

σ(φγaγ)ψγ = ψγπγ(aγ) (3.10)

Assume further σ 6= lim→ πγ , i.e. there exists a f ∈ lim→Hγ and a a ∈ lim→ Uγ with
σ(a)f 6= (lim→ πγ)(a)f . But by eq. (3.10) we have, that σ and lim→ πγ must be the same
on
⋃
γ∈L im(φγ) ⊂ lim→ Uγ and

⋃
γ∈L im(ψγ) ⊂ lim→Hγ . Hence by Assertion 4 and

Assertion 2, they must be same on all lim→Hγ and lim→ Uγ .

We now want to understand how the property that an element of a Hilbert space is
cyclic behaves under inductive limits:

Lemma 16 (Cyclic vectors and inductive limits)
Let (Hγ , ψγ′γ)γ,γ′∈L be an inductive family of Hilbert spaces with inductive limit (lim→Hγ , (ψγ)γ∈L).
Let (Uγ , φγ′γ)γ,γ′∈L be an inductive family of C∗-algebras with inductive limit (lim→ Uγ , (φγ)γ∈L).
Let (πγ)γ∈L be a corresponding inductive family of representations with inductive limit
lim→ πγ. Let further (Ωγ)γ∈L be a family of vectors Ωγ ∈ Hγ such that for each γ ∈ L it
holds, that Ωγ is a cyclic vector for πγ, i.e. πγ(Uγ)Ωγ is dense in Hγ and let further

ψγ′γΩγ = Ωγ′

hold for all γ′ ≥ γ ∈ L. Then: lim→Ωγ := ψγΩγ ∈ lim→Hγ is well defined and cyclic for
lim→ πγ.

Proof. We first show, that lim→Ωγ is well defined. Therefore observe:

lim
→

Ωγ = ψγΩγ

= ψγ′ψγ′γΩγ

= ψγ′Ωγ′
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We now show, that [lim→ πγ ] (lim→ Uγ)Ω ⊂
⋃
γ∈L im(ψγ) is dense in

⋃
γ∈L im(ψγ). Then

the claim follows, since denseness is transitive.

Therefore let f ∈
⋃
γ∈L im(ψγ). I.e., there is a γ ∈ L and there is a fγ ∈ Hγ with

ψγ(fγ) = f . Now we have, that Ωγ is cyclic vector of πγ in Hγ , i.e. there is a sequence
(aγn)n∈N ⊂ Uγ s.th.:

lim
n→∞

πγ

(
a(γ)
n

)
Ωγ = fγ

Hence we have:

ψγ

(
lim
n→∞

πγ

(
a(γ)
n

)
Ωγ

)
= f

Now ψγ is bounded and continuous as an isometry. Hence we have:

lim
n→∞

ψγ

(
πγ

(
a(γ)
n

)
Ωγ

)
= f

Now we have:

ψγ

(
πγ

(
a(γ)
n

)
Ωγ

)
= ψγ ◦ πγ

(
a(γ)
n

)
◦ ψ−1

γ ψγ(Ωγ)

= ργ

(
a(γ)
n

)
Ω

Here we used, that φγΩγ = Ω and further used the definition of ργ from the proof of
theorem 24.

Now observe, that we can define an := φγ (aγn) ∈ im(φγ) ⊂ lim→ Uγ and hence we can
write:

ργ

(
a(γ)
n

)
Ω = ργ

(
φ−1
γ an

)
Ω

=
[
lim
→
πγ

]
(an)Ω

and hence we have constructed for each f ∈
⋃
γ∈L im(φγ) a sequence (an)n∈N ⊂ lim→ Uγ

with :

lim
n→∞

[
lim
→
πγ

]
(an)Ω = f

And hence the claim follows, since denseness is transitive and
⋃
γ∈L im(ψγ) is dense in

lim→Hγ .

With this we can define the inductive limit of cyclic representations:

Definition 21
Let (Hγ , ψγ′γ)γ,γ′∈L be an inductive family of Hilbert spaces with inductive limit (lim→Hγ , (ψγ)γ∈L).
Let (Uγ , φγ′γ)γ,γ′∈L be an inductive family of C∗-algebras with inductive limit (lim→ Uγ , (φγ)γ∈L).
Then:

1. An inductive family of cyclic representations is a family (πγ ,Ωγ)γ∈L such that (πγ)γ∈L
is an inductive family of representations and Ωγ is a corresponding inductive family
of cyclic vectors.

2. Its inductive limit is given by the tuple (lim→ πγ , lim→Ωγ), which is again a cyclic
representation by the last theorem.

We now want to understand, how the Gel’fand transform behaves under inductive limits:
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Lemma 17
Let (Uγ , φγ′γ)γ,γ′∈L be an inductive family of abelian, unital C∗-algebras and let

(
∆(Uγ), pγγ′ = φ∗γ′γ

)
γ′,γ∈L

be the corresponding projective family of compact Hausdorff spaces given by theorem 18.

Let
(
C(∆(Uγ), ψγ′γ = p∗γγ′

)
γ,γ′∈L

be the inductive family of the algebras of continuous

functions on the spectra given by theorem 20. Let Gγ : Uγ → C(∆(Uγ)) and G : lim→ Uγ →
C(lim←∆(Uγ)) be the corresponding Gel’fand transforms, which we denote in both cases
also by ·̌. Then:

1. ψγ′γ ◦ Gγ = Gγ′ ◦ φγ′γ

2. ψγ ◦ Gγ = G ◦ φγ.

Proof. 1.) Let aγ ∈ Uγ and χγ′ ∈ ∆(Uγ′). Then:(
ψγ′γ ◦ Gγ(aγ)

)
(χγ′) = ǎγ ◦ pγγ′(χγ′)

= ǎγ
(
pγγ′χγ′

)
=
(
pγγ′χγ′

)
(aγ)

= χγ′ ◦ φγ′γ(aγ)

=
(
Gγ′ ◦ φγ′γ(aγ)

)
(χγ′)

and hence ψγ′γ ◦ Gγ = Gγ′ ◦ φγ′γ .
2.) Let aγ ∈ Uγ and χ ∈ ∆(lim→ Uγ). Then:

(ψγ ◦ Gγ(aγ)) (χ) = (ǎγ ◦ pγ)(χ)

= ǎγ(pγχ)

= pγχ(aγ)

= χ ◦ φγ(aγ)

= χ(φγaγ)

= (G ◦ φγ(aγ)) (χ)

and hence ψγ ◦ Gγ = G ◦ φγ .

With this Lemma we now investigate the case of Gel’fand representations:

Theorem 25
Let (Uγ , φγ′γ)γ,γ′∈L be an inductive family of abelian, unital C∗-algebras and let (∆(Uγ), pγγ′ =
φ∗γ′γ)γ′,γ∈L be the corresponding projective family of compact Hausdorff spaces given by the-
orem 18. Let further (dµγ)γ∈L be a family of regular, Borel probability measures such that

(∆(Uγ), dµγ , pγ′,γ)γ,γ′∈L

becomes a projective family of measure spaces. Let

(Hγ = L2(∆(Uγ), dµγ), ψγ′γ = p∗γγ′)γ,γ′∈L

be the corresponding inductive family of Hilbert spaces obtained by theorem 22. Then:

1. The family (πγ)γ∈L with

πγ : Uγ → B(Hγ), aγ 7→ (π(aγ) : Hγ → Hγ , fγ 7→ ǎγf)

where ·̌ denotes the Gel’fand transformation on Uγ is an inductive family of repre-
sentations.
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2. Its inductive limit equals the representation

π : lim
→

Uγ → B(lim
→
Hγ), a 7→

(
π(a) : lim

→
Hγ → lim

→
Hγ , f 7→ ǎf

)
where ·̌ denotes the Gel’fand transformation on lim→ Uγ.

Proof. 1.) Therefore we have to show:

1. ∀γ ∈ L : πγ is representation on Hγ .

2. ∀γ′ ≥ γ ∈ L : πγ′(φγ′γaγ) ◦ ψγ′γ = ψγ′γ ◦ πγ(aγ).

The first was already shown lemma 4. We now show the second. Therefore we first show,
that this relation holds on C∞(∆(Uγ)). Then by denseness arguments the relation extends
to all of L2(∆(Uγ), dµγ).

Let f ∈ C∞ (∆(Uγ)). We first recall some definitions. First recall, how the projections
on the projective family of measure spaces (∆(Uγ), pγγ′)γ,γ′∈L are defined:

∀γ′ ≥ γ : pγγ′ : ∆(Uγ′)→ ∆(Uγ), χγ′ 7→ χγ′ ◦ φγ′γ = φ∗γ′γχγ′

Now recall, how the isometries ψγ′γ of the inductive family (L2(∆(Uγ), dµγ), ψγ′γ)γ,γ′∈L
are defined:

∀γ′ ≥ γ : ψγ′γ : L2(∆(Uγ))→ L2(∆(Uγ′)), f 7→ p∗γγ′f = f ◦ pγγ′ = f ◦ φ∗γ′γ
I.e. for a character χγ′ and f ∈ C∞(∆(Uγ)) ⊂ L2(∆(Uγ), dµγ) we have(

ψγ′γf
)

(χγ′) =
(
f ◦ φ∗γ′γ

)
(χγ′)

= f
(
χγ′ ◦ φγ′γ

)
With this and theorem 25 we have now:(

πγ′(φγ′γaγ)ψγ′γf
)

(χγ′) =
(
Gγ′ ◦ φγ′γ(aγ)

)
· ψγ′γf

=
(
ψγ′γ ◦ Gγ(aγ)

)
· ψγ′γf

= ψγ′γ (Gγ(aγ) · f)

= ψγ′γ (πγ(aγ)f)

and hence the identity holds pointwise on C∞(∆(Uγ)) and hence by denseness arguments
on Hγ .
2.) We want to show, that the inductive limit representation equals the Gel’fand rep-
resentation π on the inductive limit. Therefore we first show, that the inductive limit
representation restricted to

⋃
γ∈L im(φγ) ⊂ lim→ Uγ on

⋃
γ∈L im(ψγ) ⊂ lim→Hγ equals

the Gel’fand representation π thereon. Then we use the Assertions 2 and 4 proven in
theorem 24 to conclude, that it equals the Gel’fand representation π on all of lim→Hγ .

Let a ∈
⋃
γ∈L im(φγ) with a = φγ0(aγ0) and f ∈

⋃
γ∈L im(ψγ) with f = ψγ(fγ). We

then have further, that there is a γ̂ ≥ γ, γ0 and we have further φγ0 = φγ̂ ◦ φγ̂γ0 and
ψγ = ψγ̂ ◦ ψγ̂γ . We then have:[

lim
→
πγ

]
(a)f =

[
lim
→
πγ

]
(φγ0aγ0)ψγfγ

=
[
lim
→
πγ

]
(φγ̂ ◦ φγ̂γ0aγ0)(ψγ̂ ◦ ψγ̂γfγ)

=
[
lim
→
πγ

]
(φγ̂aγ̂)(ψγ̂fγ̂)

= ψγ̂πγ̂(aγ̂)fγ̂
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Where we have set aγ̂ = φγ̂γ0aγ0 , fγ̂ = ψγ̂γfγ . Further in the last line we have used the
defining property of the inductive limit representation. Now we have by definition of πγ̂ :

ψγ̂πγ̂(aγ̂)fγ̂ = ψγ̂ (ǎγ̂ · fγ̂)

Now we have to show two things:

1. For fγ̂ ∈ L2(∆(Uγ), dµγ) and gγ̂ ∈ C∞(∆(Uγ)) it holds, that: ψγ̂(gγ̂ · fγ̂) = ψγ̂(gγ̂) ·
ψγ̂(fγ̂).

2. For aγ̂ ∈ Uγ̂ it holds, that ψγ̂ ◦ G(aγ̂) = G ◦ φγ̂(aγ̂).

Therefore recall first, that by theorem 22 we have lim→Hγ ∼= L2(∆(lim→ Uγ), dµ) and
further we have:

ψγ̂ : Hγ̂ → L2(∆(lim
→

Uγ), dµ), fγ̂ 7→ ψγ̂fγ̂ = p∗γ̂fγ

Further we have by theorem 18 that lim←∆(Uγ) ∼= ∆(lim→ Uγ) and further:

pγ̂ : ∆(lim
→

Uγ)→ ∆(Uγ), χ 7→ ψ∗γ̂χ

Hence we have first:

ψγ̂(gγ̂ · fγ̂) = (gγ̂ · fγ̂) ◦ pγ̂
= (gγ̂ ◦ pγ̂) · (fγ̂ ◦ pγ̂)

= ψγ̂(gγ̂) · ψγ̂(fγ̂)

And hence the first equation holds. Further the second equation was already proven
in theorem 25. We now have shown, that the inductive limit representation equals the
representation π on a dense subset of lim→ Uγ and on a dense subset of lim→Hγ . Now by
Assertion 2 and Assertion 4 proven in the proof of definition 20 this extends uniquely to
a representation on all lim→Hγ . Hence the claim is shown.

3.7. Spectral Theorem for Inductive Limit C∗-Algebras

We first want to prove the following structure theorem regarding cyclic representations of
inductive limit C∗-algebras. Recalling the statement of lemma 4 the basic statement of
the following is, that any cyclic representation of an inductive limit C∗-algeba arises as an
inductive limit of cyclic representations.

Theorem 26
Let (Uγ , φγ′,γ) be an inductive family of abelian, unital C∗-algebras with inductive limit
(lim→ Uγ , (φγ)γ∈L). Let ω be a state of U. Let (Hω, πω,Ωω) be the cyclic representation of
lim→ Uγ corresponding to the state ω given by lemma 4 and let further (Hωγ , πωγ ,Ωωγ ) be
the cyclic representation of Uγ corresponding to the state ωγ := ω ◦ φγ given by lemma 4.
Then: The representation (Hω, πω,Ωω) is the inductive limit of the inductive family of
cyclic representations (Hωγ , πωγ ,Ωωγ )γ,γ′∈L.

Proof. Please recall first from lemma 4:

Hω = L2(∆(lim
→

Uγ), dµ)

Hωγ = L2(∆(Uγ), dµγ)
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Here the measures are via theorem 7 uniquely characterized by:

∀b ∈ lim
→

Uγ :

∫
∆(lim→ Uγ)

b̌dµ = ω(b∗b)

∀bγ ∈ Uγ :

∫
∆(Uγ)

b̌γdµγ = ωγ(b∗γbγ)

and further it holds, that

Ωω = 1 ∈ L2(∆(lim
→

Uγ), dµ)

Ωωγ = 1 ∈ L2(∆(Uγ), dµγ)

and finally

∀b ∈ lim
→

Uγ : πω(b) : f ∈ Hω 7→ b̌ · f ∈ Hω

∀bγ ∈ Uγ : πωγ (bγ) : fγ ∈ Hωγ 7→ b̌γ ∈ Hωγ

Please recall further, that it was already shown in theorem 18, that (∆(Uγ), pγγ′ =
φ∗γ′γ)γ,γ′∈L is a projective family of compact Hausdorff spaces. Further recall from the
same theorem, that lim←∆(Uγ) = ∆(lim→ Uγ) and pγ = φ∗γ under this identification. We
now have to show that dµγ really defines a projective family of measures with projective
limit measure dµ, and that Ωωγ is an inductive family of cyclic vectors with inductive limit
Ωω.

Assertion 1:
(
∆(Uγ), µγ), pγ′γ

)
γ,γ′∈L is a projective family of measure spaces with pro-

jective limit ((∆(lim→ Uγ), dµ), (pγ)γ∈L).

Proof of Assertion 1: For this we have to show, that ∀γ′ ≥ γ : pγγ′∗µγ′ = µγ . Therefore
observe first, that for γ′ ∈ L the measure µγ′ is defined by:

∀bγ′ ∈ Uγ′ :

∫
∆(Uγ′ )

b̌γ′dµγ′ = ωγ′(b
∗
γ′bγ′)

Now let bγ′ ∈ im(φγ′γ) with bγ′ = φγ′γbγ . Then we have:

ωγ′(b
∗
γ′bγ′) = ωγ′(φγ′γ(b∗γbγ)) = ωγ′ ◦ φγ′γ(b∗γbγ) = ωγ(b∗γbγ)

Now consider the left hand side. Therefore recall first, that we have shown in the proof of
lemma 17, that

Gγ′ ◦ φγ′γbγ = b̌γ ◦ pγγ′

holds. With this we have for the left hand side:∫
∆(Uγ′ )

b̌γ′dµγ′ =

∫
∆(Uγ′ )

b̌γ ◦ pγγ′dµγ′

=

∫
∆(Uγ)

b̌γd(pγγ′∗µ)

where we have used the change of variables formula for pushforward measures. Hence we
have:

∀bγ ∈ Uγ :

∫
∆(Uγ)

b̌γd(pγγ′∗µ) = ωγ(b∗γbγ)
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and since this characterizes the measure uniquely by theorem 7, µγ = pγγ′∗µγ′ follows.
Now we have to show pγ∗µ = µγ . By uniqueness of the projective limit measure, then

the assertion follows. Therefore recall first, that we have shown in lemma 17, that:

G ◦ φγbγ = b̌γ ◦ pγ

Now let b ∈ im(φγ) with b = φγ(bγ). We then have:∫
∆(lim→ Uγ)

b̌dµ = ω(b∗b)

We now have for the right hand side:

ω(b∗b) = ω(ψγ(b∗γbγ)) = ω ◦ ψγ(b∗γbγ) = ωγ(b∗γbγ)

For the left hand side we have:∫
∆(lim→ Uγ)

b̌dµ =

∫
∆(lim→ Uγ)

G(ψγbγ)dµ

=

∫
∆(lim→ Uγ)

b̌γ ◦ pγdµ

=

∫
∆(Uγ)

bγd(pγ∗µ)

And hence it follows, that: ∫
∆(Uγ)

bγd(pγ∗µ) = ωγ(b∗γbγ)

and hence by theorem 7 pγ∗µ = µγ follows. Since the projectvie limit of measure spaces
is unique, the assertion follows.

Please observe, that with this and with theorem 22 it also follows, that Hωγ is an in-
ductive family of Hilbert spaces with inductive limit Hω.

Assertion 2: (Ωωγ )γ∈L with Ωωγ = 1 ∈ L2(∆(Uγ), dµγ) is an inductive family of vectors
corresponding to the inductive family of Hilbert spaces (Hωγ , φγ′γ = p∗γγ′)γ,γ′∈L with
inductive limit lim→Ωωγ = Ωω.

Proof of Assertion 2: Please observe, that for each γ ∈ L the function 1 : ∆(Uγ) →
R, χγ 7→ 1 is well defined and lies in C∞(Uγ). Now observe further, that for all χ ∈ ∆(Uγ′):(

ψγ′γΩωγ

)
(χγ′) =

(
1 ◦ pγγ′

)
χγ′ = 1

and hence ψγ′γΩωγ = Ωωγ′ . Now let χ ∈ ∆(lim→ Uγ) = lim←∆(Uγ). Then:(
lim
→

Ωωγ

)
(χ) =

(
ψγΩωγ

)
(χ)

= 1 ◦ pγ(χ)

= 1

Hence we have lim→Ωωγ = Ωω. That both are cyclic follows with lemma 4.
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Proof of the theorem: With Assertion 1 we have, that Hωγ is an inductive family of
Hilbert spaces with inductive limit Hω. With theorem 25, Assertion 2 and lemma 4 we
have, that the cyclic representations (Hωγ , πωγ ,Ωωγ )γ∈L are an inductive family of repre-
sentations corresponding to the inductive family Uγ of C∗-algebras. With this it follows
further, that its inductive limit representation is given by the representation (Hω, πω,Ωω).
Hence the claim is shown.

