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Abstract

For a successfull inflation the curvatures of the potential fields should be

lower than the Hubble parameter H. This is usually achieved by requiring

the slow roll parameters to hold. Attempting to embed such a theory in a

supergravity environment fails due to the mass of the moduli field of order

H. Recently ”New Old Inflation” was introduced to solve the problem. In

such a model, moduli have masses of order H and a 50 e-folds inflationary

period can be achieved. The main idea is that the inflationary field is trapped

by an oscillatory field at the saddle point in the potential. In this way a De

Sitter-like expansion is guaranteed by the false vacuum energy. In the present

work two problems are inspected: first of all the parameter space of such a

model is adressed in view of some consistency and phenomenological issues.

Secondly, the mechanism of modulated reheating, necessary in such models

to produce the desired density perturbations is inspected in depth. A general

feature of such a mechanism is the production of non gaussianities of order

one, which is relevant for current observations.

It is found that the parameter space of New Old Inflation is not ruled out

and that the window of opportunity can be elevated into a prediction of the

model. Regarding modulated reheating, a novel correction to the amount of
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non gaussianities is obtained by considering the dynamical evolution of the

modulating field. Such a correction is, however, model dependent.
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About this work

A period of accelerated expansion is globally accepted in the cosmological

community as the canonical explaination to different questions such as the

horizon and the flatness problems of the observed universe [1]. Treating the

universe as a fluid, from Einstein’s equation, it is possible to read off Fried-

mann’s equations, through which a stage of accelerated expansion can be

realised by the equation of state p ≈ −ρ. Equality would generate a De

Sitter universe, out of which a graceful exit would not be possible. In order

to produce the desired equation of state the slow roll conditions are imposed

which are nothing but conditions on the first and second field derivative on

the potential proposed in each model. One of the main consequences of the

slow roll conditions, is that the masses of the relevant fields for inflation

should be lower than the Hubble parameter H = ȧ/a in order not to spoil

inflation. This was initially a problem for supersymmetric models of inflation

where the various moduli have masses of order H. In [2] a new mechanism

is introduced where the slow roll condition η ∼ m2/H2 � 1 can be violated

without affecting the inflationary dynamic. The main idea of the model is

to use Guth’s inflation [3] to nucleate a bubble (and transition from a false

vacuum to a minimum) with the proper initial conditions for two weakly cou-
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pled scalar fields: φ and Φ. The first field nucleates at zero and has an higgs

like potential through which it could, in principle, roll down. The second

field nucleates at Φ ∼ Mp with its minimum at Φ = 0. If MΦ ≥ H0 with

H0 being sourced by the vacuum energy of the φ field at zero, then Φ will

oscillate. If the oscillations are fast enough, the coupling term λφΦ2 can be

substituted by the average λφ2〈Φ2〉 generating an effective mass for φ which

will not allow it to roll down the hill to its true minimum at φ = M?. Hence

the name locked inflation. In this configuration H0 is the only contribution

to the Energy Momentum Tensor of the fluid, and is constant, thus gener-

ating an exponential expansion. Φ’s oscillatory amplitude will be redshifted

and eventually the minimum in the effective φ’s potential reappears letting

it free to roll down, reheating the universe and inflation ends. The generated

number of e-folds for the model turns out to be around fifty which is not

problematic for the observed flatness because of the initial period of Guth’s

like inflation. In this model, reheating happens at a very low scale O(Tev)

and the usual method of density perturbations that serves as seeds for the

today’s observed inhomogeneities is disabled because M ≥ H. A mechanism

that can be used is modulated reheating [4]. The idea is to give a dynamical

origin (using for example another modulus σ) to the coupling (that could be

a Yukawa like coupling) dominating the decay of the inflaton in the reheating

period. Doing so, fluctuations of the modulus during inflation are naturally

imprinted in the reheating spectrum since reheating will happen at different

time in different points of the universe. While the implementation is quite

natural [5], the interesting imprint of such a mechanism is the production of

non gaussianities with fNL ∼ O(1) which is relevant for current experimen-
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tal measurements of the parameter and is model indipendent. In this work,

following the idea in [6], the dynamic of the modulus σ at reheating is taken

into account finding an enhancement of fNL. This correction is, however,

model dependent.

Many constraints on locked inflation appear in the litterature such as [7]

and [8] that seems to rule out the whole parameter space. The problems

are mainly three: 1) rolling down to its true vacuum, φ might generate an

extra period of inflation in the usual way, i.e. satisfying slow roll parameter,

thus eliminating all the previous imprints, 2) loop corrections might move

Φ’s vacuum from zero, making the locking, and hence inflation, eternal, and

3) for certain choices of the parameter space, resonances happen within the

first e-fold of inflation, backreacting on the background Φ and ending infla-

tion immediately.

In the present work all these claims are analyzed taking a more general ap-

proach by relaxing the parameters of the model and constraining them in

a bottom up fashion. In this context, a better condition for the averaging

of Φ in the λ coupling (contributing to φ’s mass) is discussed. It follows

from it that α = M?/mφ � 1. It is found that even though the previous

articles restrict the parameters of the model, the parameter space is not fully

ruled out. Moreover, already considering a complex scalar field, instead of a

real scalar field for Φ, fully eliminates the problem parametric resonances of

point 3). In this case, however, α cannot be assumed to be natural because

of constraint 2) . Moreover it is found that, for a wide range of the parameter

space, parametric resonances are unavoidable at the end of locked inflation.

This, gives, anyway, a very small correction to the number of e-folds. Finally
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an estimate of the production of topological defects at φ’s phase transition

in an expanding universe is proposed. Due to the low temperature of reheat-

ing, Kibble mechanism cannot be applied [9]. Instead, in order to estimate

the maximal correlator length of φ, a non adiabatic condition of the form

|dω/dt|tc ∼ ω(tc)
2 is imposed tc being the moment when φ’s minimum is

restored. Due to the smallness of α no reasonable amount of topological

defects is produced.



Organization

This work is organized as follows: the first two chapters are introductory. In

this sense inflation is justified from a phenomenological point of view and the

notation is introduced. In particular the second chapter is dedicated to the

tools necessary to describe density perturbation. Chapter 3 is dedicated to

the discussion of metric perturbation in a Friedmann’s universe. In particu-

lar the well known δN formalism is derived from scratch. Such a formalism is

then implemented in chapter 4 in order to understand the production of non

gaussinities in modulated reheating. In this context a new formula is given

for fNL which specifies the amount of non gaussianities. A well known result

is that, for modulated reheating, such fNL is of order one indipendently of

the considered model. In the derivation a new correction to this parameter is

given by considering the dynamics of the modulating field during the imprint

of density perturbation. Such a correction is indeed model dependent.

Chapter 5 is fully dedicated to explain locked inflation. In this context the de-

cay rate for the nucleation of our universe is derived. The Hawking-Moss in-

stanton responsible for such a process is understood in the context of stochas-

tic inflation where the motion of the field undergoing the phase transition is

described as a brownian-like motion. Hence the correspective Fokker-Planck



CONTENTS xi

equation is derived.

Chapter 6 focuses on the possible constraints restricting the parameter space

of locked inflation in view of some consistency and phenomenological issues.

It is shown, in particular, that the parameter space is not fully ruled out.



Chapter 1

Inflationary Universe

1.1 Shortcomings of the Big Bang Model

Modern cosmology is based on two observational facts: i) The universe is

expanding and ii) On scales larger than 300 million light years the matter

distribution is homogeneous and isotropic. The average spacetime is then

described by the Friedmann-Robertson-Walker (FRW) metric

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
(1.1)

where k = 0,±1 for flat, positively curved and negatively curved spacelike

3-hypersurfaces and c = 1. On large scales, matter can be characterized by a

perfect fluid with energy density ρ, pressure p and 4-velocity uα. Its energy

momentum tensor (EMT)

Tαβ = (ρ+ p)uαuβ − pδαβ (1.2)

and p = p(ρ) = wρ is the equation of state.



1.1 Shortcomings of the Big Bang Model 2

The unknown functions a(t) and ρ(t) can be obtained through Einstein’s

equation Gα
β = Rα

β − 1/2δαβR = 8πGTαβ using the above metric and EMT.

However a less rigorous derivation can be used in this context. According to

the first principle of thermodynamics we have that in a volume V ∝ a3:

dE = −pdV ⇒ dρ = −3(ρ+ p)d log a⇒ ρ̇ = −3H(ρ+ p) (1.3)

where H = d log a
dt

. The obtained relation is equivalent to the energy conser-

vation ∇αT
0α = 0 [1]. As for the diagonal components of Einstein’s equation

one finds, using also (1.3)

H2 +
k

a2
=

8πG

3
ρ (1.4)

Equation (1.3) and (1.4) are known respectively as first and second Fried-

mann equations. Combining them together yields

Ḣ = −4πG(ρ+ p) (1.5)

Explicit solutions can be easily found for constant w [10]: ρ ∝ a−3(1+w) and

a ∝ t2/3(1+w). Since for a radiation dominated universe (w = 1/3) and for

a matter dominated universe (w = 0) the scales factor goes respectively

as a−4 and a−3 it follows that at early times the universe was radiation

dominated. As we rewind earlier and earlier in time we finally arrive to a

singularity since for t → 0 also a ∝ t1/2 goes to zero. Notice that it is

not a coordinates singularity since, in this limit, also the scalar curvature

becomes singular [11]. Hence the introduction of the Big Bang model. Alas,

already at planckian time t ∼ 10−44s, non perturbative effects of gravity

should be relevant spoiling the above approximation. However, even if we
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believe quantum gravity effects to be perturbative on subplanckian length,

from observational data, we are lead to fine tuning problems on the initial

conditions of our universe. Before moving to the next section notice that for

a radiatio- like fluid the energy density ρ ' T 4 (where prefactors of O(1)

are ignored). It follows from Friedmann equation that H2 ∝ a−4 ∝ T 4 i.e.

a ∝ T−1.

1.1.1 Horizon and flatness problems

We briefly discuss and adress the fine tuning problem that arise without

assuming an inflationary period. In principle one could argue that these are

not problems. This is because the universe start expanding from scales of

(or close to) the planckian scale. Hence a full theory of gravity would be

required in order to adress the problem of initial conditions. However these

initial conditions reflect a balancing condition between kinetic and potential

energy. Through the inflationary scenario, the energetic distribution can

be random. That means that the current state of our universe will be an

attractor indipendent of whatever initial conditions hence making the theory

of inflation not only predictive but also necessary.

Homogeneity problem

The present horizon scale is l0 ∼ 1028cm. The original patch from which

this originated is larger due to the ratio of the scale factor ai/a0 (where the

subscript i stands for initial). Hence li ∼ l0ai/a0. A causual region at the
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initial moment will be roughly lc ∼ li, giving

li
lc
∼ l0
li

ai
a0

(1.6)

taking as initial the moment where the universe had planckian size we can

rewrite the ratio between the rescaled patch and the supposed casually con-

nected patch as
li
lc
∼ 1028cm

10−33cm

T0

Tp
∼ 1028 (1.7)

where lp ∼ 10−33cm and Tp ∼ 1032K and T0 = 2.73K ∼ 1K have been

used. This means that in the early universe were present approximately 1084

casually disconnected regions. From cosmological observations, the fractional

variation of energy distribution is δρ/ρ ∼ 10−4 which seems unlikely for

casually disconnected patches. Note that if we take ȧ ∼ a/t we get

li
lc
∼ ȧi
ȧ0

(1.8)

Flatness Problem The cosmological parameter is defined as Ω(t)
.
= ρ(t)

ρcr(t)

with ρcr = 3H2

8πG
. This parameter tells us about the spatial flatness of our

universe. It is bigger than one for a closed universe, smaller than one for an

open universe and exactly one for a flat universe. Friedman equation can be

rewritten as [1]

Ω(t)− 1 =
k

(Ha)2
(1.9)

implying

Ωi − 1 = (Ω0 − 1)

(
ȧi
ȧ0

)2

≤ 10−56 (1.10)

where the estimate from (1.8) was used. Thus the cosmological parameter,

corresponding to the splitting between kinetic and potential energy, must be

extremely close to unity (up to O(10−56)). Hence the flatness problem.
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1.2 Inflation as an elegant solution

In order to see how a period of accelerated expansion can solve these problems

first one has to introduce the conformal time τ

τ
.
=

∫
dt

a
=

∫
da

Ha2
=

∫ a

0

d log ã
1

Hã
(1.11)

where (aH)−1 is the comoving Hubble radius. The casuality interpreta-

tion of this formula is the following [12]: if particles are separated by distances

greater than τ , they never could have communicated; if they are separated

by distances grater than (aH)−1 they cannot talk to each other now. Notice

that during inflation, i.e. a period of accelerated exponential expansion, the

initial comoving Hubble radius decreases as H−1
I e−N where N is the number

of e-foldings. Then what we would like to have is the present horizon H−1
0

to be reduced, through inflation, to a value smaller than H−1
I

H−1
0

ae
a0

e−N = H−1
0

T0

Te
e−N ≤ H−1

I (1.12)

where the subscript e characterizes the end of inflation. From this we can

read off the following constraint for N

N ≥ log

(
T0

H0

)
− log

(
Te
HI

)
' 67− log

(
Te
HI

)
(1.13)

from which we deduce we need at least 70 e-folds to solve the horizon problem.

Notice that changing the temperature at the end of inflation, or the initial

Hubble radius might lower the required number of e-folds. For this reason

sometimes in the litterature simply a number of e-folds bigger than fifty is

required [13].
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Finally to solve the flatness problem we know that the initial moment of

equation (1.10) is the end of inflation i.e. Ωe − 1 ∼ O(10−56) (necessary to

observe an Ω0 ∼ 1). Let us now compare Ωe with Ωi at the beginning of

inflation:

Ωe − 1

Ωi − 1
=

(
ȧi
ȧe

)2

=

(
ai
ae

)2

' e−2N (1.14)

where in the last passage the fact that during inflation H is almost constant

has been used.

Taking Ωi of order unity (which corresponds to a random distribution δρi/ρi ∼

O(1) or to an equal distribution between kinetic and potential energy [1]),

fifty e-folds are enough to solve the flatness problem. The prediction Ω0 = 1

can legitimately be elevated into a prediction of inflation. Notice that the ac-

tual experimental value of the cosmological parameter is Ωexp
0 = 1.002± .005

expressing a preference for an open universe. However a ”too long” period

of inflation (e.g. O(103) e-folds) might flatten this parameter too much with

respect to the observed one.

