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Abstract

Axiomatic formulations of quantum electrodynamics (QED) depart from

standard QFTs in various regards. One of them is the presence of Krein

spaces (i.e., indefinite metric ‘Hilbert spaces’) in covariant gauges. While

the necessity of such spaces is often claimed, it is difficult to find a satis-

factory justification in the literature, especially beyond the Gupta-Bleuler

gauge or in the presence of interaction. The aim of this thesis is to provide

a systematic treatment of these matters in terms of two no-go theorems.

Firstly, we will show that a free hermitian covariant vector field A on a

state space with a non-negative metric and a (not necessarily unique) vac-

uum state will give rise to a vanishing two-point function of its exterior

derivative Fµν = ∂[µAν]. Secondly, we will infer from this result that F will

not be able to generate massless states from the vacuum even if we let off

the assumption of A to be free. In addition to the proofs, the reader will

find a broad preliminary section and a brief comparison of the results with

existing literature.
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Structure of the document

This document consists of five main sections. The first section is an introduction and is de-
voted to describing the general setup for the proofs such that the to-be-proven statements
can be formulated. For rigorous definitions and explanations concerning notation, moti-
vation, etc. the reader is referred to Section 2. In Section 2 the mathematical and physical
preliminaries are given to make the document self-contained in terms of mathematical def-
initions and physical interpretations. In Section 3 the proof of the first statement which
was mentioned in the abstract will be worked out in detail. At the end of the section there
will be a brief comparison with existing literature. Section 4 contains the implications
for the interacting case of QED. This will mainly entail the formulation and proof of the
second statement which was mentioned in the abstract. Eventually, Section 5 contains
a summary of the obtained results and a look beyond the scope of this document. In
the Appendix there is additional side material which complements the main part of the
document.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The aim of this chapter is to introduce the bare necessities in order to formulate the
to-be-proven statements in a rigorous way and for a reader who is already familiar with
the Wightman framework of quantum field theory (QFT). For the detailed introduction,
the definitions, and the notation, the reader is referred to the next section. Nonetheless
it is intended to provide a brief overview on the topic.

An important framework which includes indefinite metric Hilbert spaces is given by the
Strocchi-Wightman setting of QFT. This setting extends the Wightman framework of
QFT to a QFT on indefinite metric Hilbert spaces, also called Krein spaces. The prob-
ability interpretation, which needs a positive definite scalar product, is recovered by re-
stricting to an appropriate (physical) subspace. In this thesis it will be shown that it
is indeed necessary to adopt such a generalization of the Wightman framework for any
formulation of QED in terms of a hermitian covariant gauge field. The proof will take
the form of two no-go theorems. The procedure is to require positive semi-definiteness of
scalar product and to derive that this requirement leads to a trivial theory in the case of
free QED and to a non-satisfactory theory in the case of interacting QED.

The a-priori indefinite scalar product (or hermitian non-degenerate sesquilinear form) on
the Krein space will be denoted by 〈·, ·〉. To state the to-be-proven-result lets us regard
QED to be

Definition 1.1 (QED).
QED is a Strocchi-Wightman QFT (H, 〈·, ·〉 , U,Ω, D, {F, J})[1] including the hermitian
Strocchi-Wightman fields F (antisymmetric 2-tensor), J (vector) such that the physical
subspace H′ satisfies

(Ex. and Inv. of the domain)
There exists a dense domain D′ ⊂ H′ which is invariant under F µν(u), Jν(u) and
U(g) for arb. u ∈ S(M) and g ∈ P (Poincare or Poincare spinor group).

[1]The notation and definition of Strocchi-Wightman QFT is introduced in the preliminaries (see in
particular Definition 2.51). Nonetheless let us explain that (H, 〈·, ·〉) denotes a Krein space where 〈·, ·〉
denotes the indefinite scalar product, that U is a unitary representation of the Poincaré (spinor) group
such that (H, 〈·, ·〉 , U,Ω) forms an indefinite metric relativistic quantum theory satisfying the spectrum
condition (on the induced physical Hilbert space) and with a vacuum vector Ω ∈ D (see the paragraphs
below Definition 2.48) and that D is a common domain of the Strocchi-Wightman fields which is dense
in H.
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CHAPTER 1. INTRODUCTION

(Eq. of motion)
For arb. Ψ1 ∈ H′ and Ψ2 ∈ D′

〈Ψ1, (∂µF µν − Jν)(u)Ψ2〉 = 0 and 〈Ψ1, εµνρσ∂
νF ρσ(u)Ψ2〉 = 0, u ∈ S(M).

(1.1)

The theory is referred to be free or non-interacting if, and only if, Jν = 0. The interact-
ing case is usually expected to have Jν being the Dirac current, but we will not have to
deal with the specific structure of J . The theory is referred to be trivial as soon as the
two-point function corresponding to Fµν vanishes, i.e., 〈Ω, Fµν(x)Fρσ(y)Ω〉 = 0.

In the case of classical field theory, it turns out that the theory is also describable in
terms of a vector field Aµ satisfying Fµν = ∂[µAν], thereby automatically solving the ho-
mogeneous Maxwell equation ∂[µFνρ] = 0, where the [·] embraces antisymmetrized indices.
In the case of free electrodynamics (Jν = ∂µF

µν = 0) both descriptions, in terms of F ,
and in terms of A, are viable and lead to equivalent results. In the interacting case the
situation is more difficult. The Dirac current Jµ = ψ̄γµψ for a complex spin 1/2 field ψ
representing electrons and positrons, leads to field equations that are hard to express in
terms of only ψ, ψ̄, and Fµν (see [Ste00, Chapter 3, p. 21]).

In the free quantum case (free QED) the situation is like the classical case. We can write
down the field equations in terms of F or A and obtain equivalent results. For the inter-
acting quantum case, however, it becomes inevitable to make use of the vector potential
Aµ. Apart from some lower dimensional models the usual ’quantization’ procedure start-
ing from field equations, or rather a Lagrangian, is limited to Lagrangians with only the
fields and its first derivatives appearing and which are separated into a sum of kinetic
and interaction terms (see [Ste00, Chapter 3, p. 24]). For the complicated equations
obtained when written only in terms of Fµν one may say that there is no such interaction
Lagrangian. Moreover, there are arguments indicating that Fµν cannot mediate soft pho-
ton absorption and creation (see [Str70, Section II]).

With these things said, it should be our aim now to find a viable quantum field the-
ory with a fundamental field Aµ and observable fields Fµν and jµ obeying the relation
Fµν(A) = ∂[µAν] and fulfilling Maxwell’s equations. Such a formulation is referred to as
a gauge formulation of QED. From now on we will only deal with gauge formulations of
QED.

In classical field theory the relation between F and A determines A only up to a gauge
transformation

Aµ(x) 7→ A′µ(x) = Aµ(x) + ∂µG(x) (1.2)
for an arb. twice-differentiable function G. In quantum field theory from a mathematical
point of view it is hard to control such gauge transformations. It is much more promising
to choose a specific representative of A out of the equivalence class of different A’s and
to develop the theory according to the choice of representative. There are many such
choices available and it is natural to make the most convenient choice. There is a prob-
lem, however, with QED that no matter what the choice is one must leave the framework
of QFTs that we are comfortable with. The possibilities are either to insist on a state
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CHAPTER 1. INTRODUCTION

space consisting of only physical states or to insist on locality or covariance of the gauge
field. Note that the choice is exclusive here, that is, when one property is chosen the
other property is lost. The prototypes of the two possibilities are the Coulomb and the
Gupta-Bleuler gauge, respectively.

What we will show here is that when one takes the path of covariance, and in particular
the path of the Gupta-Bleuler-approach (a brief explanation will be found below), one
will necessarily deal with a quantum field theory on an indefinite metric Hilbert space.
In the physics literature this is usually termed as ghosts appearing in the theory. It is
a consequence of the fact that the state space will entail not only physical states, but
also non-physical states, that is states on which the equations of motion do not hold and
which will have a negative ’norm’.[2]

That one has to introduce such non-physical states is a consequence of no-go-theorems
by Strocchi (see [Str67, Str70] and [Str13, Chapter 7.8]). In particular, when one re-
quires a vector-operator-valued distribution Aµ to satisfy translation-invariance and either
Lorentz-covariance or locality and temperedness and one has a vacuum state in order to
define the two-point function of Aµ, then the Maxwell equations will imply the two-point
function of the associated Fµν(A) to vanish.

The usual way to construct a local or covariant gauge formulation of QED is there-
fore to take modified equations of motion for F and A, respectively, and to require the
non-physical modification terms to vanish on expectation values between physical states.
Explicitly, we demand

∂µFµν − Lν = �Aν − ∂ν∂µAµ − Lν = 0 (1.3)

to be satisfied as operator equations (i.e., on the whole of H) and the deformation term Lν
to vanish when sandwiched between physical states (〈φ,Lνψ〉 = 0 for φ, ψ ∈ H′). In this
way the first Maxwell equation is recovered on expectation values within physical states.
The choice of Lν determines A partially or completely and can be thought of as part
of the gauge choice. From the Lagrangian viewpoint Lµ corresponds to the gauge-fixing
term which is added via a Lagrange-multiplier.

Among the gauge formulations of QED (or gauge formulations of any other QFT) one
may distinguish between local and non-local gauges. The gauge is referred to be local if,
and only if, the corresponding gauge field, here Aµ, satisfies the locality condition, here

[Aµ(u), Aν(v)] = 0 (1.4)

where u and v are test functions on Minkowski space such that their supports are spacelike
separated[3] and non-local if it is not. Similarly, one may distinguish between covariant

[2]The reason that one is willing to take such uncomfortable consequences as the appearance of ghost
states is that the other possible choice is not better. In fact, the loss of locality and covariance of Aµ
implies the loss of many methods developed in the framework of quantum field theory which heavily rely
on locality and covariance. Renormalization methods fall into this class.

[3]i.e., (x− y)2 < 0 ∀x ∈ supp u, y ∈ supp v
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CHAPTER 1. INTRODUCTION

and non-covariant gauges. The gauge is referred to be covariant if, and only if, the
corresponding gauge field, here Aµ, satisfies the covariance condition, here

U(Λ̃, a)Aµ(u)U(Λ̃, a)−1 = Λ(Λ̃) ν
µ Aν(uΛ(Λ˜),a), (Λ̃, a) ∈ P̃↑+ (1.5)

for test functions u with uΛ,a(x) ≡ u(Λ−1(x−a)) and where U is a unitary representation
of the Poincaré spinor group P̃↑+.

Important to note is that this distinction is not necessary for a formulation without gauge
fields as such fields are physical thus observable, and we always want observable fields to
be local and covariant.[4]

The standard example for a local and covariant gauge choice would be the Gupta-Bleuler
formalism with Lµ = (λ−1)∂µ∂A corresponding to equations of motion �Aµ−λ∂µ∂A = 0
on the whole of H. We usually exclude λ = 1.[5] The physical states are then determined
to be elements of the kernel of (∂A)(−). Here (·)(±) denotes the positive/negative energy
part of a free field.[6] The condition that (∂A)(−)ψ vanishes for a physical state ψ is
called Gupta-Bleuler(GB)-subsidiary condition. This choice of gauge corresponds to the
classical Lorentz gauge as it implies ∂A ≡ ∂µA

µ to vanish on expectation values within
physical states. This clearly implies that the same is true for Lµ, too.

It is now time to state the results of this thesis. It should be noted that the results
themselves are already present in the literature, but without explicit derivations and the
implications for the interacting case are usually not drawn. For a thorough compari-
son with existing literature the reader is referred to the discussion of the results in the
subsections 3.5 and 4.3. The first result focusses on free QED. The statement is

Theorem 1.2. Every covariant gauge formulation of free QED on a state space with a
non-negative metric[7] is trivial.

The triviality which is referred to here is the vanishing of the two-point function of the
Maxwell tensor F . One may connect free QED also to the interacting case of QED by
looking at massless states. On these states there is a free time evolution and the space
of single-photon states is expected to lie within the space of massless states. The result
however is:

Theorem 1.3. In every covariant gauge formulation of QED on a state space with a
non-negative metric the Maxwell-tensor F cannot create massless states from the vacuum.
With H(1) being the space of massless states we have

〈H(1), Fµν(·)Ω〉 = 0. (1.6)
[4]Otherwise we would have observable contradictions to Einstein-locality and covariance.
[5]In the case λ = 1 the equations of motion are unmodified and Maxwell’s equations hold on the whole

of H. Later (see Theorem 2.52) we will see that a covariant or local hermitian vector field A which
satisfies Maxwell’s equations will give rise to a trivial theory. Thus the exclusion of λ = 1.