At this stage it is worth to notice, that this theorem does not answer the question,
if a cyclic representation of a C∗-algebra can arise as an inductive limit of non-cyclic
representations. That this situation is an interesting one, can be seen by considering a
corresponding physical interpretation: The cyclic vector can be interpreted as the vacuum
vector of a theory while the members of the inductive family could be interpreted as sub-
systems of the full physical system. Now the statement that a cyclic representation is an
inductive limit of non-cyclic ones would mean in this case, that there exists a vacuum vec-
tor for the full system, which is no vacuum for any subsystem. Unfortunately the author
of this thesis had not enough time to think on this situation, but he hopes to do so in future.

Using theorem 26 and theorem 4 we directly obtain the following:

Theorem 27
Let (Uγ , φγ′,γ)γ,γ′∈L be an inductive family of abelian, unital C∗-algebras with inductive
limit (U = lim→ Uγ , (φγ)γ∈L). Then each representation of U can be written as a direct
sum of the direct limits of the cyclic representations (Hωγ , πωγ ,Ωωγ ) of Uγ given by lemma 4
corresponding to the projective family of states ωγ := ω ◦ ψγ.

60



4. Spectral Theory of C∗-Dynamical Systems

In this section the spectral theory of C∗-dynamical systems is investigated. In the first sec-
tion group actions on compact Hausdorff spaces and group actions on C∗-algebras (called
C∗-dynamical systems) are introduced. Further the notions of fixed point C∗-subalgebras
and quotient spaces of compact Hausdorff spaces under group actions are introduced. The
next section investigates in which sense the spectrum of the fixed point C∗-subalgebra is
related to the spectrum of the full algebra. The next section analyzes the compatibility
of group actions on compact Hausdorff spaces with projective limits. The fourth section
introduces inductive families of C∗-dynamical systems and further explores the case of
the C∗-algebra of continuous functions in this context. In the last section the spectral
theory of inductive limits of C∗-dynamical systems is investigated and it is shown that the
duality between fixed point subalgebras and quotient spaces is compatible with inductive
and projective limits.

The main references for the basic definitions of the first section are given by [10] and [37]
for the C∗-side and [16] and [8] for the topological side. The theory of projective limits
of group actions on compact Hausdorff spaces can be found in basic literature on loop
quantum gravity, as [31]. The other results are mostly new. Especially the connection
between fixed point C∗-subalgebras and quotient spaces and their relation to inductive
and projective limits is firstly discussed in this thesis.

4.1. Group Actions and C∗-Dynamical Systems

We first define the notion of C∗-dynamical systems:

Definition 22 (C∗-dynamical system, cp. [10], [37])
A C∗-dynamical system is a tuple (U, G,Φ), such that U is a C∗-algebra, G is a compact
topological Hausdorff group G and Φ is a C∗-group action from the left, written as Φ :
Gy U, which is a map

Φ : G× U→ U, (g, a) 7→ Φg(a)

such that for Φ : G→ Aut(U), g 7→ Φg(·) the following holds:

1. ∀g, h ∈ G : Φh ◦ Φg = Φhg.

2. ∀g ∈ G : Φg−1 = Φ−1
g .

3. Φ is continuous in pointwise norm topology on Aut(U), i.e. ∀a ∈ U: g 7→ ‖Φg(a)‖ is
continuous.

4. ∀g ∈ G : Φg is an isometric ∗-morphism.

In this case we write ∀g ∈ G,∀a ∈ U : Φ(g, a) = Φg(a) = ga.

Please observe, that Φg is automatically an isometric ∗-automorphism since Φg−1 is an
inverse for Φg. We now want to define the fixed point C∗-subalgebra of a C∗-dynamical
system:
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4. Spectral Theory of C∗-Dynamical Systems

Definition 23 (cp. [2])
Let (U, G,Φ) be a C∗-dynamical system. Then define the fixed point C∗-subalgebra of U
as:

FixG(U) := {a ∈ U|∀g ∈ G : ga = a} ⊂ U

We now show, that the fixed point C∗-subalgebra is really a subalgebra:

Lemma 18
Let (U, G,Φ) be a C∗-dynamical system. Then FixG(U) ⊂ U is a C∗-subalgebra.

Proof. We first show, that it is closed as a subspace. Therefore let (an)n∈N ⊂ FixG(U) be
convergent in U. I.e. ∀n ∈ N : ∀g ∈ G : gan = an and limn→∞ an ∈ U. We have further,
that Φg(·) is an isometric ∗-morphism for all g ∈ G and hence in particular continuous.
Hence:

Φg

(
lim
n→∞

an

)
= lim

n→∞
Φg(an) = lim

n→∞
an

And hence limn→∞ an ∈ FixG(U). Now observe further, that FixG(U) is closed under the
∗-algebra structure, since Φg is a ∗-morphism for each g ∈ G.

We now want to investigate the case of abelian, unital C∗-algebras:

Lemma 19
Let (U, G,Φ) be a C∗-dynamical system with U being abelian and unital.
Then: FixG(U) is abelian and unital.

Proof. That FixG(U) is abelian follows, since subalgebras of abelian C∗-algebras are abelian.
It remains to show, that FixG(U) is unital, i.e. that 1U ∈ FixG(U). Therefore recall first,
that Φg is an ∗-automorphism for each g ∈ G and hence unital by remark 2. Hence
Φ(g,1U) = 1U for all g ∈ G and hence 1U ∈ FixG(U).

We now define group actions on compact Hausdorff spaces:

Definition 24 (cp. [16])
Let X be a compact Hausdorff space and let G be a compact topological Hausdorff group.
Then: A group action from the right on X, written as Φ̃ : X x G, is a map

Φ̃ : X ×G→ X, (x, g) 7→ Φ̃g(x)

which is continuous in product topology on X×G and further satisfies for Φ̃g := Φ̃g(·) the
following:

1. ∀g, h ∈ G : Φ̃h ◦ Φ̃g = Φ̃gh.

2. ∀g ∈ G : Φ̃g−1 = Φ̃−1
g

In this case we write ∀g ∈ G, ∀x ∈ X : Φ̃(x, g) = xg.

In the following we will always assume, that G is a compact topological Hausdorff
group. Please observe further, that Φ̃g is automatically a homeomorphism, since Φ̃g−1 is a

continuous inverse fore Φ̃g. We now want to use this to define quotient spaces of compact
Hausdorff spaces by group actions:
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Definition 25 (cp. [16])
Let X be a compact Hausdorff space and let X x G be a group action from the right.
Then:

1. Define a equivalence relation on X via

∀x, y ∈ X : x ∼ y ⇔ ∃g ∈ G : x = yg

2. Define the topological space X/G := X/ ∼ together with the quotient topology.

We now show, that this is well defined:

Lemma 20 (cp. [16])
Let anything be as in the last definition. Then:

1. ∼ is an equivalence relation on X

2. X/G := X/ ∼ is a compact Hausdorff space.

Proof. 1.) Reflexivity follows directly since x = xe holds for all x ∈ X. Further symmetry
holds, since for x, y ∈ X with x = yg we have y = xg−1. Transitivity follows since for
x, y, z ∈ X with x = yg and y = zh we have x = zhg.
2.) Please recall first, that quotient spaces of compact spaces are compact, since the
canonical projection π̃ : X → X/G is a continuous surjection and images of compact
sets under continuous maps are compact. Further Cor. 3.7.23 of [16] gives that X/G is
Hausdorff since X is locally compact as a compact space and G is a compact topological
group.

4.2. Spectral Theory of C∗-Dynamical Systems

We first analyze the prototypical example of the algebra of continuous functions over a
compact Hausdorff space. Later we will use this to investigate the general case of abelian,
unital C∗-algebras.

Lemma 21
Let X be a compact Hausdorff space and Φ̃ : X x G be a group action from the right.
Then:

1. (C(X), G,Φ) with Φ : Gy C(X),Φ(g, f) = f(·g) is a C∗-dynamical system.

2. FixG (C(X)) and C(X/G) are isometrically isomorphic as unital C∗-algebras.

Proof. 1.) That Φg is a ∗-morphism for all g ∈ G can be shown straightforwardly. Further
Φg is bijective, since ∀g ∈ G : Φ−1

g = Φg−1 . That Φg is an isometry for all g ∈ G follows

since Φ̃g is surjective for all g ∈ G:

∀f ∈ C(X) : sup
x∈X
|gf(x)| = sup

x∈X
|f(Φ̃g(x))|

= sup
y∈Φg(X)

|f(y)|

= sup
y∈X
|f(y)|
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Hence it is an isometry for each g ∈ G. Continuity was shown in Lemma 2.5 of [37].
3.) We define the conjectured ∗-isomorphism:

Ψ : C(X/G)→ FixG(C(X)), f 7→ f ◦ π

We now show, that Ψ is a well defined, surjective and isometric ∗-morphism. Then the
claim follows, since isometries are injective and continuous.

We first show, that it is a ∗-morphism:

Ψ(fg) = (fg) ◦ π = (f ◦ π)(g ◦ π) = Ψ(f)Ψ(g)

Ψ(αf + βg) = (αf + βg) ◦ π = α(f ◦ π) + β(g ◦ π) = αΨ(f) + βΨ(g)

Ψ(f̄) = f̄ ◦ π = (f ◦ π) = Ψ(f)

That it defines an isometry follows by surjectivity of π:

sup
x∈X
|(Ψf)(x)| = sup

x∈X
|f ◦ π(x)|

= sup
x∈π(X)

|f(x)|

= sup
x∈X/G

|f(x)|

Now we show, that Ψ is well defined, i.e., that the image of Ψ lies really in FixG(C(X)).
Therefore let f ∈ C(X/G) and g ∈ G. Then Ψ(f) = f ◦ π ∈ C(X) as a composition of
continuous maps. Further:

Ψ(f)(·g) = f ◦ π(·g)

= f ◦ π(·)
= Ψ(f)

And hence Ψ(f) ∈ FixG(C(X)). Now we show surjectivity. Therefore let f̃ ∈ FixG(C(X)).
Then define the following function:

f : X/G→ C, [x] 7→ f̃(x)

We first show, that f is well defined. Therefore let y ∈ [x] with x 6= y. Then there is a
g ∈ G such that y = xg. Then G-invariance of f̃ implies:

f̃(y) = f̃(xg) = f̃(x)

Hence f is well defined. Further recall from elementary topology, that f is continuous if
and only if f ◦ π is continuous. Now observe:

f ◦ π : X → C, x 7→ f̃(x)

This gives f ◦ π = f̃ and hence f ◦ π is continuous since f̃ is. Further this gives Ψf =
f ◦ π = f̃ and hence we have shown surjectivity. Finally we show, that it is unital.
Therefore let 1 be the unit on C(X). We then have, that 1 ◦ π : X/G → C, [x] 7→ 1 and
hence Ψ(1) = 1X/G, where 1X/G is the unit on C(X/G). Hence Ψ is unital. Then the
claim follows.

We now use this prototypical example to show the following theorem:
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Theorem 28
Let (U, G,Φ) be a C∗-dynamical system with abelian, unital C∗-algebra U. Then:

1. Φ̃ : ∆(U) x G, (χ, g) 7→ χ(g·) is continuous group action from the right.

2. ∆(FixG(U)) = ∆(U)/G.

Proof. 1.) We first show that Φ̃ is continuous in product topology on ∆(U) × G, where
the topology on G is given by the Gel’fand topology. Therefore let (xn)n∈I be a net in
∆(U) × G with limxn = x ∈ ∆(U) × G. Since the canonical projections from ∆(U) × G
on its factors are continuous, we can write xn = (χn, gn) with nets (χn)n∈I ⊂ ∆(U) and
(gn)n∈I ⊂ G. Further we have x = (χ, g) and

limχn = χ

lim gn = g

We now show lim Φ̃(χn, gn) = Φ̃(χ, g), since then continuity follows. I.e. we have to show:

∀a ∈ U : ∀ε > 0 : ∃N ∈ I : ∀n ≥ N : |χn(gna)− χ(ga)| < ε

Therefore observe:

|χn(gna)− χ(ga)| = |χn(gna)− χn(ga) + χn(ga)− χ(ga)|
≤ |χn(gna)− χn(ga)|+ |χn(ga)− χ(ga)|

We first consider the second summand. Since (χn)n∈I is a net with limχn = χ in Gel’fand
topology, we have:

∀b ∈ U : ∀ε > 0 : ∃N ∈ I : ∀n ≥ N : |χn(b)− χ(b)| < ε

2

End hence especially this holds for b = ga.
Now consider the first summand. Therefore observe:

|χn(gna)− χn(ga)| = |χn(gna− ga)|
≤ sup

χ∈∆(U)
|χ(gna− ga)|

Now by theorem 3 we have:

∀a ∈ U : sup
χ∈∆(U)

|χ(a)| = ‖a‖

Hence we have:
sup

χ∈∆(U)
|χ(gna− ga)| = ‖gna− ga‖

Now by strong continuity of Φ we have:

∀a ∈ U : ∀ε > 0 : ∃M ∈ I : ∀n ≥M : ‖Φ(gn, a)− Φ(g, a)‖ < ε

2

Hence we have for all n ≥ max{N,M}:

|χn(gna)− χ(ga)| < ε

2
+
ε

2
= ε

And hence lim Φ̃(χn, gn) = Φ̃(χ, g), which gives continuity in product topology.
3.) We split the proof into two assertions:
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Assertion 1: Let U1,U2 be two C∗-algebras with U1
∼= U2. Then ∆(U1) = ∆(U2).

Proof of Assertion 2: Let Ψ : U1 → U2 denote the isomorphism between U1 and U2.
Recall from lemma 13, that injectivity of Ψ implies, that the map

Ψ∗ : ∆(U2)→ ∆(U1), χU2 7→ χU2 ◦Ψ

is surjective and continuous. Hence it remains to show, that surjectivity of Ψ implies,
that Ψ∗ is injective. That this is indeed the case follows easily. Let χ1, χ2 ∈ ∆(U2) with
χ1 6= χ2. This means, that there is an a ∈ U2 with χ1(a) 6= χ2(a). By surjectivity of Ψ
there is a b ∈ U1 with Ψ(b) = a. Now we have:

Ψ∗χ1(b) = χ1 ◦Ψ(b) = χ1(a) 6= χ2(a) = χ2 ◦Ψ(b) = Ψ∗χ2(b)

Hence Ψ∗χ1 6= Ψ∗χ2 holds and hence Ψ∗ is injective. Now the claim follows, since ∆(U1)
and ∆(U2) are compact Hausdorff spaces and hence a continuous bijection between them
automatically is a homeomorphism.

Assertion 2: Let G : U→ C(∆(U)) be the Gel’fand transform. Then:

G|FixG(U) : FixG(U)→ FixG(C(∆(U)))

is an isometric isomorphism of C∗-algebras.

Proof of Assertion 2: We have to show, that G|FixG(U) : FixG(U) → FixG(C(∆(U))) is
a unital ∗-morphism, an isometry, well-defined and surjective. Then the claim follows,
since isometries are automatically injective and continuous. Observe first, that since G is
an isometric, unital ∗-morphism, so is G|FixG(U). We now show surjectivity. Therefore let

f̃ ∈ FixG(C(∆(U))), i.e. f̃ ∈ C(∆(U)) with f̃(·g) = f̃ for all g ∈ G. By surjectivity of
G, there is an a ∈ U such that ∀χ ∈ ∆(U) : f̃(χ) = χ(a). Observe, that in this concrete
situation, the G-invariance of f̃ implies:

∀χ ∈ ∆(U)∀g ∈ G : χ(ga) = χ(a)

We now have to show, that (∀χ ∈ ∆(U) : χ(a) = χ(b)) ⇒ a = b. Therefore observe, that
χ(a) = χ(b) ⇔ |χ(a) − χ(b)| = 0. Further we have |χ(a) − χ(b)| = |χ(a − b)|. Now we
have:

∀χ ∈ ∆(U) : |χ(a− b)| = 0⇒ sup
χ∈∆(U)

|χ(a− b)| = 0

And hence we have ‖a− b‖ = 0 by theorem 3. Since norms are positive-definite, this gives
a − b = 0. Hence G|FixG(U) is surjective. Finally we show well definedness. Therefore let
a ∈ FixG(U). Then:

∀χ ∈ ∆(U) : ǎ(χg) = (χg)(a)

= χ(ga)

= χ(a)

= ǎ(χ)

And hence ǎ ∈ FixG(C(∆(U))).
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Now the claim follows since by above and by lemma 21 it holds, that:

∆(FixG(U)) = ∆(G(FixG(U)))

= ∆(FixG((C(∆(U))))

= ∆(C(∆(U)/G))

And by lemma 3 we finally have:

∆(C(∆(U)/G)) = ∆(U)/G

4.3. Projective Limits of Group Actions on Compact Hausdorff
Spaces

In the last section we have investigated, how the spectrum of the fixed point subalgebra of
a C∗-dynamical system is related to the spectrum of the full C∗-algebra. In the next three
sections we want to investigate, to which extent this knowledge gives us information on
the spectral theory of the corresponding inductive limit C∗-dynamical system. Therefore
in this section first the topological side is investigated by considering projective families
of group actions on projective families of compact Hausdorff spaces. Therefore we first
define, what is meant by a projective family of group actions:

Definition 26 (cp. p. 177 of [31])
Let G be a compact, topological Hausdorff group, L be a label set and (Xγ , pγγ′)γ,γ′∈L
be an projective family of compact Hausdorff spaces. Then: A family of group actions
Φ̃γ : Xγ x G is called consistent, iff:

∀γ′ ≥ γ : ∀xγ′ ∈ Xγ′ : pγγ′(xγ′g) = pγγ′(xγ′)g

I.e. iff pγγ′ is G-equivariant with respect to those group actions for each γ ≤ γ′ ∈ L.

Further the projective limit of such a consistent family of group actions is a group action
lim← Φ̃γ : lim←Xγ x G with:

∀γ ∈ L : ∀x ∈ lim
←
Xγ : pγ(xg) = pγ(x)g

In the following a consistent family of group actions corresponding to a projective family
of topological spaces will also be called a projective family of group actions thereon.

We now want to investigate, if the projective limit of group actions exists and if it is
unique:

Theorem 29 (cp. p. 177 of [31])
Let G be a compact, topological Hausdorff group, L be a label set and (Xγ , pγγ′)γ,γ′∈L be
a projective family of compact Hausdorff spaces. Let further Φ̃γ : Xγ x G be a consistent
family of group actions as defined in above definition. Then: The projective limit of(

Φ̃γ : Xγ x G
)
γ∈L

exists and is unique.
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Proof. We first define the conjectured projective limit group action:

Φ̃ : lim
←
Xγ x G, ((xγ)γ∈L, g) 7→ (xγg)γ∈L

We now want to show, that this defines the unique projective limit group actions. There-
fore we show the following Assertions:

Assertion 1 : Let g ∈ G and (xγ)γ∈L ∈ lim←Xγ . Then Φ̃(g, (xγ)γ∈L) ∈ lim←Xγ .