1.2.1 Conditions for inflation

The first Friedman equation can be stated from (1.4) and (1.5) as

ä = −4πG

3
(ρ+ 3p)a (1.15)

implying that inflation is possible if ρ + 3p < 0 (violating strong energy

condition). This implies that comoving hubble radius is shrinking i.e.

d

dt
(aH)−1 = − ä

ȧ2
< 0 (1.16)
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For later convenience (1.16) can be rewritten as

d

dt
(aH)−1 = − ȧH + aḢ

(aH)2
= −1

a
(1− ε), ε

.
= − Ḣ

H2
= −d logH

dN
> 0 (1.17)

with dN = d log a = Hdt measuring the number of e-folds. In order for the

acceleration to stay positive it is necessary to have ε < 1. In order to solve

the cosmological problems we also want this to be true for sufficiently long

time (at least N ∼ 50 e-folds). Thus we introduce a second parameter

η
.
=

ε̇

Hε
=
d log ε

dN
(1.18)

Requiring η < 1 will ensure the ε condition to last long enough. Notice

that for the limiting case H = const (or ε = 0) one obtains pure De Sitter

expansion a ∼ eΛt. An inflationary universe, in this sense, can be thought as

a quasi De Sitter spacetime with slowly varying Hubble parameter.

Next a discussion on the microscopical way to obtain such a condition is

necessary.

1.2.2 False Vacuum Inflation

In 1981 Guth [3] suggested a description of the exponential expansion of the

universe through supercooled vacuum state φ = 0. His scenario was based

on three propositions [14]:

• The universe initially expands in a state with superhigh temperature

and restored symmetry, φ(T ) = 0

• V (φ) still has a local minimum at φ = 0 also at low temperature. In

this way the field will be trapped in this local minimum for a long
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period generating exponential expansion through the vacuum energy

ρ = V (0)

• Inflation continues until a first order phase transition nucleates bubbles

where φ = φ0 is in the global minimum. The universe heats up due to

bubble-wall collisions, and its subsequent evolution is described by the

hot universe theory.

However, as noted by Guth himself [3], collisions of the walls of very large

bubbles lead to an unacceptable level of inhomogeneities and anisotropies (no

graceful exit). Cosmologists hence introduced the new inflationary scenario

where the last two Guth’s propositions are dropped. Even though this old

inflationary model is ruled out, it can serve as a mean to produce the proper

initial conditions for other inflationary model such as the proposed New Old

Inflation [2] which will be discussed in detail later.

Decay of the metastable Vacuum

Suppose to have a potential with a local vacuum at φ = 0 and a global

minimum at φ = φ0 separated by a barrier. Assume also the potential to

be normalized in such a way that V (0) = 0. Denote V (φ0) = −e. The

metastable vacuum decay happens via quantum tunnelling which can be

described properly by an instanton. As already said, we will ignore temper-

ature effects (e.g. decay via sphaleron). The action of the scalar field can be

written as

S =

∫ (
1

2
(∂tφ)2 − 1

2
(∂iφ)2 + V (φ)

)
d3xdt (1.19)
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Notice that the space-measure has been kept differentiated by the time-

measure on purpose. In order to have quantum tunnelling one has to rein-

terpret the potential as being a functional potential i.e. Ṽ (φ)
.
=
∫
d3xV (φ).

This identification correspond to have a wave functional Ψ(φ(x, t)) instead

of the usual quantum mechanical wave function ψ(x, t). Hence, the energy

of the true vacuum is Ṽ (φ0) = −e × V , V being the volume where the

new phase is active. In this sense, an instanton can be understood as the

classical solution with imaginary time describing the physical process of the

field interpolating within the two vacua of the theory via quantum tunnelling

(similarly to the quantum mechanical case). Thus, with euclidean metric we

have

φ̈+ ∆φ = V, φ (1.20)

From quantum mechanics we know that for a tunnelling process the prob-

ability is [15]:

PI ∝ exp{−SI} (1.21)

with SI being the instantonic action. Analogously for our bubble we get a

decay rate per unit time and unit volume:

Γ ' A exp{−S4(φ)} (1.22)

where the euclidean action is given by

S4(φ) =

∫
d4x

[
1

2
φ̇2 +

1

2
(∇φ)2 + V (φ)

]
(1.23)
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and A is a complicated prefactor involving functional determinants calculated

in [16]. On dimensional ground, the decay rate has dimension [L]−4. Hence

A ∼ O(R−4
I , V 2

,φφ, ...).

Solution under thin wall approximation

In principle, in order to find Γ, one should sum over all possible solutions

of (1.20). Symmetry is a good indicator of which solutions minimize the

Euclidean action. In particular, in this case, a possible symmetry is O(4):

φ = φ(r =
√
x2 + t2) (1.24)

In spherical coordinates the laplacian is [17]

∆f =
∂i√
|g|

(√
|g|gij∂jf

)
(1.25)

giving for dimension d = 4, ∆f = f ′′ + 3/rf ′ + ∆angularf with the prime

denoting derivative with respect to r. Thus (1.20) becomes

φ′′ +
3

r
φ′ − V,φ = 0 (1.26)

with boundary condition φ(∞) = 0 and, in order to avoid a singularity at

the bubble center φ′(0) = 0.

Multiplying (1.26) by φ′ and integrating over the radial coordinates the first

integral is:
1

2
(φ′)2 − V =

∫ ∞
r

3

ρ
(φ(ρ)′)2dρ (1.27)

where φ(∞) = 0 has been used on the left side.

The other boundary condition, φ′(0) = 0, gives:

− V (φ(0)) =

∫ ∞
0

3

ρ
(φ(ρ)′)2dρ (1.28)
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Now, denote with R the radius of the bubble and with a the thickness of the

wall. φ will be constant both inside and outside, while φ′ will change only in

a region around R of thickness a. This implies that the biggest contribution

to the integral in (1.28) happens near the layer. Since a � R the right

handside of (1.27) is suppressed with respect to the left side yielding:

(φ′)2 ' 2V (1.29)

Plugging this approximation in (1.28) gives

− V (φ(0)) ' 3

R

∫ ∞
0

(φ′)2dr ' 3

R

∫ φ(0)

0

√
2V dφ (1.30)

the integral is the surface tension of the bubble

S
.
=

∫ ∞
0

(φ′)2dr (1.31)

We are now ready to evaluate the instanton action (1.23) which, in spherical

coordinates, is

S4(φ) = 2π2

∫ (
(φ′)2

2
+ V

)
r3dr (1.32)

The first term will just be equal to the surface tension. Since this varies in

a small layer r3 can be taken to be equal to R and constant. Most of the

contribution to the second term will come from inside the bubble. Hence

V = V (φ(0)) = const. Hence one obtains:

S4(φ) ' 2π2SR3 +
π2

2
V (φ = 0)R4 (1.33)

From (1.30) and the surface tension definition we have −V (φ = 0) '

3S/R. Substituting the radius of the bubble in (1.29) one gets
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S4 '
27π2S4

2|V (φ(0))|3
(1.34)

in our case the action has the minimal value for |V (φ(0))| = e. In this case

inside the bubble the field has value φ0 and

Γ ' A exp

(
−27π2S4

2e3

)
(1.35)

Observations

• After bubble nucleation, the found solution can be analytically contin-

ued back to the original time giving a solution of the form φ(x
√

2 − t2)

manifestly Lorentz invariant and describing the expansion of the bubble

approaching the speed of light.

• The computation was done in Minkowski background. It is however

clear that in Guth’s inflation, the process should be described in a De

Sitter background. If the curvature near the local minimum is small

compared to H2 gravitational effects cannot be ignored. A first Eu-

clidean theory of tunnelling in de Sitter space was developed Coeleman

and De Luccia [18]. The problem is that potentially both φ and gµν

experience a quantum jump. In order to explore tunnelling in such a

situation a full solution of the Schrödinger equation allowing for particle

with complex momentum is necessary (and also complicated). In the

original paper, however, they relied on the assumption m2 � H2 with

m2 being the curvature of the field sitting in the false vacuum meaning

that gravity will only give a small correction to the Minkowski formu-

lation.
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A solution where the process is guided by gravitational processes, i.e.

with m2 � H2, was proposed by Hawking and Moss [19] . Their solu-

tion for the transition probability was

P ∼ A exp

(
−3

M4
p

8

(
1

V (0)
− 1

V (φ1)

))
(1.36)

with φ1 being the field at the top of the hill. The formula was not

immediately fully understood by the community and generated much

debate [20]. What will be interesting later in the present thesis, is not

(1.36) but rather the fact that the field nucleated in the bubble starts

with initial condition φ = φ1 at the maximum of the potential. This

was understood later thanks to the Starobinski’s stocasthic approach

to inflation described [20]. In order to understand this, a description

of the fluctuations of a field in a De Sitter universe is necessary.

1.3 Slow-Roll Inflation

Consider the EMT of a scalar field φ with potential V [21] :

Tαβ = φ,αφ,β −
(

1

2
φ,γφ,γ − V (φ)

)
δαβ (1.37)

It is possible to simulate the EMT of a perfect fluid (1.2) through the

identification

ρ
.
=

1

2
φ,γφ,γ + V (φ), p

.
=

1

2
φ,γφ,γ − V (φ), uα

.
= φ,α/

√
φ,γφ,γ (1.38)
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If the field is homogeneous (which is the case in a De Sitter spacetime because

of the ”no hair” theorem), i.e. φ,i = 0, then

ρ =
(φ̇)2

2
+ V (φ), p =

(φ̇)2

2
− V (φ) (1.39)

Another way to justify the fact that the field is homogeneous is that the wave-

length of each mode gets stretched during expansion, while the quadratic

mass term does not (reflected in the fact that in the classical eom the lapla-

cian term is divided by a2 [22]).

The homogeneous field will then satisfy the Klein Gordon equation which is

φ;α
;α + V,φ = 0 (1.40)

under FRW metric and using the fact that the contracted Christoffel symbol

is Γαµα = ∂µ log
√
|g| where g is the determinant of the metric, (1.40) can be

rewritten as

φ̈+ 3Hφ̇+ V,φ = 0 (1.41)

The Friedman equation reads

H2 =
8πG

3

(
1

2
(φ̇)2 + V (φ)

)
(1.42)

The continuity equation follows from (1.41) and (1.42) and is

Ḣ = −8πG

2
(φ̇)2 (1.43)

Thus the slow-roll parameter becomes

ε = − Ḣ

H2
= 8πG

1
2
(φ̇)2

H2
=

1

2

(φ̇)2

V
(1.44)
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requiring ε� 1 implies (φ̇)2 � V . Friedmann equation thus reads

H2 =
8πG

3
V (φ) (1.45)

Defining the quantity δ
.
= −φ̈/(Hφ̇) one finds for the second slow roll

parameter [12] η = 2(ε − δ). Since η � 1 we have δ � 1 implying that

we can ignore the oscillatory term in the equation of motion of the φ field.

Hence

3Hφ̇ ' −V,φ (1.46)

(1.46) together with (1.45) gives

ε = 8πG
1
2
(φ̇)2

H2
'
M2

p

2

(
V,φ
V

)2
.
= εV (1.47)

where εV is the ε parameter under slow roll approximation and is known as

the potential slow roll parameter and I set 8πG
.
= M−2

p . Similarly ηV can be

defined, yielding [12]

|ηV |
.
= M2

p

|V,φφ|
V

(1.48)

and the slow roll condition |ηV | � 1.

Clearly inflation will end when this parameters becomes of order 1. Thus the

number of e-folds can be computed in terms of this parameters (see [12]).
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1.3.1 On the meaning of a microscopic explaination of

inflation

Recent observations have ruled out the simplest model of inflation: the mas-

sive scalar model [13]. This should be no surprise. Inflation is perfectly

justified in terms of a perfect fluid with the approximate equation of state

p ' −ρ. In this sense, the slow roll parameters are nothing but a mere tool to

impose this on Friedmann’s equations. The failure of a microscopic model is

no surprise in the sense that the potential generating the slow roll conditions

is based on a fundamental theory which is simply not yet full known. The

failing of a model just means the failure of its parameters to parametrize our

ignorance about this.

Since Guth’s first model, many other models were proposed [13]. It is then

very important to understand what are the main features of the various

classes of inflationary models, and what their imprints might be on current

and future observations in order to constrain them.

Hence the program of the following thesis. First of all a model with a po-

tential where the potential slow-roll conditions are not satisfied will be intro-

duced. After that the problem of density perturbations is introduced focusing

on the possible imprints of the above model. To match observations, the im-

plementation of a newly proposed mechanism known as modulated reheating

[4] will be necessary.



Chapter 2

Density Perturbation

2.1 Preliminary Computation

Consider a massless scalar field living on a Minkowski background. After

quantization, the field can be expressed in terms of modes as follow [21]∫
k

a†k(t)e
−ikx + ak(t)

†eikx (2.1)

with
∫
k

being the three dimensional measure.

We want now to measure quantum fluctuations. In order to do that we

introduce an apparatus of size l. Quantum fluctuations will be due to the

two-point correlator

〈0|φ(x)φ(y)|0〉 (2.2)

where x and y have a space-distance of roughly the size of our apparatus.

Then we have

〈0|φ(x)φ(y)|0〉 =

∫
k

∫
k′

〈
aka

†
k′

〉
eikx−ik

′y (2.3)
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the operator part yields a δ3(k − k′) function. After integration and passing

to polar coordinates, up to numerical factors (assuming equal time):∫
d|k| k

2

|k|
sin |k|l
|k|l

(2.4)

where we can take the integral up to |k| ∼ O(1/l) i.e. the natural resolution

of the apparatus. The contribution to the integral in the subset of integration

where |k|l� 1 scales like

I ∝ k2 � 1

l2
(2.5)

because the last factor of (2.4) can be taken to be of order one. The maximum

contribution to the integral comes, instead, from the subset where |k| ∼ l−1.

In this subset, again, the last term in (2.4) can be taken to be simply a

number. Hence also in this case the integral is proportional to k2 ∼ l−2. The

fluctuations then are of the order of the size of the box.

In the next paragraph the De Sitter case is analyzed and a rigorous method

is presented.

2.2 Fluctuations on De Sitter

First of all we have to rewrite our mode expansion, and manipulate it a bit

in order to proceed:

δφ(~x, t) =

∫
d3~k

(2π)3
ei
~k·~xδφk(t) (2.6)

this mode has to satisfy the classical equation of motion (1.40). The extra ~x

dependance is due to the fact that fluctuations spoil isotropy locally. Hence

the explicit equation of motion will have an extra laplacian term suppressed
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by a2 with respect to (1.41). This fact, in turn give, for the mode equation:

δφ̈k + 3Hδφ̇k +
k2

a2
δφk = 0 (2.7)

Notice that k ≈ 1/λ is divided by a. Multiplication by this factor makes it

physical k/a ≈ (λa)−1 = λ−1
phys since the scale factor a2 is the metric element.