[6]For free fields there is an explicit construction available that enables the splitting of the field into
positive and negative energy part. That ∂A is a free field (in free QED) is a consequence of the equations
of motion �∂A = ∂µ�Aµ = −λ∂µ∂µ∂A = λ�∂A which imply �∂A = 0 for λ 6= 1.

[7]i.e., a linear space equipped with a hermitian sesquilinear form with non-negative scalar square.
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Outline of the proof

One could summarize both statements and obtain:

With the usual interpretation of F in QED, a satisfactory covariant gauge formulation
of QED must necessarily be defined on a state space with an indefinite metric. The state
space must necessarily contain states with negative ’norm’.

For a discussion of the results the reader is referred to the subsections 3.5 for the case of
free QED and 4.3 for the case of interacting QED. A final discussion is contained in the
summary and outlook of the document in Section 5.

1.1 Outline of the proof
From the mathematical side the Theorems 1.2 and 1.3 are proven as corollaries of the
following mathematical result

Lemma 1.4. Let W be a Lorentz-covariant tempered distribution on Minkowski space M
which is

(a) transforming as a Lorentz-2-tensor, i.e., written in components Wµν one has

Wµν(u) = Λρ
µΛσ

νWρσ(uΛ,0), Λ ∈ L↑+, u ∈ S(M). (1.7)

(b) fulfilling the partial differential equation

(η ρ
ν �− λ∂ν∂ρ)Wµρ = 0, λ 6= 1 (1.8)

Then requiring that Wµµ is non-negative, i.e.,

Ŵµµ(u) ≥ 0, for u ∈ S(M) with u ≥ 0 (1.9)

implies that there exists a tempered distribution G on M such that

Wµν = ∂µ∂νG. (1.10)

In particular one obtains

G(u) =
∫

(aû(|~p|, ~p) + bû(−|~p|, ~p)) d~p

2|~p| , u ∈ S(M) (1.11)

for some constants a and b, and where f̂(p) =
∫
d4xf(x)eipx denotes the Fourier transform

of f (px denoting the Minkowski product).

The role of the tempered distribution W with its properties is played by the (translation-
invariant) Wightman two-point function Wµν(x − y) = 〈Ω, Aµ(x)Aν(y)Ω〉 of the free(!)
vector potential A. Ω denotes the vacuum vector of the theory. One can then derive that
the two-point function of F is linear in W and is such that derivative terms like in the
resulting eq. (1.10) do not contribute. Hence the two-point function of F vanishes.

For the interacting case one introduces the orthogonal projection operator P (1) onto the
space of massless states. With the definition of a modified two-point function

6



Outline of the proof

W (1)
µν (x− y) ≡ 〈Ω, Aµ(x)P (1)Aν(y)Ω〉 (1.12)

which has its support restricted to the massless spectrum one obtains again a tensor-
valued tempered distribution satisfying the same properties as required for Lemma 1.4.
This will yield to a vanishing two-point function 〈Ω, Fµν(x)P (1)Fρσ(y)Ω〉 and thus imply
that Theorem 1.3 holds.

A brief outline of the key steps to the proof of Lemma 1.4 above should be given in order
to clarify the general concept of it:

Step 1 (Covariant structure of W )
By the transformation behaviour as a Lorentz two-tensor there exists a decomposi-
tion

Wµν = ηµνK + ∂µ∂νG (1.13)

where K and G are Lorentz-invariant distributions.

Step 2 (Precise shape of W by equation of motion)
The general solution to the equations of motion

(η ρ
ν �− λ∂ν∂ρ)Wµρ = 0, (1.14)

including also Lorentz-covariance and the spectral condition, is

Wµν = c1

(
ηµνD

(+) − λ

1− λ∂µ∂νx
2D(+)

)
− c2∂µ∂νD

(+)

− c3

(
ηµνx

2 − 1
24

4− λ
1− λ∂µ∂ν(x

2)2
)

+ c4ηµν . (1.15)

for constants c1, ..., c4 and where D(+) is formally defined by its Fourier transform
D̂(+)(p) = θ(p0)δ(p2).

Step 3 (Final argument)
Non-negativity of the scalar square of 〈·, ·〉 requires

Ŵµµ(|u|2) ≥ 0 (1.16)

for arb. u ∈ S(M). As the summands ofWµν are homogeneous generalized functions
with different degrees of homogeneity (scaling degrees) it is possible to infer non-
negativity of the summands with different degrees, separately. As the ηµν terms
show different signs for µ = ν = 0 and µ = ν = 1, 2, 3 we obtain c1 = c3 = c4 = 0
and c2 ≥ 0. Thus

Wµν = −c2∂µ∂νD
(+). (1.17)

7



Basic notation and conventions

Chapter 2

Preliminaries

This section is devoted to enlightening and untying the construct of definitions underlying
this thesis. It will introduce some basic notation, the calculus of generalized functions,
specific topics of representation theory focussing on Lorentz and Poincare group represen-
tations, the Wightman and the Strocchi-Wightman frameworks of quantum field theory
as well as a working definition for quantum electrodynamics. The preliminaries aim to
be self-contained although for many proofs there is a reference to either the appendix or
the literature. For more detailed information on where the contents of the preliminary
section generally stem from (unless noted otherwise) the reader is referred to the following
footnote.[1]

2.1 Basic notation and conventions
This subsection sets up the general conventions and specialties of this document. What
is written here is applied throughout the document unless stated otherwise.
In this document we will denote n-dimensional real and complex Euclidean space by Rn
and Cn, respectively. Four-dimensional real and complex Minkowski space will be denoted
by M and CM, respectively. Their metric tensors will be denoted by δ (Kronecker-Delta)
and η (Minkowski-tensor), respectively. Written out in components they are defined by

δ11 = ... = δnn = +1, δij = 0 for i 6= j (2.1)

and (choosing mostly minus convention)

η00 = −η11 = −η22 = −η33 = +1, ηµν = 0 for µ 6= ν. (2.2)
[1]Sections 2.2, 2.3, and 2.4 are mainly based on the chapters 2 and 3 of [BLOT90]. Whereas the first

two sections are presenting existing contents in a new concise format, in Section 2.4 also the contents
were created by the author as an application to the preceding two sections. An alternative presentation
following [BLOT90, Chapter 4.2] is given in Appendix B. Some more specialized information for the
named three sections is also drawn from the chapters III.3 and V.3 of [RS80], and IX (esp. IX.1, IX.2,
and appendix) of [RS75]. Section 2.5 is mainly based on chapters 4, 5 and 6.1 of [Sch12] as well as sections
VIII.3 and VIII.4 of [RS80]. Section 2.6 is a conglomerate of many sources. Most notably are [SW80],
[Dyb18], [BLOT90], and [Str13] although the presentation is partially different from the sources. For
the last section a similar situation applies although the most important sources were [Ste00] and again
[Str13].
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Calculus of generalized functions aka tempered distributions

Here we also choose the convention to denote Euclidean indices by small Latin letters
i, j, k, ... running through 1, 2, 3 or 1, ..., n and Minkowskian/Lorentzian indices by small
Greek letters µ, ν, ρ, ... running through 0, 1, 2, 3. In order to raise and lower indices the
Minkowski tensor may be applied

xµ = ηµνx
ν and xν = xµη

µν , (2.3)

where ηµν ≡ η−1
µν = ηµν . Here and throughout the document summation over repeated

upper and lower indices is understood. It will not be summed over equal indices that are
all lower or all upper. In other words, these indices are meant to be fixed.

As indices of many types will occur which may complicate readability we will sometimes
write expressions like

w ≡ w
(κ)
l (2.4)

meaning that the following descriptions will assume fixed κ and l and keep them implicit
where not needed. In general, the symbol ’≡’ will represent the definition relation in this
document. So A ≡ B means A is defined to be B.

Many times, also multi-index notation is used. This means to summarize a set of indices
α1, ..., αm for m ∈ N, representing it by a single symbol α (it would be written α ≡
(α1, ..., αm)). We then define

|α| ≡ α1 + ...+ αm and α! ≡ α1! · ... · αm!. (2.5)

as well as

xα = xα1
1 ...x

αm
m and Dα = ∂α1

1 ...∂αmm ≡ ∂

∂(x1)α1

...
∂

∂(xm)αm
. (2.6)

Finally, constants, functions and generalized functions always take values in C whenever
this is not further specified. Sometimes this is later specified to be only in the reals or
non-negative reals.

2.2 Calculus of generalized functions aka tempered
distributions

In the Wightman picture of quantum field theory the fundamental objects are the quantum
fields, which are operator-valued tempered distributions with certain additional proper-
ties. Therefore, the calculus of tempered distributions or - how we will also call them -
generalized functions underlies Wightman theory and is of great importance to it. This
subsection is devoted to introducing the calculus of generalized functions though in a
strongly confined format. For proofs and other details the reader is referred to a more
thorough version of preliminaries in [BLOT90, Chapter 2].
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Calculus of generalized functions aka tempered distributions

2.2.1 Tempered distributions
Let S(Rn) denote the space of rapidly decreasing differentiable functions on Rn, also known
as Schwartz space. This space can be equipped with a countable system of seminorms

||u||l,m = max
|α|≤l

sup
x∈Rn

(1 + |x|)m|Dαu(x)| (2.7)

where u ∈ S(Rn) and |x| is the Euclidean norm of x on Rn. With respect to this countable
system of seminorms S(Rn) is complete and thus becomes a separated complete locally
convex space, also referred to a Frechét space. A tempered distribution is a continuous
linear functional on S(Rn), or in other words, a linear map T : S(Rn)→ C subject to the
condition:

∃l,m ∈ N, c ≥ 0 : |T (u)| ≤ c||u||l,m ∀u ∈ S(Rn). (2.8)

The space of tempered distributions is denoted by S ′(Rn) implying it to be the topo-
logical dual space of S(Rn). There is a well-developed calculus of tempered distribu-
tions involving addition, multiplication, tensor products, transformations, differentiation,
Fourier transform, convolution, etc. which is extending the calculus of differentiable func-
tions. Therefore they are sometimes also called generalized functions. In this respect, it
is extremely practical to adopt/extend the notation of functions to generalized functions.
Thus, many times we will make use of writing T (x) representing T with x clarifying to
be the argument variable of T ’s test functions. We will sometimes distinguish between
the terms ’generalized function’ and ’tempered distribution’ depending on whether we
want to stress the characteristics of functions or distributions that are associated to these
objects. But note that there is in principle no difference between them. We will stick to
tempered distribution notation at first as it is more precise.

Another analogy of tempered distributions with ordinary functions is given when we define
tempered distributions to be a limit

T (u) ≡ lim
n→∞

∫
Tn(x)u(x)dx (2.9)

of a certain type of sequence (Tn)n of continuous functions approximating T .[2] Equalities
like T (x) ≡ T ′(x) will (where not stated otherwise) be understood in the framework of
generalized functions aka tempered distributions, i.e., T (u) = T ′(u) ∀u ∈ S. Note that for
a regular distribution[3] the ordinary sense of function equalities and the sense described
here are equivalent. Hence this usage of notation is consistent.

Another practical representation of tempered distributions which makes the close con-
nection to functions apparent is Schwartz’ representation theorem. It states that every
tempered distribution T (on Rn) can be represented as

[2]This certain type of sequence, a fundamental sequence is given by a sequence (Tn)n of continuous
functions Tν for which there exists a sequence (Fn)n of polynomially bounded and sufficiently often
differentiable functions Fn such that DαFn = Tn for some multiindex α and such that over each bounded
set the sequence (Fn)n is uniformly convergent to a continuous function.

[3]A regular distribution is a function understood as a distribution. See e.g. eq. (2.11) for how this
works.
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T =
∑
|α|≤N

cαD
α (2.10)

for some natural number N and continuous functions cα of polynomial growth[4] on R
n

understood as tempered distributions by means of

cα(u) =
∫
cα(x)u(x)dnx. (2.11)

This is also called a regular distribution.

Furthermore, there is the important Hahn-Banach-Theorem[5] which states that whenever
we have a continuous linear functional T0 acting on a linear subspace of S(Rn) there exist
a linear and continuous extension of T0 to the whole of S(Rn).

2.2.2 A selection of basic properties
In this section basic definitions to introduce the calculus of generalized functions are given.
At first there is a list of basic definitions without further explanations of the concepts.
These concepts should be already clear to the reader and the list is rather mentioned to
fix the notation and for the sake of completeness. To simplify notation, from now on we
shorten S ≡ Sn ≡ S(Rn) and S ′ ≡ S ′n ≡ S ′(Rn) whenever it is clear that the domain is
R
n.