Proof of Assertion 1: Let g ∈ G and (xγ)γ∈L ∈ lim←Xγ . Let further γ′ ≥ γ ∈ L. Then:

pγγ′
(
πγ ◦ Φ̃ ((xγ)γ∈L, g)

)
= pγγ′(xγ′g)

= pγγ′(xγ′)g

= xγg

= πγ ◦
(

Φ̃((xγ)γ∈L, g)
)

Where πγ :
∏
γ∈LXγ → Xγ is the canonical projection.

And hence Assertion 1 follows.

Assertion 2: Φ̃ is continuous in product topology.

Proof of Assertion 2: Please observe first, that Φ̃ is continuous in product topology iff
∀γ ∈ L : pγ ◦ Φ̃ : lim←Xγ ×G→ Xγ((xγ)γ∈L, g) 7→ xγg is continuous in product topology.
To show the latter, let (ζn)n∈I ⊂ lim←Xγ × G be a net with lim ζn = ζ ∈ lim←×G.
By continuity of the canonical projections from lim←X × G on its factors we can write
ζn = (xn, gn) ∈ lim←Xγ × G and ζ = (x, g) ∈ lim←Xγ × G such that limxn = x and
lim gn = g. Now limxn = x means, that for each γ ∈ L the net (pγxn)n∈I converges
towards pγ(x). Hence by continuity of Φ̃γ we have, that lim Φ̃γ(pγxn, gn) = Φ̃γ(pγx, g).
Hence the assertion follows.

Assertion 3: Φ̃g(Φ̃h(·)) = Φ̃hg(·) and Φ̃−1
g (·) = Φ̃g−1(·).

Proof of Assertion 3: Since those properties hold for pγ ◦ Φ̃g = Φ̃γ(·, g) for all γ ∈ L it
follows directly, that they hold for Φ̃g.

Assertion 4: Φ̃ is really the projective limit group action.

Proof of Assertion 4: This follows directly, since by definition pγ ◦ Φ̃g = Φ̃γ(·, g) holds
directly.

Assertion 5: Φ̃ is the unique projective limit group action.
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Proof of Assertion 5: Assume, that there exists a Ψ̃ : lim←Xγ x G such that ∀g ∈ G :
pγ ◦ Ψ̃g = Φ̃γ(·, g) holds, but Ψ̃ 6= Φ̃. Observe that the latter means, that there is a g ∈ G
and a (xγ)γ∈L ∈ lim←Xγ with:

Ψ̃ ((xγ)γ∈L, g) 6= Φ̃ ((xγ)γ∈L, g)

But this, means, that there is a γ′ ∈ L such that

Φ̃γ′(xγ′ , g) = pγ′ ◦ Ψ̃ ((xγ)γ∈L, g) 6= pγ′ ◦ Φ̃ ((xγ)γ∈L, g) = Φ̃γ′(xγ′ , g)

which is a contradiction. Hence Φ̃ is the unique projective limit group action.

We have now understood, how group actions on a projective family define a group action
on the projective limit. We now want to understand, how the corresponding quotient
spaces are related. But before doing so we need three lemmata:

Lemma 22
Let X1, X2 be compact Hausdorff spaces and Φ̃1 : X1 x G, Φ̃2 : X2 x G be two G-actions.
Let f : X1 → X2 be continuous and G-equivariant, i.e.:

∀g ∈ G : f(·g) = f(·)g

Then: The map

f̃ : X1/G→ X2/G, [x] 7→ [f(x)]

is well defined and continuous.

Proof. We first show, that f̃ as defined above is well defined. Therefore let x, y ∈ [x] ∈
X1/G, i.e. ∃g ∈ G : x = yg. Then:

[f(x)] = [f(yg)] = [f(y)g] = [f(y)]

And hence f̃ is well defined. Now towards continuity: Therefore let U ⊂ X2/G be open.
Now let πi : X → Xi/G denote the corresponding quotient maps. By continuity of π2 we
have, that π−1

2 (U) is open. By continuity of f we have further, that f−1
(
π−1

2 (U)
)

is open.
Now we have (cp. Lem. 3.7.11 of [16]), that the πi are open maps in this case. Hence
π1

(
f−1

(
π−1

2 (U)
))

is open. Now f̃ = π2 ◦ f ◦ π−1
1 , and hence f̃−1(U) is open. Hence f̃ is

continuous.

Lemma 23
Let X,Y be compact Hausdorff spaces, X x G be a group action, π̃ : X → Y be a
surjection and further π : X → X/G be the canonical projection. Let further

∀x, y ∈ X : π(x) 6= π(y)⇔ π̃(y) 6= π̃(y) (4.1)

Then: X/G ∼= Y .

Proof. We define the conjectured homeomorphism as:

Ψ : Y → X/G, y 7→ π
(
π̃−1(y)

)
We now have to show, that this defines a function, i.e. that it is left-total and right-
unique. Further we have to show, that it is injective, surjective and continuous. Since a

69



4. Spectral Theory of C∗-Dynamical Systems

bijective continuous map between a compact space and a Hausdorff space is automatically
a homeomorphism, then the claim follows.

We first show, that Ψ is left-total. Therefore let y ∈ Y . By surjectivity of π̃, there is a
x ∈ X s.th. π̃(x) = y. Since π is a function, it then follows, that Ψ({y}) 6= ∅.

We now show, that Ψ is right-unique. Therefore let y ∈ Y . Now let y1, y2 ∈ π̃−1(y)
with y1 6= y2. We then have π̃(y1) = π̃(y2). By eq. (4.1) this implies π(y1) = π(y2). Hence
y 7→ π(π̃−1(y)) is right-unique.

Hence we have shown, that Ψ is well defined. We now show injectivity. Therefore let
y1 6= y2 ∈ Y . Then π̃−1(y1) ∩ π̃−1(y2) = ∅. Now let ỹ1 ∈ π̃−1(y1) and ỹ2 ∈ π̃−1(y2), i.e.
ỹ1 6= ỹ2. Further we have π̃(ỹ1) 6= π̃(ỹ2). Then by eq. (4.1) this implies π(ỹ1) 6= π(ỹ2) and
injectivity follows.

Now we show surjectivity. Therefore let x ∈ X/G. Since π is surjective, there is a x̃ ∈ X
with π(x̃) = x. Then Ψ(π̃(x̃)) = x and hence surjectivity follows.

We now show continuity of Ψ−1. Therefore please note, that the inverse of Ψ is given
by Ψ−1 = π̃ ◦ π−1. Now observe further, that and π̃ is continuous and further π−1 is
continuous since π is open in our case (cp. Lem. 3.7.11 of [16]). Hence Ψ−1 is continuous
as a composition of continuous maps and hence Ψ is a homeomorphism.

The following lemma is a well-known result from point-set topology, therefore we won’t
show it.

Lemma 24 (cp. Prop. 5.1 of [12])
Let X be a topological space. Then the following are equivalent:

1. X is compact.

2. Every infinite collection of closed subsets (Xi ⊂ X)i∈I which satisfies the finite
intersection property

∀S ⊂ I finite :
⋂
i∈S

Xi 6= ∅

has non-empty total intersection: ⋂
i∈I

Xi 6= ∅

We now show the final theorem of this section, which gives, that the projective limit of
quotient spaces is the quotient of the projective limit:

Theorem 30 (cp. [31] for a different proof)
Let (Xγ , pγγ′)γ≤γ′∈L be a projective family of compact Hausdorff spaces and let Φ̃γ : Xγ x
G be a projective family of Group-actions.
Then:

1. (Xγ/G, p̃γγ′)γ,γ′∈L with

p̃γγ′ : Xγ′/G→ Xγ/G, [xγ′ ] 7→ [pγγ′xγ′ ]

is a projective family of compact Hausdorff spaces.

2. lim← (Xγ/G) = (lim←Xγ) /G

Proof. 1.) Therefore we have to show, that Xγ/G is a compact Hausdorff space, that p̃γγ′

is well defined, that p̃γγ′ satisfies the composition properties demanded in the definition
of a projective system and that p̃γγ′ is continuous.
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Assertion 1: For each γ ∈ L it holds, that Xγ/G is a compact Hausdorff space.

Proof of Assertion 1: This was already shown in lemma 20.

Assertion 2: p̃γγ′ is well defined and continuous.

Proof of Assertion 2: Follows with lemma 22 and definition 26.

Assertion 3: p̃γγ = id. and p̃γγ′ ◦ p̃γ′γ′′ = p̃γγ′′ .

Proof of Assertion 3: This follows directly by well definedness of p̃γγ′ and by the fact,
that (Xγ , pγγ′)γ,γ′∈L is an projective system.

With this the claim follows.
2.) We use lemma 23 to show this. Therefore we first construct the following map:

π̃ : lim
←
Xγ → lim

←
(Xγ/G) , (xγ)γ∈L 7→ ([xγ ])γ∈L

We now show, that this map satisfies the prerequisits of lemma 23.

Lemma for Assertion 1: Let ([yγ ])γ∈L ∈ lim←(Xγ/G). Then ∃(xγ)γ∈L ∈ lim←Xγ such
that ∀γ ∈ L : xγ ∈ [yγ ].

Proof of Lemma for Assertion 1: Set

R := {(γ, γ′) ∈ L× L|γ′ ≥ γ}

and set further for all (γ, γ′) ∈ R:

C(γ, γ′) :=

(xγ)γ∈L ∈
∏
γ∈L

Xγ

∣∣∣∣∣∣∀γ ∈ L : xγ ∈ [yγ ] ∧ pγγ′xγ′ = xγ


We split the proof of this ”Lemma” into four claims:

Claim 1:
⋂

(γ,γ′)∈R C(γ, γ′) ⊆ lim←Xγ .

Proof of Claim 1: The claim follows directly in the trivial case
⋂

(γ,γ′)∈R C(γ, γ′) = ∅.
Now consider the non-trivial case of

⋂
(γ,γ′)∈R C(γ, γ′) 6= ∅. Therefore observe:

⋂
(γ,γ′)∈R

C(γ, γ′) =

(xγ)γ∈L ∈
∏
γ∈L

∣∣∣∣∣∣∀γ ∈ L : xγ ∈ [yγ ] ∧ ∀γ′ ≥ γ : pγγ′xγ′ = xγ


And hence the claim follows.

Claim 2: For (xγ)γ∈L ∈
⋂

(γ,γ′)∈R C(γ, γ′) we have ∀γ ∈ L : xγ ∈ [yγ ].

Proof of Claim 2: This follows directly by the definition of C(γ, γ′).

Claim 3: C(γ, γ′) is closed.
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Proof of Claim 3: Therefore observe first, that:

C(γ, γ′) =

(xγ)γ∈L ∈
∏
γ∈L

Xγ

∣∣∣∣∣∣pγγ′xγ′ = xγ

 ∩∏
γ∈L

[yγ ]

That
{

(xγ)γ∈L ∈
∏
γ∈LXγ

∣∣∣pγγ′xγ′ = xγ

}
is closed was shown in Assertion 2 of the second

part of theorem 12. We now show, that
∏
γ∈L[yγ ] is closed. Therefore it suffices to show,

that the orbits [yγ ] are closed, since arbitrary products of closed sets are closed. Therefore
define the map

Φ̃γ(yγ) : G→ Xγ , g 7→ Φ̃(yγ , g)

and observe, that by definition [yγ ] = im(Φ̃γ) holds. Observe further, that Φ̃γ(yγ) is
continuous, since Φ̃ is continuous in product topology. Finally im(Φ̃γ) is compact, since G
is compact and hence [yγ ] = im(Φ̃γ) is closed as a compact subspace of a Hausdorff space.
Hence C(γ, γ′) is closed as an intersection of two closed sets.

Claim 4: Let ((γi, γ
′
i))i∈I ⊂ R be finite. Then:⋂

i∈I
C(γi, γ

′
i) 6= ∅

I.e. {C(γ, γ′) ⊂ lim←Xγ |(γ, γ′) ∈ R} satisfies the finite intersection property.

Proof of Claim 4: Set γ̂ ∈ L with γ̂ ≥ γi, γ′i for all i ∈ I, which exists, since L is partially
ordered, directed set. Choose any xγ̂ ∈ [yγ̂ ] and define an (xγ)γ∈L ∈

∏
γ∈LXγ as follows:

Set xγ = pγγ̂xγ̂ for all γ ≤ γ̂ and choose for any other γ ∈ L just any xγ ∈ [yγ ]. We then
have

(xγ)γ∈L ∈
⋂
i∈I

C(γi, γ
′
i)

since

∀i ∈ I : pγiγ′ixγi = xγi

∀γ ∈ L : xγ ∈ [yγ ]

Now it follows, that

∅ 6=
⋂

(γ,γ′)∈R

C(γ, γ′) 6= 0

by lemma 24. Hence the Lemma for Assertion 1 is proven.

Assertion 1: π̃ is surjective.

Proof of Assertion 1: Let ([yγ ])γ∈L ∈ lim←(Xγ/G). Then by above Lemma we have, that
there is a (xγ)γ∈L ∈ lim→Xγ such that ∀γ ∈ L : xγ ∈ [yγ ]. Hence π̃((xγ)γ∈L) = ([yγ ])γ∈L
and the assertion follows.

Assertion 2: π̃ is continuous.

72



4.3. Projective Limits of Group Actions on Compact Hausdorff Spaces

Proof of Assertion 2: Recall: π̃ : lim←Xγ → lim←(Xγ/G) is continuous if and only if
for all γ ∈ L it holds, that p̃γ ◦ π̃ : lim←Xγ → Xγ/G is continuous. Now we have:

p̃γ ◦ π̃ : (xγ)γ∈L 7→ [xγ ]

i.e. p̃γ ◦ π̃ = πγ ◦ pγ , where πγ : Xγ → Xγ/G denotes the quotient map. Since the latter
is continuous as a composition of continuous functions, the assertion follows.

Assertion 3: Let x, y ∈ lim←Xγ . Then [(xγ)]γ∈L] = [(yγ)γ∈L] ∈ (lim←Xγ) /G if and
only if ([xγ ])γ∈L = ([yγ ])γ∈L ∈ lim←(Xγ/G).

Proof of Assertion 3: Please observe first the following equivalences:

[(xγ)]γ∈L] = [(yγ)γ∈L] ∈
(

lim
←
Xγ

)
/G⇔ ∃g ∈ G : ∀γ ∈ Lxγ = yγg (4.2)

([xγ ])γ∈L = ([yγ ])γ∈L ∈ lim
←

(Xγ/G)⇔ ∀γ ∈ L : ∃gγ ∈ G : xγ = yγgγ (4.3)

That eq. (4.2) implies eq. (4.3) follows trivially. We now want to show, that eq. (4.3)
together with the equivariance of the projection maps implies the left hand side.

Therefore we define first the following set:

∀γ ∈ L : Gγ := {g ∈ G|xγ = yγg}

Claim 1 for Assertion 3: For each γ ∈ L it holds, that Gγ is closed.

Proof of Claim 1: Observe first the following alternative description of Gγ :

Gγ = {g ∈ G|Φ̃γ(yγ , g) = xγ}

We now define a map
Φ̃γ(yγ) : G→ Xγ , g 7→ Φ̃γ(yγ , g)

Please observe that this map is continuous, since Φ̃γ is continuous in product topology.
With this we can write:

Gγ = Φ̃γ(yγ)−1({xγ})

Further observe that Xγ is a Hausdorff space, and hence single point sets are closed.
Further Φ̃γ(yγ) is continuous, since Φ̃ is continuous in product topology. Hence Gγ is a
continuous preimage of a closed set and hence closed.

Claim 2 for Assertion 3: The family of closed sets (Gγ ⊂ G)γ∈L satisfies the finite
intersection property.

Proof of Claim 2: Let S ⊂ L be finite. Then there is a γ̂ ∈ L such that ∀γ ∈ S : γ ≤ γ̂,
since L is a directed poset. Further by eq. (4.2) we have, that Gγ 6= ∅ for each γ ∈ L and
especially Gγ̂ 6= ∅. Now let gγ̂ ∈ Gγ̂ and let γ ∈ S. We then have:

xγ = pγγ̂xγ̂

yγ = pγγ̂yγ̂

Further we have xγ̂ = yγ̂gγ̂ . By equivariance of the projection maps we now have:

xγ = pγγ̂xγ̂ = pγγ̂(yγ̂gγ̂) = (pγγ̂yγ̂) gγ̂ = yγgγ̂
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I.e. we have shown, that ∀γ ∈ S : gγ̂ ∈ Gγ and hence we have shown Gγ̂ ⊂ Gγ for all
γ ∈ S. Hence:

∅ 6= Gγ̂ ⊂
⋂
γ∈S

Gγ

And hence (Gγ ⊂ G)γ∈L satisfies the finite intersection property.

With lemma 24 it now follows, that ⋂
γ∈L

Gγ 6= ∅

since G is compact Hausdorff space. Now⋂
γ∈L

Gγ = {g ∈ G|∀γ ∈ L : xγ = yγg}

Hence we have found g ∈ G such that ∀γ ∈ L : xγ = yγg. Hence Assertion 3 is shown.

4.4. Inductive Limits of C∗-Dynamical Systems

We first define the following:

Definition 27
The family

(
(Uγ , G,Φγ), φγ′γ

)
γ,γ′∈L is called an inductive family of C∗-dynamical systems

iff:

1. (Uγ , G,Φγ) is a C∗-dynamical system for each γ ∈ L.

2. (Uγ , φγ′γ)γ,γ′∈L is an inductive family of C∗-algebras.

3. ∀γ′ ≥ γ : ∀aγ ∈ Uγ : φγ′γ(gaγ) = gφγ′γ(aγ).

In this case we call the (Φγ : Gy Uγ)γ∈L an inductive family of C∗-group actions.
Further the inductive limit of above inductive family of C∗-dynamical systems is an C∗-
dynamical system (

lim
→

Uγ , G, lim→
Φγ

)
such that:

∀γ ∈ L : ∀aγ ∈ Uγ : φγ(gaγ) = gφγ(aγ)

In this case we call lim→Φγ : Gy lim→Xγ the inductive limit C∗-group action.

With this we show the following theorem:

Theorem 31
Let

(
(Uγ , G,Φγ), φγ′γ

)
γ,γ′∈L be an inductive family of C∗-dynamical systems.

Then: Its inductive limit exists and is unique.

Proof. We define the conjectured inductive limit C∗-group action on a dense subset of
lim→ Uγ :

∀g ∈ G : Φg :
⋃
γ∈L

im(φγ)→
⋃
γ∈L

im(φγ), φγ(aγ) 7→ φγ(gaγ)

We now want to show, that the unique extension of this map, given by lemma 9, exists
and satisfies the properties of an inductive limit C∗-group action.
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Assertion 1: Φg defined as above is well defined.