Equation (2.7) admits two regimes (as it happens for Jeans theory): one when

λphy � H−1 and one when λphy � H−1 respectively called super-Hubble and

sub-Hubble wavelengths. In the first case, the last term of (2.7) can be

ignored giving a constant solution. In the second case the gravitational term

can be dropped, giving an oscillatory behaviour. Matching the two solutions

at λphys ' H−1 gives the final result. Before doing that it is necessary to

redefine the field as δφk
.
= δχk/a and to move to conformal time τ :

τ ∝
∫
e−Htdt (2.8)

implying a = −1/(Hτ) with τ negative. Rearranging the equation of motion

(2.7) becomes:

δχ′′k + (k2 − a′′

a
)δχk = δχ′′k + (k2 − 2

τ 2
)δχk = 0 (2.9)

on sub-hubble scales the τ term can be dropped and it follows:

δχk =
e−ikτ√

2k
(2.10)

at horizon crossing (i.e. k = aH), |δφk| = |δχk|/a = 1/(
√

2ka) = H/
√

2k3

which remains constant outside the horizon. Now (2.3) will be proportional

to

k3|δφk|2 ∝ H2 (2.11)
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Proper menagement of the prefactors yields an extra 1/(2π)2 in the result

[10]. Notice the analogy with the flat case. H−1 can be interpreted as the size

l of our box. This has a nice physical interpretations. On distances bigger or

equal to H−1, the De-Sitter background becomes not neglegible making our

notion of particles no longer reliable. This is because in a De Sitter universe

the cosmological horizon also corresponds to the causal horizon, meaning

that wavelength longer than that have no casual structure.

2.2.1 Massive Scalar Field in De Sitter

In the case of a massive field φ, H will not be the only size of the system and

fluctuations will be shorter due to the fact that the mass term is screening

them.

The EOM with a mass term are [22]:

δφ̈k + 3Hδφ̇k +

(
m2 +

k2

a2

)
δφk = 0 (2.12)

on the Super-Hubble scale the oscillatory term due to k2 can be ignored.

Hence, for m ≤ H the solution is given by:

δφk ' Aeµt (2.13)

with µ being

µ = −3H

2
+

√
9

4
H2 −m2 (2.14)

In (2.13) the other decaying mode can be dropped as it becomes negligible

after few e-folds. A is a constant of integration that can be obtained by

matching with the sub-Hubble solution at horizon crossing. The sub -horizon

solution reads, as before, at horizon crossing |δφk| ' H/
√

2k3 which give us
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the initial value of A. To evaluate (2.13) remember that t = −1/H ln−τ and

notice that at horizon crossing kτ = 1. Hence one obtains:

|δφk| '
H√
2k3

(
k

aH

)µ
(2.15)

note that in the limit m = 0 the massless solution is recovered. Hence,

in a De Sitter universe, the massive perturbations are no longer constant

but present a slight dependance (a small tilt towards blue). For the slow

parameter η = m2/3H2 � 1 we have µ = η by µ.

Interestingly enough this is opposite to what really happens during inflation.

Indeed, the fact that H is no longer constant generates a tilt towards red

(in the opposite direction). Before showing that, it is necessary to introduce

some physical quantitites.

2.2.2 Power Spectrum and Spectral Index

The power spectrum for δφ~k is defined as〈
0|δφ ~k1

δφ ~k2
|0
〉 .

= (2π)3δ3(~k1 + ~k2)|δφ~k|
2 (2.16)

in turn, the power spectrum in position space is then:

〈
0|δφ(~x, t)2|0

〉
=

∫
d3~k

(2π)3
δφ~kδφ ~−k =

∫
d3~k

(2π)3
|δφ~k|

2 =

∫
dk

k
P (k) (2.17)

where the power spectrum of δφ(x, t) has been defined as

P (k) =
k3

2π2
|δφ~k|

2 (2.18)

Finally the spectral index nδφ is defined as

nδφ =
d lnPδφ
d ln k

(2.19)
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n = 1 for a scale invariant spectrum and smaller (bigger) than one for a red

(blue) tilt.

2.2.3 Massive Case in Inflation

The fact that during inflation H is changing causes a small change in the

effective mass of the field. Making the ansatz:

a(τ) = − 1

H

1

τ 1+ε
(2.20)

with ε slow roll parameter, turns out to satisfy the condition Ḣ = −εH2.

This change give, in the equation of motion (2.9), an extra term from a′′/a

which is
a′′

a
' 1

τ 2
(2 + 3ε) (2.21)

hence the exponential factor µ is modified to µ̃ = µ−ε. In the limit for small

η parameter, µ̃ ' η − ε. Hence the spectral index nδφ is

nδφ − 1 = 2η − 2ε (2.22)

which can be negative.

The experimental result for the spectral index today is ns ' 0.96. This tells

us that in every phenomenological sensible inflationary model the combina-

tion of the slow roll-parameters η − ε ∼ O(10−2). Moreover, notice that

such a spectrum does not necessarily need to be prouced by the inflationary

field, but it can be produced by any spectator field which during inflation is

satisfying the slow roll conditions. This will be the case for locked inflation.



Chapter 3

Quantum fluctuation during

inflation: density perturbations

and δN formalism

3.1 Quantum Fluctuation

The theory of cosmological perturbations is a cornerstone of modern cosmol-

ogy and is used to describe the observed structure formation in our universe.

Fluctuations of the early field are stretched during inflation outside the Hub-

ble patch. These perturbations, which have a quantum origin, enter back in

the horizon during the later expansion of the universe, being the source of

the gravitational field that lead to the formation of the galaxies.

During inflation, the inflaton field φ is dominating. Hence, a fluctuation in

φ generates a fluctuation in the EMT:

δφ→ δTµν → δgµν (3.1)
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where the second arrow is due to Einstein’s equation. A change in δgµν

generates a backreaction in the evolution of the φ field through changes in

the Klein Gordon (KG) equation, implying:

δφ↔ δgµν (3.2)

Consider the following field expansion φ(~x, t) = φ0(t) + δφ(~x, t) where φ0

is a solution to the KG equation. Then the equaiton for the perturbation

δφ(~x, t) is

δφ̈+ 3Hδφ̇− ∇
2

a2
δφ̇+ V,φφδφ = 0 (3.3)

differentiating KG equation yields(
φ̇0

)..
+ 3H

(
φ̇0

).
+ V,φφφ̇0 = 0 (3.4)

where H is assumed to be approximately constant during inflation. Assuming

(~k)
2

a2 � H i.e. dropping the gradient term in (3.3) implies that δφ and φ̇0 are

solution to the same equation of motion. This implies that the two solutions

are related to each other by a constant depending on time i.e.

δφ = φ̇0δt(~x) (3.5)

implying that φ(~x, t) = φ0(t + δt(~x), ~x). These fluctuations will, in turn,

change the metric.

3.2 The problem of gauge invariance

Proper gauging is important in order to avoid the production of ficticious

density perturbation. In order to understand this, consider a energy density
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distribution in a coordinate system of the form:

ρ(~x, t) = ρ(t) (3.6)

Perform now a change of coordinates

t→ t̃ = t+ δt(~x, t) (3.7)

under transformation (3.7) the energy density will transform as

ρ→ ρ̃(t̃, ~x) = ρ(t(t̃, ~x)) (3.8)

hence for infinitesimal time shift:

ρ(t) = ρ(t̃− δt(~x, t)) = ρ(t̃)− ∂ρ

∂t
δt = ρ(t̃) + δρ(~x, t) (3.9)

In the new coordinate system, it looks like there is a background energy

depending only on time t̃ on top of which a linear perturbation is acting.

Clearly its origin is ficticious and is only due to the coordinate choice.

3.2.1 Perturbation Classification

Consider the following perturbed metric

ds2 =
[

(0)gµν + δgµν
]
dxµdxν (3.10)

where the unperturbed one is assumed to be the FRW metric:

(0)gαβdx
αdxβ = a2(τ)

(
dτ 2 − d~x2

)
(3.11)

We expect to have three propagating degrees of freedom: two from gravity

(massless spin two theory) and one from the scalar field (inflaton). The met-

ric has three possible type of perturbations: scalars, vectorial and tensorial.
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Since gµν is symmetric it has 4 · 5/2 = 10 components. A way to decom-

pose them properly is to let us be guided by symmetries. The background

is homogeneous and isotropic hence we have invariance under rotation and

translation. Under these symmetries δg00 behaves as a scalar, δg0i as a vector

and δgij contains scalar, vectorial and tensorial parts. By Helmholtz decom-

position theorem vectors can be decomposed into two components: a scalar

and a transverse vector. Thus:

δg00 = 2a2φ, δg0i = a2 (B,i + Si) (3.12)

where Si,i = 0. The transversatility condition implies that the vector S has 2

indipendent components. The tensorial part decomposition is trickier. The

trace part is invariant under rotations, and behaves as a scalar. Moreover

there is a tensorial part responsible for gravitational waves. Finally in the

most general term it is possible to add a vector term (which can be decom-

posed in a scalar and a transverse vector like term). Hence:

δgij = a2 (2ψδij + 2E,ij + Fi,j + Fj,i + hij) (3.13)

with F i
,i = 0 and

hii = hij,i = 0 (3.14)

If we get ten parameters in δg, then our decomposition is enough and correct

in order to describe the metric fluctuations:

• Scalars: φ,B, ψ,E which give four components

• Vectors: S, F which are longitudinal, yielding other four components
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• Tensors: hij which is a 3×3 symmetric tensor hence having 3×4/2 = 6

components. Other four components are killed by condition (3.14)

giving in total 6− 4 = 2 components.

summing them all up together we get ten components making the decompo-

sition correct.

3.2.2 Behaviour of the perturbations under gauge trans-

formation

Gauge invariance can also be understood as invariance under local coordi-

nates diffeomorphism. Consider the following coordinate transformation:

xα → x̃α = xα + ξα (3.15)

with ξ being an infinitesimal local parameter. A generic quantity Q trans-

forms under the coordinate transformation (3.15) as follow:

δQ̃ = δQ+ LξQ0 (3.16)

Using (3.16) the transformation for both scalar, vector and tensor pertur-

bation is easily found. However we want to derive them in a more physical

way.

Scalar Field Consider the following scalar field

q(xρ) = (0)q(xρ) + δq (3.17)
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under change of coordinates of the form ξα:

q̃(x̃ρ) = (0)q̃(x̃ρ) + δq̃ (3.18)

A scalar field has the following property: q(xρ) = q̃(x̃ρ). It follows that:

δq̃ = q̃(x̃ρ)− (0)q̃(x̃ρ) = q(xρ)− (0)q̃(xρ + ξρ) ' q(xρ)− (0)q̃(xρ)− ξρ∂ρ(0)q̃(xρ)

(3.19)

the unperturbed solution is not affected by the coordinate transformation i.e.

(0)q̃(x̃ρ) = (0)q(x̃ρ) implying for (3.19):

δq̃ = q(xρ)− (0)q(xρ)− ξρ∂ρ(0)q(xρ) = δq − ξρ∂ρ(0)q (3.20)

Vector Field A vector field transforms as follow:

ũα(x̃ρ) =
∂xβ

∂x̃α
uβ(xρ) = uα(xρ)− ∂αξβuβ(xρ) = (0)uα(xρ) + δu− ∂αξβuβ(xρ)

(3.21)

the left hand side of (3.21) is equal to (0)ũα(x̃ρ) + δũ. It follows that

δũ = (0)uα(xρ) + δuα − (0)ũα(x̃ρ)− ∂αξβ(0)uβ(xρ) (3.22)

where the last term is the background solution because we are working up

to order O(ξ, δ). As in the scalar case it is possible to rewrite:

(0)ũα(x̃ρ) = (0)ũα(xρ + ξρ) ' (0)ũα(xρ) + ξρ∂ρ
(0)ũα(xρ) (3.23)

since (0)ũα(xρ) = (0)uα(xρ) inserting (3.23) into (3.22) yields:

δũα = δuα − ∂αξβ(0)uβ − ξρ∂ρ(0)uα (3.24)
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Tensor Field Tensors transform as:

g̃µν(x̃ρ) =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(xρ) = (δαβ − ∂µξα)(δβν − ∂νξβ)gαβ(x) (3.25)

working to first order in ξ, δ implies:

g̃µν(x̃) = gµν(x)− ∂µξα(0)gαν(x)− ∂νξβ(0)gµν(x) (3.26)

as before we have

g̃µν(x̃) = (0)g̃µν(x̃) + ∂g̃µν = (0)g̃µν(x+ ξ) + δg̃µν =

= (0)gµν(x) + ξρ∂ρ
(0)gµν(x) + δg̃µν

(3.27)

Inserting (3.27) into (3.26) gives:

δg̃µν = δgµν − ξρ∂ρ(0)gµν(x)− ∂µξα(0)gαν(x)− ∂νξβ(0)gµν(x) (3.28)

3.2.3 Building Gauge Invariant Variables

From (3.20), (3.24) and(3.28) it is possible to read off the transformation

behaviour of respectively δg00, δg0i and δgij. Decompose the infinitesimal

vector ξα = (ξ0, ξ,i) by Helmholtz theorem as

ξi = ξi⊥ + ς ,i (3.29)

with ξ⊥ longitudinal. It follows:

δg̃00 = δg00 − ξ0∂0a
2 − 2∂0ξ

0a2 = δg00 − 2a(aξ0)′ (3.30)

for the vectorial component

δg̃0i = δg0i + ∂0ξ
ia2 − ∂iξ0a2 = ∂g0i + a2

[
ξ′⊥i + (ς ′ − ξ0),i

]
(3.31)
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and finally for the tensorial part:

δg̃ij = ∂gij + a2

[
2
a′

a
δijξ

0 + 2ς,ij + (ξ⊥i,j + ξ⊥j,i

]
(3.32)

The metric including only scalar perturbations is:

ds2 = a2
[
(1 + 2φ)dτ 2 + 2B,idx

idτ − ((1− 2ψ)δij − 2E,ij) dx
idxj

]
(3.33)

Comparing (3.30), (3.31) and (3.32) with (3.33) the transformation of the

four scalar functions is obtained:

φ→ φ̃ = φ− 1

a
(aξ0)′ (3.34)

B → B̃ = B + ς ′ − ξ0 (3.35)

ψ → ψ̃ = ψ +
a′

a
ξ0 (3.36)

E → Ẽ = E + ς (3.37)

It follows that choosing ς and ξ0 fixes the scalar part of the perturbations

uniquely. This implies that out of the four scalars we had, we have only two

degrees of freedom coupling to δφ. Moreover it is possible to form gauge

invariant observable by taking linear combination of the four scalars in an

appropriate way.