Definition 2.1. Let T ∈ S ′n. Then there are the following definitions:

Restriction: For an open subset O ⊂ R
n the tempered distribution T �O ∈ S ′(O), the

restriction of T to O, is defined by the restriction of the linear functional to the closed
subspace S(O) ⊂ S consisting of the elements of S which vanish on Rn\O. [6]

Support: The support of T is the unique closed set, denoted by supp T , which is the
complement of the maximal open set O ⊂ R

n such that

T (u) = 0, u ∈ S(O). (2.12)

Concentration: T is said to be concentrated at x ∈ Rn if, and only if, supp T = {x}.

Transformation: For a diffeomorphism φ of Rn onto itself the tempered distribution
T ◦ φ−1 is defined by

T ◦ φ−1(u) ≡ T (|J(φ)| u ◦ φ), u ∈ S (2.13)

where |J(φ)| is the Jacobian determinant of φ. In generalized function notation we write
T (φ−1(y)).
[4]This condition guarantees that the integral below is well-defined.
[5]The Hahn-Banach theorem states that a continuous linear functional defined on a subspace of a

locally convex space can always be extended to a continuous linear functional on the whole of the locally
convex space. For a version for normed spaces see for instance [BLOT90, Theorem 1.2, p. 15]

[6]Let us note that almost all the results extend to tempered distributions restricted to open subsets of
Rn. For the sake of definiteness, however, we will stick to using tempered distributions defined on all of
Rn.
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Differentiation: The tempered distribution DαT is defined by

DαT (u) ≡ (−1)|α|T (Dαu). (2.14)

Multiplication: For a function φ which is a multiplicator of S, i.e., φS ⊂ S the tempered
distribution φT is defined by

φT (u) ≡ T (φu), u ∈ S. (2.15)

Tensor Product: For tempered distributions T1 ∈ S ′m and T2 ∈ S ′n the tensor product
T1 ⊗ T2 ∈ S ′m+n is defined by

T1 ⊗ T2 (u1 ⊗ u2) ≡ T1(u1)T2(u2), u1 ∈ Sm, u2 ∈ Sn (2.16)

and its unique extension to the whole of Sm+n.

Vector-Valued: A vector-valued tempered distribution is a linear continuous map from
S → V , where V is a complex locally convex space. We will sometimes denote such
distributions by S ′(Rn, V ). An elementary example is given by V = C

n. A special
case is a tensor-valued tempered distribution. Another important special case is when
V = H is a Hilbert space. In this case note that for a linear map S → H it is equivalent
whether the map is weakly or strongly continuous (see Appendix A, Proposition A.7).

Operator-Valued: Let H denote a Hilbert space with a dense subspace D ⊂ H and let
L(D,H) denote the space of linear operators on H with domain D. Then an operator-
valued tempered distribution is a linear map

A : S → L(D,H) u 7→ A(u) (2.17)

where
u 7→ 〈φ,A(u)ψ〉 (2.18)

is required to be a tempered distribution for all φ, ψ ∈ D and where A(u) is closable for
each u ∈ S. Note that weak (〈φ,A(·)ψ〉 continuous for each φ ∈ H, ψ ∈ D) and strong
continuity (A(·)φ continuous for each φ ∈ D) of A(·) can be inferred from the definition
(see Appendix A, Proposition A.8).

Tensor-Operator-Valued: Let D ⊂ H be again a dense subspace of a Hilbert space H
and let Dmn be a tensor-representation-map of some Lie group G corresponding to some
basis of the representation space. Then a tensor operator A is a (for simplicity finite)
collection of operators Am ∈ L(D,H) which transform under the tensor representation
by

Am 7→ A′m =
∑
n=1

Dmn(g)An, g ∈ G. (2.19)

We then define the operator A ≡⊕m=1Am by

Aφ ≡
⊕
m

Amφ, or 〈ψ,Aφ〉 ≡
⊕
m

〈ψ,Amφ〉 , ψ, φ ∈ D. (2.20)

Proposition 2.2. Let T ∈ S ′ and u ∈ S an arbitrary test function.
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(a) DαDβT = DβDαT ∀α, β.

(b) If T is concentrated at the origin it has the form

T (u) =
∑
|α|≤N

cαD
αu(0) (2.21)

for some natural number N and where cα is a fixed finite set of constants.

Proof. (a) holds by the commutativity of differentials acting on Schwartz space. The
commutativity on Schwartz space holds because of smoothness and Schwarz’/Clairaut’s
theorem.
(b) see Appendix A Proposition A.1. �

Proposition 2.3. (The gluing principle for tempered distributions)
Let {Oj}j=1,...,m finite open covering of Rn such that

Qj = R
n\
⋃
i 6=j
Oi (2.22)

is closed and contained in Oj and that for each x ∈ Qj the distance d(x, ∂Oj) to the
boundary ∂Oj of Oj satisfies

d(x,Oj) ≥ A(1 + |x|)−δ (2.23)

for fixed[7] numbers A > 0, δ ≥ 0. Then for any family {Tj}j=1,...,m of tempered distribu-
tions on Rn satisfying

(Ti − Tj)�Oi∩Oj = 0 ∀i, j = 1, ...,m (2.24)

there exists a unique tempered distribution T ∈ S ′(Rn) coinciding with Tj in Oj for all j.

Proof. See Appendix A Proposition A.4. �

2.2.3 Division problem
With some basic structures set up we can tackle a more advanced question. The division
problem (for tempered distributions) consists of a given tempered distribution T , a given
function φ which is a multiplicator of S, and an unknown tempered distribution S subject
to the equation

φS = T. (2.25)

For the sake of definiteness let here the variable space be Rn. The elementary case of this
problem is given whenever φ(x) 6= 0 ∀x ∈ Rn and φ(x) is approaching zero not too fast
as |x| → ∞. In other words

Proposition 2.4. The division problem where not only φ, but also 1/φ, is a multiplicator
of S is uniquely solved by the tempered distribution

S = 1
φ
T. (2.26)

[7]only dependent on the given covering
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Proof. The tempered distribution S = 1
φ
T is well-defined, as 1

φ
is a multiplicator of S and

clearly solves the division problem. The solution is unique as it is fixed on the subspace
φS of S and this is already the whole space as S ⊃ φS ⊃ φ 1

φ
S = S. �

For the specific case of φ being a polynomial function in x we can state

Theorem 2.5. Let φ be a non-zero polynomial function on R
n. Then a solution to the

division problem S in the class of tempered distributions always exists.

Proof. We will use the fact that φu → 0 implies u → 0 without further proof. For the
details on this the reader is referred to the original work [Hö58, Theorem 1].
The linear map φu 7→ u from φS to S is well-defined[8] and as φu → 0 implies u → 0
the linear map φu 7→ T (u) is continuous. By the Hahn-Banach theorem we can extend
this linear form on φS ⊂ S to the (continuous) map u 7→ S(u) defined on the whole of
S. Hence we end up with a tempered distribution S fulfilling φS(u) = S(φu) = T (u) for
each u ∈ S. �

The last part of this section focusses on the very simple case of the division problem on
R for polynomials. By using the gluing principle we can deal with the division problem
for each of the zeroes of the polynomial function separately (e.g. by using compactly
supported test functions with appropriate supports). For the separate division problems
we can use a change of variables (a diffeomorphism of R into itself) to reduce the problem
to

Proposition 2.6. Let T, S ∈ S′(R) such that

xkS(x) = T (x) (2.27)

for some natural number k. Then S has the general form

S =
k−1∑
j=0

cjδ
(j) + Sp, (2.28)

for some constants cj and a particular solution to the division problem Sp ∈ S ′(R).
The j-th derivative of the delta distribution is denoted by δ(j).

Proof. By Theorem 2.5 a solution to the division problem given here always exists. When
taking two particular solutions to the problem, their difference, denoted by S0, has to
satisfy the homogeneous equation

xkS0 = 0. (2.29)

Therefore S0 has to be concentrated at the origin and by Proposition 2.2(b) the general
form of S0 is

S0 =
N∑
j=0

cjδ
(j) (2.30)

[8]If there are to elements u, v ∈ S such that φu = φv or, equivalently, such that φ(u − v) = 0. Then
this implies that u− v(x) = 0 for all but finitely many isolated x (the zeroes of φ). Because of continuity
u− v = 0.
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for some natural number N and some constants cj. Let us note that the δ(j)’s are linear
independent for different j and that

xkδ(j)(u) = (−1)jδ((xku)(j))

= (−1)j
j∑
i=k

u(j−i)(0), u ∈ S.

Here ( )(j) denotes the j-th derivative of the term in brackets. In general, the result of the
computation above is zero for j < k and not zero for j ≥ k. Therefore N < k is necessary
and sufficient such that S0 is a solution to eq. (2.29). �

What we will later use to discuss solutions of the d’Alembert equation in four dimensions
is a bit more general
Proposition 2.7. Let T, S ∈ S ′(R× Rn) such that

xkS(x, y) = T (x, y) (2.31)
for some natural number k. Then S has the general form

S(x, y) =
k−1∑
j=0

cj(y)δ(j)(x) + Sp(x, y) (2.32)

for generalized functions cj ∈ S ′(Rn) and some particular solution to the division problem
Sp ∈ S ′(R× Rn).
Proof. This is a corollary of Proposition 2.6 and the fact that each T ∈ S ′(Rm×Rn) with
supp T ⊂ {a} × S for some a ∈ Rm, S ⊂ R

n can be represented as
T (x, y) =

∑
|α|≤N

Dα
xδ(x)hα(y) (2.33)

for a (finite) family of hα ∈ S ′(Rm) with supp hα ⊂ S. This fact is proven in Appendix A
Proposition A.3. �

2.2.4 Fourier transform, multiplication, and convolution
One of the great properties of tempered distributions is that they behave very nicely under
Fourier transform. The reason for that is that the Fourier transform is an automorphism
of Schwartz space and therefore induces an automorphism on its topological dual, as well.

To begin with, let us specify the definitions of the Fourier transform and the convolution
for test functions (i.e., on Schwartz space):
Definition 2.8 (Fourier transform and convolution of test functions).
For each u, v ∈ S define the following Schwartz functions

Fourier transform: û(p) ≡
∫
u(x)e−ipxdnx.

Inverse Fourier transform: ǔ(x) ≡
∫
u(p)e+ipxdnp.

Convolution: u ∗ v (x) ≡
∫
u(x)v(y − x)dnx.

Here (p, x) 7→ px denotes a fixed non-degenerate bilinear form on Rn and dnp ≡ (2π)−ndnp
accounts for the normalization of the Fourier transform.
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Remark 2.9. Later we will only deal with the Fourier transform on Minkowski space M
which is R4 endowed with the non-degenerate bilinear form px ≡ pµx

µ ≡ p0x
0 − ~p · ~x,

called Minkowski product.
Let us now extend the definition of the Fourier transform to tempered distributions

Definition 2.10 (Fourier transform of tempered distributions).
Let T ∈ S ′. Then the Fourier transform of T , denoted by T̂ , and its inverse, denoted by
Ť , are tempered distributions defined by

T̂ (u) = T (û), u ∈ S (2.34)

and
Ť (u) = T (ǔ), u ∈ S, (2.35)

respectively.

Understood as a mapˆ : S ′ → S ′, the Fourier transform is an automorphism on S ′ and
the unique weakly continuous extension of the Fourier transform on S.[9] Many properties
from the Fourier transform on S carry over:

Proposition 2.11. For each T ∈ S ′ and u ∈ S we have

• Parseval’s identity:
T̂ (¯̂u) = T (ū), (2.36)

where ū denotes the complex conjugate of u.

• Constant/Delta Distribution:

δ̂ = 1 and 1̂ = δ. (2.37)

• Polynomials/Derivatives:

x̂αDβT (u) = (−iD)α(−ip)βT̂ (u). (2.38)

• Multiplication/Convolution:

T̂ (u ∗ v) = T (ûv̂) and T̂ (uv) = T (û ∗ v̂). (2.39)

• Real Linear Transformation:
Let A be a real linear transformation of Rn into itself. Then

T̂ ◦ A−1(u) = det
(
A†
)
· T̂ ◦ A†(u), (2.40)

where A† is the adjoint of A with respect to the fixed bilinear form px of the Fourier
transform.

[9]cf. Theorem IX.2 of [RS75], p.5.
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Proof.
Whenever there are two equations, we will only prove one of them:

Parseval’s identity:

T̂ (¯̂u) = T̂ (ˇ̄u) = T (ˆ̄̌u) = T (ū).

Constant/Delta Distribution:

δ̂(u) = δ(û) =
∫
u(x)dnx = 1(u),

where 1 denotes the 1-function viewed as a distribution.