Proof of Assertion 1: This follows by the usual discussion. Let φγ(aγ) = φγ′(aγ′). Then
there is a γ̂ ≥ γ, γ′. We then have: φγ(aγ) = φγ̂(aγ̂) = φγ′(aγ′) for aγ̂ = φγ̂γ(aγ) =
φγ̂γ′(aγ′). We then have:

φγ̂(aγ̂) = φγ̂(gφγ̂γaγ) = φγ(gaγ)

φγ̂(aγ̂) = φγ̂(gφγ̂γ′aγ′) = φγ′(gaγ′)

and hence it is well-defined.

Assertion 2: Φg satisfies the prerequisits of lemma 10, i.e. for each g ∈ G it holds, that
Φg is an isometric ∗-isomorphism.

Proof of Assertion 2: We now have to show, that for each g ∈ G it holds, that

Φg :
⋃
γ∈L

im(φγ)→
⋃
γ∈L

im(φγ), φγ(aγ) 7→ φγ(gaγ)

is an isometric ∗-isomorphism. We first show, that it is a ∗-morphism. Therefore recall,
that for each g ∈ G we have, that

Φγ(g, ·) : Uγ → Uγ

is a ∗-morphism. Now let without loss of generality a, b ∈ im(φγ) and α, β ∈ C. Then:

Φg(αa+ βb) = φγ(g(αaγ + βbγ)) = αφγ(ga) + βφγ(gb) = αΦg(a) + βΦg(b)

Φg(ab) = φγ(gaγbγ) = φγ((gaγ)(gbγ)) = φγ(gaγ)φγ(gbγ) = Φg(a)Φg(b)

Φg(a
∗) = φγ(ga∗γ) = φγ((gaγ)∗) = φγ(gaγ)∗ = Φg(aγ)∗

and hence it is a ∗-morphism.

We now show, that Φg defines an isometry and hence also injective. Therefore let
a ∈ im(φγ). Then observe:

‖Φg(a)‖ = ‖φγ(gaγ)‖
= ‖Φγ(g, aγ)‖γ
= ‖aγ‖γ

Where we have used, that Φγ(g, ·) and φγ are isometries.

Now surjectivity. Let b ∈ im(φγ) with b = φγ(bγ). We set aγ = g−1bγ . With this we
have:

gφγ(g−1aγ) = φγ(bγ) = b

and hence surjectivity is shown. The claim then follows by lemma 10

Assertion 3: Φ : G→ Aut(lim→ Uγ) is a group homomorphism.
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Proof of Assertion 3: Thise follows directly, since on the dense subset
⋃
γ∈L imφγ the

following holds:

Φg ◦ Φh|⋃
γ∈L imφγ

= Φgh|⋃
γ∈L imφγ

Φ−1
g

∣∣⋃
γ∈L imφγ

= Φg−1

∣∣⋃
γ∈L imφγ

Now the assertion follows by uniqueness of the extension given by lemma 10.

Assertion 4: Φ : G→ Aut(lim→ Uγ) is strongly continuous.

Proof of Assertion 4: Therefore let (gn)n∈I ⊂ G be a net with lim gn = g. We now want
to show:

∀ε > 0 : ∃N ∈ I : ∀n ≥ N : ‖Φ(gn, a)− Φ(g, a)‖ < ε

Therefore let (am)m∈N ⊂
⋃
γ∈L im(φγ) be a sequence with limm→∞ am = a ∈ limUγ . Now

let m ∈ N arbitrary. Then:

‖Φ(gn, a)− Φ(g, a)‖
= ‖Φ(gn, a)− Φ(gn, am) + Φ(gn, am)− Φ(g, am) + Φ(g, am)− Φ(g, a)‖
≤ ‖Φ(gn, a)− Φ(gn, am)‖+ ‖Φ(gn, am)− Φ(g, am)‖+ ‖Φ(g, am)− Φ(g, a)‖ (4.4)

Now consider the first summand of eq. (4.4). Let ε > 0. Since ∗-morphisms are contracting
and since (am) converges towards a we have:

‖Φ(gn, a)− Φ(gn, am)‖ = ‖Φ(gn, a− am)‖ ≤ ‖a− am‖ <
ε

3

Now consider the third summand. For the same ε with the same M we have with the
same argumentation also for all m ≥M :

‖Φ(g, am)− Φ(g, a)‖ = ‖Φ(g, am − a)‖ ≤ ‖a− am‖ <
ε

3

We now consider the second summand. Therefore choose m ≥ M arbitrary but fixed.

Then there is a γ ∈ L with am ∈ im(φγ). Set a
(γ)
m such that φγ

(
a

(γ)
m

)
= am. Then there

is an N ∈ I such that for all n ≥ N the following holds:

Φ(gn, am)− Φ(g, am) = ‖Φ(gn, φγ(a(γ)
m ))− Φ(g, φγ(a(γ)

m ))‖
= ‖φγ(gna

(γ)
m )− φγ(ga(γ)

m )‖
= ‖φγ(gna

(γ)
m − ga(γ)

m )‖

= ‖gna(γ)
m − ga(γ)

m ‖ <
ε

3

Where we have used continuity of Φγ in pointwise norm topology. And hence we have
shown, that:

∀ε > 0∃N ∈ I : ∀n ≥ N : ‖Φ(gn, a)− Φ(g, a)‖ < ε

3
+
ε

3
+
ε

3

Assertion 5: Φ is really the inductive limit C∗-group action.

Proof of Assertion 5: It follows directly by the definition of Φ, that φγ ◦ Φγ(·, g) =
Φ(·, g) ◦ φγ . Hence it is the inductive limit group action.
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Assertion 6: The inductive limit C∗-group action is unique.

Proof of Assertion 6: Assume that there is another inductive limit C∗-group action
Ψ : Gy lim→ Uγ with Ψ 6= Φ. This means especially, that there is a g ∈ G with Ψg 6= Φg.
By the uniqueness of the bounded extension given by lemma 9 this would mean, that

Φg|⋃
γ∈L im(φγ) 6= Ψg|⋃

γ∈L im(φγ) (4.5)

We now have, since Φ and Ψ are inductive limit C∗-group actions, that for aγ ∈ im(φγ)
the following holds:

Φg(aγ) = φγ(gaγ) = Ψg(aγ)

Which is a contradiction to eq. (4.5).

We now want to investigate the prototypical example of the algebra of continuous func-
tions in the context of inductive limits:

Theorem 32
Let (Xγ , pγγ′)γ,γ′∈L be a projective family of compact Hausdorff spaces with projective limit
(lim←Xγ , (pγ)γ∈L) together with a compatible family of group actions Φ̃γ : Xγ x G with
projective limit Φ̃ : lim←Xγ x G. Then:

1.
(

(C(Xγ), G,Φγ), φγ′γ = p∗γγ′
)
γ,γ′∈L

with

Φγ : G× C(Xγ)→ C(Xγ), (g, fγ) 7→ fγ ◦ Φ̃γ(·, g)

is an inductive family of C∗-dynamical systems.

2. Its inductive limit is given by the C∗-dynamical system (C(lim←Xγ), G,Φ) together
with the maps (φγ = p∗γ)γ∈L where

Φ : G× C(lim
←
Xγ)→ C(lim

←
Xγ), (g, f) 7→ f ◦ Φ̃(·, g)

Proof. 1.) We’ve already shown in lemma 21, that ∀γ ∈ L it holds, that (C(Xγ), G,Φγ) is
a C∗-dynamical system. Further we have shown in theorem 20, that (C(Xγ), φγ′γ) is an
inductive family of C∗-algebras. Hence we have still to show, that the C∗-group actions
constitute an inductive family of C∗-group actions, i.e., that φγ′γ(g·) = gφγ′γ(·) holds for
all γ′ ≥ γ ∈ L. Therefore let γ ∈ L and f ∈ C(Xγ). Then:

φγ′γ(gf) = φγ′γ(f ◦ Φ̃γ(·, g))

= f ◦ Φ̃γ(·, g) ◦ pγγ′
= f ◦ pγγ′ ◦ Φ̃γ′(·, g)

= gφγ′γf

And hence the claim follows.
2.) Please recall that the inductive limit group action, which we will denote by Φ, is
defined on the dense subset

⋃
γ∈L im(φγ) as

∀g ∈ G : Φg :
⋃
γ∈L

im(φγ)→
⋃
γ∈L

im(φγ), φγ(aγ) 7→ φγ(gaγ)
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4. Spectral Theory of C∗-Dynamical Systems

Hence in our case:

∀g ∈ G : Φ :
⋃
γ∈L

im(φγ)→
⋃
γ∈L

im(φγ), fγ ◦ pγ 7→ fγ ◦ Φ̃γ(·, g) ◦ pγ

Now we have by G-equivariance of pγ :

fγ ◦ Φ̃γ(·, g) ◦ pγ = fγ ◦ pγ ◦ Φ̃g

I.e.

∀g ∈ G : Φg :
⋃
γ∈L

im(φγ)→
⋃
γ∈L

im(φγ), fγ ◦ pγ 7→ fγ ◦ pγ ◦ Φ̃g = Φg(fγ ◦ pγ)

Hence we have shown, that Φ satisfies the defining property of an inductive limit C∗-group
action on a dense subset. Hence the claim follows by uniqueness of the extension.

4.5. Spectral Theory for Inductive Limits of C∗-Dynamical
Systems

Corollar 6
Let (Xγ , pγγ′)γ.γ′∈L be a projective family of compact Hausdorff spaces with projective
limit (lim←Xγ , (pγ)γ∈L). Let Φ̃γ : Xγ x G be a compatible family of group actions with
projective limit group action Φ̃ : lim←Xγ x G. Let further

(
(C(Xγ), G,Φγ)φγ′γ

)
γ,γ′∈L be

the corresponding family of C∗-dynamical systems as defined in the last theorem.
Then:

1.
(

FixG(C(Xγ)), φγ′γ
∣∣
FixG(C(Xγ))

)
γ,γ′∈L

is an inductive family of C∗-algebras.

2. lim→ FixG (C(Xγ)) = FixG (lim→C(Xγ)).

Proof. 1.) This assertion will be shown in theorem 33 for general unital, abelian C∗-
algebras without any reference to this claim. Hence this claim follows as a special case.
2.) We have already shown in lemma 21 and theorem 32, that (C(Xγ), G,Φγ) and
(lim→C(Xγ), G,Φ) are abelian, unital C∗-dynamical systems. Hence it follows with
lemma 19, that FixG(lim→C(Xγ)) is an abelian, unital C∗-algebra. We know further
from lemma 21 that

FixG(C(Xγ)) = C(Xγ/G)

Further we have with theorem 30 and theorem 20, that:

lim
←

(Xγ/G) = (lim
←
Xγ)/G

lim
→
C(Xγ/G) = C(lim

←
Xγ/G)

lim
→
C(Xγ) = C(lim

←
Xγ)

All together:
FixG(lim

→
C(Xγ)) = FixG(C(lim

←
Xγ)) = C(lim

←
Xγ/G)

And further:

lim
→

FixG(C(Xγ)) = lim
→
C(Xγ/G) = C((lim

←
Xγ)/G) = FixG(lim

→
C(Xγ))

And the claim is shown.
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We now generalize this result:

Theorem 33
Let

(
(Uγ , G,Φγ), φγ′γ

)
γ,γ′∈L be an inductive family of C∗-dynamical systems such that Uγ

is abelian and unital for each γ ∈ L. Then:

1.
(

FixG(Uγ), φγ′γ
∣∣
FixG(Uγ)

)
γ′≥γ∈L

is an inductive family of abelian, unital C∗-algebras.

2. lim→ FixG(Uγ) = FixG(lim→ Uγ)

Proof. 1.) We have already shown, that FixG(Uγ) is an abelian, unital C∗-algebra for all
γ ∈ L. We now have to show, that φγ′γ

∣∣
FixG(Uγ)

is a well defined isometric ∗-morphism

and satisfies the composition properties demanded in the definition of an inductive family:

φγγ |FixG(Uγ) = id.

φγ′′γ′
∣∣
FixG(Uγ)

φγ′γ
∣∣
FixG(Uγ)

= φγ′′γ
∣∣
FixG(Uγ)

But therefore observe, that both is trivially satisfied, since φγ′γ
∣∣
FixG(Uγ)

an isometric ∗-
morphism that satisfies the composition properties of an inductive family restricted to a
subalgebra. It remains to show well definedness.

Therefore let aγ ∈ FixG(Uγ) and g ∈ G. Then:

g · φγ′γ
∣∣
FixG(Uγ)

(aγ) = g · φγ′γ(aγ)

= φγ′γ(gaγ)

= φγ′γ(aγ)

= φγ′γ
∣∣
FixG(Uγ)

(aγ)

and hence im
(
φγ′γ

∣∣
FixG(Uγ)

)
⊆ FixG(Uγ′).

2.) Let Gγ : Uγ → C(∆(Uγ)) and G : lim→ Uγ → C(∆(lim→ Uγ)) be the correspond-
ing Gel’fand transforms, which are isometric isomorphisms of C∗-algebras. Since Uγ ∼=
C(∆(Uγ)) we have lim→ FixG(Uγ) ∼= lim→ FixG(C(∆(Uγ))). Further we have by corol-
lar 6, that lim→ FixG(C(∆(Uγ))) = FixG(lim→C(∆(Uγ))). Now since lim→C(∆(Uγ)) ∼=
lim→ Uγ via the Gel’fand transform, we have finally FixG(lim→C(∆(Uγ))) ∼= FixG(lim→ Uγ),
and the assertion follows.

All together we have now the following theorem:

Theorem 34
Let

(
(Uγ , G,Φγ), φγ′γ

)
γ,γ′∈L be an inductive family of C∗-dynamical systems. Then:

∆
(

FixG(lim
→

Uγ)
)

= lim
←

(∆(Uγ)/G)

Proof. This is an easy corollar of preceding theorems. By theorem 33 we have:

∆
(

FixG(lim
→

Uγ)
)

= ∆
(

lim
→

FixG(Uγ)
)

By theorem 18 we have:

∆
(

lim
→

FixG(Uγ)
)

= lim
←

∆(FixG(Uγ))
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By theorem 28 we have further:

∆(FixG(Uγ)) = ∆(Uγ)/G

And this gives all together:

∆
(

FixG(lim
→

Uγ)
)

= lim
←

(∆(Uγ)/G)

And hence the claim follows.
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5. Application to Polymer Quantization of
the Scalar Field

The aim of this chapter is to calculate the quantum configuration space of polymer matter
using the methods developed in this thesis. Therefore in the first section a new set of
configuration variables for scalar field theory is given, which will be used for the quantiza-
tion procedure. The second section defines the corresponding quantum algebra. The third
section expresses this quantum algebra as an inductive limit algebra using two nested
inductive limit procedures. In the fourth section the spectral theory of the elementary
constituents of the inductive family is investigated. In the next section then finally the
quantum configuration space of the full point holonomy algebra is computed using the
methods presented in chapter 3. The last section comprises a discussion of our approach.

The definition of the classical configuration variables as well as the definition of the
quantum algebra orient themselves at [20]. However our definitions differ slightly from
the definitions presented in [20], since our constructions are somewhat more convenient
for the inductive limit procedure. Anyhow the reader is encouraged to note, that the
constructions presented in [20] are equivalent to the constructions used in this thesis. The
topological considerations appearing in the fifth section can be found partly in Ch. 28 of
[31]. The corresponding inductive limit construction on the C∗-side as well as the cor-
respondence between the latter and the projective limit construction on the topological
side is firstly investigated in this thesis. The application of this correspondence to the
calculation of the full quantum configuration space is also presented firstly in this thesis.

Finally the author wants to emphasize that polymer quantization serves as an easy
toy example for understanding loop quantization, since the algebraic structure of theory
is very similiar to the corresponding structures in loop quantum gravity. However, the
system of a scalar field comprises no gauge redundancies, and hence the theory is somewhat
simpler. The latter fact also expresses himself in the fact, that in this Chapter no results
of chapter 4 are needed.

5.1. Classical Configuration Variables: Point Holonomies

Let M be a compact, smooth, pseudoriemannian Manifold and let ϑ : R × Σ → M be
a foliation by euclidean hypersurfaces. The classical configuration space of a real scalar
thereon is then given by:

Aclass = {φ ∈ C∞c (Σ,R)}

We now define the a new set of configuration variables, which will serve as a starting point
for the so called polymer quantization:

Definition 28 (cp. [20])
Let λ : Σ → R be a function with finite support. Then define the point holonomy corre-
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5. Application to Polymer Quantization of the Scalar Field

sponding to λ as:

Nλ : A → C, φ 7→ ei
∑
v∈supp(λ) λ(v)φ(v)

Please observe that the Poisson bracket of two point holonomies vanishes and addition-
ally further relations hold:

Lemma 25
Let anything be as before. Then the Poisson bracket of two point holonomies vanishes,
i.e.:

{Nα, Nβ} = 0

Further the following relations hold:

NαNβ = Nα+β

Nα = −Nα

Nα = 1A ⇔ α = 0

where 1A : A → R, φ 7→ 1 and where Nα denotes the complex conjugate of Nα.

Proof. That the Poisson bracket vanishes follows directly, since the point holonomy does
not depend on the momentum variables. The other relations can also be shown straight-
forwardly. Observe further, that N0 = 1A follows directly, since e0 = 1. Now observe,
that the other direction follows, since Nα = 0 implies

∀φ ∈ A : ∃k ∈ Z :
∑

v∈supp(α)

α(v)φ(v) = 2πk

Then ∀v ∈ supp (α) : α(v) = 0 can be shown by choosing an arbitrary v ∈ supp (α)
and a φ ∈ A which vanishes everywhere except for a small neighborhood v ∈ U with
supp (α) ∩ U = {v}.

5.2. The Point Holonomy Algebra

We now want to define the quantum algebra of configuration variables which will be called
the point holonomy algebra. We orient ourselves at the definition used in [20], but our
definition is slightly different, since we used a different, but equivalent, definition for the
classical point holonomies.

Definition 29 (cp. [20])
Let C = {Nλ|λ : Σ → R has finite support} and let FC be the free complex vector space
over C. Please note that at this sate Nλ is just a symbol used for the definition of the free
vector space.

Define a multiplication on FC via(
n∑
i=1

ziNλi

)
·

 m∑
j=1

zjNλj

 :=

n∑
i=1

m∑
j=1

zizjNλi+λj
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and a ∗-structure is defined by

(
n∑
i=1

ziNλi)

)∗
=

n∑
i=1

z̄iN−λi

and define further a norm by:∥∥∥∥∥
n∑
i=1

ziNλi

∥∥∥∥∥ = sup
φ∈Cc(Σ,R)

∣∣∣∣∣
n∑
i=1

ziNλi [φ]

∣∣∣∣∣
Then define the point holonomy algebra as the abelian, unital C∗-algebra C with C = FC
where the completion is performed with respect to above norm and further C is endowed
with the ∗-algebra structure from above.

We now show, that this really defines an abelian, unital C∗ algebra as proposed in the
definition:

Lemma 26
The point holonomy algebra C defines an abelian, unital C∗-algebra with unit 1 = N0 where
0 : Σ→ R, x 7→ 0 (have in mind, that supp (0) = ∅ and hence is finite).