Invariant energy density Suppose to have a background energy density

ρ0(t). Since it is a scalar, under a coordinate transformation, it follows from

(3.20) that

δρ̃ = δρ− ρ0,αξ
α = δρ− ρ′0ξ0 (3.38)

the term ξ0 can be obtained by the perturbation of δ(E ′−B) = ξ0. It follows

that I can define a gauge invariant perturbation as

δρGI = δρ− ρ′0(B − E ′) (3.39)
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The previous computation tells us more. Using the freedom of the choice of

ξ0 it is always possible to take a coordinate transformation such that δρ = 0.

These surfaces are called uniform energy density surfaces and it follows that

δρ→ δρunif = δρ− ρ′0ξ0 = 0 (3.40)

implying that, in order to move to the uniform energy density slicing, one

has to fix

ξ0 =
δρ

ρ′
(3.41)

Bardeen’s parameters As already mentioned it is possible to build gauge

invariant variables. The most important are the Bardeen’s parameters [23]:

Φ = φ− 1

a
[a(B − E ′)]′ Ψ = ψ +

a′

a
(B − E ′) (3.42)

through these two variables it is possible to parametrize fluctuations. If both

Φ = Ψ = 0 then all the perturbations are ficticious. Choosing ξ0 and ς ′ such

that E = B = 0 yields φ = Φ and Ψ = ψ and it is known as longitudi-

nal gauge. Another important parameter that will play an important role

in building the δN formalism is the gauge invariant parameter ζ which is

invariant under time translation

ζ = −ψ +
a′

a
ξ0 (3.43)

In conformal time, the Friedmann energy conservation can be stated as [1]:

ρ′ + 3
a′

a
(ρ+ p) = 0 (3.44)

inserting (3.44) in (3.43) gives

ζ = −ψ − δρ

3(ρ+ p)
(3.45)

Notice that in the gauge choice where δρ = 0 it follows ζ = −ψ.
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3.2.4 δN formalism

The perturbed metric has the following form:

ds2 =a2
[
(1 + 2φ)dτ 2 + 2(B,i + Si)dx

idτ
]

+

+ a2
[
((−1 + 2ψ)δij + 2E,ij + Fi,j + Fj,i + hij)dx

idxj
] (3.46)

In the litterature the δN formalism is derived making use of the ADM

(Arnowitt, Deser, Misner) metric [24]:

ds2 = −α̂2dt2 + γ̂ij(dx
i + β̂idt)(dxj + β̂jdt) (3.47)

where γ̂ij
.
= a2(t)e2ψ̂(eĥ)ij with ĥij = ∂iĈj + ∂jĈi − 2/3∂kĈ

kδij + ĥTij. The

perturbation parameters also contains ten parameters: one scalar due to

α̂, three from the vector β̂i, and finally six from the tensor γ̂. A mapping

between the ADM metric and the old metric can be easily obtained by setting:

Ĉ⊥i = Fi, M̂ = E β̂i = a(B,i + Si),

ψ̂ = −ψ, φ = − 1

a2

α̂2 + β̂iβ̂
i

2
− 1

2

(3.48)

Where Ĉi = Ĉi
⊥ + M ,i and all terms of order δ2 are dropped (δ here being

the order of the perturbative term).

As an excercise, to derive the relation between ψ and the number of e-folds,

we will use metric (3.46). The derivation sugin the metric (3.47) is presented

in [25]. Before proceeding it is usefull to rewrite the spatial part of the metric

(3.46) as

a2e−2ψ(eh)ij (3.49)

with (eh)ij = δij + 2E,ij + Fi,j + Fj,i + hij. Again it is meant that the order

of perturbation is δ and perturbation of order δ2 are dropped. Fix now part
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of the gauge: Fi = 0, E = 0. In order to fix the gauge univocally another

choice has to be made in the scalar sector. For ψ = 0 we obtain the flat

gauge, for δρ = 0 we obtain the uniform energy density gauge.

Consider a gauge transformation of the form

τ → T = τ + δτ, xi → X i = xi + ξi (3.50)

Note that the choice of the gauge sets ξi = ξi⊥ + ς ,i = 0 since using (3.24) it

folllows:

Fi → F̃i = Fi + ξ⊥i (3.51)

Hence setting Fi = E = 0 equals to set both ξ⊥i and ς to zero (see (3.37)).

Under (3.50):

gij(τ, ~x) = g̃00(T, ~X)
∂δT

∂xi
∂δT

∂xj
+ 2g̃0k(T, ~X)

∂Xk

∂xi
∂δT

∂xj
+

g̃ij(T, ~X)
∂Xk

∂xi
∂X l

∂xj

(3.52)

The first term is of order δT 2, the second term is of order δ · δT and the last

term is of order O(δT 0, δ0) implying:

gij|E=Fi=0(t, ~x) = g̃ij|E=Fi=0(T, ~X) +O(δT 2, δ2, δ · δT ) (3.53)

this implies in turn that

a2e−2ψ(eh)ij(τ, ~x) ' a2e−2ψ̃(eh̃)ij(T, ~X) (3.54)

taking determinant on both side and also logarithm (noticing that det
{
eh
}

=

1 +O(δ)) gives:

ln a(τ)− ψ(τ, ~x)|E=Fi=0 = ln a(T )− ψ̃(T, ~X)|E=Fi=0 (3.55)
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Finally taking ψ(τ) in the flat gauge, and ψ(T ) in the uniform density gauge

gives:

ψ|δρ=E=Fi=0(T, ~X) = − ln
a(T )

a(τ)
(3.56)

finally we know the number of e-folds is:

N
.
=

∫ t

t?
Hdt′ =

∫ τ

τ?

a′

a
dτ ′ (3.57)

suppose now that the change from flat gauge to uniform energy density gauge

happens at τ̂ ∈ (τ, T ). It follows

− ψ|δρ=E=Fi=0(T, ~x) = ln
a(τ)

a(τ̂)
− ln

a(T )

a(τ̂)
.
= N − N̂ .

= δN (3.58)

where N̂ is the number of e-folds in the uniform density gauge. In this gauge

ψ = −ζ implying ζ = δN . Before moving on, a remark on the constancy of

ζ in this gauge has to be made.

Let us work in the uniform energy density gauge (δρ = 0). Then the scale

factor is:

a(t)eψ(t,~x) (3.59)

the first thermodynamical principle implies

dE = dρV + ρdV = −pdV (3.60)

where V ∼ a3e3ψ. This implies that dV = 3(a2e3ψda+a3e3ψdψ). This implies

for (3.60)

dρ = −3(ρ+ p)
a2e3ψda+ a3e3ψdψ

a3e3ψ
= −3(ρ+ p)

(
da

a
+ dψ

)
(3.61)

taking time derivative on both side, the perturbed energy density conserva-

tion becomes:

ρ̇ = −3(H + ψ̇)(ρ+ p) (3.62)
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Now writing ρ = ρ0 + δρ with ρ0 satisfying the unperturbed equation (i.e.

without the term ψ̇), it follows at first order

ψ̇(ρ0 + p0) = δρ̇ = 0⇒ ψ̇ = 0 (3.63)

where the = 0 equality is because of the gauge choice. This implies ψ =

−ζ = const.



Chapter 4

Modulated Reheating

Now that the δN formalism is developed, it will be possible to fully un-

derstand the non gaussianity production of order O(1) due to modulated

reheating. Such a result is already derived in ref [4]. After repeating the

main step of such an article the result is derived using the machinery of the

previous chapter.

4.1 Basics of reheating

At the end of inflation the inflaton field is still dominating the universe.

However, since it is oscillating around its minimum, it behaves like matter.

To understand why this is the case consider the classical equation of motion

for the inflaton:

φ̈+ 3Hφ̇+ V,φ = φ̈+ 3Hφ̇+M2φ = 0 (4.1)
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where M is the mass of the field at its minimum. The equation follows from

φ,α;α + V,φ = 0 (4.2)

assuming φ only depends on time (the field is homogeneous at the classical

level). Now multiplying (4.1) by φ and averaging over time implies:〈
(φ,t)

2
〉

= M2
〈
φ2
〉

(4.3)

where the term φ,ttφ has been rewritten as (φ,tφ),t − (φ,t)
2. The first term,

as well as the friction term, can be dropped under time average.

For the energetic content:

ρ =
1

2
φ2
,t +

1

2
M2φ2 (4.4)

Taking derivatives yields, using (4.1)

ρ,t = φ,t(φ,tt +M2φ) = −3Hφ2
,t (4.5)

From (4.3):

〈ρ〉 = M2
〈
φ2
〉

=
〈
φ2
,t

〉
(4.6)

Inserting this in (4.5) yields

〈ρ,t〉
〈ρ〉

= −3H (4.7)

upon integration, it is possible to see that the averaged energy density red-

shifts in a matter-like way:

〈ρ〉 =
ρ0

a3
∝ T 3 (4.8)

Hence, while the inflaton is relaxing around its minimum, the universe is in a

matter dominated era (assuming the inflaton energy density is still dominat-

ing in the universe). An oscillating homogeneus scalar field can be interpreted
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as a condensate of heavy particles of mass M at rest. The idea of reheating is

that this oscillatory energy, instead of being fully redshifted, is converted into

some other degrees of freedom or, equivalently, the inflaton decays. Then,

depending on the temperature of reheating, the newly formed particles might

be relativistic or not, generating a period of either radiation domination or

matter like domination.

A full comprehensive theory of reheating is still not present. The reason is

that a full theory of inflation is not known, as well as the degrees of freedom

taking part in the process.

For practical purpose we can say, for example, that the inflaton decays in

some degrees of freedom (denote them as ψ) through the renormalizable

coupling

λψ̄φψ (4.9)

In principle the terms appearing in the lagrangian, and describing the decay,

might be non renormalizable, depending on which degrees of freedom have

been integrated out at the scale of reheating.

The decay rate, from purely dimensional analysis, has the form (up to nu-

merical prefactors of order one):

Γ(φ→ ψψ) = λ2M (4.10)

Such a channel should be effective only after the end of inflation. It follows

immediately a consistency bound during inflation

Γ ≤ H (4.11)

The reason of such a bound is casual. If the process takes distances (or times)

longer than the Hubble patch, then the process is exponentially suppressed.
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Parametrize φ(t) ' Φ(t) cos(Mt) where Φ(t) is a slowly decaying amplitude.

The number density is:

nφ '
〈ρ〉
M

=
1

2
MΦ2 (4.12)

These equations will be usefull for later considerations. Notice also that the

average life of a particle φ is ∼ Γ−1 ∼ M−1. Another problem affecting

reheating are parametric resonances which will be tackled when dealing with

locked inflation.

4.2 Basic mechanism of modulated reheating

The key idea of modulated reheating is to give to the coupling λ in (4.9) a

dynamical origin i.e. λ = λ(S), S being a scalar. Suppose, also, that at the

end of inflation, the deacying channel becomes enabled i.e.

Γ ≥ H (4.13)

Another assumption is that during the inflationary period mS � H so that

the scalar field S fluctuates as in a quasi De Sitter universe without spoiling

inflation which is driven by another field. Assuming that the decay chan-

nel (4.9) is the only responsible for the reheating of the universe, the only

source of temperature will be Γ. Under this transition, let us assume that the

universe goes from a matter dominated universe, to a radiation dominated

universe.

In a radiation dominated universe, the energy density ρ scales as T 4. Fried-

mann’s equation in this case reads 1/t2 ∼ T 4 where Mp = 1 and other con-

stants of order one have been dropped. The time length dominating during
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reheating is Γ−1. It follows that:

TR ∼
√

ΓMp ∼ λ
√
MMp (4.14)

where Mp has been reintroduced using dimensional analysis. For a precise

derivation see [12]. In (4.14) few factors of order one are missing, as well as the

number of degrees of freedom at that temperature. Since these quantities will

not affect our future treatment we set them to one. Notice that in principle,

however, it might be of order 102 if all the degrees of freedom of the standard

model are available.

From (4.14) it follows that a fluctuation in the coupling λ might generate a

fluctuation in the temperature:

δTR
TR
∼ δΓ

Γ
∼ δλ

λ
(4.15)

To proceed further a two separate universe argument is given. Suppose to

have two separated universes where the coupling λ has fluctuated differently.

Wlog assume that λ1 > λ2 i.e.

1

Γ1

<
1

Γ2

(4.16)

What will happen is that the two universes will undergo the same evolution,

at different values of the scale factor a generating density perturbation. To

better understand this now we will compute how much they differ.

Assume that the decay happens instantaneously at the moment (and the

radiation domination immediately begins thereafter):

Γ = H ∼
√
ρ

Mp

(4.17)
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Call the t? the moment when Γ1 = H(t?).

It follows that

ρ1(t?) = ρ2(t?) = ρ0 (4.18)

from this moment onward, the evolution of the two universes will be different.

In the first , ρ1 will evolve as radiation, while in the second ρ2 will evolve as

matter i.e.

ρ1(t) =
ρ0

a4
, ρ2(t) =

ρ0

a3
(4.19)

The second universe will evolve until the final moment tf when

Γ2 = Htf (4.20)

from (4.19) it follows that:

a(tf ) = 3

√
ρ0

ρ2(tf )
(4.21)

The energy density ρ1(tf ) can be rewritten as

ρ1(tf ) =
ρ0

ρ
4/3
0

ρ2(tf )
4/3 =

ρ2(tf )
4/3

ρ
1/3
0

(4.22)

Since, by previous considerations, ρ0 = (λ2
1m)2M2

p , and ρ2(tf ) = (λ2
2m)2M2

p

with m being the mass of the inflaton at its minimum, (4.22) becomes

ρ1(tf ) =

(
λ2

λ1

) 4
3

λ4
2m

2M2
p =

(
λ2

λ1

) 4
3

ρ2(tf ) (4.23)

Then (4.15) implies:
δρ

ρ
∼ δλ

λ
∼ δΓ

Γ
(4.24)

this completes our computation since we showed that a fluctuation of the

field S during inflation, will be imprinted in the energy spectrum at later

time during reheating.

Two remarks are in order
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• in the above computation the ususal contribution to density pertur-

bations due to the inflaton field has been ignored: this is the case if

one considers low scale inflationary models unable to produce enough

density perturbation wrt observations

• the whole computation has been realized assuming thermal equilibrium.

This implies that this mechanism is generating adiabatic fluctuations.

4.2.1 On the origin of fluctuations

The dependance of λ on a scalar S can be parametrized in a general way as

follows:

λ(S) = λ0

(
1 +

S

M
+ ...

)
(4.25)

with M being the scale at which the degree of freedom was integrated out.

It can either be the planckian or a lower scale. Some terms in (4.25) might

be missing due to symmetries.

Since by assumption ms � H it follows that the fluctuations δS ∼ H during

inflation ( massless De Sitter case). We have that

δΓ

Γ
=
δλ

λ
=
δS

M
=

δS

〈S〉
〈S〉
M

.
= f

δS

S
(4.26)

with 〈· · · 〉 denoting vacuum expectation value (which the field assumes dur-

ing inflation) and f can be interpreted as the fraction of fluctuations con-

trolled by the coupling.