Polynomials/Derivatives:

x̂αDβT (u) = (−1)|β|T (Dβxαû)

= (−1)|β|T̂ (�Dβxαû)
= (−1)|β|T̂ ((ip)β(iD)αu)
= (−1)|β|+|α|(iD)α(ip)βT̂ (u)
= (−iD)α(−ip)βT̂ (u).

Multiplication/Convolution:

T̂ (u ∗ v) = T (û ∗ v) = T (ûv̂).

Real Linear transformation:

T̂ ◦ A−1(u) = T̂ (|J(A)| · u ◦ A) = detA · T (û ◦ A).

The Fourier transform of u ◦A gives 1
detA · û ◦ (A−1)†, where ( )† denotes the adjoint of A

with respect to the bilinear form px for which the Fourier transform was defined. Finally,
we obtain

T̂ ◦ A−1(u) = T (û ◦ (A−1)†) = detA† · T̂ ◦ A†(u).

�

Corollary 2.12. (Lorentz transformation) Let Λ be a real linear transformation on M

keeping the Minkowski product px invariant.[10] Then Λ† = Λ−1 and |det Λ| = 1 such that
for each tempered distribution

T̂ ◦ Λ = T̂ ◦ Λ (2.41)

or in generalized function notation

T̂ (Λp) = T̂ (Λx)(p). (2.42)
[10]We will introduce Minkowski space and Lorentz transformations properly in the next subsection.
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2.3 Representation theory pertaining to Lorentz- and
Poincaré group

In this subsection we will pay attention to the Lorentz and Poincaré group and their rep-
resentations. The main part of this subsection will focus on the Lorentz group including
a classification of its irreducible and simply reducible representations as well as an analy-
sis of the structure of Lorentz-invariant and Lorentz-covariant functions and generalized
functions.

2.3.1 The Lorentz- and Poincaré group
Quantum field theory is a relativistic theory and, to be precise, it obeys the principles of
special relativity. To start with, the four-dimensional Minkowski (vector) space is defined
as the vector space R4 endowed with the Pseudo-Euclidean scalar product

(p, q) 7→ pq = pµqµ = ηµνp
µqν = p0q0 − ~p · ~q (2.43)

for arbitrary four-vectors p, q ∈ M. The spacetime coordinates then live in the affine space
of M, also called Minkowski (coordinate) space, that inherits the Pseudo-Euclidean metric
d : M× M→ R defined by

d2(x, y) = (x− y)2 = (x0 − y0)2 − (~x− ~y) · (~x− ~y), x, y ∈ M. (2.44)

From the affine space we again get the Minkowski vector space by taking the tangent space
or its dual. In particular in the latter case it will also be called Minkowski momentum
space. The basic symmetry groups of special relativity are then the invariance group of
the Pseudo-Euclidean scalar product and the invariance group of the Pseudo-Euclidean
metric, named (real) Lorentz- and Poincaré group, respectively. The Lorentz group L
may be written as matrix Lie group

L = {Λ ∈M(4× 4,R),ΛgΛT = g} (2.45)

such that transformations x 7→ x′ = Λx keep the Minkowski product invariant. The
Poincaré group P may be written as the set

P = {(a,Λ) ∈ M× L} together with the product (a,Λ)(b,Λ′) = (a+ Λa′,ΛΛ′) (2.46)

for each (a,Λ), (a′,Λ′) ∈ P where (a,Λ) represents a transformation x 7→ x′ = (a,Λ)x =
Λx+ a.[11]. The (real) Lorentz and Poincaré group each have four connected components
from which we will select the components that contain the identity. These components
are called special orthochronous - or also proper - and are selected by the conditions

det Λ = +1 (special) and Λ00 ≥ 1 (orthochronous). (2.47)

We will denote them by L↑+ and P↑+, respectively.

[11]With these definitions we have established that the Poincaré group is a semidirect product P = MoL
of the translation group and the Lorentz group.
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2.3.2 Representation theory of the Lorentz group
In view of physics symmetry groups and symmetry transformations are of great impor-
tance. In the section above we have learned how relativistic symmetry transformations
affect the coordinates of Minkowski spacetime. Usually, we do not only want to study
the behaviour of coordinates under symmetry transformations, but also of the physical
entities or observables of the theory. The mathematical structure that corresponds to the
transformation behaviour of a mathematical object under the action of a (continuous)
symmetry group is called a (Lie group) representation.

Definition 2.13. A representation[12] of a Lie group G is given by a finite-dimensional
linear space V and a Lie group homomorphism ρ : G → GL(V ). The homomorphism ρ
is called representation map. GL(V ) denotes the general linear group on V .

Although unspecified for the definition above, for the sake of definiteness, we should agree
to use the field of complex numbers as base field for the representation spaces.
In general it turns out that the representation theory of simply connected Lie groups
is particularly nice as their representations are in one-to-one correspondence with the
representation theory of their Lie algebras (via the exponential map). Therefore let us
study the representations of the universal covering[13] of L↑+, which is the complex special
linear group SL(2,C) of complex 2× 2 matrices with determinant equal to one.

Proposition 2.14. SL(2,C) is the (unique) universal double covering of L↑+.

Proof. Let us define x˜ ≡ xµσµ, where σ0 = 1 and σi, i = 1, 2, 3 are the Pauli-matrices[14].
The mapping x 7→ x˜ defines an isomorphism from M to the space of hermitian 2×2-
matricesM2×2,Herm

[15].
A homomorphism from SL(2,C)→ L↑+, Λ̃ 7→ Λ ≡ Λ(Λ̃) is then given by

Λx˜ ≡ Λ̃x˜Λ̃†, (2.48)

where Λ̃† ≡ Λ̃̄T denotes the adjoint of Λ̃. In order to see that this map defines a double
covering of L↑+ and that SL(2,C) is simply-connected the reader is referred to [BLOT90,
Ex. 3.4 and above]. �

Matrix Lie groups have a natural action on column vectors and therefore a canonical
representation called self representation consisting of the identity map and the column
vector space. In the case of SL(2,C) the self representation is given by its natural action
on C2:

(Λ̃z)a = Λ̃ b
a zb, a = 1, 2, z ∈ C2. (2.49)

The irreducible representations of SL(2,C) are known to be of the following form:
[12]We will confine the discussion here to finite-dimensional representations (corresponding to represen-
tations with a finite dimensional linear space V ) unless stated otherwise.

[13]A covering of a Lie group G is given by a Lie group H and a Lie-homomorphism H → G which is
onto and a local isomorphism. The universal covering is uniquely defined by requiring H to be simply
connected.

[14]For definiteness they are specified to be σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

[15]It is not difficult to show that the Pauli matrices form a basis onM2×2,Herm. Therefore the map is
clearly onto and as M and M2×2,Herm have the same dimension, it defines an isomorphism. That x˜ is
hermitian is also easy to see via x˜† = xµσ̄Tµ = xµσµ = x˜.
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Proposition 2.15. Each irreducible representation of SL(2,C) is characterized by a tuple
(j, k) of non-negative half-integral numbers j, k. The representation D(j,k) corresponding to
(j, k) is given by 2j copies of the self-representation and 2k copies of its complex conjugate
acting on the space of spinors. Explicitly, we can write

D(j,k)(Λ̃) = Λ̃⊗2j ⊗ Λ̃̄⊗2k (2.50)

acting on S2j(C2)⊗ S2k(C2)[16], where Sr(V ) is the space of symmetric tensors of rank r
on a vector space V . Thus D(j,k) is of dimension (2j + 1)(2k + 1).

Remark 2.16. The irreducible representations of SL(2,C) stand in close connection to
the irreducible representations of the compact Lie group SU(2) of special unitary 2×2-
matrices. The irreducible representations of SU(2) are well-known to be characterized
by a single non-negative half-integral number s called spin. For each spin s there is
a unique holomorphic and a unique antiholomorphic extension to a representation of
SL(2,C) corresponding to D(s,0) and D(0,s) and for each irreducible rep. of SL(2,C) we
then have D(j,k) ∼= D(j,0)⊗D(0,k). For a more thorough discussion of the relations between
representations of SU(2) and SL(2,C) the reader is referred to [Zhe73, §39, §42 and §43].
It is also known that

Proposition 2.17. For each non-negative half-integral numbers s, t, s′, t′ the representa-
tion D(s,t) ⊗ D(s′,t′) of SL(2,C) decomposes into ⊕|s−s′|≤j≤s+s′⊕|t−t′|≤k≤t+t′ D(j,k) where
the sums run over j and k in integral steps.

Remark 2.18. In view of the remark above we can relate this decomposition to the cor-
responding decomposition for SU(2)-representations. The latter is well-known as the
decomposition of angular momentum. In order to make that statement more precise
using the shorthand notation (j, k) ≡ D(j,k) note that

(s, t)⊗ (s′, t′) ∼= (s, 0)⊗ (0, t)⊗ (s′, 0)⊗ (0, t′) (2.51)
∼= (s, 0)⊗ (s′, 0)⊗ (0, t)⊗ (0, t′). (2.52)

Angular momentum decomposition then gives us (s, 0)⊗ (s′, 0) ∼=
⊕
|s−s′|≤j≤s+s′(j, 0) and

similarly for the complex conjugate. Hence we arrive at the expression in the proposition
above.
Finally, we want to relate the results of representation theory of SL(2,C) to the represen-
tation theory of the Lorentz group. For this note that the representation (1/2, 1/2) may
be realized in the space of complex hermitian 2×2-matrices and is then given by

x˜ 7→ Λ̃x˜Λ̃†, x˜ ∈MHerm
2×2 . (2.53)

This map closely resembles the covering homomorphism defined in eq. (2.48). In fact, for
each x ∈ M we have

D(1/2,1/2)(Λ̃) ◦ ˜ (x) = D(1/2,1/2)(Λ̃)(x˜) = Λ̃x˜Λ̃† = Λ(Λ̃)x
˜

= ˜ ◦ Λ(Λ̃) (x). (2.54)

[16]This is the subspace of spinors of degree (2j, 2k). The general spinor space is given by S(C2)⊗S(C2)
with S(V ) ≡

⊕∞
r=0 S

r(V )
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Remember here that ˜ represents the isomorphism from M to MHerm
2×2 mapping x to

x˜ = xµσµ which was introduced in the proof of Proposition 2.14.
Thus D(1/2,1/2)(Λ̃)◦ ˜ = ˜ ◦Λ(Λ̃) and hence the two representations (D(1/2,1/2),M2×2,Herm)
and the self-representation (Λ,M) are equivalent. We should introduce:
Remark 2.19. A representation ρ of SL(2,C) is called a single-/double-valued represen-
tation of L↑+ depending on whether ρ(−1) = +1 or ρ(−1) = −1, where 1 stands for the
identity on the corresponding space. A single-valued representation is equivalent to an
ordinary representation. This can be seen as

ρ1(Λ) = ρ(Λ̃) for Λ = Λ(Λ̃) (2.55)

is a well-defined definition of a representation of L↑+ precisely if {±1} = ker Λ(·) ⊂ ker ρ,
i.e., if, and only if, ρ(−1) = 1.
The full result then is
Proposition 2.20. Each irreducible representation D(j,k) of SL(2,C) with non-negative
half-integral numbers j, k gives rise to an irreducible representation of L↑+, which is single-
valued if, and only if, j+k is integral and double-valued if, and only if, j+k is half-integral
(and not integral).
Proof. In only the next equation we will distinguish for the sake of clarity between the
identity number 1, matrix 1 ∈ SL(2,C) and tensor 12j⊗2k in the space of spinors of degree
(2j, 2k):

D(j,k)(−1) = (−1)⊗(2j+2k) = (−1)2(j+k)
12j⊗2k. (2.56)

Hence, disposing of the distinction again,

D(j,k)(−1) =
{

+1 for j + k integral,
−1 for j + k half-integral and not integral. (2.57)

�

For an irreducible representation of SL(2,C) to be real it is required that j = k. As
this automatically implies the single-valuedness of the representation when understood as
a Lorentz-representation, we have established that the (real) irreducible representations
of the proper Lorentz group are precisely the irreducible representation of SL(2,C) with
j = k.