Proof. We first show, that the multiplication is associative. With lemma 37 we have, that
it is sufficient to show, that (NαNβ)Nγ = Nα (NβNγ) holds. This is indeed the case, since:

(NαNβ)Nγ = N(α+β)+γ

Nα (NβNγ) = Nα+(β+γ)

Here we have used, that + is associative on R and hence associative on real valued func-
tions. Now we show, that ∗ is an involution. With lemma 37 we have, that it is sufficient
to show, that N∗∗α = Nα and (NαNβ)∗ = N∗βN

∗
α hold. This is indeed the case, since:

N∗∗α = N∗−α = Nα

(NαNβ)∗ = N∗α+β = N−α−β = N−β−α = N∗βN
∗
α

We now show, that the norm is submultiplicative and satisfies the C∗-property. This
follows by the usual analytical tricks:∥∥∥∥∥∥

n∑
i=1

ziNαi

m∑
j=1

z̃jNβj

∥∥∥∥∥∥ = sup
φ∈C∞c (Σ)

∣∣∣∣∣∣
n∑
i=1

ziNαi [φ]

m∑
j=1

z̃jNβj [φ]

∣∣∣∣∣∣
≤ sup

φ2∈C∞c (Σ)

 sup
φ1∈C∞c (Σ)

∣∣∣∣∣
n∑
i=1

ziNαi [φ1]

∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

z̃jNβj [φ2]

∣∣∣∣∣∣


=

∥∥∥∥∥
n∑
i=1

ziNαi

∥∥∥∥∥
∥∥∥∥∥∥
m∑
j=1

z̃jNβj

∥∥∥∥∥∥
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and ∥∥∥∥∥
(

n∑
i=1

ziNαi

)(
n∑
i=1

ziNαi

)∗∥∥∥∥∥ = sup
φ∈C∞c (Σ)

∣∣∣∣∣∣
(

n∑
i=1

ziNαi [φ]

)(
n∑
i=1

ziNαi [φ]

)∣∣∣∣∣∣
=

(
sup

φ∈C∞c (Σ)

∣∣∣∣∣
n∑
i=1

ziNαi [φ]

∣∣∣∣∣
)2

=

∥∥∥∥∥
n∑
i=1

ziNαi

∥∥∥∥∥
2

Finally we have, that the algebra is commutative, since

NαNβ = Nα+β = Nβ+α = NβNα

and has unit 1 = N0 since:
N0Nα = Nα = NαN0

Hence C is an abelian, unital pre C∗-algebra by lemma 37 and hence C is an abelian, unital
C∗-algebra.

5.3. The Point Holonomy Algebra as an Inductive Limit
C∗-Algebra

In this section we will see, that the point holonomy algebra can be expressed by using two
nested inductive limit constructions:

5.3.1. The Point Holonomy Algebra as an Inductive Limit of C∗-Algebras of
Almost Periodic Functions

Define the following objects:

Definition 30
Let anything be as before. Then:

1. L1 := {V ⊂ Σ|V is finite} together with the relation V ≤ V ′ ⇔ V ⊆ V ′.

2. For each V ∈ L1 define the algebra CV via CV = FCV with

CV = {Nλ|λ : Σ→ R ∧ supp (λ) ⊆ V }

and C∗-algebra structure as defined for C.

3. For each V ≤ V ′ define φV ′V : CV → CV ′ via Nλ 7→ Nλ.

We now can show the following:

Theorem 35
Let anything be as before. Then:

1. L1 is a label set.

2. For each V ∈ L the map i : CV ↪→ C, Nα 7→ Nα defines an isometric embedding.
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3. (CV , φV ′V )V,V ′∈L is an inductive family of abelian, unital C∗-algebras with unit N0.

4. C is the inductive limit of this inductive family.

Proof. 1.) We have reflexivity since V1 ⊂ V1. Further we have symmetry, since (V1 ⊂
V2)∧ (V2 ⊂ V1)⇒ V1 = V2. Transitivity also follows easily, since (V1 ⊂ V2)∧ (V2 ⊂ V3)→
(V1 ⊂ V3). That the set is directed follows also, since we can set V̂ = V1∪V2 for V1, V2 ∈ L.
With this V1, V2 ⊂ V̂ follows.
2.) Define the conjectured isometric embedding

i : CV ↪→ C

via its action on basis elements as Nα 7→ Nα. Observe that

i(NαNβ) = i(Nα+β) = Nα+β = NαNβ = i(Nα)i(Nβ)

i(N∗α) = i(N−α) = N−α = N∗α = i(Nα)∗

and hence it defines a unique ∗-morphism by lemma 38. Further observe that it is an
isometry: ∥∥∥∥∥i

(
n∑
i=1

ziNαi

)∥∥∥∥∥ = sup
φ∈C∞c (Σ)

∣∣∣∣∣
n∑
i=1

ziNαi [φ]

∣∣∣∣∣
=

∥∥∥∥∥
n∑
i=1

ziNαi

∥∥∥∥∥
Hence the claim follows.
3.) That CV is an commutative C∗-algebra follows directly with 2.). Further it is unital
for any V , since supp (0) = ∅ ⊂ V . We now want to show, that φV ′V is an isometric
∗-morphism and satisfies the composition properties needed for (CV , φV ′V )V,V ′∈L to be an
inductive family. That it defines an isometric ∗-morphism is shown in the same way, as it
was shown, that i defines an isometric ∗-morphism. To show the composition properties
demanded in the definition of an inductive family observe the following:

φV3V2φV2V1 : Nα 7→ Nα

φV3V1 : Nα 7→ Nα

φV V : Nα 7→ Nα

id. : Nα 7→ Nα

Since by lemma 38 and lemma 9 an isometric ∗-morphism is uniquely defined by its action
on the basis elements we hence obtain:

φV3V2φV2V1 = φV3V1

φV V = id.

Hence the claim follows.
4.) We use lemma 11. First observe, that CV ⊂ C is a subalgebra as it was shown in 2.).
Further observe, that CV ⊂ CV ′ for V ≤ V ′ can be considered as a subalgebra since φV ′V
is an injective ∗-morphism. Hence we have:

lim
→

CV =
⋃
V ∈L

CV =
⋃
V ∈L

CV
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Then the claim follows with lemma 11 if the following holds:⋃
V ∈L

CV = C

But this is indeed the case. Therefore let N =
∑n

i=1 λiNαi ∈
⋃
V ∈L CV . Then each αi has

finite support and hence N lies in C. On the other hand let
∑n

i=1 λiNαi ∈ C. Then choose
V =

⋃n
i=1 supp (αi), which is finite, since it is a finite union of finite sets. Hence V ∈ L

and N ∈ CV ⊂
⋃
V ∈L CV .

The elementary constituents of this inductive family are algebras of the form C{x} for
x ∈ Σ. Since the basis elements of this algebra are given by (Nλ)λ∈R, a finite linear
combination of those corresponds to a classical observable of the type:

φ 7→
n∑
i=1

zie
iλiφ(x)

Such a function can be seen as a superposition of trigonometric functions and the closure
of all such functions is called the algebra of Bohr almost periodic functions.

5.3.2. The C∗-Algebra of Almost Periodic Functions as an Inductive Limit
C∗-algebra

In this section we want to express the algebra C{x} as an inductive limit of more elementary
C∗-algebras whose spectra can be calculated by easy algebraic methods.

Therefore we first define the corresponding label set:

Definition 31 (cp. Ch. 28 of [31], [34]) 1. A tuple (ki)
n
i=1 ⊂ R is called rationally in-

dependent, if for qi ∈ Q it holds, that:

n∑
i=1

qiki = 0⇒ ∀i : qi = 0

2. Define the additive subgroup of R generated by a finite set of rationally independent
frequencies (ki)

n
i=1 as

S(k1, ..., kn) =

{
n∑
i=1

qiki|qi ∈ Q

}

3. Define the label set (L2,≤) via

L2 = {S(k1, ..., kn)|ki ∈ R, n ∈ N}

and S1 ≤ S2 ∈ L2 iff for S1 = S(k1, ..., kn) and S2 = S(h1, ..., hm) it holds, that
there are qij ∈ Z with ki =

∑m
j=1 qijhj.

Before showing, that this really constitutes a label set, we want to define the corre-
sponding inductive family of C∗-algebras:

Definition 32
Let x ∈ Σ.
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1. Let (ki)
nS
i=1 be a tuple of nS rationally independent numbers and let S = S(k1, ..., knS )

be the corresponding additive subgroup of R. Then define Cx(S) via Cx(S) = FCx(S)
and:

Cx(S) = {Nλ|λ : Σ→ S ∧ supp (λ) ⊂ {x}} ∼= S

Define further a norm and a ∗-structure for Cx(S) analogously as in definition 29.

2. For convenience denote the abelian, unital C∗-algebra C{x} by Cx = C{x}.

We now show, that all this is well defined:

Lemma 27
Let anything be as before. Then:

1. L2 is a Label set.

2. i : Cx(S) ↪→ Cx is an isometric embedding of C∗-algebras.

3. Cx(S) is an abelian, unital C∗-algebra.

4. The tuple (Cx(S),ΛS′S)S′,S∈L2 is an inductive system of C∗-algebras.

5. lim→ Cx(S) = Cx.

Proof. 1.) First reflexivity is shown: S(k1, ..., kn) ≤ S(k1, ..., kn) holds, since:

ki =

n∑
i=1

δijkj

Now towards symmetry: Let S(k1, ..., kn) ≤ S(h1, ..., hm) and S(h1, ..., hm) ≤ S(k1, ..., km).
This means that there are qij , q̃ij ∈ Z with:

ki =

m∑
j=1

qijhj

hi =

n∑
j=1

q̃ijhj

Now let
∑n

i=1 qiki ∈ S(k1, ..., kn). Then:

n∑
i=1

qiki =
n∑
i=1

m∑
j=1

qiqijhj

=
m∑
j=1

(
n∑
i=1

qiqij

)
hj

Since (
∑n

i=1 qiqij) ∈ Q, it follows then, that
∑n

i=1 qiki ∈ S(h1, ..., hm). The inclusion is
shown in the same way, and hence S(k1, ..., kn) = S(h1, ..., hm). Now towards transitivity:
Let S(k1, ..., kn) ≤ S(h1, ..., hm) and S(h1, ..., hm) ≤ S(r1, ..., rs). I.e.:

ki =
m∑
j=1

qijhj

hj =

s∑
l=1

q̃jlrl
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5. Application to Polymer Quantization of the Scalar Field

Hence ki =
∑m

j=1

∑s
l=1 qij q̃jl =

∑s
l=1

(∑m
j=1 qij q̃jl

)
rl and hence S(k1, ..., kn) ≤ S(r1, ..., rs).

Finally we want to show, that L together with ≤ is directed. Consider S = S(k1, ..., kn)
and S′ = S(h1, ..., hm). Now set Ŝ = S(r1, ..., rn+m) with:

ri =

{
ki i = 1, ..., n
hi−n i = n+ 1, ..., n+m

Then

ki =

m+n∑
j=1

qijrj

hi =
m+n∑
j=1

q̃ijrj

holds, with

qij =

{
δij j = 1, ..., n
0 j = n+ 1, ..., n+m

and

q̃ij =

{
0 j = 1, ..., n

δi(j−n) j = n+ 1, ..., n+m

and hence S′, S ≤ Ŝ and the assertion follows.
2.) This is shown in totally the same way, as assertion 2 of theorem 35 was shown. 3.)
That it is an abelian C∗-algebra follows directly with 2.). That it is unital follows, since
0 ∈ S and hence N0 ∈ Cx(S).
4.) That each Cx(S) is a C∗-algebra was already shown above. That for S′ ≥ S it holds,
that ΛS′S is an isometric ∗-morphism and satisfies the composition properties is shown in
the same way as in theorem 35.
5.) For this we use again lemma 11. Therefore first observe, that Cx(S) ⊂ Cx follows with
2.). Now let S′ ≥ S ∈ L. I.e. there is a qij ∈ Z s.th.

ki =
∑
j

qijhj

holds for S = S(k1, ..., kn) and S′ = S(h1, ..., hm). Hence we have for λ ∈ S, that

λ =
∑
i

qiki =
∑
ij

qiqijhj =
∑
j

(∑
i

qiqij

)
hj

and hence, that λ ∈ S′. Since ΛS′S is an isometric ∗-morphism we have C(S) ⊂ C(S′).
Hence we have, that

lim
→

C(S) =
⋃
S∈L

C(S)

We now show, that
⋃
S∈L C(S) = Cx, since then the claim follows. Therefore let first

N =
∑m

i=1 ziNαi ∈
⋃
S∈L C(S). Now each αi is a map αi : {x} → Si for a Si generated by

rotationally independent numbers (k
(i)
1 , ..., k

(i)
ni ). I.e. αi(x) ∈ Si = S(k

(i)
1 , ..., k

(i)
ni ). Now we

have, since L2 is directed, that there is a Ŝ ≥ S1, ..., Sm with Si ⊆ Ŝ for i = 1, ...,m and
hence αi(x) ∈ Ŝ. With this we have N ∈ Cx(Ŝ) and since Cx(Ŝ) ⊂ Cx is a subalgebra, it
follows, that N ∈ Cx. Now let N =

∑m
i=1 ziNαi ∈ Cx. Then with the same argumentation

as before we have a Ŝ ∈ L2 with Nαi ∈ Cx(Ŝ) for all i = 1, ...,m . Since Cx(Ŝ) ⊂⋃
S∈L Cx(S), then the claim follows.
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Hence we have expressed the full point holonomy algebra using two inductive limits and
arrived at an elementary C∗-algebra, whose spectrum can be calculated by easy algebraic
methods.

5.4. Spectral Theory of Cx(S)

In this section we want to calculate the spectrum of Cx(S). Due to the elementary structure
of this algebra, this can be done in a straightforward way. But before doing so we show
the following:

Lemma 28 (cp. Ch. 28 of [31])
Let S ∈ L given by S = S(k1, ..., knS ). Then there is a canonical isomorphism

Hom(S,U(1)) ∼= U(1)nS

given by:

xS ∈ Hom(S,U(1)) 7→ (xS(ki))
nS
i=1 ∈ U(1)nS

Proof. Since a group homomorphism is uniquely defined by the action on the generators
of the group, an inverse for the map is easily constructed. Hence it follows, that it is
bijective.

We use this for the following definition:

Definition 33 (cp. Ch. 28 of [31])
Let S ∈ L given by S = S(k1, ..., knS ). Then define the topological space

XS = Hom(S,U(1))

topologized via the pullback topology from U(1)nS using the canonical isomorphism XS
∼=

U(1)nS .

We now can show the following, which qualifies XS as the spectrum of an abelian, unital
C∗-algebra:

Lemma 29
XS is a compact Hausdorff space.

Proof. Follows directly, since U(1)nS is a compact Hausdorff space.

We now finally calculate the spectrum of Cx(S):

Theorem 36
Let S ∈ L given by S = S(k1, ..., knS ). Then:

∆(Cx(S)) = XS

Proof. We first construct the conjectured homeomorphism Ψ : ∆(C(S))→ XS :

Ψ : ∆(C(S))→ XS , χ 7→ (Ψχ : S → U(1), λ 7→ χ(Nλ))
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5. Application to Polymer Quantization of the Scalar Field

Where we have identified S ∼= {λ : Σ → S|supp (λ) ⊂ {x}} via the obvious identification
λ 7→ (x 7→ λ).

We now have to show, that this map is a homeomorphism. Since ∆(C(S)) and XS are
compact Hausdorff spaces, it suffices to show, that this map is a well defined, continuous
bijection.

To show, that it is a bijection, we construct an inverse: Let (R : S → U(1)) ∈ XS . Then
define:

Ψ−1R : C(S)→ C, Nλ 7→ R(λ(x))

This defines a ∗-morphism by lemma 38 since R is a homomorphism. We now have to
show, that:

∀χ ∈ ∆(C(S)) : Ψχ ∈ XS

∀R ∈ XS : Ψ−1R ∈ ∆(C(S))

Ψ ◦Ψ−1 = id. ∧Ψ−1 ◦Ψ = id.

Then it follows, that Ψ is a well-defined bijection with inverse Ψ−1.

We first show, that ∀χ ∈ ∆(C(S)) : Ψχ ∈ XS .

Therefore let χ ∈ ∆(C(S)), i.e. χ : C(S) → C is a non-zero ∗-homomorphism. We now
want to show, that Ψχ ∈ XS . Therefore observe first, that for λ ∈ S we have:

|Ψχ(λ)|2 = |χ(Nλ)|2

= χ(Nλχ(Nλ)

= χ(Nλ)χ(N∗λ)

= χ(Nλ)χ(N−λ)

= χ(NλN−λ)

= χ(N0)

= χ(1)

= 1

Here we have used remark 3 in the last step. Hence we have, that χ(Nλ) ∈ {u ∈ C||u| =
1} = U(1) for all λ ∈ S.

We now have to show, that Ψ defines a group homomorphism:

∀λ1, λ2 ∈ S : (Ψχ)(λ1 + λ2) = χ(Nλ1+λ2)

= χ(Nλ1Nλ2

= χ(Nλ1)χ(Nλ2)

= (Ψχ)(λ1)(Ψχ)(λ2)

Hence it is a homomorphism.

We now show that Ψ−1R ∈ ∆(C(S)) holds for all R ∈ XS .
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5.4. Spectral Theory of Cx(S)

Let R ∈ XS , i.e. R : S → U(1) is homomorphism. Now we have to show, that
Ψ−1R is a non-zero ∗-morphism. By lemma 38 it remains to show, that Ψ−1R(NαNβ) =

Ψ−1R(Nα)Ψ−1R(Nβ) and Ψ−1R(N∗α) = Ψ−1R(Nα) hold. But those follow directly:

(Ψ−1R)(NαNβ) = (Ψ−1R)(Nα+β)

= R(α+ β)

= R(α)R(β)

= (Ψ−1R)(Nα)(Ψ−1R)(Nβ)

and

(Ψ−1R)(N∗α) = (Ψ−1R)(N−α)

= R(−α)

= R(α)

= Ψ−1R(Nα)

And hence Ψ−1R is a ∗-morphism by lemma 38. Further it holds, that Ψ−1R is non-zero,
since R(0) = 1 and hence

Ψ−1R(N0) = R(0) = 1

for any R ∈ XS .

We now want to show, that Ψ−1 is really the inverse of Ψ.

Therefore let first χ ∈ ∆(C(S)). Then Ψχ(λ) = χ(Nλ) holds for λ ∈ S. And hence we
have:

Ψ−1(Ψχ)(Nλ) = χ(Nλ)⇒ Ψ−1Ψχ = χ⇒ Ψ−1 ◦Ψ = id.

On the other hand Ψ−1R(Nλ) = R(λ) holds for R ∈ XS . And further Ψ(Ψ−1R)(λ) =
Ψ−1R(Nλ) = R(λ). Hence we have Ψ ◦Ψ−1 = id. and Ψ−1 ◦Ψ = id.. Hence bijectivity is
shown.