Since observationally
δΓ

Γ
∼ 10−5 (4.27)

There are two possibilities: either 〈S〉 � H ∼ δS or f � 1. In the first case

perturbation will be gaussian like, while in the second case non gaussian.
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Equation (4.25) implies that there are mainly two channels contributing to

the decay. A direct channel dominated by the constant coupling λ0 and a

modulating channel (call it s-channel) where λ = 〈S〉 /M . Contributions to

the energy density come from both channels. However the contribution to

fluctuations comes only from the s-channel implying:

δρ

ρ
=

δρs
ρs + ρdirect

(4.28)

where δρs estimates as follows:

ρs =

(
〈S〉
M

)4

m2M2
p → δρs =

(
〈S〉
M

)3
δS

M
m2M2

p (4.29)

let us now consider the two limits for (4.28) where either the s-channel or

the d-channel dominates.

If the s-channel dominates, (4.28) reduces to

δρ

ρ
∼ δS

〈S〉
(4.30)

and since δS ∼ H it follows that

〈S〉 ∼ 105H (4.31)

implying gaussian like perturbations.

In the case the direct channel dominates:

δρ

ρ
∼ δS

〈S〉3

M4λ4
0

=
δS

Mλ4
0

∼ H

Mλ4
0

(4.32)

where the minimum of S has been assumed at M (take S to be, for example,

a particle with an Higgs like potential). In this case δS � 〈S〉 implying the

production of non gaussianities. Notice that up to now, the balance between

the two channels has been considered arbitrary. When such a mechanism is

embedded in a model, it will tells us what are the weights of each different

channel.
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Mass domination Before moving to a model indipendent estimate on the

production of non gaussianities, it is worth mentioning another modulated

like mechanism described in [26]. Suppose the universe undergoes a period

of mass domination starting at the moment t0

ρ0 = M4 (4.33)

During this period the universe number one will evolve in a matter like way

until the mass decays in other degrees of freedom when ρf ∼ Γ2. After that,

universe number one will start again evolving in a radiation-like way. We will

compare this evolution with the one of universe number two, where the mass

domination never happens, and simply evolves like radiation. For universe 1

we have
ρ1(t0)

ρ1(tf )
=

(
af
a0

)3

=
M4

Γ2
(4.34)

In universe 2:

ρ2(t0)

ρ2(tf )
=
ρ1(t0)

ρ2(tf )
=

(
af
a0

)4

=

((
af
a0

)3
)4/3

=
M16/3

Γ8/3
(4.35)

From (4.34), using (4.35) we have

ρ1(tf ) =
Γ2

M4
ρ1(t0) =

M4/3

Γ2/3
ρ2(tf ) (4.36)

finally implying:
δρ

ρ
=

4

3

δM

M
− 2

3

δΓ

Γ
(4.37)

in the case δM = 0 we recover the case of previous section with the opposite

sign. An example of a model where this type of domination is studied is

presented in [26].
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4.2.2 Non Gaussianity

Physical observables in quantum field theory are fully encoded in correlator

functions. Taking their amplitude square correspond to evaluating the prob-

ability of such a process. A free field theory without interactions is Gaussian.

In fact the probability distribution is given by the Feynmann path integral∫
DφeiS(φ) (4.38)

and observable can be obtained by computing

〈F 〉 =

∫
DφFeiS(φ) (4.39)

up to a normalization factor. It can be easily proven that, for odd number of

fields, the correlator function gives zero (Wick’s theorem). This is no longer

the case when interactions are considered. However, since the canonical ap-

proach to the problem of interaction is through perturbation theory, it means

that our distribution can be considered still Gaussian, with small deviations.

These deviations make in turn correlators different from zero. Hence the best

way to measure non gaussianities is, for example, to measure the three point

correlator. This term will be smaller compared to the expectation value of

the two point correlator because it will at least be multiplied by the order

parameter of the perturbative expansion (to some power depending on the

theory).

Non Gaussianity in inflation

Proper measurement of the three point correlator function is a good way to

measure non gaussianities. Simple models of inflation satisfying the following



4.2 Basic mechanism of modulated reheating 46

conditions:

• single field

• canonical normalization

• slow-roll condition satisfied

• vacuum initial state

all predict a tiny amount of non gaussianities. Too tiny to actually be de-

tected by today measurements. Their order of magnitude is 10−2P where P

is the order of magnitude of the two-point correlator function. It follows that

measuring primordial non gaussianities today, might rule out all the simple

one field inflationary models requiring, then, a richer physics of inflation.

A natural question is which field should one use to evaluate perturbations

since a wrong choice might lead to ficticious results. The action of a scalar

field minimally coupled to gravity reads:

S =
1

2

∫
d4x
√
g
(
R− (∇φ)2 − 2V (φ)

)
(4.40)

where g is the metric determinant, R the scalar curvature and Mp = 1. When

perturbed, we have an ADM metric (3.47). Under that, the action (4.40) can

be rewritten as:

S =
1

2

∫ √
γ̂(α̂R(3) − 2α̂V + α̂−1(EijE

ij − E2)+

α̂−1(φ̇− β̂i∂iφ)2 − γ̂ij∂iφ∂jφ)

(4.41)

with

Eij =
1

2

(
d

dt
γ̂ij −∇iβ̂j −∇jβ̂i

)
(4.42)
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A proper choice of the gauge could be the uniform energy density gauge (i.e.

ψ = −ζ) and δφ = 0. This condition can be imposed by gauge fixing also the

vectorial part. Notice that the scalar field φ, dominating the energy density

of the universe during inflation, under coordinate transformation behaves

like:

δφ→ δφ− φ0
δρ

ρ̇
+ φ,iξ

i (4.43)

the second term is already zero because of the uniform energy density slicing,

while δφ+ φ,iξ
i can be made to vanish by chosing ξi appropriately.

Under this gauge the equation of motions for α̂ and β̂i corresponds respec-

tively to the hamiltonian and to the momentum constraints. Solving these

constraints and inserting them back in the action, one finds, at second order

[27]:

S =
1

2

∫
d4x

φ̇2

ρ̇2

[
e3ρζ̇2 − eρ(∂iζ)2

]
(4.44)

where eρ
.
= a(t). Since (4.44) describes a free field we can expand them in

terms of harmonic oscillators:

ζ(x) =

∫
d3k

(2π)3
ζk(t)e

i~k·~x (4.45)

ζk(t) is a harmonic oscillator with time dependent mass and spring constant.

To quantize the field take two classical solutions of the EOM

∂L

∂ζ
= 0 (4.46)

and write

ζ~k(t) = ζclk (t)a†~k + ζcl∗k (t)a−~k (4.47)
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imposing canonical a, a† commutation relation we obtain its renormalization.

Hence we can compute non gaussianities evaluating the correlator:

〈
ζ~k1
ζ~k2
ζ~k3

〉 .
= (2π)3δ3(~k1 + ~k2 + ~k3)Bζ(k1, k2, k3) (4.48)

to proceed further let us use δN formalism (notice that the gauge choice is

the same as the one used there). To compute it we can use the so-called

”gradient expansion method” [25] for which we systematically ignore terms

involving spatial derivatives. This approximation is valid as long that the

perturbations that we are dealing with are longer than the Hubble length i.e.

λphys � H−1 (which is the case for separate universes). Notice that at the

zeroth order this corresponds to ignore all inhomogeneities implying that the

equation for the perturbed quantitites is simply the Friedmann’s equation

for the background

H2 =
1

M2
p

ρ (4.49)

This corresponds to say that when the wavelenght of ζ is larger than the hub-

ble horizon, each horizon patch evolves as if they were separated universes.

Under this approximation, to obtain δN it is sufficient to solve the back-

ground evolution for different initial conditions, and to calculate perturba-

tions as the differences between initial conditions.

Following [28], we write an expansion for the field ζ in terms of slow-rolling

multi fields. Since these fields are slow-rolling, it follows from Klein Gordon

equation, that ζ is only a function of the field φI and not of its derivative φ̇I .

It follows from (3.58)

ζ = δN ' ∂N

∂φI
δφI +

1

2

∂2N

∂φI∂φJ
δφIδφJ + ...− N̂ (4.50)
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where the last term is the number of e-folds in the uniform energy density

gauge. The label runs I = 1, ..., N , N being the number of fields contributing

to ζ. Now it is clear that the perturbation term δφI can be expanded in

modes, and hence (4.48) can be calculated. Another useful quantity is the

two-point function

〈
ζ~k1
ζ~k2

〉
= (2π)3Pζδ

(3)(~k1 + ~k2) (4.51)

To proceed further define〈
δφI~k1

δφI~k2

〉
= (2π)3P IJ(k1)δ(3)(~k1 + ~k2) (4.52)

with P IJ .
= PδIJ . Also rewrite NI

.
= ∂N/∂φI .

From the previous definitions it follows:

〈
ζ~k1
ζ~k2

〉
= NINJ

〈
δφI~k1

δφJ~k2

〉
= NINJP

IJ(2π)3δ(3)(~k1 + ~k2) (4.53)

from which one deduces, for (4.51)

Pζ(k1) = NINJδ
IJP (4.54)

Similarly for the three point function:〈
ζ~k1
ζ~k2
ζ~k3

〉
=NANBNC

〈
δφAδφBδφC

〉
+(

NANBNCD

〈
δφA~k1

δφB~k2
δφC~k3

δφD~k3

〉
+ perms

)
+ ...

(4.55)

we assume the fields φ to be weakly interacting, and their modes δφ to be

fully Gaussian. It follows that the first term in (4.55) vanishes, while the

second can be contracted in the following way

〈
ζ~k1
ζ~k2
ζ~k3

〉
=
(
NANBNCD

〈
δφA~k1

δφC~k3

〉〈
δφC~k2

δφD~k3

〉
+ perms

)
(4.56)
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using (4.52)〈
ζ~k1
ζ~k2
ζ~k3

〉
= (2π)3NANBNCD

(
P (k1)δACP (k2)δCD + perms

)
(4.57)

The fNL parameter is defined in the following way [28]:

Bζ(k1, k2, k3) =
6

5
fNL (Pζ(k1)Pζ(k2) + 2perms) (4.58)

comparing (4.58) together with (4.57) and (4.48):

fNL =
5

6

Bζ(k1, k2, k3)

(Pζ(k1)Pζ(k2) + 2perms)
=

5

6

NANBN
AB

(NKNK)2
(4.59)

A non analytic computation of fNL for modulated reheating in the case of

more than one field, is given in [28]. Here we would like to specialize the

computation for one single field, computing analytically fNL.

As we said in the discussion of modulated reheating the coupling depends

only on one scalar field, namely S. Hence the expansion for ζ is:

ζ ' ∂N

∂S
δS +

∂2N

∂S2
δS2 + ... (4.60)

it immediately follows for fNL:

fNL =
5

6

∂2N

∂S2

(
∂N

∂S

)−2

(4.61)

now we simply have to compute N .

In the case of a slow rolling single field inflation the number of e-folds can be

written as [10]
∂N

∂φ
∼ H

φ̇
(4.62)

it follows immediately from the definition of fNL that

fNL '
5

6

d

dφ

(
H

φ̇

)
φ̇2

H2
(4.63)
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now rewriting d/dφ as φ−1d/dt gives:

fNL =
5

6
φ̇−1 d

dt

(
H

φ̇

)
φ̇2

H2
=

5

6

(
Ḣ

H2
− φ̈

Hφ̇

)
=

5

6
(η − 2ε) ∼ O(10−2) (4.64)

for a slow rolling field. As already said at the beginning, is too small to be

detected by current measurements.

In the case of modulated reheating the number of e-folds is computed differ-

ently. As we said, in the gradient expansion, we are looking at k ≤ aH i.e.

modes outside the horizon. Define t̂ the moment at which k = aH i.e. hori-

zon exit. After the end of inflation the inflaton starts oscilating around its

minimum. When decaying into different channels, the universe gets reheated.

Hence we have the following transition: inflation, matter dominated universe

and finally radiation dominated universe. Let tm be that time in the radia-

tion dominated universe where density perturbations are fully imprinted. It

follows that:

N = N
(
t̂, tf , ~x

)
=

∫ tm

t̂

Hdt =

∫ tf

t̂

Hdt+

∫ tm

tf

Hdt (4.65)

with tf being the moment when inflation finishes. We want to find the

dependence of N on the decay rate Γ. When reheating takes place we have

Γ = H(treh). Take treh to be the moment when reheating begins. The last

term in (4.65) can be further decompose into the matter and the radiative

part:

N ⊃
∫ areh

af

d ln a+

∫ am

areh

d ln a (4.66)

since a ∝ ρ−1/3 in a matter universe, while a ∝ ρ−1/4 in a radiation dominated

universe, and ρreh ∝ Γ2, it follows:

N ⊃ −1

3
ln ρreh +

1

4
ln ρreh = − 1

12
ln ρreh = −1

6
ln Γ(S(treh)) (4.67)
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In the derivation we are totally ignoring the standard fluctuations of the

inflaton that might ruin our modulation. However this approximation works

fine for low scale inflationary model where the natural fluctuations of the

massless field are proportional to the Hubble parameter H.

Static S case We are now ready to compute fNL and to recover the re-

sult of [26]. We assume that S does not evolve while imprinting density

perturbations. Then:

∂N

∂S

∣∣∣∣
reh

=
∂N

∂Γ

∂Γ

∂S

∣∣∣∣
reh

= −1

6

Γ′

Γ

∣∣∣∣
reh

(4.68)

where Γ′
.
= ∂Γ/∂S. The second derivative is

∂2N

∂S2

∣∣∣∣
reh

= −1

6

∂

∂S

(
Γ′

Γ

) ∣∣∣∣
reh

= −1

6

(
Γ′′

Γ
− Γ′2

Γ2

) ∣∣∣∣
reh

(4.69)

From (4.61) we get:

fNL =
5

6
· 1

6

(
Γ′2

Γ2
− Γ′′

Γ

)
36Γ2

Γ′2
= 5

(
1− Γ′′Γ

Γ′2

) ∣∣∣∣
reh

(4.70)

which is the result that can be found, for example, in [12]. In our modulated

reheating scenario we had λ = S
M

and Γ ∝ λ2m2 implying:

fNL =
5

2
(4.71)

In the case where, for example, the mass depends on a scalar field m = m(S̃)

linearly (for example through a Yukawa coupling) we have

fNL = 5 (4.72)

the bottom line is that fNL ∼ O(1) has been obtained, independently of the

model.
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S evolving As explained in the basic mechanism, there is a window of

time where the two different universes have a different evolution. This is the

origin of our perturbations. In principle S might have a non trivial evolution

during this window changing the resulting fNL. This might either lower or

increase the amount of non Gaussianities.