As a prerequisite for the next chapter let us introduce a useful implementation of irre-
ducible and completely reducible SL(2,C)-representations. For half-integral numbers j, k
define the space P(j,k) of polynomials in two variables ω, ω̄ ∈ C2 that are homogeneous of
degree 2j in ω and homogeneous of degree 2k in ω̄. On this polynomial space D(j,k) may
be conveniently implemented by

D(j,k)(Λ̃)Ψ[ω, ω̄] ≡ TΛ˜−1Ψ[ω, ω̄] ≡ Ψ[Λ̃−1ω, Λ̃̄−1
ω̄], Ψ ∈ P(j,k). (2.58)

Here we used the insertion homomorphism TΛ˜Ψ[ω, ω̄] ≡ Ψ[Λ̃ω, Λ̃̄ω̄], which is defined for
any polynomial with a natural action of SL(2,C) on the variable spaces.

For a completely reducible representation ⊕(j,k)⊂S D(j,k) where S is a finite set of tuples
of half-integral numbers, we may just take ⊕(j,k)⊂S P(j,k) as representation space where
the action of SL(2,C) remains as defined in equation (2.58).
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2.3.3 Lorentz-invariant and Lorentz-covariant generalized func-
tions

Among the mathematical objects on which a (Lorentz group) representation may act
are the functions and generalized functions on Minkowski space. In particular they may
satisfy a specific transformation behaviour under the group actions, named covariance.

Definition 2.21. A Lorentz-covariant tempered distribution is a vector-valued general-
ized function F ∈ S ′(M, V ) which for each u ∈ S(M) satisfies

F (uΛ) = ρ(Λ)F (u) (2.59)

for some representation (ρ, V ) of the Lorentz group and uΛ(p) ≡ u(Λ−1p). It is referred
to be Lorentz-invariant if, and only if, ρ is the trivial representation

F (uΛ) = F (u). (2.60)

The conditions of Lorentz-co- and invariance in generalized function notation amounts to
F (Λp) = ρ(Λ)F (p) and F (Λp) = F (p).[17]

The simpler case of Lorentz-invariant generalized functions gives rise to the following
representation

Proposition 2.22. For each Lorentz-invariant F ∈ S ′(M) there are Lorentz-invariant
f± ∈ S ′(R) coinciding on R− such that

F (p) =
{
f+(p2) for p 6∈ V̄ −,
f−(p2) for p 6∈ V̄ +,

(2.61)

where V̄ ± ≡ {p ∈ M : p2 ≥ 0, p0 ≥ 0} ⊂ M denotes the closed upper/lower light cone.

Remark 2.23. The expressions f±(p2) define generalized functions on M\V̄ ∓. They have
the following precise meaning: The map

(τ, ~p) 7→ j±(τ, ~p) ≡
(
±
√
τ + |~p|2, ~p

)
, |~p|2 > −τ (2.62)

defines a diffeomorphism from {(τ, ~p) ∈ R4 : |~p|2 > −τ} to M\V̄ ∓ with inverse j−1
± (p) =

(p2, ~p). Hence for p 6∈ V̄ ∓ we can write

f±(p2) ≡ (f± ⊗ 1) ◦ j−1
± (p), (2.63)

where 1 is the constant 1 viewed as an element of S ′(R3). In distributional notation we
have

f±(p2)(u) = f±(v±), v±(τ) ≡ ±
∫
|~p|2>−τ

u(±
√
τ + |~p|2, ~p)

2
√
τ + |~p|2

d~p, u ∈ S(M\V̄ ∓). (2.64)

Proof. See [BLOT90, Chapter 3.2 pp. 131]. �
[17]Throughout this section we will use variables p, q ∈ M which can be thought of either as momentum
or as coordinate variables.
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Corollary 2.24. For each Lorentz-invariant function F ∈ S(M) there exists two functions
f± ∈ S(R) such that

F (p) = fε(p0)(p2), (2.65)
where ε(p0) is the sign of p0. In particular, a Lorentz-invariant function that is constant
with respect to p0 is a constant.

Let us fix here F to be an arbitrary Lorentz-covariant generalized function. What we
want to achieve is a decomposition of F in Lorentz-invariant generalized functions fρ
with respect to a fixed family of Lorentz-covariant polynomials Qρ, the so-called standard
covariants. The decomposition should be of the form

F (p) =
∑
ρ

fρ(p)Qρ(p). (2.66)

In order to be useful we require standard covariants to form a polynomial basis. This
means that the Qρ span the space of Lorentz-covariant polynomials with respect to the
ring of Lorentz-invariant polynomials and that F (p) ≡ 0 implies fρ(p) ≡ 0 ∀ρ. Such a de-
composition exists in general and the Lorentz-invariant distributions fρ(p) will be defined
up to a finite number of constants. For the details the reader is referred to [BLOT90, Chap-
ter 3.3]. Here we just want to cite [BLOT90, Proposition 3.6] in a shortened and adapted
form: In order to state the result let us take the representation D(j,k) to be realized in the
space P(j,k) introduced in the former subsection. In the definition of Lorentz-covariant
generalized functions (see Definition 2.21) this corresponds to (ρ, V ) = (D(j,k),P(j,k)) or,
in other words, that the values of F (when smeared with a test function) are homoge-
neous polynomials in ω and ω̄ ∈ C2. The notation is defined as F (p;ω, ω̄) ≡ F (p)[ω, ω̄].[18]

Represented in this form the covariance condition becomes an invariance condition

F (Λ(Λ̃)p;ω, ω̄) = F (p; Λ̃−1ω, Λ̃̄−1
ω̄) ⇔ F (Λ(Λ̃)p; Λ̃ω, Λ̃̄ω̄) = F (p;ω, ω̄). (2.67)

This explains why it is so useful to write Lorentz-covariant generalized functions in this
form. A distinguished role in this covariant decomposition will be played by the invariant
combination of p, ω and ω̄ given by ω̄p̃ω, where p̃ ≡ pµ(εσTµ ε−1) = pµ(σµ)µ is a 2×2-matrix
and ω and ω̄ are understood as column- and row-vectors, respectively.

Proposition 2.25. An arbitrary Lorentz-covariant generalized function F on M trans-
forming according to D(j,k) is non-zero only for j = k = n/2 and in this case may be
represented as a tempered distribution

F (p;ω, ω̄) = (ω̄p̃ω)nf(p), (2.68)

where f(p) is a Lorentz-invariant generalized function defined within n arbitrary constants.
More precisely, if f0(p) is a fixed solution of eq. (2.68) (regarded as an equation in f(p)),
then the general solution has the form

f(p) = f0(p) +
n−1∑
l=0

al�
lδ(p) (2.69)

for some constants al, l = 0, ..., n− 1.
[18]In other words, F can be understood as a generalized function in not only p, but also ω and ω̄ as
polynomials can define generalized functions.

23



Lorentz-invariant solutions of the d’Alembert equation

Proof. See [BLOT90, Proposition 3.6]. �

The result may be easily extended to arbitrary Lorentz-covariant generalized function on
M transforming according to T = ⊕

(j,k)⊂S D(j,k) for some finite set S consisting of tuples
of half-integral numbers.

2.4 Lorentz-invariant solutions of the d’Alembert equa-
tion

The goal of this section is to determine the solutions of the linear partial differential
equation

�F (x) = ηµν∂
µ∂νF (x) = 0 (2.70)

in the space of Lorentz-invariant tempered distributions on M. This problem is equivalent
(by applying the Fourier transform) to the division problem

p2F (p) = 0, (2.71)

where F (p) ≡ F̃ (p) denotes the Fourier transform of F (x) which is also Lorentz-invariant
(see e.g. Corollary 2.12) and tempered (by definition). From Eq. (2.71) one immediately
sees that the support of F (p) must be contained in the set Γ ≡ Γ0 ≡ {p ∈ M : p2 = 0} =
{p ∈ M : p0 = ±|~p|}. The most difficult part of this division problem is to deal with the
point p = 0 and its neighbourhood. Let us start by solving the following (sub-)problem

Lemma 2.26. An arbitrary Lorentz-invariant tempered distribution F (p) on M× ≡ M\{0}
subject to the equation p2F (p) = 0 is of the form

F (p) = aθ(p0)δ(p2) + bθ(−p0)δ(p2) (2.72)

for some constants a, b.

Proof. To begin with, let us denote the restrictions of F to the complements of V̄ ∓ in
M by F±. This is well-defined as M\V̄ ∓ are open subsets of M×. Solving the division
problem for the restrictions separately, by the gluing principle of generalized functions we
then find F (on M×) to be uniquely specified by its restrictions F± (see Proposition 2.3).
Let us clarify that the following equations of the proof are implicitly meant to live upon
the complements of V̄ ∓ and in particular p = 0 is excluded.
For F+ the division problem reads

p2F+(p) = (p0 − |~p|)(p0 + |~p|)F+(p) = 0. (2.73)

The general solution to the division problem xf(x, y) = 0 for f ∈ S(R× Rn) is f(x, y) =
δ(x)g(y) for some g ∈ S(Rn) (see Proposition 2.7). Thus[19] we arrive at

(p0 + |~p|)F+(p) = δ(p0 − |~p|)g(~p) (2.74)
[19]An application of the diffeomorphism p0 7→ p0 − |~p| for fixed |~p| relates the two problems.

24



Lorentz-invariant solutions of the d’Alembert equation

or equivalently

F+(p) = 1
2|~p|δ(p0 − |~p|)g(~p) (2.75)

= θ(p0)δ(p2)g(~p). (2.76)

In the first line we have used that p0 + |~p| is invertible because of the support properties
of F+ and that we can apply p0 − |~p| = 0 to the factors in front of the delta distribution.
As V̄ ± and also their complements are Lorentz-invariant, the restrictions of F to the
latter must also be Lorentz-invariant. As θ(p0)δ(p2) is Lorentz-invariant, also g(~p) must
be Lorentz-invariant. By Corollary 2.24 this implies g(~p) ≡ const.. Applying the same
procedure to F− and gluing together F± we finally obtain

F (p) = aθ(p0)δ(p2) + bθ(−p0)δ(p2). (2.77)

�

Lemma 2.27. An arbitrary Lorentz-invariant tempered distribution F (p) on M subject to
the equation p2F (p) = 0 has the form

F (p) = aθ(p0)δ(p2) + bθ(−p0)δ(p2) + cδ(p) (2.78)

for some constants a, b, c where we have defined[20]

(θ(±p0)δ(p2)) (u) ≡
(

1
2p0

δ(p0 ∓ |~p|)
)

(u) ≡
∫
±u(±|~p|, ~p) d~p2|~p| . (2.79)

Proof. The restriction of F to the open subset {p : p 6= 0} of M fulfils the conditions of
Lemma 2.26. Hence for p 6= 0 we can write

F (p) = aθ(p0)δ(p2) + bθ(−p0)δ(p2) (2.80)

for some constants a, b. As this expression becomes ambiguous at p = 0 we have to
fix a proper definition for the extension of this expression to the whole of M. This is
implemented by defining θ(±p0)δ(p2) as in eq. (2.79) above. This extension clearly solves
the division problem.
Let us now take two solutions to the division problem with the same restriction (2.80)
to M×. Then their difference is concentrated at p = 0 and necessarily solves the division
problem, too. That it is concentrated at p = 0 implies that the difference has the form
P (�)δ(p) for a polynomial P . That it is a solution of the division problem then implies
that the degree of P is zero. Hence, we can only add terms proportional to δ(p) to the
above defined extension of (2.80). �

Let us define D̂(p) ≡ ε(p0)δ(p2) and let D̂(±)(p) ≡ ±θ(±p0)δ(p2) denote its positive and
negative energy (positive and negative p0) parts where we understand θ(p0)δ(p2) defined
as in eq. (2.79). These distributions D = D(+) + D(−) and D(±) are of great importance
to quantum field theory and the former is named Pauli-Jordan commutator function.[21]

What we finally obtain is
[20]See also Remark 2.23 for the general case of a p2-dependent generalized function.
[21]Note that there are many different conventions for the normalization of the commutator function.
For instance [BLOT90] uses D̂(p) = −2πiε(p0)δ(p2).
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Corollary 2.28. An arbitrary Lorentz-invariant tempered distribution F (x) on M subject
to the equation �F = 0 is of the form

F (x) = aD(+)(x) + bD(−)(x) + c (2.81)

for some constants a, b, c.

Proof. The Fourier transformed problem is solved by Lemma 2.27. �

In this thesis we will not only encounter the homogeneous equation �F = 0, but also:

Theorem 2.29. An arbitrary Lorentz-invariant tempered distribution F (x) on M subject
to the equation �F = T for a fixed Lorentz-invariant tempered distribution T (x) on M is
of the form

F = Fhom + Fpart, (2.82)

where Fhom = aD(+) + bD(−) + c is an arbitrary solution to the homogeneous KG equation
and Fpart is a fixed particular solution to the inhomogeneous KG equation (�Fpart = T ).