Now we have to show continuity. Therefore let (χn)n∈I be a net in ∆(C(S)) with
limχn = χ ∈ ∆(C(S)). I.e.:

∀x ∈ C(S) : ∀ε > 0 : ∃N ∈ I : ∀n ≥ N : |χn(x)− χ(x)| < ε

Now let (k1, ..., knS ) be a set of rationally independent numbers generating S. Then above
gives:

∀i = 1, ..., nS : ∀ε > 0 : ∃N ∈ I : ∀n ≥ N : |χn(Nki)− χ(Nki)| < ε

This can be written as:

∀i = 1, ..., nS : ∀ε > 0 : ∃N ∈ I : ∀n ≥ N : |(Ψχn)(ki)− (Ψχ)(ki)| < ε

Since the topology on XS is defined via the identification XS
∼= U(1)nS , this implies, that

lim(Ψχn) = Ψχ

and hence continuity is shown.
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5.5. Spectral Theory of the Point Holonomy Algebra

By theorem 18 we know, that we now have to calculate the projective limits of the spectra
to arrive at the spectrum of the point holonomy algebra. Since we have two nested
inductive limits on the C∗-side, we also have two nested projective limits on the topological
side.

5.5.1. Spectral Theory of the Algebra of Almost Periodic Functions

We will first define the Bohr compactification of the real line R̄Bohr as the projective limit
of the XS . By theorem 18 this makes R̄Bohr to the spectrum of Cx by definition.

Definition 34 (Bohr compactification of the real line, cp. [31], [34]) 1. Define a projec-
tive family of topological spaces (XS , pSS′)S,S′∈L2 via XS defined as before and:

pSS′ : XS′ → XS , xS′ 7→ (xS′)|S

2. Define the Bohr compactification of the real line as

RBohr = lim
←
XS

We now show, that this is well defined:

Theorem 37
(XS , pSS′)S,S′∈L2 is a projective family of compact Hausdorff spaces.

Proof. That XS is a compact Hausdorff spaces for each S ∈ L2 was already shown in
lemma 29. Further pSS′ satisfies the commutativity properties, since it maps a homomor-
phism to a restriction, which satisfies this requirements trivially. Further it is continuous,
since it maps X ′S

∼= U(1)n
′
S on its subspsace U(1)nS .

Hence we obtain directly by theorem 18 and definition 34:

Corollar 7
Let anything be as before. Then:

∆(Cx) = RBohr

Proof. By theorem 18 and definition 34 we have directly:

∆(Cx) = ∆(lim
→

C(S)) = lim
←

∆(C(S)) = lim
←
XS = RBohr

5.5.2. Spectral Theory of the Point Holonomy Algebra

We now want to calculate the spectrum of the full point holonomy algebra. This is done
in the following:

Theorem 38
Let anything be as before. Then:

1. ∆(CV ) = AV where AV = {φ : V → RBohr} ∼=
∏
v∈V R̄Bohr.
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5.5. Spectral Theory of the Point Holonomy Algebra

2. ∆(C) = A where A = {φ : Σ→ RBohr}
∏
v∈Σ R̄Bohr.

Proof. 1.) We show first the prototypical case:

∆(C{x,y}) = ∆(C{x})×∆(C{y})

Therefore recall first from theorem 35, that C{x} and C{y} can be seen as subalgebras of C
since the maps

ix : Nα ∈ C{x} 7→ Nα ∈ C{x,y}

iy : Nβ ∈ C{x} 7→ Nβ ∈ C{x,y}

extend to isometric ∗-morphism and hence are especially injective.
We now define the conjectured homeomorphism

Ψ : ∆(C{x,y})→ ∆(C{x})×∆(C{y})

by:
χ 7→ Ψ(χ) = (χ ◦ ix, χ ◦ iy) = (i∗xχ, i

∗
yχ)

That i∗x and i∗y define indeed nonzero ∗-morphisms was shown in lemma 13.
We now construct the inverse:

Ψ−1 : ∆(C{x})×∆(C{y})→ ∆(C{x,y}), (χx, χy) 7→ χ

Here we define χ via its action on basis elements as follows: Let α : Σ→ R with supp (α) ⊂
{x, y}. Now define the maps

αx : Σ→ R, v 7→
{
α(v) if v = x

0 else

and:

αy : Σ→ R, v 7→
{
α(v) if v = y

0 else

Observe further, that α = αx + αy. Then define χ for α : Σ → R with supp (α) ⊂ {x, y}
as:

χ (Nα) := χx(Nαx)χy(Nαy)

We first show, that this χ defines really a non-zero ∗-morphism. Therefore observe, that
automatically χ(1) = χ(N0) = 1 holds, and hence it is non-zero. We now use again
lemma 38. Therefore let α, β : Σ→ R with supp (α) ⊂ {x, y} and supp (β) ⊂ {x, y}. Now
observe

χ(Nα)χ(Nβ) = χx(Nαx)χy(Nαy)χx(Nβx)χy(Nβy)

= χx(Nαx+βx)χy(Nαy+βy)

= χ(Nα+β)

= χ(NαNβ)

where we have used, that C is commutative and further, that α(v) + β(v) = (α + β)(v)
holds for all v ∈ Σ. Further observe

χ(N∗α) = χ(N−α)

= χx(N(−α)xχy(N(−α)y)

= χx(N−αx)χy(N−αy)

=
(
χx(Nαx)χy(Nαy)

)
= χ(Nα)
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where we have also used, that C is commutative and further, that −α(v) = (−α)(v) for
all v ∈ V . And hence it extends to an unique ∗-morphism by lemma 38.

We now show, that Ψ−1 is really an inverse. Therefore let α : Σ → R with supp (α) ⊂
{x, y}. Now observe:

χ(Nαx)χ(Nαy) = χ(Nαx+αy) = χ(Nα)

And hence Ψ−1 ◦ Ψ = id. on basis elements. It remains to show, that Ψ ◦ Ψ−1 = id..
To see this, observe first, that for αx : Σ → R with supp (αx) ⊂ {x} it follows, that
(αx)y = 0 and hence N(αx)y = 1. Now let (χx, χy) ∈ ∆(C{x}) × ∆(C{y}). Then χ̃ :=
(Ψ(χx, χy)) (Nα) = χx(Nαx)χy(Nαy). Now Ψχ̃ = (χ̃◦ ix, χ̃◦ iy) and further for αx : Σ→ R
with supp (αx) ⊂ {x}:

χ̃ ◦ ix(Nαx) = χx(Nαx)1

Further the analogous statement holds for an αy : Σ → R with supp (αy) ⊂ {y}. Hence
Ψ ◦Ψ−1 = id.

Finally we have to show, that Ψ is continuous. Therefore recall first, that Ψ is continuous
if and only if πx ◦ Ψ and πy ◦ Ψ are continuous, where πx and πy are the canonical
projections from ∆(C{x}) ×∆(C{y}) on its factors. Now let (χi)i∈I ⊂ ∆(C{x,y}) be a net

with limχi ∈ ∆(C{x,y}). This means:

∀a ∈ C{x,y} : ∀ε > 0 : ∃N ∈ I : ∀i ≥ N : |χi(a)− χ(a)| < ε

But since ix : C{x} ↪→ C{x,y} is an embedding, this implies:

∀a ∈ C{x} : ∀ε > 0 : ∃N ∈ I : ∀i ≥ N : |χi ◦ ix(a)− χ ◦ ix(a)| < ε

and hence Ψ is continuous.
By the straightforward generalization to finite products we hence obtain:

∆(CV ) =
∏
v∈V

RBohr ∼= {φ : V → RBohr}

2.) This follows with Ex. 1.1.14 of [27], where it is shown, that infinite topological products
can be expressed as a projective limit over products over finite subsets of the full index
set.

We now apply our spectral theorem on C = lim→ CV .

5.6. Discussion

In this section the relevance of the concepts developed in part I were illustrated by applying
them to the calculation of the quantum configuration space of polymer matter. The
quantum configuration space obtained with our methods equals the result presented in
the literature (see e.g. [7]). Further the concepts of part I give some further result:
On the one hand it follows from theorem 27 that each cyclic representation of the point
holonomy algebra arises as an inductive limit of representations of the corresponding
inductive families. Further it follows with theorem 14, that an orthonormal basis for the
inductive limit representation is determined by the orthonormal bases of the corresponding
members of the inductive family.
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Gravity

The aim of this chapter is the calculation of the quantum configuration space of loop
quantum gravity using the methods developed in this thesis. Therefore the first section
provides a very condensed introduction to the configuration spaces of SU(2) gauge the-
ories. The second section introduces holonomies and Wilson lines, which constitute the
classical configuration variables on which the quantum theory of loop quantum gravity
is based. The third section introduces the groupoid of paths as well as the hoop group,
which are both important concepts for defining the quantum algebra and investigating
its inductive limit decomposition. In the next section the quantum algebra of loop quan-
tum gravity is defined and it is shown, that it defines an abelian, unital C∗-algebra. The
fifth section expresses the quantum algebra of loop quantum gravity as an inductive limit
of more elementary C∗-algebras. In the sixth section dually the corresponding projec-
tive family of topological spaces together with a compatible family of group actions is
presented. The seventh section investigates in which sense the Wilson algebra arises as
the fixed point algebra of a larger C∗-algebra. Further by this and earlier results of this
chapter the quantum configuration space of loop quantum gravity is computed using the
methods developed in chapter 3 and chapter 4.

The content of the first chapter can be found in any basic reference on mathematical
gauge theory (e.g. [8] or [16]). Further the formulation of gravity as a SU(2) gauge theory
is not presented here and the author encourages the reader of this thesis to consult basic
loop quantum gravity literature for this topic (e.g. Ch. 4 of [31]). The definitions used
in Section 2, 3 and 4 are oriented themselves at [3] and [4]. The topological constructions
appearing in Section 6 are standard in loop quantum gravity and our reference for this
topic is given by Ch. 6.2 of [31]. The corresponding inductive limit construction on the
C∗-side given in section 5 is firstly presented in this thesis. Further the application of the
results of chapter 3 and chapter 4 to the calculation of the quantum configuration space
of loop quantum gravity - as it happens in section 7 - is also firstly presented in this thesis.

The author wants to emphasize, that the proofs in this chapter, which are not connected
with the main results of this thesis, are often only sketched or ommited, if they appear in
some reference. Otherwise this chapter would have got very long.

6.1. Crash Course in SU(2)-Principal Fiber Bundles

Let Σ be a compact, orientable, 3-dimensional, smooth, Riemannian manifold. Let further
(P, π,Σ;SU(2)) be a SU(2)-principal fiber bundle and (E, π,Σ, su(2)) be a SU(2)-vector
bundle with typical fiber su(2) associated to P via Ad. Further we abbreviate in this
section Principal Fiber Bundle by PFB and Vector Bundle by VB.

We first recall an important theorem:
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Theorem 39 (cp. [25], [31], [8])
Let Σ be a compact, orientable 3-manifold. Then:

1. Each SU(2)-PFB over Σ is trivial.

2. Each VB associated to a trivial PFB possesses a global frame.

3. TΣ is parallelizable.

Proof. 1.) See [25] and [31]. 2.) See [8]. 3.) See [25] and [31].

Now choose a global trivialization of P and a corresponding global frame of E. Hence
any Ehresmann connection corresponds in those coordinates to a global connection 1-form
A ∈ Ω1(Σ, su(2)) (cp. [8]). We now want to study the transformation properties of this
global connection 1-form. Therefore recall (cp. [8]), that for trivial PFBs a global frame
is given by a global section ξ ∈ Γ(P ) and a change of the global trivialization is given by
a map g ∈ C∞(Σ, G) via ξ 7→ gξ. Further this induces the following transformation on
the global connection 1-form (cp. [8] and [31] for this convention):

A 7→ gAg−1 − dgg−1

In the following we set

Aclass := Ω1(Σ, su(2))

G := C∞(Σ, SU(2))

and write above group-action as:
G y A

This can be used to define Ãclass = A/G. A theory whose configuration space is given
by Ãclass will be called a SU(2) gauge theory. In this case Aclass corresponds to some
kind of ”overcomplete” configuration space whose redundancy is modelled an action of the
group G. It is the basis of loop quantum gravity, that gravity can be modelled as a SU(2)
gauge theory. The basic idea behind this formulation of gravity is to introduce a bundle
morphism e : TΣ → E and define a Ehresmann connection on E using the Levi Civita
connection on TΣ. By smart canonical transformations on this new gravitational phase
space it is not only possible to mimic the kinematical structure of a SU(2) gauge theory,
but also to obtain a constraint structure that is similar to Yang Mills theories with gauge
group SU(2).

6.2. Classical Configuration Variables: Holonomies and Wilson
Lines

Before defining the new classical configuration variables used for loop quantization of
gravity, we need some preliminary notions:

Definition 35 (cp. [31])
Let Σ be a compact, orientable, smooth 3-manifold.

1. Let C be the space of all continuous, oriented, piecewise analytic, parametrized curves
in Σ, i.e. c ∈ C if and only if

a) c : [0, t1] ∪ [t1, t2] ∪ ... ∪ [tn−1, tn]→ Σ and
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b) c is continuous and

c) c|[tk,tk+1] is analytic and

d) c((tk, tk+1)) is submanifold.

2. Define maps b, f : C → Σ via

b : c 7→ c(0)

f : c 7→ c(1)

3. Define the maps

◦ : {(c1, c2) ∈ C × C|f(c1) = b(c2)} 7→ C
·−1 : C → C

via

◦ : (c1, c2) 7→
(
c1 ◦ c2 : t 7→

{
c1(2t) t ∈ [0, 1/2)

c2(2t− 1) t ∈ [1/2, 1]

)
and

·−1 : c 7→
(
c−1 : t 7→ c(1− t)

)
4. A retracing is a curve d ∈ C such that there is a curve c ∈ C with d = c ◦ c−1.

5. Let x0 ∈ Σ. Define the space of loops based at x0 as

Cx0 = {c ∈ C|b(c) = f(c) = x0}

With this we define holonomies and Wilson lines as observables on A:

Definition 36
(cp. [31]) Let anything be as in the last definition. Let eSU(2) denote the unit element of
SU(2). Then:

1. The holonomy H : C × A → SU(2), (c, A) 7→ Hc[A] is defined as the solution of the
following differential equation:

Ḣc[A](t) = Hc[A](t)Ac(t)ċ(t)

Hc[A](0) = eSU(2)

Hc[A] : = Hc[A](1)

2. The Wilson line is defined as

T : C × A → C, (c, A) 7→ Tc[A] :=
1

2
tr (Hc[A])

Further we call Tc a Wilson loop if c ∈ Cx0 for some x0 ∈ Σ.

We first have the following elementary statemant, whose proof can be found in any
elementary reference for holonomy theory:
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Lemma 30 (cp. p. 165 of [31])
Let c, c1, c2 be curves. Let further f(c1) = b(c2). Then we have for all A ∈ A:

Hc1◦c2 [A] = Hc1 [A]Hc2 [A]

Hc−1 [A] = H [
cA]

We now want to investigate the behavior of holonomies and Wilson lines under gauge
transformations:

Proposition 2 (cp. p. 165 of [31])
Let G y A : (g,A) 7→ gA be the group action defined in section 6.1. Let g ∈ G, A ∈ A
and c ∈ C. Let x0 ∈ Σ. Then:

1. Hc[gA] = g(b(c))Hc[A]g(f(c))−1

2. For c ∈ Cx0: Tc[gA] = Tc[A]

Proof. 1.) See p. 165 of [31]
2.) Follows directly by b(c) = f(c) and cyclicity of the trace.

Further we want to investigate the codomain of the Wilson loop:

Proposition 3
Let c ∈ Cx0 and A ∈ A. Then:

Tc[A] ∈ [−1,+1] ⊂ R

Proof. Recall, that (cp. Ex. 1.5 of [15]):

SU(2) =

{(
α −β̄
β ᾱ

)∣∣∣∣α, β ∈ C ∧ |α|2 + |β|2 = 1

}
Hence for all U ∈ SU(2) we have:

tr(U) = α+ ᾱ = 2Re(α)

Now we have |α|2 = 1−|β|2 ≤ 1 and with this Re(α)2+Im(α)2 ≤ 1. This gives |Re(α)| ≤ 1,
which implies:

∀U ∈ SU(2) :

∣∣∣∣12tr(U)

∣∣∣∣ ≤ 1

And hence the claim follows.

We now define Wilson Loops on A:

Definition 37 (cp. [3])
Let x0 ∈ Σ be arbitrary but fixed. Then the Wilson loop is defined as:

T : Cx0 ×A → [−1, 1], (c, [A]) 7→ Tc[A]
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6.3. The Groupoid of Paths and the Hoop Group

We first define the notion of a groupoid:

Definition 38 (cp. Def. 6.2.6 of [31])
A groupoid is a small category in which every morphism is iso.

We have already understood, that we can compose paths in C and also have some notion
of an inverse path. Unfortunately this gives not a groupoid, since the composition of a
path with its inverse path gives a retracing. In order to upgrade the set of paths to a
groupoid, we have to introduce an equivalence relation on C:

Definition 39 (cp. Def. 6.2.3 of [31])
Define the following equivalence relation on C:
∀c1, c2 ∈ C : c1 ∼ c2 ⇔:

1. b(c1) = b(c2) ∧ f(c1) = f(c2)

2. c1 is equivalent to c2 up to a finite number of retracings and an analytic reparametriza-
tion.

Further we set

P = C/ ∼

We have then the following theorem:

Theorem 40 (cp. p. 164 and p. 167 of [31])
Let anything be as before. Then:

1. ∼ is an equivalence relation.

2. P is a groupoid with obj(P) = Σ, and mor(x, y) = C(x, y)/ ∼, where C(x, y) denotes
the set of paths from x to y.

3. Let G be a groupoid and x ∈ obj(G). Then the vertex group mor(x, x) is a group.

Proof. See p. 164 and p. 167 of [31].

With this we define:

Definition 40 (cp. p. 167 of [31])
Let x0 ∈ obj(P) = Σ. Then define the hoop group Hx0 as:

Qx0 = mor(x0, x0)

6.4. The Wilson Algebra

In the section 6.2 we introduced certain configuration variables on the space Aclass of
Ehresmann connections. In this section we want to define the corresponding quantum
algebra of observables, where we will follow [3]. Therefore we first want to investigate, if
holonomies and Wilson loops are not only well defined on Cx0 , but also on the hoop group:
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Proposition 4 (cp. p. 165 of [31])
The holonomy and the Wilson loop are well defined maps on Qx0. I.e. for α ∈ Qx0 the
following holds:

∀c1, c2 ∈ α : ∀A ∈ A : Hc1 [A] = Hc2 [A]

∀c1, c2 ∈ α : ∀A ∈ A : Tc1 [A] = Tc2 [A]

Proof. It is explained on p. 165 of [31], that the holonomy is well defined on Qx0 . Since
the Wilson Loop is just the trace over a holonomy, the claim follows also for the Wilson
loop.

In the following we will consider H and T as maps on Qx0 , i.e.:

H : Qx0 ×A 7→ SU(2), (α = [c], A) 7→ Hα[A] := Hc[A]

T : Qx0 ×A 7→ SU(2), (α = [c], A) 7→ Tα[A] := Tc[A]

We now want to show, that the holonomy can be regarded as a group homomorphism
mapping the hoop group on SU(2):

Lemma 31
Let A ∈ A. Then the map H[A] : Qx0 → SU(2), α 7→ Hα[A] is a group homomorphism.

Proof. This follows directly with lemma 30 and proposition 4.