We rewrite
∂N

∂S

∣∣∣∣
tm

=
∂N

∂Sreh

∂Sreh
∂Sm

= −1

6

Γ′

Γ

∂Sreh
∂Sm

(4.73)

with tm being the moment when the imprint of density perturbations is over.

Sm
.
= S(tm).

For the second derivative we have:

∂2N

∂S2
m

= −1

6

((
Sreh
∂Sm

)2(
Γ′′

Γ
− Γ′2

Γ2

)
+

Γ′

Γ

∂2Sreh
∂S2

m

)
(4.74)

Finally this gives, for fNL

fNL = 5

(
1− Γ′′Γ

Γ′2
− Γ

Γ′
∂2Sreh
∂S2

m

(
∂Sreh
∂Sm

)−2
)

(4.75)

From (4.75) it follows that, depending on the evolution of S during reheating,

fNL can deviate from the value of the static case. Notice that in the static

limit we recover the original solution (4.70)

Two-point function

The mechanism of modulated reheating also happens to modify the value of

the two point function. Again, here, a new correction due to the dynamics

of the modulating field is obtained.

Under slow roll condition, we already computed the fluctuations of a field in
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a quasi De Sitter Universe. The result was:

|δφk| '
H√
2k3

(
k

aH

)µ̃
(4.76)

with µ̃ ' η − ε, η, ε being the slow roll parameters. Then the power spec-

trum is P '
(
Hi
2π

)2 ( k
aH

)2µ̃
, Hi being the scale factor during inflation. From

equation (4.54) it follows, for constant S:

Pζ = NINJδ
IJP =

(
1

6

Γ′

Γ

)2

P (4.77)

This is the standard literature result (see for example [28]).

Implementing again S’s evolution taking the derivative at tm it follows:

Pζ = NINJδ
IJP =

(
1

6

Γ′

Γ

∂Sreh
∂Sm

)2(
Hi

2π

)2(
k

aH

)2µ̃

(4.78)

Hence a small correction is obtained due to the prefactor in (4.78).



Chapter 5

Locked inflation

One field inflationary scenarios fail to be embedded in supergravity and string

theory. This is because even though spontaneously broken supergravity lifted

flat directions are natural inflationary candidates, the various moduli have

masses of order H or even bigger during inflation violating the slow roll

condition. This is the so called η-problem. Locked inflation proposes a way

out of this problem [2].

5.1 Main Idea

Consider the following two weakly coupled fields potential

V (Φ, φ) = M2
ΦΦ2 + λΦ2φ2 +

α

4
(φ2 −M2

? )2 (5.1)

with α ∼M4/M4
p , m2

Φ ∼M4/M2
p , M? ∼Mp with M being some intermediate

scale of order of supersymmetric scales and λ ∼ 1. The above potential is a

typical potential for two moduli fields that parametrize supersymmetric flat
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directions, after the vacuum degeneracy is lifted by supersymmetry breaking

effects. A closer look at the potential reveals the presence of a global mini-

mum at φ = M? and Φ = 0 and the presence of a saddle point at φ = 0 and

Φ = 0. Suppose that the field has the following initial conditions:

φ = 0, Φ� α
M?

λ
(5.2)

Later we will explain how to obtain such initial conditions. Initially, when

φ = 0, the energy configuration has two main contributions: one coming

from the vacuum energy of φ and one coming from the oscillating field Φ

around zero i.e.

ρ0 = αM4
? , ρΦ =

1

2
Φ̇2 +

1

2
M2

ΦΦ2 (5.3)

The equation for Φ field, ignoring φ’s dynamic, is the previously derived KG

equation

Φ̈ + 3HΦ̇ +M2Φ = 0 (5.4)

from now on we will ignore all prefactors of O(1).

Looking at the characteristic equation

r2 + 3rH +M2 = 0 (5.5)

it follows that, for M ≥ H, Φ will oscillate around its minimum, with mod-

ulus decreasing exponentially due to the friction term. Approximately the

solution can be written as:

Φ(t) ' Φ0e
−3/2Ht cosMΦt (5.6)

Hence, through the λ coupling, an effective mass for the φ field is produced:

m2
eff (t) =

〈
Φ2
〉

(t)− αM2
? (5.7)
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Figure 5.1: Dependance of φ’s potential w.r.t. the averaged 〈Φ2〉 for different

values.
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where 〈...〉 denotes time average. Because of Φ’s initial conditions the

effective mass in (5.7) will, at early times, be positive i.e. the Φ field is

locking φ in its saddle point at zero as it is possible to see in fig. 5.1. Under

this assumption, if ρ0 ≥ ρΦ, then the dominating energy of the university

is constant, and is ρ0. This will generate a state of exponential expansion

through Friedmann’s equation of the form

H2 =
1

M2
p

ρ0 =
α

M2
p

M4
? (5.8)

However, since Φ is oscillating around its minimum, and hence decreasing in a

matter-like way (see (4.8)) it follows that eventually m2
eff becomes negative

and φ’s starts rolling towards its true minimum. We assume that at this
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moment inflation ends.

Let us now worry about the initial conditions necessary for this to happen.

Inflation will start, approximately, when ρ0 ' ρΦ. We know from (4.6) that:

〈ρΦ〉(t) 'M2
Φ

〈
Φ2
〉

(t) (5.9)

setting the two energy density to be equal at t = 0 implies:

〈ρΦ〉(0) 'M2
ΦΦ2

0 ∼ αM4
? (5.10)

giving the initial condition for Φ2
0 = αM4

?/M
2
Φ.

Now setting m2
eff = 0 will give an estimate of the number of e-folds:

m2
eff (tf ) = 0 = Φ2

0e
−3Htf − αM2

? (5.11)

Since H is constant during inflation, Htf corresponds to the number of e-

folds. Then we have

Htf = N = −1

3
ln

(
αM2

?

Φ2
0

)
=

1

3
ln

(
M2

?

M2
Φ

)
(5.12)

For M ∼ O(Tev) this gives N ' 50.

Another constraint one should worry about is weather the approximation

with the average time of Φ in (5.7) is appropriate. To check that, it is

sufficient to require that the time Φ takes to cross zero while oscillating is

smaller than the inverse mass m2 = αM2
? . To do so we linearize Φ around

the zero value. Since MΦ ≥ H by hypotesis, it follows that

dΦ

dt
∼ Φ0e

−3/2HtMΦ (5.13)

implying the condition:

∆t ∼ ∆Φe3/2Ht 1

Φ0MΦ

≤ m−1 =
1√
αM?

(5.14)
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Taking ∆Φ ∼
√
αM? and inserting Φ0 we get a condition that needs to hold

all the way until the end of inflation. If such a condition breaks, then φ will

be able to slow down the hill, terminating inflation early. Setting t = tf in

(5.14) we get that the number of e-folds depends only on α:

N ∼ −1

3
lnα (5.15)

imposing M to be of order Tev and α ∼ 10−65 very small. This condition

was just checked at the beginning of inflation in [2] and is equivalent (5.12)

with the choice of parameter of [2]. However this condition will play a fun-

damental role later, when we will take some of the parameters to be free in

order to avoid some phenomenological constraints.

Given such a period of inflation, the upper bound for the reheating temper-

ature is given by (4.14):

Tr '
√
HMp 'M ∼ O(Tev) (5.16)

As for the size of the observable universe, if we take the initial homogeneous

patch to be of size of order 1/H we have that today’s patch is:

atoday ∼
1

H
eN

Tr
Ttoday

∼ 1037cm (5.17)

we will see later why the initial size of the patch is 1/H. Notice that the

obtained value is much larger than the actual horizon size ' 1028cm. Notice

also that one should not worry that N ≤ 50 since in this model, the horizon

and flatness problems are partially solved by the fact that preceding to the

period of ”locked inflation” , there is a stage of inflation in the original false

vacuum before the instanton guides the phase transition.
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5.2 The complete model

In [2] a complete model is described. We would like to go through it once more

in order to analyze better how the initial condition for our locked inflation

are produced.

Consider the following generic potential for φ and Φ:

V (Φ, φ) = α0Φ2(Φ−M0)2 +M2
ΦΦ2 + λφ2Φ2 + α(φ2 −M2

? )2 (5.18)

with M2
Φ ∼ M4

M2
p
, α0 ∼ M4

M4
p
, M0 ∼ Mp. The new potential introduces a new

false vacuum at Φ 'M0 and φ = 0, and since the fields are weakly coupled,

the other minima are substantially unaffected. As in Guth’s inflation, the

idea here, is that the universe starts in a false vacuum and then ends in the

true one via an instanton process, nucleating a bubble. Inside this bubble

the initial conditions are those required by locked inflation as we are going

to show now. In this false vacuum, the mass of the φ field is ∼ λMp and

hence its dynamic can be ignored in the nucleation because it is very heavy

compared to the Hubble scale

H2
0 'M4/M2

p (5.19)

Consider, then only Φ’s potential

V (Φ) = α0Φ2(Φ−M0)2 +M2
ΦΦ2 (5.20)

the global minimum is at zero and there is a local minimum at M0. A

maximum is found at approximatelyMp/2 with V (Φ = 1/2M0) ∼ 1/16α0M
4
0 .

In principle one might worry that the transition can via a normal fluctuation

of the Φ field in a De Sitter universe, rather than an instanton. That would
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be the case if the barrier was too low. Indeed Φ can be regarded as massless

and hence its fluctuation δΦ ∼ H0 ∼M2/Mp. On the other hand, the height

of the barrier per unit volume is

V (Φ = 1/2M0) ·H−3
0 ∼

M3
p

M2
(5.21)

where H−3
0 is the natural volume, implying that a transition via quantum

tunneling is necessary.

Notice here, however, how the problem of initial condition is not really a

problem: the field is evolving in a De Sitter universe. This means that dif-

ferent bubbles, that do not interact with each other (MΦ � H), will be

nucleated. One of this bubble eventually will have the correct initial condi-

tion, generating our universe according to our locked mechanism. However

we want to show in the next section that the most probable configuration for

each bubble is exactly the one of our universe.

5.2.1 Hawking-Moss Instanton

We want now to understand the formula proposed by Hawking and Moss

[19] for the probability of bubble nucleation in a De Sitter universe (1.36).

As already said this has a clear explanaition if one considers a stocasthic

description of inflation. To understand this we will follow [20] adapting it to

our situation.

The brownian motion in De Sitter The fluctuation of a mode in a De

Sitter Universe was computed in (4.15). In order to obtain the two point

correlator 〈φ2〉 we have to sum over all possible modes contributing. More-

over we know that the only modes behaving differently from a Minkowski
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perturbation, are those still within the horizon. In principle it means that

we will have a cutoff at k ≥ k0e
−Ht. This implies that

〈φ2〉 ∼ H2

∫ H

He−Ht

1

|k|3
d3k ∼ H2

∫
d|k|
|k|

=
H3t

4π2
(5.22)

where the fact that H is constant has been used, as well as the prefactors

have been reintroduced.

The process of generating a classical field in an inflationary universe can be

thought as a Brownian motion due to the conversion of the quantum modes

into classical modes at horizon crossing i.e. when the physical mode is of the

same order as H. This happens because the modes freeze at horizon cross-

ing, but with different phases between each other, generating a mismatch

for the classical field φ (they all contribute with different signs). This is the

source of the variance of the random distribution. As in the standard diffu-

sion problem for a particle undergoing Brownian motion, the mean squared

particle distance from the origin is directly proportional to the duration of

the process (5.22).

Define the probability distribution P (φ, t) as the distribution to find the

field at φ, at time t. The evolution of such a distribution can be written as

a diffusion equation of the form(in the case of a massless field)

D
∂2P

∂φ2
=
∂P

∂t
(5.23)

The diffusion coefficient D can be found as follows:

d〈φ2〉
dt

=
d

dt

∫
φ2Pdφ =

H3

4π2
(5.24)
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where (5.22) has been used. Now, passing the derivative sign of (5.24) and

using the fact that 〈φφ̇〉 = 0 and imposing (5.23) we have:

d〈φ2〉
dt

= D

∫
dφφ2∂P

∂t
= 2D =

H3

4π2
(5.25)

where it was integrated twice by parts and the fact that
∫
dP = 1 has been

used. This implies that the diffusion is

D =
H3

8π2
(5.26)

For example taking the initial condition P (φ, 0) = δ(φ). The solution is

readily given as:

P (φ, t) =

√
2π

H3t
e−

2π2φ2

H3t (5.27)

It is easy to check that the solution is properly normalized and that it satisfies

the diffusion equation with dispersion ∆2 = 〈φ2〉 = H3t
4π2 .

D can be interpreted as the coefficient describing the rate of the transition

from k > H to k < H.

In the case of a massive field (5.23) has to be generalized with an extra term

as follows [29]:
∂P

∂t
= D

∂2P

∂φ2
+ b

∂

∂φ

(
P
dV

dφ

)
(5.28)

where the mobility coefficient b satisfies φ̇ = −bdV
dφ

.

The KG eom are

φ̈+ 3Hφ̇ = −dV
dφ

(5.29)

and since under slow roll conditions φ̈� 3Hφ̇ it follows:

∂P

∂t
=
H3

8π2

∂2P

∂φ2
+

∂

∂φ

(
P

3H

dV

dφ

)
(5.30)
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This result was first derived by Starobinsky [30] in a more rigorous way and

will be our starting point to understand Hawking Moss formula.

Since in our case the height of the wall is much bigger then the mass of the

Φ field and its fluctuations, we can assume a quasi-stationary distribution:

∂P

∂t
= − ∂j

∂Φ
= 0 (5.31)

This implies that the current j defined as

− j = −H
3

8π2

∂P

∂Φ
+

P

3H

dV

dΦ
(5.32)

is constant. In principle this current extends over all space. Hence it makes

sense to assume it is zero. This readily gives the following equation:

d lnP

dΦ
=

8π2

9H4

dV

dΦ
=

M4
p

8V (φ)2 dV
dΦ

(5.33)

implying that the probability is

P = Ne
3M4

p
8V (Φ) (5.34)

where N is a normalization constant. The solution has a clear cut-maximum

at Φ = Mp. Hence, up to a sub exponential prefactor we obtain:

P = e
−3

M4
p

8

(
1

V (Φ)
− 1

V (Φ' 1
2Mp)

)
(5.35)

which is Hawking Moss instanton formula. Before going back to locked in-

flation another remark is necessary. Notice that for massless field in a De

Sitter universe, fluctuations are of order H. These fluctuations, at horizon

crossing, generates a brownian like behaviour on the expectation value of

the field. Eventually the field reaches the top of the hill. However, since
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the gradient term in a De Sitter universe is suppresed by the scale factor

squared, it follows that it can roll down the hill towards its true minimum.