Proof. A solution to �F = T always exists.[22] In addition, let there be two solutions
to the inhomogeneous equation, then their difference has to satisfy the homogeneous
equation. �

2.5 Unitary Hilbert space representations and their
generators

In this section we briefly discuss unitary representations on (possibly infinite-dimensional)
Hilbert spaces. In particular we want to carry over a part of Lie group and Lie algebra
theory to the representing Hilbert space. In order to do that we give a short account on
the basic results of the spectral theory of bounded and unbounded self-adjoint operators,
like the spectral theorem and Stone’s theorem, which will give us the opportunity to
define the representations of the generators of (a connected component of ) a Lie group
as unbounded self-adjoint operators on the Hilbert space.

Definition 2.30. A strongly continuous unitary (possibly infinite-dimensional) represen-
tation of a Lie group is given by a 3-tuple (G,H, U) consisting of a Lie group G, a Hilbert
space H and a continuous group homomorphism U : G → U(H) where U(H) denotes the
group of unitary operators on H.

Remark 2.31. The reader may think about using other topologies than the strong operator
topology for U(H). It turns out that the norm topology is usually to fine for applications
in physics. The other two topologies on U(H), weak and strong, respectively, are inherited
from the space L(H) of linear operators on H. But, indeed, on U(H) these topologies are

[22]A solution to p2F̃ (p) = T̃ (p) on p2S(M) is given by defining F̃ (p2u) ≡ T̃ (u) ∀u ∈ S(M) and an
extension to S(M) exists by the Hahn-Banach theorem. Crucial is here that p2u 7→ u is continuous which
is not trivial. For the details the reader is referred to the original work by Hörmander[Hö58].
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equivalent, as for (Un)n ⊂ U(H) with Un → U weakly[23] as n → ∞ and for each φ ∈ H
we have

||Unφ− Uφ||2 = 〈Unφ, Unφ〉+ 〈Uφ, Uφ〉 − 〈Unφ, Uφ〉 − 〈Uφ, Unφ〉
= 2||φ||2 − 〈Unφ, Uφ〉 − 〈Uφ, Unφ〉
→ 0.

In the second line we used the unitarity of Un and U . In the third line we use the weak
convergence of (Un)n. Hence both notions of convergence are equivalent on U(H). It is
conventional to refer to this continuity as strong continuity in order to distinguish it from
norm-continuity.
The unitary representations of the Poincaré group P↑+ are of big importance for quantum
field theory. We have already mentioned Wigner’s classification theorem. What will be
important here is the relation between infinitesimal generators of the Lie group and their
representations as unbounded operators. Let us take for simplicity (and by choice of rel-
evance) the translation subgroup T ∼= R

4 of the Poincaré group. By the theory of Lie
groups and Lie algebras, it is well known that there are generators of T in the Lie algebra
associated to T , i.e., there are Lie algebra elements pµ such that for each T ∈ T we obtain
the representation T = eiaµp

µ for a vector a ∈ M where e(·) denotes the exponential map
between the translation groups Lie algebra and the group itself.

This relation is very practical and helpful. Especially, we would like to extend this relation
to hold also when mapped to the Hilbert space by the representation. The reason for this
is that this gives a natural way to extrapolate the concept of energy and momentum as
infinitesimal generators of time and space translation to the Hilbert space theory. On the
Hilbert space this will lead us to the generators being possibly unbounded operators.

2.5.1 Spectral theory of self-adjoint operators
In this part we shall briefly state two classical results on the spectral theory of operators,
namely the spectral theorem and Stone’s theorem. For a more thorough account on this
topic and the proofs of the results the reader is referred to [Sch12, Chapter 5 and 6] and
[RS80, Chapter VIII, Sections 3 and 4]. The following content is based on these two
references.

In this section let H be a fixed separable Hilbert space.

The spectral theorem is an enormously powerful tool in the analysis of bounded and un-
bounded operators. Among other things it provides the possibility to define functions of
self-adjoint operators[24]. This is usually referred to as the functional calculus of (self-
adjoint) operators.

In order to state the spectral theorem, we will need the concepts of spectral measures and
integrals. As this is standard literature and there is good literature available as stated

[23]That is 〈φ,Unψ〉 → 〈φ,Uψ〉 for each φ, ψ ∈ H.
[24]It is even possible to extend the functional calculus to normal operators
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above, these concepts will only be briefly sketched.

For a σ-algebra A of a set Ω a spectral measure is a countably additive mapping E from
A to a space of orthogonal projections on H such that E(Ω) is the identity projection.
A spectral measure gives rise to an ordinary measure for each x ∈ H via the mapping
x 7→ 〈x,E(·)x〉. This measure will be denoted by Ex,x.

The spectral integral may then be constructed in a Lebesgue-type procedure as a map-
ping from the space of A-measurable functions to operators on H. This procedure runs
in three steps. On simple functions f = ∑N

n=1 an1Mn for N ∈ N, constants an and mea-
surable subsets Mn of Ω, and where 1M denotes the characteristic function of a set M ,
the integration with respect to a spectral measure E on Ω amounts to a mapping to
f 7→ I(f) = ∑

n anE(Mn). In a second step we can extend this definition to bounded
measurable functions as the simple functions approximate them (pointwise and uniformly)
and the definition of the integral is continuous (with respect to the strong topology in
L(H)). Lastly, we may define the domain

D(I(f)) ≡ {x ∈ H : f ∈ L2(Ω, Ex,x)}. (2.83)
On this domain we can extend the definition further by noting that for each f there is a
sequence of measurable sets Mn such that f�Mn

≡ f 1Mn is bounded for each n and that
I(f�Mn

) is a strongly converging sequence. The limiting operator of the sequence will be
the definition of the spectral integral. We will formally write

I(f) =
∫
f(λ)dE(λ). (2.84)

Proposition 2.32. For measurable functions f, g and α, β ∈ C, we have the following
properties

(a) I(αf + βg) = αI(f) + βI(g)

(b) I(f̄) = I(f)†

(c) I(fg) = I(f)I(g)

(d) D(I(f)I(g)) = D(I(fg)) ∩D(I(g)).

(e) Restricting I to only bounded measurable functions, I actually becomes a norm con-
tinuous *-algebra homomorphism, i.e., in (a) and (c) there are no closures to be
taken.

(f) For any polynomial p ∈ C[t] we have I(p(f)) = p(I(f)).

The main structural result is then the spectral theorem. It is stating that actually any
self-adjoint operator is given by the spectral integral with respect to a uniquely defined
spectral measure:

Theorem 2.33. For each self-adjoint operator A on H there is a unique spectral measure
EA on the Borel σ-algebra BR of R such that

A =
∫
λ dEA(λ). (2.85)
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The combination of these results justifies the definition of a ’function’ of a self-adjoint
operator f(A) ≡

∫
f(λ) dEA(λ). As a spectral integral this ’function’ behaves according

to the calculus defined in Proposition 2.32. This is referred to as the functional calculus
of self-adjoint operators.

2.5.2 Strong commutativity and functional calculus
In the case of the translation group and the energy-momentum operator it will be neces-
sary to generalize this result to finitely many parameters. We will see that the components
of the energy-momentum operator will necessarily be strongly commuting:

Definition 2.34. Two (possibly unbounded) self-adjoint operators are strongly commut-
ing if, and only if, their associated spectral measures commute or, equivalently, if their
associated unitary groups (in the sense of Stone’s theorem, see below in Subsection 2.5.3)
commute.

Remark 2.35. The forward implication follows immediately from the functional calculus
of (bounded) functions of self-adjoint operators. The backward implication needs some
work and can be found e.g. in [RS80, Theorem VIII.13].
The spectral theorem can then be generalized to the following form:

Theorem 2.36. Let A ≡ (A1, ..., An) be a finite tuple of strongly commuting self-adjoint
operators Aj on H. Then there is a unique spectral measure EA on the Borel σ-algebra
BRn such that

Aj =
∫
Rn
λj dEA(λ1, ..., λn), j = 1, ..., n. (2.86)

sketched. For each j = 1, ..., n there exists a unique spectral measure Ej such that
Aj =

∫
R
λ dEj(λ).

Existence of EA: For two spectral measures E,F on BR the spectral measure E ∧ F on
BR2 is defined by

E ∧ F (M ×N) = E(M)E(N), M,N ⊂ BR (2.87)

and its algebraic (according to the σ-algebra structure) extension to BR2 .
Defining E = ∧n

j=1Ej then gives∫
Rn
λjdE(λ1, ..., λn) = E1(R)...Ej−1(R)

∫
R

λjdEj(λj)Ej+1(R)...En(R) =
∫
R

λjdEj(λj) = Aj.

(2.88)
Uniqueness of EA: Let there be a spectral measure E on BRn such that

∫
λjdE(λ) = Aj

for each j = 1, ..., n, where we shortened λ ≡ (λ1, ..., λn). Then we can define for each
M ∈ BR that Ej(M) ≡ E(Rj−1 ×M × Rn−j) and observe that

∫
R
λ dEj(λ) = Aj as well

as E = ∧n
j=1Ej. The only non-uniqueness could come from the order of the Ej’s in the

wedge-product. But this is inessential due to the strong commutativity of the Aj’s. We
will not go into the proof of this inessentiality. �
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2.5.3 Unitary groups and Stone’s theorem
A one-parameter unitary group is a strongly continuous group homomorphism from R

to U(H), where U(H) denotes the space of unitary operators on H. It should be noted
again that for unitary operators the weak and strong topology are equivalent, but strong
continuity is written to distinguish it from norm continuity (see Remark 2.31).

The main result is then Stone’s theorem which establishes that for any one-parameter
unitary group there is a self-adjoint operator generating the group.

Theorem 2.37. Let U be a map R → U(H). Then the following two statements are
equivalent:

(a) U is a continuous group homomorphism

(b) There exists a possibly unbounded self-adjoint operator A on H such that U(t) = eitA

for each t ∈ R.

Proof. For a proof the reader is referred to Appendix D. �

In the case of the translation group and the energy-momentum operator it will be nec-
essary to generalize this statement to finitely many parameters and accordingly finitely
many generators. These generators will be strongly commuting. The generalized version
of Stone’s Theorem reads

Theorem 2.38. Let U be a map Rn → U(H). Then the following two statements are
equivalent:

(a) U is a continuous group homomorphism.

(b) There exist self-adjoint operators Aj, which generate the one-parameter subgroups
U(0, ..., 0, tj, 0, ..., 0) and which mutually strongly commute.

Remark 2.39. With the equivalence of the two notions of strong commutativity of self-
adjoint operators already established, this theorem is an almost direct consequence of the
one-parameter case of Stone’s theorem.

2.5.4 The energy-momentum operator
Suppose a strongly continuous unitary representation T of the translation subgroup (iden-
tified with M) on a Hilbert space H. By Stone’s theorem (see section above) there exist
four strongly commuting self-adjoint generators Pµ that generate this subgroup. In other
words, for each a ∈ M we have

T (a) = eia
µPµ . (2.89)

In physical applications the generators Pµ together are referred to as energy-momentum
operator. The joint spectrum of the components Pµ, or in other words the spectrum of
the energy-momentum operator P , is defined by the support of the associated spectral
measure. We will denote it by σ(P ) ≡ σ(P0, P1, P2, P3). The spectrum condition states
that the spectrum of the energy momentum operator is contained in the closed upper
light cone, i.e.,
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σ(P ) ⊂ V̄ +. (2.90)

This condition amounts to a non-negative energy spectrum and a causal momentum
spectrum (momenta will not be spacelike).

2.6 Wightman and Strocchi-Wightman quantum field
theory

The Wightman framework of quantum field theory provides one of the standard axiomatic
approaches to quantum field theory. The advantage of this framework is that its axioms
provide a close connection to the perturbative approach and to the physical properties of
QFT. Unfortunately, this framework does not seem suitable for describing gauge theories,
in particular formulations using local and/or covariant gauges, as was already emphasized
in the introduction. For these gauges it seems to be inevitable (and later we will proof that
for QED in covariant Gupta-Bleuler gauge it actually is) to have recourse to indefinite
metric Hilbert spaces, also called Krein spaces. The extension of the Wightman framework
to Krein spaces will be referred to as Strocchi-Wightman framework.

2.6.1 Quantum fields and Wightman QFT
The foundation underlying quantum field theory is relativistic quantum theory. Rela-
tivistic quantum theory can be thought of as a combination of the principles of special
relativity and quantum mechanics. It should generally fit into this picture:

Definition 2.40. A relativistic quantum theory (rel. QT) is given by a tuple (H, U)
consisting of a separable Hilbert space H and a continuous unitary representation of the
Poincaré group U acting on H by

ψ 7→ U(g)ψ, ψ ∈ H (2.91)

for each g ∈ P↑+. The relativistic quantum theory satisfies the spectrum condition if, and
only if,

σ(P ) ⊂ V̄ + (2.92)

where P is the energy-momentum operator corresponding to U .
A vector Ω ∈ H which is invariant under U , i.e., U(g)Ω = Ω ∀g ∈ P↑+[25], and normalized
to 1 is called vacuum vector. The vacuum vector is called unique, if and only if, the
invariance and normalization) condition fix the vector up to a phase factor.