We now want to investigate, which relations the Wilson loop satisfies:

Proposition 5
Let anything be as before. Then:

1. ∀α, β ∈ Qx0 : TαTβ = 1
2(Tα◦β + Tα◦β−1).

2. ∀α ∈ Qx0 : Tα−1 = Tα.

3. ∀α, β ∈ Qx0 : Tα◦β = Tβ◦α.

Proof. 1.) + 2.) Please recall first the famous Mandelstam identities (cp. [24]): Let
M1,M2 ∈ SU(2). Then:

tr(M1)tr(M2) = tr(M1M2) + tr(M1M
−1
2 )

tr(M1) = tr(M−1
1 )

With this, the assertions 1.) and 2.) follows directly.
3.) Using the cyclicity of the trace and lemma 31, we have directly the following:

Tα◦β = tr(Hα◦β)

= tr(HαHβ)

= tr(HβHα)

= tr(Hβ◦α)

= Tβ◦α

and hence the claim follows.
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We now describe the construction of the quantum Wilson algebra. Let FCx0 be the free
complex vector space over Cx0 . We write in the following the basis element corresponding
to α ∈ Cx0 as Tx0 in slight abuse of notation. It will be always clear in the following, if
this denotes an element of FCx0 or the corresponding classical observable.

We now define a subspace K ⊂ FCx0 , which will be a 2-sided ideal:

K =

{
n∑
i=1

ziTαi ∈ FCx0

∣∣∣∣∣∀A ∈ A :

n∑
i=1

ziTα[A] = 0

}

Here the first Tαi denote the corresponding elements of FCx0 and the latter Tαi denote
the Wilson loop on A. We then define a product on FCx0 as

· : FCx0 × FCx0 → FCx0 ,

(
n∑
i=1

ziTαi

)
·

 m∑
j=1

z̃jTβj

 =

n∑
i=1

m∑
j=1

ziz̃jTαiTβj

where:

TαiTβj :=
1

2

(
Tαi◦βj + Tαi◦β−1

j

)
We further define an involution on FCx0 via:(

n∑
i=1

ziTαi

)∗
=

n∑
i=1

z̄iTαi

Finally a norm is defined on FCx0 via:∥∥∥∥∥
n∑
i=1

ziTαi

∥∥∥∥∥ := sup
A∈A

∣∣∣∣∣
n∑
i=1

ziTαi [A]

∣∣∣∣∣
All together this gives:

Definition 41 (cp. [3])
The Wilson algebra Wx0 is defined as Wx0 = FCx0/K together with above ∗-algebra struc-
ture and above norm.

We now show the following:

Lemma 32
Let anything be as above. Then:

1. K is a two-sided ideal.

2. ‖ · ‖ is submultiplicative, satisfies the C∗-property and is independent of the repre-
sentative.

3. Wx0 is abelian and unital.

4. The multiplication in Wx0.

Hence Wx0 is an abelian, unital C∗-algebra.
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Proof. 1.) We show, that K is a right ideal. That it is a left ideal follows analogously.
Therefore let x =

∑n
i=1 ziTαi ∈ K and y =

∑m
j=1 z̃jTαj ∈ FCx0 . Now: n∑

i=1

ziTαi

m∑
j=1

z̃jTαj

 =

n∑
i=1

m∑
j=1

ziz̃j
1

2

(
Tαi◦αj + Tαi◦α−1

j

)
Now the Mandelstam identities give: n∑

i=1

m∑
j=1

ziz̃j
1

2

(
Tαi◦αj + Tαi◦αj

) [A] =

(
n∑
i=1

ziTαi [A]

) m∑
j=1

z̃JTαj [A]

 = 0

and hence xy ∈ K.
2.) That the norm is submultiplicative follows easily as follows: Let N1, N2 ∈ FCx0 . Then:

‖N1N2‖ = sup
A∈A
|N1[A]N2[A]|

≤ sup
A∈A

(
sup
A∈A
|N1[A]|

)
|N2[A]|

= ‖N1‖‖N2‖

That it satisfies the C∗-property follows also directly. Therefore let N =
∑n

i=1 ziTαi ∈
FCx0 . Then:

‖N∗N‖ = sup
A∈A

∣∣∣∣∣∣
 n∑
i,j=1

z̄iziTαiTαj

 [A]

∣∣∣∣∣∣
= sup

A∈A

∣∣∣∣∣
n∑
i=1

ziTαı[A]

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ziTαı[A]

∣∣∣∣∣
= sup

A∈A

∣∣∣∣∣
n∑
i=1

ziTαı[A]

∣∣∣∣∣
2

=

(
sup
A∈A

∣∣∣∣∣
n∑
i=1

ziTαı[A]

∣∣∣∣∣
)2

= ‖N‖2

Finally we have to show, that the norm is independent of the representant of the equiva-
lence classes of FCx0/K. But this follows directly, since ∀x ∈ K we have, that x[A] = 0.
3.) That it Wx0 is abelian follows by Tα−1 = Tα and the cyclicity of the trace: Therefore
observe first, that in FCx0 the following holds:

TαTβ − TβTα =
1

2

(
Tα◦β + Tα◦β−1 − Tβ◦α − Tβ◦α−1

)
=

1

2
(Tα◦β − Tβ◦α) +

1

2

(
Tα◦β−1 − Tβ◦α−1

)
Further for any A ∈ A the following holds:

Tα◦β[A] = tr (Hα◦β[A])

= tr (Hα[A]Hβ[A])

= tr (Hβ[A]Hα[A])

= tr (Hβ◦α[A])

= Tβ◦α[A]
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Finally we have for any A ∈ A :

Tα◦β−1 [A] = T(α◦β−1)−1 [A]

= Tβ◦α−1 [A]

And hence we have:
[Tα, Tβ] ∈ K

And hence Wx0 is abelian. Further we have that Tx0 gives a unit element, where x0

denotes the constant hoop at the basepoint, since for all A ∈ A:

(Tx0Tα) [A] =
1

2
(Tα[A] + Tα−1 [A]) = Tα[A]

4.) This is not complicated to show, but therefore requires some amount of formal ma-
nipulations. Therefore the proof is omitted at this place.

6.5. Wilson Algebra as Inductive Limit C∗-Algebras

In this section the Wilson algebra will be expressed as an inductive limit of simpler alge-
bras. Therefore first the label set is defined and afterwards the inductive limit decompo-
sition is performed in the second subsection.

6.5.1. The Label Set

We need first some preliminary definitions:

Definition 42 (cp. [6])
Let anything be as before and x0 ∈ Σ arbitrary but fixed. Then:

1. A n-tuple of loops (c1, ..., cn) ∈ Cnx0 is called independent, iff:

a) For each ci there is an open segment Ri ⊂ ci([0, 1]) s.th. ∀p ∈ Ri : ∃1t ∈ [0, 1] :
ci(t) = p.

b) ∀i, j = 1, ..., n : Ri ∩Rj is finite.

2. A n-tuple of hoops (α1, ..., αn) ∈ Qx0 is called independent, iff there exists an inde-
pendent n-tuple of loops (ci)

n
i=1 ∈ Cnx0 with ci ∈ αi.

3. A subgroup S ⊂ Qx0 is called tame, if it is generated by a finite number of indepen-
dent hoops.

4. Let (α1, ..., αn) be a n-tuple of independent hoops. Then denote the tame subgroup
generated by those hoops as:

S = S(α1, ..., αn)

With this we now define the used label set:

Definition 43 (cp. [6])
We define the tuple (L,≤) via:

1. L = {S ⊂ Qx0 |S is tame subgroup}.

2. S1 ≤ S2 ∈ L⇔ S1 is subgroup of S2.
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That L is indeed a label set, is shown in Thm. 6.2.25 of [31].

Lemma 33 (cp. Thm 6.2.25 of [31])
(L,≤) is a partially ordered, directed set.

6.5.2. The Inductive Family of C∗-algebras

We now define an inductive family of C∗-algebras.

Definition 44
Let Wx0(S) be the C∗-algebra defined via

Wx0(S) = FS/KS

where FS is the free vector-space over S and KS is defined as:

KS =

{
n∑
i=1

ziTαi ∈ FS

∣∣∣∣∣∀A ∈ A :

n∑
i=1

ziTα[A] = 0

}
And where the norm and the ∗-algebra structure are defined in the same way as for Wx0.
(Please note, that elements of FS corresponding to α ∈ S are again denoted by Tα).

We now show, that this gives really an inductive family of C∗-algebras:

Proposition 6
The family (Wx0(S), φS′S)S,S′∈L defined via

φS,S′ :Wx0(S)→Wx0(S′), Tα 7→ Tα

is an inductive family of C∗-algebras. Further its inductive limit is given by Wx0 together
with the maps:

φS :Wx0(S)→Wx0 , Tα 7→ Tα

Proof. That eachWx0(S) defines a C∗-algebra is shown in the same way, as it was shown,
that Wx0 defines a C∗-algebra. Therefore the corresponding proof is omitted here. We
now show, that φS′S defines an isometric ∗-morphism. Therefore again lemma 38 is used.
We show first, that KS ⊂ ker(φS′S). Therefore let x =

∑m
i=1 ziTαi ∈ KS , i.e. ∀A ∈ A :

x[A] =
∑m

i=1 ziTαi [A] = 0. Now we have:

φS′Sx =
m∑
i=1

ziTαi

And hence

∀A ∈ A : (φS′Sx) [A] =

m∑
i=1

ziTαi [A] = x[A] = 0

and hence K ⊂ ker(φS′S). That it defines an isometry on Wx0(S) follows also easy.
Therefore let

∑m
i=1 ziTαi ∈ Wx0(S). Then:

‖φS′S
m∑
i=1

ziTαi‖ = sup
A∈A

∣∣∣∣∣
m∑
i=1

ziTαi [A]

∣∣∣∣∣
= ‖

m∑
i=1

ziTαi‖
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Now observe further:

φS′S(TαTβ) =
1

2
φS′S(Tα◦β + Tα◦β−1)

=
1

2

(
Tα◦β + Tα◦β−1

)
= φS′S(Tα)φS′S(Tβ)

φS′S(T ∗α) = φS′S(Tα) = Tα = T ∗α = φS′S(Tα)∗

Hence lemma 38 gives, that φS′S defines an unique isometric ∗-morphism. We now show,
that φS′S satisfies the composition properties demanded in the definition of an inductive
family. Therefore observe:

φS′′S′ ◦ φS′S : Tα 7→ Tα

φSS = Tα 7→ Tα

And observe further:

φS′′S : Tα 7→ Tα

id : Tα 7→ Tα

And since by lemma 38 an ∗-morphism is uniquely determined by its action on the basis
elements, the claim follows.

We now want to show, that lim→Wx0(S) =Wx0 .
SinceWx0(S) ⊂ Wx0 holds, we have, that the inclusion is an isometry and hence extends

to an isometric inclusion Wx0(S) ⊂ Wx0 using lemma 9. Further it follows by the same
argumentation, that Wx0(S) ⊂ Wx0(S′) for S ≤ S′. Hence we have with lemma 11:

lim
→
Wx0(S) =

⋃
γ∈L
Wx0(S) =

⋃
γ∈L
Wx0(S)

Now the claim would follow, if
⋃
S∈LWx0(S) = Wx0 holds. This is indeed the case: ⊆

follows directly since
⋃
S∈L S ⊂ Qx0 . The other direction follows, since each element

N ∈ Wx0 can be written as N =
∑m

i=1 ziTαi for some independent hoops(αi)
m
i=1 and hence

N ∈ Wx0(S) with S = S(α1, ..., αm).

6.6. The Space of Generalized Connections and Projective
Limits

Since the topological side of the correspondence is analyzed in depth in standard LQG
literature, we don’t give proofs in this section. The corresponding proofs can all be found
in chapter 6.2 of [31].

We define the the following projective family of compact Hausdorff spaces:

Definition 45 (cp. Def. 6.2.14 and Def. 6.2.15 of [31])
Let anything be as before. Then: Define a projective family of compact Hausdorff spaces
(XS , pSS′)S,S′∈L via

XS := Hom(S, SU(2))

pSS′ : XS′ → XS ,Ψ 7→ Ψ|S
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where the topology on XS is given by the canonical isomorphism Ψ ∈ Hom(S, SU(2)) 7→
(Ψ(α1), ...,Ψ(αn)) ∈ SU(2)n for S = S(α1, ..., αn).

Lemma 34 (cp. p. 172 of[31])
Let anything be as in the last definition. Then:

1. The map Ψ ∈ Hom(S, SU(2)) 7→ (Ψ(α1), ...,Ψ(αn)) ∈ SU(2)n for S = S(α1, ..., αn)
is an isomorphism.

2. (XS , pSS′)S,S′∈L is a projective family of compact Hausdorff spaces.

We have further:

Theorem 41 (cp. p. 178 of [31])
The projective limit of the projective family (XS , pSS′)S,S′∈L is given by

lim
←
XS = Hom(Qx0 , SU(2))

together with the maps

pS : Hom(Qx0 , SU(2))→ XS ,Ψ 7→ Ψ|S

and is called the space of generalized connections.

We now want to endow XS with a projective family of group actions.

Proposition 7 (cp. p. 178 of [31])
Define for each S ∈ L the map

Φ̃S : XS × SU(2)→ XS ,Ψ 7→ Ψ.g := g−1Ψ(·)g

Then (Φ̃S)S∈L is a projective family of group actions corresponding to the projective family
of compact Hausdorff spaces (XS , pSS′)S,S′∈L. Its projective limit is given by:

Φ̃ : Hom(Qx0 , SU(2))× SU(2)→ Hom(Qx0 , SU(2)), (Ψ, g) 7→ Ψ.g := g−1Ψ(·)g

6.7. The Wilson Algebras as Subalgebras of C(XS)

The aim of this section is to obtain a canonical embedding Γ : Wx0(S) ↪→ C(XS) and to
show, that under this embeddingWx0(S) ∼= FixSU(2)(C(XS)) holds. Then the structure of
the quantum configuration space of loop quantum gravity follows easily using the results
of chapter 3 and chapter 4.

We now first need the following Lemma:

Lemma 35 (cp. Lemma 3.3 of [4])
The map A → XS defined by A 7→ (H·[A] : α 7→ Hα[A]) is surjective.

Proof. See Lem 3.3 of [4].

We now define the conjectured image of ΓS in C(XS):
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Definition 46
Define a subalgebra Vx0(S) ⊂ C(XS) via

Vx0(S) = lin{T̃α : XS → R,Ψ 7→ tr (Ψ(α)) |α ∈ S}

together with the ∗-structure and the norm inherited from C(XS).

We now show that this defines really a subalgebra and further, that a Γ : Wx0(S) ↪→
C(XS) with im(Γ) = Vx0(S) exists:

Lemma 36
Let anything be as before. Then:

1. Vx0(S) ⊂ C(XS) is a subalgebra.

2. The map Γ : Wx0(S) → Vx0(S), Tα 7→ T̃α extends to an isometric isomorphism of
C∗-algebras.

Proof. (1.) We first show, that T̃α : XS → [−1,+1] is continuous for all α ∈ S. Therefore
first observe, that for matrix Lie groups the trace is smooth map, since it is a polynomial
in coordinates. Now we want to show, that the map αy· : XS → SU(2),Ψ 7→ Ψ(α) is
continuous. Therefore let α1, .., αn be a generating set of S. Hence we can write any α ∈ S
as a finite product of the generators:

α =
m∏
i=1

α
(−1)ni
ji

We now apply the canonical isomorphism XS
∼= SU(2)n which identifies Ψ ∈ XS with a

tuple (gi)
n
i=1 ⊂ SU(2)n. With this we have Ψ(α) =

∏m
i=1 g

(−1)ni
ji

. All together:

αy· : Ψ = (gi)
n
i=1 7→

m∏
i=1

g
(−1)ni
ji

But this is continuous, since the multiplication and the inverse are continuous operations
in topological groups. Hence we have shown, that Vx0(S) ⊆ C(XS) and hence Vx0(S) ⊂
C(XS) since C(XS) is complete. That the sup norm satisfies the C∗-property on Vx0(S)
can be shown in the same way as the analogous statement was shown in proposition 6.
Hence its completion is a C∗-algebra.
2.) We first show, that ker(Γ) = KS . Therefore let x =

∑
i ziTαi ∈ Wx0(S). Now let

Γ(
∑

i ziTαi) = 0, i.e. ∀Ψ ∈ XS :
∑

i ziT̃αi [Ψ] = 0. By lemma 35 we then have, that this is
equivalent to:

∀A ∈ A :
∑
i

zitr (hαi [A]) = 0⇔ ∀A ∈ A :
∑
i

ziTαi [A] = 0

⇔
∑
i

ziTαi ∈ K
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We now show, that Γ is an isometry:∥∥∥∥∥Γ

(∑
i

ziTαi

)∥∥∥∥∥ = sup
Ψ∈XS

∣∣∣∣∣∑
i

ziT̃αi [Ψ]

∣∣∣∣∣
= sup

A∈A

∣∣∣∣∣∑
i

zitr(Hαi [A])

∣∣∣∣∣
= sup

A∈A

∣∣∣∣∣∑
i

ziTαi [A]

∣∣∣∣∣
=

∥∥∥∥∥∑
i

ziTαi

∥∥∥∥∥
Further we have

Γ(TαTβ) = Γ

(
1

2
(Tα◦β + Tα◦β−1)

)
=

1

2
Γ(Tα◦β) +

1

2
Γ(Tα◦β−1)

=
1

2

(
tr(·(α ◦ β)) + tr(·(α ◦ β−1))

)
= tr(·(α))tr(·(β))

= Γ(Tα)Γ(Tβ)

where we have used the Mandelstam identities. And also

Γ(T ∗α) = Γ(Tα) = Γ(Tα)∗

by proposition 3. Hence it defines an isometric ∗-morphism by lemma 38. That it is
surjective follows directly by the construction, since T̃α 7→ Tα defines an inverse. Hence
we have shown, that it Γ defines an isometric, bijective ∗-morphism, i.e. an isometric
∗-isomorphism.

We now finally show:

Theorem 42
Let anything be as before. Then:

Vx0(S) = FixSU(2)(C(XS))

Proof. We use theorem 19 to prove this theorem.

Assertion 1: Vx0(S) ⊆ FixSU(2)(C(XS)).

Proof of Assertion 1: We have, that any element of Vx0(S) is a finite linear combination
of T̃α. Therefore it suffices to show, that T̃α ∈ FixSU(2)(C(XS)) holds for any α ∈ S. But
this follows most easily by the cyclicity of the trace:

∀Ψ ∈ XS : T̃α(Ψ.g) = T̃α(g−1Ψ(·)g) = T̃α(gg−1Ψ(·)) = T̃α(Ψ)

Then the assertion follows, since FixSU(2)(C(XS)) is a closed subalgebra.
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Assertion 2: π∗ : Vx0(S) → C(XS/G), N 7→ N ◦ π−1 is a well-defined, isometric ∗-
morphism.