The initial size of the patch where this happens (or the size of the nucleated

bubble) is most probably of size H−1 (the size of fluctuations) justifying our

assumptions in the locked inflation description. However, even if the initial

size of the patch is much smaller thant H−1, it is shown in [2] that the final

size of our universe horizon is not much affected. The reason is that if the

patch is much smaller than 1/H then the curvature term in Friedmann’s

equation will dominate the expansion of the universe while the amplitude of

Φ stays constant until the curvature of the bubble becomes comparable to

M2
Φ (the Φ field is strongly overdamped and frozen). But since MΦ ∼ H it

follows that Φ will start oscillating only when the most probable initial size

is reached.

Moreover, it follows from the previous analysis that the field Φ starts on the

top of the hill. And so also its initial condition Φ ' O(Mp) is justified.



Chapter 6

Problems and constraints of

locked inflation

There are mainly three problems that seem to fully rule out the parameters

space of locked inflation. First of all, the transition of φ to its true vacuum

might generate a period of extra inflation baptized as saddle inflation in

[7]. This inflationary stage is a slow roll type of inflation. There are three

possibilities: 1) this slow roll inflation lasts longer than fifty e-folds, thus

washing out all possible imprints of locked inflation, 2) it lasts less than fifty

e-folds. However it is shown by the authors of [7] that this would produce an

unacceptable number of black holes within our horizon or 3) Saddle inflation

does not take place because of the choice of our parameters. This is the

phenomenological viable situation we will assume.

Another problem comes from radiative corrections pointed out in [2] and [8].

This has to do with a Weinberg-Colemann correction to the potential at one

loop that might move the vacuum of Φ from zero making the locking actually
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last forever.

The last problem, indicated in [2] and expanded in [8] is that of parametric

resonances that might ruin inflation within the first e-folds. It is important

to point out that in this article the analysis of parametric resonances is

performed via simulations and the study does not take the full non linearities

into account. In this sense the obtained constraints cannot be fully trusted.

In particular it is not clear how the background locking field backreacts on

the inflationary field when the production of particles due to adiabaticity

violation becomes non negligible. Moreover, even if we assume the analysis

to be reliable, still a window for the model to work is left for 10H ≤MΦ ≥ H.

In this regime fully analytical considerations can be done and the inflationary

expansion is enough to suppress the particle production.

In the following sections these problems are introduced and contextualized.

After that, possible solutions to make the model again viable are presented.

6.1 Saddle Inflation

At the end of inflation the classical field φ is sitting at φ = 0 and is ready

to roll down to its true vacuum. Let us assume we can ignore the Φ field

dynamic (which is, however, relaxing at zero). Since φ is very small wrt its

vacuum value we can expand the potential as follows:

V (φ) = α(φ2 −M2
? )2 ∼ αM4

? − α
φ2

M2
?

(6.1)

where as usual factors of order 1 are ignored. The eom are now:

φ̈+ 3Hφ̇− αM2
?φ ' 0 (6.2)
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Now defining N = ln a i.e. dN = 1
a
da we can rewrite

φ̇ =
dφ

dN
H, φ̈ =

∂2φ

∂N2
H2 (6.3)

implying that (6.2) can be rewritten as

φ′′ + 3φ′ −
M2

p

M2
?

φ
.
= φ′′ + 3φ′ − 3ηφ ' 0 (6.4)

where φ′ = ∂φ/∂N and we defined η
.
=

M2
p

M2
?

. As for the initial conditions for

φ we can assume that φi ∼ H since that is the order of fluctuations of the

field. We will assume φ′i = 0

A solution to (6.4) is

φ(N) = A exp

{(
−3

2
(1− δ)N

)}
+B exp

{(
−3

2
(1 + δ)N

)}
(6.5)

with δ
.
=
√

1 + 4
3
η. Imposing initial conditions we have

φ(N) =
φi
2δ

(δ + 1) exp

{(
3

2
(δ − 1)N

)}
+

φi
2δ

(δ − 1) exp

{(
−3

2
(δ + 1)N

)} (6.6)

Since we are interested in the case whereN ≥ 1 we can drop the exponentially

decaying solution i.e.

φ(N) ≈ φi
2δ

(δ + 1) exp{(f(η)N)}, f(η)
.
=

3

2
(δ − 1) (6.7)

its derivative being

φ′ =
φi
2δ

(δ + 1)f(η) exp{(f(η)N)} (6.8)

it follows that the equation of state has the parameter [1]

ω
.
=
φ̇2 − 2V

φ̇2 + 2V
(6.9)
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since φ′i ∼ H it follows that φ′ � V ∼ αM4
? . Thus (6.9) can be rewritten as:

ω ∼ −1 +
H2φ′2

V
= −1 +

φ(N)2f(η)2

M2
p

≈ −1 (6.10)

so the equation of state p ≈ −ρ holds true at the beginning of saddle inflation.

Inflation will end when ω ∼ 0 or when φ2 ≈ M2
p

f(η)2 . Inserting this back in (6.7)

we get the approximate number of e-folds:

Mp

f(η)
≈ φi

2δ
(δ + 1) exp (f(η)Nsaddle) (6.11)

Giving for Nsaddle:

Nsaddle =
1

f(η)
ln

(
Mpδ

(δ + 1)φif(η)

)
=

1

3/2(δ − 1)
ln

(
Mpδ

(δ + 1)φi3/2(δ + 1)

)
(6.12)

now using φi ∼ Hlocked and taking M ∼ O(Tev) numerically one can obtain

Nsaddle ≤ 1 for η = M2
p/M

2
? ≥ 103. This means that we need to push down

the vacuum of φ down to at least 10−2Mp to be safe. Such a constraint has

a two-fold utility. It not only avoids the extra period of inflation, but it also

avoids overproduction of black-holes phenomenologically unacceptable as it

was shown in [31]

Consequences for locked inflation It immediately follows that, in order

to have the desired fifty e-folds, also MΦ needs to be changed accordingly

because of the e-folds masses constraint (5.12). In this sense also MΦ becomes

a free parameter of the theory. Moreover, because of the constraint on the

e-folds coming from the oscillatory approximation with the average (5.15)

we have that M cannot be moved from the Tev scale in order to have a
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small enough α. In this context the question of small M? can be arises

naturally. A possible bound could come from the reheating temperature. In

the natural lore, no temperature lower than 102Gev or so can be accepted

because of baryogenesis. However our φ field, could be coupled via Yukawa

coupling to some other degrees of freedom, which, at the phase transition,

becomes extremely heavy and then decay in the known degrees of freedoms

of the standard model. Hence, in this sense, a more natural lower bound

for the reheating temperature would be around 10Mev in order not to spoil

nucleisynthesis and neutrino decoupling. Imposing this lower bound one has:

Tr ∼ 10−2Gev ∼
√
HMp ∼ α1/4M? ∼ 10−16M? (6.13)

implying M? ≥ 10−5Mp.

6.2 One loop correction

As already pointed out in [5] the potential gets a loop correction of the

Coleman-Weinberg type due to the inflaton breaking of supersymmetry:

∆V =
m2
φ

64π2
Φ2 ln

(
Φ2

Q2

)
(6.14)

This type of correction to the Kähler potential, arising from φ loops, does

not cancel in a supersymmetric scenario even though all other corrections

are absent (for example the ones proportional to Φ4) [32]. Such a correction

might move the minimum Φ from zero and if the minimum is bigger than Φc,

Φc being the value of Φ for which m2
eff becomes zero, then locked inflation

will last forever. Hence we are going to check for which parameters this is

the case.
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In order to derive (6.14) we will consider perturbations on top of the classical

solution and then integrate them back adapting the analysis in [1]. The same

result can be obtained also computing the effective one loop action through

a functional determinant (see [21] for an example). To do so consider the

following field expansion:

φ(x) = φ(t) + δφ(x) (6.15)

The equation of motion become:

φ(x);α
;α+V ′ = φ(t);α

;α+ δφ(x);α
;α+V ′+V ′′δφ+

1

2
V ′′′(δφ)2 +O(δφ3) = 0 (6.16)

Now we take spatial average over (6.16):

φ(t);α
;α + V ′ +

1

2
V ′′′〈δφ2〉 = 0 (6.17)

To evaluate 〈δφ2〉 we quantize the perturbation δφ → δφ̂. From now on we

will drop the hat.

Notice that δφ has the following linear equation of motion:

δφ(x);α
;α + V ′′δφ = 0 (6.18)

Assume that V ′′
.
= m2

φ ≥ 0. Hence we expand the field as

δφ(x) =

∫
d3k

(2π)3
√

2ωk

(
ake
−ikx + a†ke

ikx
)

(6.19)

with
[
ak, a

†
k′

]
= δ3(k − k′) and

ω2
k = k2 + V ′′

Now define the |nk〉 as:

|nk〉 =
(a†k)

n

√
n!
|0〉 (6.20)
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It follows from the definitions that:

〈a†kak′〉Q
.
=
〈nk|a†kak′ |nk〉
〈nk|nk〉

= nkδ
3(k − k′) (6.21)

and similarly 〈a†ka
†
k′〉Q = 〈akak′〉Q = 0.

We are now ready to evaluate the quantum average 〈δφ2〉Q:

〈δφ2〉Q =

∫
k

∫
k′

〈(
ake
−ikx + a†ke

ikx
)(

ak′e
−ik′x + a†k′e

ik′x
)〉

Q
(6.22)

where we denote
∫
k

.
=
∫
d3k/(2π)3

√
2ωk. Using (6.21) in (4.52) it follows:

〈δφ(~x)2〉Q =
1

2π2

∫
dk

k2

√
k2 + V ′′

(
1

2
+ nk

)
(6.23)

Since we are interested in the one loop effective potential we can ignore the

nk term and focus only on the vacuum contribution. In view of (6.23) we

can rewrite the term appearing in (6.17) as

1

2
V ′′′〈δφ2〉 =

1

4π2

(∫
dkk2
√
k2 + V ′′

)′
.
= Ṽ ′ (6.24)

The integral in (6.24) is divergent. We regularize it with a cutoff M . Evalu-

ating the integral gives:

1

8

[
M(2M +m2)

√
M2 +m2 +m4 ln

m

M +
√
M2 +m2

]
(6.25)

where we remind that m2 .
= V ′′. Now we multiply and divide the argument

of the logarithm by a mass scale Q and separate the terms in (6.25) in finite

and diverging part, obtaining:

Veff = V + V∞ +
m4

64π2
ln
m2

Q2
(6.26)

with the divergent part being:

V∞ =
M4

4π2
+

m2

16π2
M2 − m4

32π2
ln

2M

e3/4Q
+O

(
1

M2

)
(6.27)
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Our original potential for φ is of the form:

V (φ) = αφ4 + (λΦ2 − αM2
? )φ2 (6.28)

Hence m2 = λΦ2 − αM2
? The divergent term V∞ can be reabsorbed in a

redefinition of the parameters in the potential, while the finite part in (6.26)

becomes:

Vfinite =
(λΦ2 − αM2

? )
2

64π2
ln
λΦ2 − αM2

?

Q2
(6.29)

Using the fact that λ ∼ 1 and that αM2
? is always smaller than Φ2 in our

region of interest we get the following corrected potential for Φ:

V (Φ) ' Φ2

(
1

2
M2

Φ +
m2
φ

64π2
ln

(
Φ2

Q2

))
(6.30)

where we dropped the quartic term since we are only interested in seeing how

this one loop correction moves the minimum of Φ’s potential from the origin.

We want now to fix the parameter Q. Taking first derivative yields

V,Φ = M2
ΦΦ +

m2
φΦ

32π2

(
ln

(
Φ2

Q2

)
+ 1

)
(6.31)

For the curvature we have

V,ΦΦ = M2
Φ +

m2
φ

32π2

(
ln

(
Φ2

Q2

)
+ 3

)
(6.32)

we impose the following renormalization condition

V,ΦΦ(Φ = Φc) = M2
Φ (6.33)

giving Q2 = e3Φ2
c . To find now the vacuum of Φ we consider the first deriva-

tive of the running potential:

V,Φ(Φ) = M2
ΦΦ +

m2
φ

32π2
Φ

(
ln

(
Φ

Φc

)
− 2

)
(6.34)
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evaluating at Φ = Φc it follows:

V,Φ(Φc) = Φc

(
M2

Φ −
m2
φ

16π2

)
≥ 0 (6.35)

which is the condition under which the minimum occurs at values lower than

Φc allowing locked inflation to end.

This implies that:

M2
Φ ≥

m2
φ

16π2
∼ 10−2αM2

? (6.36)

which, for M? ≤ Mp naturally satisfies the constraint MΦ ≥ H necessary to

have Φ oscillating during locked inflation.

6.3 Parametric resonances

Consider the equation of motion for φ:

φ̈+ 3Hφ̇+
(
λΦ(t)2 −m2

φ

)
φ = 0 (6.37)

define τ
.
= mφt andχ

.
= exp{(3/2Ht)}φ. Then we have

φ̇ = −mΦ
3

2
he−

3
2
hτχ+mΦe

− 3
2
hτχ′ (6.38)

where h
.
= H/mΦ and the prime denotes derivative wrt τ . The second

derivative is

φ̈ = m2
Φ

(
9

4
h2e−3/2hτχ− 3he−3/2hτχ′ + e−3/2hτχ′′

)
(6.39)

inserting these back into (6.37)

χ′′ + (2q(τ)(1− cos 2τ)− b)χ = 0 (6.40)
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with b
.
=

m2
φ

m2
Φ

+ 9
4
h2, q(τ) = q0e

−3hτ , q0 =
λΦ2

0

4m2
Φ

.

Since the dependance on time of q(τ) is through the exponential of h, which

changes very slowly wrt the oscillatory motion, it is possible to threat q as

constant and to use the usual known results for Mathieu’s equation.

The equation for χ’s modes can be derived from (6.40) just remembering

that it is sufficient to add a squared gradient term diluted by the scale factor

a:

χ′′k + (2q(τ)(1− cos 2τ)− b(k, τ))χk = 0 (6.41)

where b(k, τ) = b− k2

m2
Φ
e−2hτ .

Solutions to the Matheiu’s equation are well known and they indeed depend

on the parameters q and b. In particular a general solution has the form [33]

χ(τ) = esτf(τ) (6.42)

with f with period of π in τ and s is known as the Floquet exponent which

can be complex.

The physical interpretation of (6.40) is clear in our context. The amplitude

of the oscillatory term q(τ) is much bigger than b by construction. Let us

assume for a moment that b is zero. It follows immediately that whenever

the oscilaltory part approaches zero, a violation of the adiabaticity condition

is generated. To understand this consider the following condition on the

diespersion relation for the mode χk:

ω(k)2 = m2
Φ(2q(t)(1− cos 2mΦt)− b(k, t)) (6.43)

where the mass dimension of ω has been restored.