Remark 2.41. As was shown in Proposition 2.20 the single- and double-valued represen-
tations of the (proper) Lorentz group stand in one-to-one correspondence to the (single-
valued) representations of its universal covering group, SL(2,C). As the Poincaré group
is the semidirect product of the Lorentz group and the four-dimensional translation group
(which is connected and simply-connected), the above statement applies to the Poincaré

[25]It should be noted that it is enough to demand that Ω is invariant under the translation subgroup.
This already implies the invariance under the full Poincaré group. See e.g. [RS75, p. 63, below Property
3].
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group, too. Its universal covering is the Poincaré spinor group, given by the semidirect
product of SL(2,C) and the translation group, and denoted by P̃↑+. Thus we will use the
Poincaré and the Poincaré spinor group interchangeably as it suits the presentation best.
A possible choice for the fundamental objects of a quantum field theory (QFT) are the
quantum fields. Understanding quantum field theory as a relativistic theory we will only
talk about relativistic quantum fields here and omit the term relativistic after the following
definition:

Definition 2.42. A (relativistic) quantum field embedded in a relativistic quantum theory
(H, U) is a tuple (D,Φ) consisting of a dense linear subspace D ⊂ H and a finite collection
of operator-valued tempered[26] distributions {Φl}l=1,...,m on M such that D is a common
dense and invariant domain to all the operators Φl(u),Φl(u)†, and U(g) where l = 1, ...,m,
u ∈ S, and g ∈ P̃↑+ and Φl(u)† denotes the adjoint operator of Φl(u). The Φl are referred
to as field components of the field Φ.

Note that the properties of D are of quite technical nature and are there to guarantee
that the polynomials of fields, its adjoints, and of unitary transformations can be formed
without domain issues. Moreover, it should be noted that by the embedding into a
relativistic theory, quantum fields (or rather their smeared components Φl(u)) transform
like

Φl(u) 7→ U(g)Φl(u)U(g)−1, g ∈ P̃↑+ (2.93)
That U(g)Φl(u)U(g)−1 is again a densely defined operator on D is implied by the invari-
ance of D under U(g) for each g ∈ P̃↑+. Very important additional properties of quantum
fields are:

Definition 2.43. A quantum field (D,Φ) (embedded in a rel. QT (H, U)) is referred to
be

• hermitian, if for each u ∈ S the smeared field components Φl(u) and Φl(ū)†�D
coincide.

• local, if for each u, u′ ∈ S such that the supports of u and u′ are spacelike separated
the commutator or anticommutator of the smeared field components vanishes on D,
i.e.,

[Φl(u),Φl′(u′)]∓ψ ≡ (Φl(u)Φl′(u′)± Φl′(u′)Φl(u))ψ = 0, l, l′ = 1, ...,m (2.94)

for each ψ ∈ D.

• (Poincaré-)covariant, if (on D)

U(a, Λ̃)Φ(u)U(a, Λ̃)−1 = V (Λ̃−1) · Φ(ua,Λ(Λ˜)), (a, Λ̃) ∈ P̃↑+, u ∈ S (2.95)

where ua,Λ(x) = u(Λ−1(x − a)) and V (Λ̃) is a complex or real finite dimensional
matrix representation SL(2,C). Note that the number of field components of Φ
coincides with the dimension of V . The field is referred to be a bosonic/fermionic
field, if and only if, V (−1) = ±1. In this case the SL(2,C)-representation gives rise
to a single/double-valued representation of the proper Lorentz group.

[26]There are other choices available than Schwartz space as space of test functions. See e.g. the original
paper [WG64].
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The definitions above specify properties a single quantum field may have. For a (quantum
field) theory of a physical system there is usually a collection of quantum fields. The
Wightman framework is one of the standard frameworks to incorporate such a collection
of quantum fields in a consistent and complete theory (see below the definition for further
explanation).

Definition 2.44. A Wightman quantum field theory is a 5-tuple (H, U,Ω, D, {Φ(κ)}κ∈I)
consisting of a relativistic quantum theory (H, U) which is subject to the spectrum con-
dition and for which there is a unique vacuum state Ω ∈ H together with a collection of
local and covariant quantum fields {(D,Φ(κ))}κ∈I embedded in (H, U). Moreover, it is
required that Ω ∈ D, that the collection of quantum fields contains also their adjoints[27]

and that

• locality: Any two fields either commute or anticommute under spacelike separation.
This means that for each κ, κ′ ∈ I and for each u, u′ ∈ S(M) such that the supports
of u and u′ are spacelike separated either the commutator or the anticommutator
of the smeared field components Φ(κ)

l (u) and Φ(κ′)
l′ (u′) vanishes on D. If those are

commuting or anticommuting depends only on κ and κ′.

• cyclicity: Ω is cyclic with respect to {Φ(κ)}κ∈I , i.e., the set

D0 ≡ {Φ(κ1)(u1)...Φ(κm)(um)Ω : m ∈ N, u1, ..., um ∈ S, κ1, ..., κm ∈ I} ⊂ D ⊂ H
(2.96)

is dense in H

are fulfilled.

Remark 2.45. Note that the requirement of locality for κ = κ′ actually requires each of
the quantum fields to be local on its own. Thus it is duplicate information that the field
collection consists of local fields only. It is nonetheless written down for ease of reading.
In the following we will usually omit the term quantum and just use the term field, as
we will almost exclusively deal with quantum (in contrast to classical) fields. A field that
is part of a Wightman QFT is termed Wightman field. For a Wightman field associated
to a given Wightman QFT (D, ...) it is actually sufficient to write Φ keeping the domain
implicit, as it will always be D. Also for other fields we will often keep the domain
implicit. The most important Lorentz-representations V are the scalar, vector- and 2-
tensor-representation corresponding to D(0,0),D( 1

2 ,
1
2 ) and D(1,1) as described in Subsection

2.3.2.

Note that the definitions for quantum fields and the formulation of Wightman QFT were
very brief and did not leave much space for explanations. For a good introduction to the
Wightman framework see [SW80]. For a thorough discussion of motivation for the Wight-
man framework and possible alternative choices in the definition the reader is referred to
the original paper [WG64]. Other accounts on the Wightman framework can be found
in the books [RS75, Section IX.8] and [BLOT90, Chapter 8] and the lecture notes [Dyb18].

[27]In this regard we define Φ(κ̄)
l (u) ≡ Φ(κ)

l (ū)†�D and suppose that κ̄ ∈ I for each κ ∈ I. Note that this
requires that D is also an invariant domain for the adjoint operator. But this assumption was included
in the definition of a quantum field.
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2.6.2 Wightman distributions
As is well known, from these (Wightman) quantum fields we can form the so-called Wight-
man distributions. Suppose a fixed given Wightman QFT (D,Φ(κ),H, U,Ω)[28]. We can
define the Wightman distributions as follows

Definition 2.46. To each fixed m ∈ N and appropriate indices κ1, ...κm, l1, ..., lm we can
associate a multilinear and separately continuous map

w
(κ1...κm)
l1...lm : S(M)× ...× S(M)→ C (u1, ..., um) 7→ 〈Ω,Φ(κ1)

l1 (u1)...Φ(κm)
lm

(um)Ω〉 . (2.97)

which we will call Wightman distribution.

These maps are called distributions as for each argument separately they form tempered
distributions. One may define

w
(κ1...κm)
l1...lm (u1 ⊗ ...⊗ um) ≡ w

(κ1...κm)
l1...lm (u1, ..., um) (2.98)

and extend this definition by linearity and continuity to all of S(Mm).[29] By the nuclear
theorem[30] this extension to S(Mm) is unique. We will call both versions of the map
w

(κ1...κm)
l1...lm a Wightman distribution or m-point(-correlation) function. In this way we have

the freedom to choose the version which makes the notation easiest, but do not have any
problems arising because of the uniqueness of the extension.

The properties of the Wightman QFT directly imply some similar properties for the
Wightman distributions.[31] For instance, we can make use of the translation invariance
of the vacuum state to gain a simplified manifestly translation-invariant version of the
Wightman distributions:

Theorem 2.47. To each Wightman distribution w ≡ w
(κ1...κm)
l1...lm there is a tempered distri-

bution W on Mm−1 such that in generalized function notation, introducing ξj = xj −xj+1,
j = 1, ..., n− 1,

w(x1, ..., xm) = W (ξ1, ..., ξm−1). (2.99)

Proof. By translation invariance of the fields and the invariance of the vacuum vector the
distribution w may depend only on a set of m − 1 translation-invariant variables. The
relative coordinates ξj, j = 1, ...,m− 1 are a natural choice. For the details the reader is
referred to [SW80, Chapter 2-1, pp. 38]. �

It is well known that a certain set of properties may serve as an equivalent formulation
of a Wightman QFT with the Wightman distributions as fundamental objects instead of
quantum fields.[32] As only the low-order correlation functions (basically only two-point-
functions) are of great importance to this thesis, we will omit this general formulation
here and give situation-specific explanations when they occur.

[28]Note that so far in 1+3 dimensions there are only constructions of free, i.e., non-interacting, Wight-
man QFTs available

[29]Note that the space S(M)⊗ ...⊗ S(M (m factors) is a dense subspace of S(Mm)
[30]See e.g. Theorem V.12 in [RS80, Appendix to V.3].
[31]See e.g. [SW80, Chapter 3-3].
[32]This is often referred as the Wightman reconstruction theorem, for the original work see [Wig56]
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2.6.3 Strocchi-Wightman QFT
The framework of Wightman QFT is restricted to the description of observable fields for
which there are strong physical constraints in order to ensure the principles of special rel-
ativity and quantum theory. In many physical models, however, it proves to be beneficial
using fundamental variables that are not observable. For instance in classical electrody-
namics the introduction of the gauge field Aµ (vector potential) provides a description of
electrodynamics in a simple form although Aµ itself is not observable. In general these
fundamental variables are much less restricted by physical constraints. The vector poten-
tial for instance may be non-local, non-covariant and/or does not need to be an operator
on the physical state space. In this view it seems natural to introduce a broader, so-called
virtual, state space, in which these fundamental non-observable fields act and on which
there are less-restricted conditions imposed. A standard choice for local gauge theories[33]

is the Strocchi-Wightman framework to quantum field theories. This framework allows for
a metric which is indefinite on the virtual state space. As is the aim to show in this thesis
this actually is necessary in order to describe QED in covariant Gupta-Bleuler gauge. Let
us start by introducing the notion of an indefinite metric Hilbert space, also referred to
as Krein space.

Let us start with some very basic nomenclature. Let V be a linear space equipped with
a hermitian sesquilinear form, ω on V . The space is referred to as a space with indefinite
metric if, and only if, the scalar square ω(u, u) can take all real values when ranging
through u ∈ V . In the case that the scalar square can only take non-negative values in R
the space is referred to as a space with non-negative metric. If, in addition, ω(u, u) = 0
implies u = 0 then the space is referred to as a space with positive definite metric. In
the case that ω is non-degenerate, we refer to ω as a scalar product. Note that a scalar
product space with a non-negative metric is automatically a space with positive definite
metric.[34] In the positive definite case ω is in the literature usually also referred to as an
inner product (turning V into an inner product or pre-Hilbert space). In this regard in
the indefinite case ω is sometimes also referred to as an indefinite inner product.

Definition 2.48. A Krein space is a triple (H, (·, ·), 〈·, ·〉) consisting of a Hilbert space
(H, (·, ·)) and a scalar product 〈·, ·〉 on H which is continuous with respect to the Hilbert
topology defined by (·, ·).

Remark 2.49. The continuity of 〈·, ·〉 implies the existence of a bounded self-adjoint[35]

operator η with bounded inverse such that 〈φ, ψ〉 = (φ, ηψ) for each φ, ψ ∈ H. By a
redefinition of the Hilbert product one may achieve η2 = 1 such that the eigenvalues of η
become ±1. The case that all eigenvalues of η are +1 or that all are −1 reduces to the
case of an ordinary Hilbert space.
Remark 2.50. The Hilbert product plays an auxiliary role and turns H into a topological
space, whereas the indefinite scalar product 〈·, ·〉 is the physically relevant one. Thus we

[33]These are theories with a gauge-dependent fundamental variable/field which is nevertheless required
to satisfy the locality-axiom

[34]Let ω be non-degenerate and its scalar square be non-negative. Then suppose ω(u, u) = 0 for some
u ∈ V . Then we have for each λ ∈ C and each v ∈ V that 0 ≤ ω(λu + v, λu + v) = λ2ω(u, u) +
2Reλω(u, v) + ω(v, v) = 2Reλω(u, v) + ω(v, v). Taking λ → ±∞ and λ → ±i∞ shows that ω(u, v) = 0
for all v ∈ V . Thus if ω is non-degenerate one necessarily gets u = 0.