Proof of Assertion 2: We first show, that it is well-defined, i.e. that im(π∗) ⊂ C(XS/G).
Therefore let [Ψ] ∈ XS/G and Ψ, Ψ̃ ∈ π−1([Ψ]), i.e. ∃g ∈ SU(2) with Ψ = Ψ̃.g. Now let
N ∈ Vx0(S). Assertion 1 then gives N ∈ FixSU(2)(C(XS)) and hence we have:

N(Ψ) = N(Ψ̃.g) = N(Ψ̃)

Further, π : XS → XS/G is open in the case of group actions by compact Hausdorff
groups (cp. Lem. 3.7.11 of [16]) and hence π−1 is continuous. Since N is continuous it
then follows, that N ◦π−1 ∈ C(XS/G). We now show, that π∗ is an isometry. This follows
directly by surjectivity of π:

‖π∗N‖ = sup
x∈XS/G

∣∣N ◦ π−1(x)
∣∣

= sup
x∈π(XS)

∣∣N ◦ π−1(x)
∣∣

= sup
x∈XS

|N(x)|

= ‖N‖

And hence it is also injective. That π∗ is a ∗-morphism follows also directly, since for
α, β ∈ C and N1, N2 ∈ Vx0(S) ⊂ C(XS) we have:

(N1N2) ◦ π−1 =
(
N1 ◦ π−1

) (
N2 ◦ π−1

)
(αN1 + βN2) ◦ π−1 = α

(
N1 ◦ π−1

)
+ β

(
N2 ◦ π−1

)
N∗1 ◦ π−1 =

(
N1 ◦ π−1

)∗
And hence the assertion is shown.

Assertion 3: Φ̃U : Xs x U(2), (Ψ, g) 7→ Ψ.g := g−1Ψ(·)g is a group action such that the
restriction on XS × SU(2) is given by Φ̃.

Proof of Assertion 3: Since in the proof of proposition 7 no concrete reference to the
group was made and SU(2) ⊂ U(2), it follows directly, that Φ̃U is a group action. By the
concrete form of Φ̃U one sees also directly, that Φ̃U (·, g) = Φ̃(·, g) holds for g ∈ SU(2) ⊂
U(2), and hence the assertion follows.

Assertion 4: Let Ψ1,Ψ2 ∈ XS s.th.:

∀α ∈ S : T̃α(Ψ1) = T̃α(Ψ2) (6.1)

Then there is a g ∈ U(2) s.th. Ψ1 = Ψ2.g.

Proof of Assertion 4: This was shown in [1]. But for the sake of importance of this
theorem, we present the proof here. It is a well-known fact, that for a topological group
H there exists a compact Hausdorff group K(H) (called the associated compact group),
together with a homomorphism κ : H → K(H) with dense image, which satisfies the
following universal property: For any compact Hausdorff group G and any homomorphism
Λ : H → G there exists a unique homomorphism Λ̃ : K(H)→ G such that Λ = Λ̃ ◦ κ.
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6. Application to Loop Quantization of Gravity

Further for representations of compact groups the following holds (cp. Thm 4.12 of
[11]): Let K be a compact group and let V be a finite dimensional vector space. Let
ρi : K → Hom(V ) with i = 1, 2 be representations. Let further ∀k ∈ K : tr(ρ1(k)) =
tr(ρ2(k)). Then there is a unitary U ∈ Hom(V, V ) such that ρ1 = U †ρ2U .

Now let Ψ1,Ψ2 ∈ XS = Hom(S, SU(2)). Then there are by above Ψ̃1, Ψ̃2 ∈ Hom(K(S), SU(2))
such that Ψi = Ψ̃i ◦ κ for i = 1, 2. With this eq. (6.1) reads:

∀α ∈ S : T̃α(Ψ1) = tr(Ψ̃1 ◦ κ(α)) = tr(Ψ̃2 ◦ κ(α)) = T̃α(Ψ2)

Since im(κ) is dense in K(S) and tr is continuous, this implies:

∀α̃ ∈ K(S) : tr(Ψ̃1(α)) = tr(Ψ̃2(α))

Hence by above mentioned theorem, there is a g ∈ U(2) such that Ψ1 = Ψ2.g.

Assertion 5: Define the group actions AdU : SU(2) x U(2) and AdSU : SU(2) x SU(2)
by

AdU : SU(2)× U(2)→ SU(2), (h, g) 7→ g−1hg

AdSU(2) : SU(2)× SU(2)→ SU(2), (h, g) 7→ g−1hg

Then: SU(2)/U(2) ∼= SU(2)/SU(2).

Proof of Assertion 5: This is also proved in [1]. But for the sake of importance of this
theorem, we present the proof here, too. Therefore define first a smooth group homomor-
phism:

A : U(1)× SU(2)→ U(2), (z, S) 7→ zS

We now show, that this homomorphism is surjective: Let h ∈ U(2). Now set δ =
√

det(h).
Observe that, since h ∈ U(2) we have, that δ ∈ U(1). Then: A(δ, δ−1h) = h and further
det(δ−1h) = δ−n det(h) = +1 and hence δ−1h ∈ SU(2). We now want to show:

∀g1, g2 ∈ SU(2)∃h ∈ SU(2) : g1 = h−1g2h⇔ ∃h ∈ U(2) : g1 = h−1g2h

”⇒” is clear, since SU(2) ⊂ U(2). Now towards ”⇐”. Therefore let h ∈ U(2) with
g1 = h−1g2h. Then, since A is onto, we have (z, s) ∈ U(1) × SU(2) with h = zS. Now
h−1 = S−1z̄ and further, since z and z̄ commute with matrices, we have g1 = S−1g2Szz̄ =
S−1g2S and hence there is a h ∈ SU(2) with g1 = h−1g2h. Hence the assertion follows
with lemma 23.

Proof of the Theorem: By Assertion 5 we have an homeomorphism SU(2)/SU(2) ∼=
SU(2)/U(2). This gives an homeomorphism XS/SU(2) ∼= XS/U(2) using the canonical
homeomorphism XS

∼= SU(2)nS where nS is the number of independent generators of S.
Now (T̃α)α∈S seperates points on XS/U(2) by Assertion 4 and hence it does so also on
XS/SU(2). Finally it remains to show, that there is an α ∈ S such that tr(Ψ(α)) 6= 0
holds for all Ψ ∈ XS . Therefore set α = eS , the identity element of S. Since group homo-
morphisms preserve identities, we have x(α) = eSU(2) and hence tr(x(α)) = 1 6= 0. Hence

we can apply theorem 19 which gives, that Vx0(S) = C(XS/SU(2)) = FixSU(2)(C(XS)),
and hence the claim follows.

Now we have the following easy Corollar:
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6.8. Discussion

Corollar 8
Let anything be as before. Then:

∆(Wx0) = Hom(Qx0 , SU(2))/SU(2)

Proof. With theorem 42 and lemma 36 we have, that

∆(Wx0(S)) = ∆(FixSU(2)(C(XS)))

and hence with theorem 28 we have:

∆(Wx0(S)) = XS/G

Using theorem 33 and theorem 30 we obtain unambiguosly:

∆(Wx0) = lim
←

(XS/G) =
(

lim
←
XS

)
/G

And hence by theorem 41 and proposition 7 we have finally:

∆(Wx0) = Hom(Qx0 , SU(2))/SU(2)

Where the quotient is performed with respect to the inductive limit group action Ψ 7→
Ψ.g = g−1Ψ(·)g.

6.8. Discussion

In this section the relevance of the concepts developed in part I were illustrated by applying
them to the calculation of the quantum configuration space of loop quantum gravity. The
quantum configuration space obtained with our methods equals the result presented in
the literature (see e.g. [1], [31]). Further the concepts of part I give some further result:
On the one hand it follows from theorem 27 that each cyclic representation of the point
holonomy algebra arises as an inductive limit of representations of the corresponding
inductive families. Further it follows with theorem 14, that an orthonormal basis for the
inductive limit representation is determined by the orthonormal bases of the corresponding
members of the inductive family.
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7. Summary and Outlook

In the first part of the thesis a comprehensive and coherent treatment of the spectral
theory of inductive limit C∗-algebras and C∗-dynamical systems was presented. Here the
most important results regarding inductive limit C∗-algebras are:

• A projective limit of compact Hausdorff spaces corresponds always dually to an
inductive limit of unital, abelian C∗-algebras:

– Given an inductive family of C∗-algebras, their spectra form a projective family.
Further its projective limit is given by the spectrum of the inductive limit C∗-
algebra (cp. theorem 18). This result can be also found in [30].

– Given a projective family of compact Hausdorff spaces, the algebras of contin-
uous functions thereon form an inductive family of C∗-algebras. Further its
inductive limit is given by the algebra of continuous functions on the projective
limit of the topological spaces (cp. theorem 20 ).

– The Gel’fand transform is compatible with inductive limits of C∗-algebras and
inductive limits of algebras of continuous functions on their spectra and makes
the above explained correspondence explicit (cp. lemma 17 and theorem 25).

• Each cyclic representation of an inductive limit of unital, abelian C∗-algebras arises
as an inductive limit of certain cyclic representations of the inductive family (cp.
theorem 26).

The most important results regarding C∗-dynamical systems are:

• A C∗-dynamical system corresponds always dually to a compact Hausdorff space
together with a continuous group action:

– Given a C∗-dynamical system, the C∗-group action induces a continuous group
action on the spectrum of the C∗-algebra (cp. theorem 28).

– Given a compact Hausdorff space together with a continuous group action, the
algebra of continuous functions thereon becomes a C∗-dynamical system (cp.
lemma 21).

• The spectrum of the fixed point algebra of a C∗-dynamical system (i.e. the algebra
of invariant elements) is given by the quotient of the spectrum of the full algebra by
the induced group action on the spectrum (cp. theorem 28).

The most important results corresponding the compatibility of C∗-dynamical systems with
inductive limits are:

• Inductive families and inductive limits can be consistently defined for C∗-dynamical
systems (cp. definition 27 and theorem 31).

• The inductive limit of the fixed point subalgebras of an inductive family of C∗-
dynamical systems is given by the fixed point subalgebra of the inductive limit
C∗-dynamical system (cp. theorem 33).
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7. Summary and Outlook

In the second part of the thesis the results of the first part were applied to polymer quanti-
zation of the real scalar field and loop quantization of gravity. The main result was in both
cases, that an inductive limit decomposition of the corresponding quantum algebras can
be performed (cp. section 5.3 and section 6.5). Furthermore the theory of C∗-dynamical
systems was useful in the case of loop quantum gravity (cp. theorem 42 and corollar 8).
Further the methods used in this thesis yield the correct quantum configuration spaces as
discussed in section 5.6 and section 6.8.

In the following we want to present possible directions for further research on these
topics:

• Concerning the theory of inductive limits of C∗-algebras, in this thesis it has been
always assumed, that the morphisms are surjective on the topological side and iso-
metric on the C∗-side. It would be interesting to analyze, to which extent the results
in this thesis would hold, if one considers more general maps. Further in the second
chapter it was mentioned, that it might be possible, that a cyclic representation
arises as an inductive limit of non-cyclic representations (cp. discussion under the
proof of theorem 26). A further analysis of this case aiming at existence and possible
physical applications (maybe in the context of the further down mentioned case of
algebras of local observables) might be interesting.

• Concerning the theory of C∗-dynamical systems, the question arose, in which situ-
ations it is possible to embed a given C∗-algebra as a fixed point subalgebra into
a C∗-dynamical system and further, which freedom of choice for the C∗-dynamical
system one has in this situation. Maybe this also has an application to gauge theory,
since embeddings of a given algebra of gauge invariant observables in different C∗-
dynamical systems would correspond to a duality between different gauge theories.

• Concerning the theory of inductive limits of C∗-dynamical systems, we assumed in
this thesis, that all members of the inductive family share the same transformation
group. It would be interesting to relax this assumption by using projective family of
groups as the corresponding transformation groups. This program has been investi-
gated in special cases on the topological side (cp. Ch. 2 of [31], [5]), but it might be
useful, to embed it in the comprehensive framework presented in this thesis.

• Finally, loop quantum gravity is not the only place in physics, were inductive and
projective limits appear. For example inductive limits appear also in algebraic quan-
tum field theory, where the algebra of all local observables can be constructed using
an inductive limit of the inductive family of algebras of observables bounded to fi-
nite regions (cp. [14]). In this case the label set corresponds to all finite regions of
spacetime. Further, there have been attempts to formulate renormalization theory
or coarse graining procedures in terms of inductive limits (cp. [29]). In both cases it
would be interesting to analyze, if the spectral theory of inductive limit C∗-algebras
as presented in this thesis would lead to any valuable perspective.
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A. On ”Freely Generated” ∗-Algebras

The C∗-algebras occuring in Chapter 5 and Chapter 6 where defined by using free vector
spaces and relations. The corresponding theory is excluded in this appendix.

We first define the notion of a free vector space over a set:

Definition 47 (cp. [23])
Let S be a set. Then define the complex free vector space over S written as FS as follows:
Set

FS = {φ : S → C|φ(s) = 0 for almost all s ∈ S}

Further define for z ∈ C, x ∈ S the map zx ∈ FS via:

zx : S → C, s 7→
{
z if s = x
0 if s 6= x

We define an scalar multiplication on FS via ∀α ∈ C : ∀φ ∈ FS : (αφ : s 7→ αφ(s)) and
an vector-addition via ∀φ, ψ ∈ FS : (φ + ψ : s 7→ φ(s) + ψ(s)). Further it can be shown,
that FS is a vector-space and that the family of maps ∀x ∈ S : δx := 1x is a basis for FS.
Hence any element v ∈ FS can be written uniquely as a finite sum

v =
m∑
i=1

zisi

with si ∈ S and zi ∈ C.

We now want to understand, how a free vector space can be upgraded to a operator
algebra:

Lemma 37
Let S be a set and FS be the free complex vector space over S. Then:

1. Let · : S×S → S be an associative map, i.e. ∀s1, s2, s3 ∈ S : (s1 ·s2)·s3 = s1 ·(s2 ·s3).
Then FS together with the product

· : FS × FS → FS,

(
n∑
i=1

xisi

) m∑
j=1

yjsj

 =

n∑
i=1

m∑
j=1

xiyj(si · sj)

defines an associative algebra.

2. Let · : S × S → S be an associative map as in (1). Let ∗ : S → S be an involutive
map, i.e. ∀s1, s2 ∈ S : (s1 · s2)∗ = s∗2 · s∗1 and ∀s ∈ S : (s∗)∗ = s. Then (FS, ·) as
defined in (1) together with

∗ : FS → FS,

(
n∑
i=1

zisi

)∗
=

n∑
i=1

z̄is
∗
i

defines an involution on (FS, ·) and makes (FS, ·, ∗) to a ∗-algebra.
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A. On ”Freely Generated” ∗-Algebras

3. Let X be an ∗-algebra and J ⊂ X be an non-trivial 2-sided ideal with J∗ = J . Then
X/J is a ∗-algebra.

Proof. 1.) We first show associativity. In the following all sums should be understood as
finite sums.(∑

i

ziei

)∑
j

zjej

(∑
k

zkek

)
=

∑
ij

zizj(ei · ej)

∑
k

zkek

=
∑
ijk

(zizj)zk(ei · ej) · ek

=
∑
ijk

zi(zjzk)ei · (ej · ek)

=

(∑
i

ziei

)∑
j

zjej

(∑
k

zkek

)
and hence it is associative. Distributivity follows also directly:α∑

i

ziei + β
∑
j

zjej

(∑
k

zkek

)
= α

(∑
i

ziei

)(∑
k

zkek

)
+ β

∑
j

zjej

(∑
k

zkek

)

and the proof goes for multiplication from the other side analogously.
2.) We have: (∑

i

ziei

)∗∗
=

(∑
i

z̄ie
∗
i

)∗
=
∑
i

ziei

and (∑
i

ziei

)∑
j

zjej

∗ =
∑
ij

z̄iz̄j(ei · ej)∗

=
∑
ij

z̄j z̄i
(
e∗j · e∗i

)

=

∑
j

zjej

∗(∑
i

ziei

)∗

and finally antilinearity follows directly by definition and hence the assertion follows.
3.) See [26].

Lemma 38
Let S1, S2 be two sets, FS1, FS2 be the corresponding free complex vector spaces. Let
further FS1 and FS2 be endowed with a ∗-algebra structure. Then: Let φ : S1 → FS2 be a
map such that ∀s1, s2 ∈ S1 : φ(s1 · s2) = φ(s1) · φ(s2) and φ(s∗1) = φ(s1)∗. Then φ extends
to a unique ∗-morphism φ : FS1 → FS2 via

φ :
∑
i

zisi 7→
∑
i

ziφ(si)
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Proof. φ is linear by construction. Further we have:

φ

((∑
i

ziei

)∗)
=
∑
i

z̄iφ(e∗i ) =
∑
i

z̄iφ(ei)
∗

and

φ

(∑
i

ziei

)∑
j

zjej

 = φ

∑
ij

zizj(ei · ej)


=
∑
ij

zizjφ(ei · ej)

=
∑
ij

zizjφ(ei)φ(ej)

=

(∑
i

zjφ(ei)

)∑
j

zjφ(ej)


To show uniqueness let φ̃ : S1 → FS2 be a linear map with si ∈ S1 7→ φ(si) ∈ FS2. But
then by linearity

φ̃

(∑
i

zisi

)
=
∑
i

ziφ̃(si) = φ

(∑
i

zisi

)
and hence φ is unique.

Lemma 39
Let X1, X2 be ∗-algebras and J1 ⊂ X1, J2 ⊂ X2 self-adjoint (i.e. J∗i = Ji), 2-sided ideals.
Then a ∗-morphism φ : X1 → X2 induces a ∗-morphism φ̃ : X1/J1 → X2/J2, [x] 7→ [φ(x)]
if φ(J1) ⊂ J2.

Proof. We first show, that φ̃ is well defined. Therefore observe, that left-totality follows
since the canonical projection π1 : X1 → X1/J1 is surjective. Now we show, that it φ̃ is
right unique: Therefore let x1, x2 ∈ [x]. This means, that there is a j ∈ J1 with x1 = x2+j.
Then φ(x1) = φ(x2 + j) = φ(x2) + φ(j) by linearity of φ. Now φ(j) ∈ J2 by prerequisit,
and hence π2(φ(x1)) = π2(φ(x2)) for the canonical projection π2 : X2 → X2/J2. Hence it
is well defined. Linearity follows directly, since π1, π2 and φ are linear by definition. That
φ̃ is a ∗-morphism follows directly, since Ji are ideals and self-adjoint.

We now want to define the concept of a pre C∗-algebra:

Definition 48
A pre C∗-algebra is a ∗-algebra X together with a norm ‖ · ‖ on X, which satisfies

1. ∀x, y ∈ X : ‖xy‖ ≤ ‖x‖‖y‖ (submultiplicativity).

2. ∀x, y ∈ X : ‖x∗x‖ = ‖x‖2 (C∗-property).

We then have the following final Lemma:

Lemma 40
Let (X, ‖ · ‖) be a pre C∗-algebra. Than X is a C∗ algebra. Further it is abelian, if X is
abelian and unital if X is unital.
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A. On ”Freely Generated” ∗-Algebras

Proof. Since the norm is continuous, it follows that the closure of a pre C∗-algebra defines
a C∗-algebra. That X is abelian and unital, if it is abelian and unital on a dense subset,
follows in the same way, as the corresponding statement was shown in Theorem 16.
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