Now the process is adiabatic as long as the oscillatory part is equal to zero.
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As long as the process is adiabatic there is no change in the occupation

number, but the situation changes under violation. This can be estimated

by ∣∣∣∣ ω̇ω2

∣∣∣∣ ≥ 1 (6.44)

The meaning of (6.44) is clear: it will sort out those modes that will be

enhanced by a factor esτ . Setting b to zero, and assuming Φ2
0 much bigger

than MΦ, m2
φ and H2 it follows

k2
max ≤ Φ2

0e
−hτ (6.45)

it is clear that what we are describing is a broad resonance, and as the

universe keeps expanding more and more modes are amplified. However, as

a consistency check, it is interesting to check on which scale these modes

resonate.

We already found Φ2
0 at the beginning of locked inflation by imposing an

equality condition between Φ’s energy and the vacuum energy: ρΦ and ρ0

which implied Φ2
0 = αM4

?

M2
Φ

implying that

k−2
max ∼

eHt

Φ2
0

=
eHtM2

Φ

αM4
?

(6.46)

now if we compare this length with our Hubble patch size 1/H2 we get

eHt

Φ2
0

' 1

H2
=

M2
p

αM4
?

(6.47)

which for our Φ0 gives

eHt ∼
M2

p

M2
Φ

(6.48)

For this to be true, a time much bigger than our inflationary period is required

(M? ≤Mp). This means that all the modes for k ≤ kmax are affected by this
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type of resonance making our claim consistent.

From our computation of the one loop correction we have from equation

(6.36) that b ≤ 100. The problem can be splitted in two regimes: b ≤ O(1)

and b ≥ O(1). From the known theory of Matheiu’s equation [34] we know

that the first case presents an unstable system, while the second case a stable

one. In the second case we are going to obtain simply a small correction to

the number of e-folds, but the essence of locked inflation will not be changed.

Notice that one of the powerful features of locked inflation was the fact that

mφ ∼MΦ. In this sense, these two masses were fixed by only one parameter.

In principle this is a property we would like not to loose.

Small b In the case of small b, the solution (6.42) has on average Floquet

exponent s ∼ 0.1 (this value can be found numerically for large values of

q′s [8] or it can be derived analytically [1]). This exponent is caused by the

production of particles when adiabaticity is violated and in principle depends

on k. For large q it can be taken constant. It follows for φ that

φ(t) ∼ e(s−3h/2)τ (6.49)

this implies that H/MΦ ≥ 10−1. This bound was already mentioned in [2]

and was already found in different models of tachyonic reheating [35].

Now turning to the modes we have that each k mode is amplified by a k-

indipendent amplification factor:

〈χ2
k〉(τ) ∼ e2sτ 〈χ2

k〉(0) (6.50)

Now, assuming that at τ = 0, χk is in its vacuum implies 〈χk〉(0) ∼ k−1/2.

To find 〈χ2〉 we have to sum over all modes being enhanced. Let us assume
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that all modes with k ≤ kmax are enhanced equally:

〈χ2〉(τ) =

∫
〈χ2

k〉(τ)d3k ∼ k2
maxe

2sτ (6.51)

this implies for φ:

φ2 ∼ k2
maxe

(2s−3h)τ (6.52)

consider this factor after only one e-fold i.e. Ht = hτ = 1:

φ2 ∼ k2
max ∼ Φ2

0 (6.53)

where the fact that H ∼ MΦ has been used. Now consider the background

equation for Φ. In our assumption we neglected the λ-coupling to derive our

background equation. The full equation is:

Φ̈ + 3HΦ̇ + (M2
Φ + λφ2)Φ = 0 (6.54)

but now 〈φ2〉 � M2
Φ after only one e-folds, making questionable whether

or not our background approximation is safe from backreaction. Indeed the

claim that locked inflation finishes within one e-folds [8] seems not very rea-

sonable since non linear effects are not fully taken into account. In particular

it is not clear how Φ will backreact on φ as it grows.

However later it will be shown that when dealing with model building, it is

sufficient to simply consider a complex scalar field as Φ to fully eliminate this

problem.

Large b In the case of large b Matheiu’s equation is in the stable regime

[12]. This means that locked inflation proceeds normally. However, inevitably

parametric resonances will end inflation earlier i.e. approximately when q(τ)
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becomes of order b and the usual tachyonic behaviour starts to dominate.

This gives nothing but a small correction to the number of 50 e-folds [8]

making this part of the parameter space still viable. Notice that dropping

the constraint coming from loop corrections, b can be much bigger than 100

making the parameter space even larger.

6.4 Solutions

A way to eliminate parametric resonances is to add components to the Φ

field. If the different components have different phases, then the oscillating

components never happens to cross the zero value at the same time making

the violation of the adiabaticity condition not possible. To understand this

situation better consider the case where Φ is complex. The solution is going

to have two components, both oscillating with the same frequency MΦ and

exponentially decreasing. However, since the phase difference between the

two solution is exactly π/2 it follows immediately that the oscillatory term in

(6.40) disappears and adiabaticity is always maintained. As a consequence

no resonance takes place and the model works also for values of b of order

one or smaller. But this is not the only advantage of considering a complex

field. In fact, the λ coupling in the original potential is now

λ|Φ|2φ2 = λΦ2
0e
−3Htφ2 (6.55)

i.e. the oscillatory dependance is totally dropped. Instead now we have an

effective mass term for φ which is nothing but a exponentially decreasing

term. This in turn allows us to fully drop the requirement coming from the

averaging of Φ (5.15) allowing, in principle for more natural values of α which
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now, in order to give N ∼ 50 e-folds, does not require anymore M ∼ O(Tev).

This means that a more natural value of α can be considered. As a conse-

quence, also the lower bound on M? coming from the reheating temperature

(4.14) is relaxed. Indeed lowering M? imposes also, as a consequence, a low-

ering of MΦ (because of the required number of e-folds (5.12)) and the price

to pay would be that MΦ is no longer of the same order as mφ.

If one takes into account the one loop constraints (6.36), however, the hier-

archy between M? and mΦ, and hence the smallness of α, are reintroduced

in the model (because of (5.12)). In this case M can be taken to be at most

of O(10Tev) and anyway an enlargement of the parameter space is obtained.

One may also take the more phenomenlogical view that it is not necessary to

satisfy the one loop constraint since the underlying funamental physics is not

known. Once this constraint is dropped it is possible to take M ∼ O(10−5Mp)

i.e. α ∼ O(10−20), and the model can produce fifty e-folds of inflation even

taking M? ∼ vHiggs ∼ 102Gev satisfying the required reheating temperature

bound Tr ≥ 10−3Gev. In this situation certainly one has to push down the

scale of MΦ a lot and in this sense the choice of MΦ is no longer natural.

However MΦ is also bounded from below by the bound MΦ ≥ H. Notice

that in this situation the degrees of freedom to which φ is coupled could be

directly the standard model degrees of freedom making this scenario phe-

nomenologically appetible.

Due to the low scale of inflation it is not possible to produce the observed

density perturbations. However, with the described mechanism of modu-

lated reheating, which can be easily implemented [5], adiabatic perturba-

tions are produced together with the extra feature of non gaussianities with
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fNL ∼ O(1).

6.5 Consistency check at the beginning of locked

inflation

Inflation starts when ρ0 becomes of order ρΦ. This corresponds to a transition

from a matter dominated universe to an inflationary universe (or cosmologi-

cal constant universe). The assumption that the universe starts immediately

evolving like De Sitter has to be checked, the reason being that in the very

first few e-folds, the contribution of matter might be non neglegible to the dy-

namics of Φ field, which is our background. To do this consider Friedmann’s

equation together with two fluids (ignoring spatial curvature):

H2 =
8

3
πG(ρΦ + ρΛ) (6.56)

with ρΛ = const and ρΦ ∝ a−3. Assume that the two fluids have equal energy

contribution at the moment when a(t?) = 1. Then(
ȧ

a

)2

= H2
Λ

(
a3 + 1

a3

)
(6.57)

where H2
Λ
.
= 8πG/3ρΛ.

Equation (6.57) leads to the integrable equation

da
√
a√

a3 + 1
= HΛdt (6.58)

after substituting a→ a3/2 and integrating we obtain the result:

a(t) ∝ sinh

(
3

2
HΛt

)2/3

(6.59)
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in the limit of big t (small t) we recover a ∝ eHΛt (a ∝ t2/3). It follows that

H2(t) = HΛ coth2

(
3

2
HΛt

)
(6.60)

but this means that also the eom for the Φ background has an extra time

dependance:

¨̃Φ + 3H(t) ˙̃Φ +M2
ΦΦ̃ = 0 (6.61)

where we wrote Φ̃ to distinguish this solution by from the one used in locked

inflation. To find how much Φ̃’s evolution differs from the one assumed

in locked inflation (with H constant), (6.61) has been solved numerically.

Looking at (6.60) it follows that equality between the energies of the two

fluids happens approximately when t ∼ O(H−1). Comparing the evolution

of Φ̃(t + H−1) with Φ(t) (Φ(0) is the moment when the transition happens

in locked inflation) it was found a difference in the oscillatory amplitudes of

about 30% at later time (the correction is however very sensible on the shift

of time and it is already practically zero for ∆t = 2H−1). This means that

Φ0 ∼ 3/2Φ̃0. This, in turn, gives a negligible correction in the final number

of e-folds making the approximation H = const in locked inflation correct.

6.6 Production of topological defects

Topological defects can be formed when a symmetry of a system is not re-

spected by its vacuum manifold. Suppose, for example, a Lagrangian invari-

ant under a Z2 i.e. invariant under φ → −φ. If its vacuum value is not at

zero, but it is due to a potential of the form

λ(φ2 − v2)2 (6.62)
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it follows that at the vacuum level the symmetry is broken. The φ field can

choose as vacuum one of the two disconnected values +v or −v respecting

the fact that Π0(M) of the vacuum manifold is non trivial. For inflationary

cosmology this means that the field, when transitioning to its vacuum, can

choose either one of the two possible values. Suppose at −∞ the value −v is

chosen, while at +∞ the value +v is chosen. Topological defects are nothing

but field configurations interpolating between these two possible values. In

the case at hand the topological defects is a domain wall of the form

φ(x) = v tanh (λvx) (6.63)

In general the type of topological defect is determined by the symmetry that

is not respected by the vacuum manifold. For example in the case of a com-

plex field the vacuum is a circle and the fundamental group Π1 is now non

trivial. This in turn can lead to the production of strings.

In the usual treatements of topological defects formation in the early universe

[36] the phase transition is always understood to be thermal. This is because

as the universe cools down and the temperature goes down, the vacuum due

to the term such as (6.62) is ripristined [1]. Formation of topological defects

in this context is usually understood in terms of Kibble mechanism [9]. The

idea there is that there is a maximal length to which the field φ is correlated:

ξ. This means that on such scale it is possible to safely assume that φ is

choosing the same vacuum everywhere. However this is not true for bigger

scales. An immediate cosmological consistency bound is that ξ ≤ H−1 be-

cause otherwise casuality would be violated by the field.

In our present scenario, at the end of locked inflation, however, due to the

weak coupling of the theory, thermal effects do not substantially modify our
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potential and can be safely ignored. Hence it all boils down to evaluate the

value of ξ. A first estimate from (6.63) tells us that this correlation length

should be aproximately of order of the size of the correlator i.e. ξ ∼ (λv)−1.

For λ = α and v = M? this turns out to be very big: nmass ∼ ξ3 ∼ α3/2M3
?

and in principle not a large number of topological defects is produced per

hubble patch.

A better estimate could be imposing a non adiabaticity condition. The po-

tential of φ is changing with time due to the relaxation of the Φ field. Thus

a non adiabaticity condition of the form∣∣∣∣ ω̇kω2

∣∣∣∣ ≥ 1 (6.64)

might sort out those wavelengths that do not have time to realize the change

in the potential due to Φ’s relaxation, and hence the correlation size of φ.

Remember that the dispersion relation for φ is

ωk(t)
2 = k2 +m2(t) (6.65)

with

m2(t) = λ〈Φ2〉(t)− αM2
? (6.66)

we will evaluate the non adiabaticity condition (6.64) at the critical moment

Φ = Φc = αM2
?

λ
i.e. when the minimum at φ = ±M? appears and locked

inflation ends. It follows, after some algebra:

k3
crit ∼ αHM2

? (6.67)

where factors of order one have been ignored. The H term is due to the

derivative of 〈Φ2〉(t).
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It follows that

nadiab ∼ k−3 ∼ ξ3 ∼ αHM2
? ∼ α3/2M

4
?

Mp

∼ nmass
M?

Mp

� nmass (6.68)

Thus we have a suppression of the number of topological defects produced

(which was already small) due to the dynamicity of the potential. It is easy

to check that nadiab satisfy the casuality bound for our range of parameters.

The negligible production of topological defects could have been deduced

due to the low inflationary scale (H ∼ O(10−3eV). This is reflected by the

presence of the coupling α� 1 in (6.68).



Conclusion and Outlook

In this work the consistency problem for locked inflation was adressed. It

turned out that the parameter space is not ruled out leaving a window of

opportunitiy for M? ∼ 10−2 and MΦ ∼ 10H0 in order to have at least 50

e-folds. Notice that it was shown that such a number of e-folds is more than

enough to solve the horizon problem. The flatness problem is also solved

if one considers the period before locked inflation where a De Sitter stage

nucleates bubbles via Hawking-Moss instantons with the required initial con-

ditions. Such a mechanism is understood stochastically via a Fokker-Planck

equation for the classical sup-horizon scalar field. Hence such parameters

are elevated into a prediciton. The reasons for reducing the parameter space

are mainly three: a possible period of inflation after locked inflation which

might erase every possible signature of the model, quantum corrections to the

potential which might make locked inflation ethernal, and broad parametric

resonances, which might take place within the first e-fold of inflation making

our background assumption unreliable. The latter problem turns out to be

very difficult analytically and a fully non linear study would be required.

Since the considerations made in the present work were made in a regime

where analytic considerations were possible and where the behaviour of the
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Mathieu’s equation was known, a fully non linear study can only enlarge

the above mentioned parameter space. Moreover, due to the weak coupling

appearing in the theory, it has been shown that a neglegible production of

topological defects is produced at the end of inflation.

However, due to the low inflationary scale, modulated reheating becomes

necessary to produce the required density perturbations. A new feature is

added to this known mechanism by considering the dynamical evolution of

the modulating field. Such a correction, clearly model dependent, does not

alter the prediction fNL ∼ O(1) which is a general feature of modulated

reheating.
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