[35]with respect to the Hilbert product (·, ·).
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will also refer to the latter as the physical (scalar) product. Important to note is that the
continuity of the indefinite scalar product with respect to the Hilbert product uniquely
fixes the Hilbert topology. In other words: Suppose another Hilbert product with respect
to which the indefinite scalar product is continuous. Then the induced norm of the new
Hilbert product will be equivalent to the induce norm of the old one.[36] As the Hilbert
product is auxiliary, it will be omitted in the notation. Thus a Hilbert space (as before)
will be denoted by just the space H and a Krein space will be denoted as a tuple (H, 〈·, ·〉).
When passing from Hilbert spaces to Krein spaces there will be some concepts within
the Wightman framework that have to be generalized. For instance the concepts of self-
adjointness and unitarity. But as these generalizations are straight-forward we will omit
the definitions and refer the reader to [BLOT90, Chapter 10.1, in particular pp. 419].

In order to obtain a probability interpretation for a generalized Wightman framework
on Krein spaces it is important to identify a physical Hilbert space constructed from
the Krein space on which most parts of ordinary Wightman theory are recovered. This
identification will follow a standard procedure for the construction of Hilbert spaces.
For a Krein space (H, 〈·, ·〉) define the physical subspace H′ ≡ {ψ ∈ H| 〈ψ, ψ〉 ≥ 0},
H′′ ≡ {ψ ∈ H| 〈ψ, ψ〉 = 0} and the physical Hilbert space Hph ≡ H′/H′′

cpl as the com-
pletion of the pre-Hilbert space H′/H′′.[37] The elements of Hph are equivalence classes
[ψ] ≡ ψ +H′′, ψ ∈ H′.

The definition of a relativistic quantum theory (see Definition 2.40) may now be gener-
alized by replacing the Hilbert space by a Krein space and the unitary representation
by a 〈·, ·〉-unitary representation that leaves the physical subspace H′ invariant. By the
normalization condition a vacuum vector is automatically an element of H′ with non-
zero norm. Thus Ω will be a non-zero element of the physical Hilbert space. Note that
the 〈·, ·〉-unitary representation U on H induces a unitary representation Uph on Hph by
specifying

Uph(g)[ψ] ≡ [U(g)ψ], ψ ∈ H′ (2.100)

for each g ∈ P̃↑+. That the definition of Uph is not depending on the choice of represen-
tative ψ of [ψ] follows from the invariance of H′′ under 〈·, ·〉-unitary transformations (as
they leave the 〈·, ·〉-norm invariant). Thus for each indefinite metric rel. QT (H, 〈·, ·〉 , U)
there is a naturally induced (physical) relativistic quantum theory (Hph, Uph) and if there
are vacuum vectors in the indefinite metric rel. QT then they are also vacuum vectors of
the physical rel. QT. An indefinite metric rel. QT is said to fulfil the spectrum condition
if, and only if, (Hph, Uph) does. In the same manner, a vacuum vector of an indefinite
metric rel. QT is said to be unique if, and only if, it is unique (up to a phase factor) in
the induced physical rel. QT.

For the definition of an indefinite metric quantum field the relativistic quantum theory
(H, U) is replaced by an indefinite metric relativistic quantum theory (H, 〈·, ·〉 , U) (as

[36]See also [BLOT90, Proposition 10.1].
[37]Note here that on the pre-Hilbert space H′/H′′ there is the norm of the underlying auxiliary Hilbert
space structure and there is the norm induced by the physical product. As both are equivalent no
ambiguity in the term completion arises. For reference there is an exercise problem [AI89, §2, Exercise 2]
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described above) and the domain D will be again a dense subspace of H equipped with
an additional hermitian form 〈·, ·〉 (turning it to an indefinite metric space).[38]

The according generalization of the Wightman framework for QFT is then

Definition 2.51.
A Strocchi-Wightman quantum field theory is a 6-tuple (H, 〈·, ·〉 , U,Ω, D, {Φ(κ)}κ∈I) con-
sisting of an indefinite metric relativistic quantum theory (H, 〈·, ·〉 , U) which is subject to
the spectrum condition and for which there is a unique vacuum state Ω ∈ H′ together with
a finite collection of local and covariant indefinite metric quantum fields {(D,Φ(κ))}κ∈I
embedded in (H, 〈·, ·〉 , U). Moreover, it is required that Ω ∈ D, that the collection of
quantum fields contains also their adjoints and that

• locality: Any two fields either commute or anticommute under spacelike separation.
This means that for each κ, κ′ ∈ I and for each u, u′ ∈ S(M) such that the supports
of u and u′ are spacelike separated either the commutator or the anticommutator
of the smeared field components Φ(κ)

l (u) and Φ(κ′)
l′ (u′) vanishes on D. If those are

commuting or anticommuting depends only on κ and κ′.

• cyclicity: Ω is cyclic with respect to {Φ(κ)}κ∈I , i.e., the set

D0 ≡ {Φ(κ1)(u1)...Φ(κm)(um)Ω : m ∈ N, u1, ..., um ∈ S, κ1, ..., κm ∈ I} ⊂ D ⊂ H
(2.101)

is dense in H

are fulfilled.

2.7 Quantum electrodynamics
We have already seen that there are non-perturbative frameworks for QFT, as the Wight-
man and the Strocchi-Wightman setting, which are consistent (the free case can be con-
structed) and are believed to be close to what should be non-perturbative QFT. On the
other hand still there is no construction of an interacting QFT in 1+3 dimensions. In this
regard also the fully non-perturbative construction of QED is an open question and is
believed to be especially hard for QED, as it suffers severe infrared problems. Therefore
in this section we will be content with shortly outline what quantum electrodynamics
should look like (what are the constraints?) and what framework we will pick for this
thesis.

2.7.1 Constraining results and properties
It should be noted that this section is characterized by rather rough and heuristic argu-
ments. The reason for this is that there is a tremendous amount of results and thoughts

[38]One might wonder about adding the technical assumption that (D ∩ H′)/H′′ is dense in Hph in
order to ensure that the indefinite metric quantum field is still densely defined on the physical Hilbert
space. But this assumption is not required as it is a consequence of the continuity of 〈·, ·〉: Let ψ ∈ H′
be an arbitrary representative of a state 0 6= [ψ] ∈ Hph. Then there exists a sequence (ψn)n ⊂ D such
that ψn → ψ in H for n → ∞. Then (by the continuity of 〈·, ·〉) 〈ψn, ψn〉 converges to 〈ψ,ψ〉 which
is positive by assumption. Thus there exists N ∈ N such that 〈ψn, ψn〉 > 0 ∀n ≥ N and the sequence
(ψn+N )n ⊂ D ∩H′ converges to ψ and induces a corresponding convergent sequence in Hph.
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that went into the formulation of quantum electrodynamics and stating all the precise
results would go much beyond the scope of this document. Also in some cases the argu-
ments have to be heuristic when physics enters the game.

The confining properties in the search for (non-perturbative) quantum electrodynamics
are the reproduction of classical electrodynamics in the classical regime of the theory
and the reproduction of perturbative quantum electrodynamics up to an experimentally
tested degree of precision. With only this at hand it seems natural to take them as a
starting point. As a very distinguishing property there are the (classical) observables
of electrodynamics, the Maxwell tensor Fµν and the electromagnetic current density Jµ
subject to the (classical) equations of motion

∂µF
µν = Jν and ∂[µFρσ] = 0. (2.102)

Note that the current J is automatically conserved, i.e., ∂µJµ = 0, by the equations of
motion and the antisymmetry of F . In the classical theory the Poincaré theorem infers
from the closedness of a covariant two-form F (i.e., dF = 0) the existence of a covariant
one-form A satisfying F = dA or in index notation Fµν = ∂[µAν]. This vector potential
A, although not observable[39], may serve as a fundamental field of the theory instead of
F . When doing so one achieves an equivalent formulation of electrodynamics in terms of
the field A:

�Aµ − ∂µ∂A = Jµ and Fµν(A) = ∂[µAν]. (2.103)

Eventually, it is our aim here to construct an interacting theory of electrons (and positrons)[40].
Thus the current density J has to take the specific form of the Dirac current:

Jµ = Ψ̄γµΨ (2.104)

with the classical Dirac-spinor field[41] Ψ representing the electron, the conjugate field
Ψ̄ ≡ Ψ∗γ0 representing the positron and the gamma matrices γµ which are used to imple-
ment the Dirac representation in the space of Lorentz-tensors.[42] The equations of motion
for Ψ and Ψ̄, respectively, are Dirac equations (with the same mass, but conjugated to
each other). The form of J may be motivated as the simplest term obeying the properties
of charge symmetry, (vector) covariance and that it is built from the spin-1/2-fields Ψ
and Ψ̄. It is also the only term leading to a renormalizable quantum field theory. The
ultimate motivation, though, is its great agreement with experiments.[43]

In the classical case the formulation of the theory in terms of only F,Ψ and Ψ̄ is possible,
but complicated and impractical. In the quantum case it becomes nearly intractable. The

[39]The vector potential A is subject to a gauge ambiguity. When transforming Aµ(x)→ Aµ(x)+∂µε(x)
by an arbitrary real-valued twice differentiable function ε on M, the corresponding physical field F does
not change.

[40]For the sake of simplicity we will not talk about any other electrically charged particle families like
myons etc.

[41]Mathematically speaking this is a (at least) twice differentiable function on Minkowski space taking
values that transform according to the SL(2,C)-representation D(1/2,0) ⊕D(0,1/2)

[42]See e.g. [BLOT90, Chapter 7 Appendix E] for a definition of gamma matrices and the Dirac repre-
sentation.

[43]See [Ste00, Chapter 3, in particular p. 24].
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reason for this is that there is only a very limited class of models for which we are more or
less certain of how to construct renormalizable quantum field theories from them[44] and
these complicated expressions do not fall into this class. Thus we are driven to implement
an interacting theory of electron with the help of an unobservable vector field A.

That this field is unobservable can easily be seen by the well-known fact that the (classical)
equations of motion leave space for an ambiguity of the vector potential. For an arbitrary
twice differentiable real-valued field G the transformations

Aµ 7→ A′µ = Aµ + ∂µG, Ψ 7→ eieGΨ, Ψ̄ 7→ e−ieGΨ̄ (2.105)

leave the equations of motion ∂µF
µν = Ψ̄γνΨ and the Dirac equations of Ψ and Ψ̄ in-

variant. It is still an open question, however, if this merely a situation specific to the
classical case or if these gauge symmetries (they occur in many other models) should have
a quantum analogue. As it is hard to gain control over these gauge transformations in
the quantum setting, the usual way to construct the quantum model is to pick a certain
representative of the gauge field from the orbit of gauge-equivalent fields via a certain
gauge condition. This was explained already in the introduction.

There are now two more constraining properties of free QED that will be important in the
aftermath: The structure of the commutator two-point-function of Fµν and the triviality
of a formulation of free QED including a fundamental either local or covariant vector field
A which is subject to Maxwell’s equations.

Concerning the first property, we know that F is an observable field and therefore has to
obey the principles of locality and covariance. For free QED let us define the commutator
expectation value of F as

Bµνρσ(ξ) ≡ 〈Ω, [Fµν(x), Fρσ(y)] Ω〉 (2.106)
where ξ = x − y.[45] Then by the fact that F is a free field, by Lorentz covariance, by
locality (B vanishes when applied to test functions with support in spacelike regions) and
by the spectral condition it necessarily has the form

Bµνρσ(ξ) = rdµνρσD(ξ) (2.107)
for some real constant r and the tensor dµνρσ = −ηνσ∂µ∂ρ+ηνρ∂µ∂σ−ηµρ∂ν∂σ+ηµσ∂ν∂ρ.[46]

This form for B may also be derived by explicit construction of the free theory correspond-
ing to F . The choice r = 0, that is a theory with a vanishing two-point-function for F
cannot give rise to a satisfactory formulation of QED.

Secondly, there is a severe triviality result. Namely:
[44]From the Lagrangian point of view we usually require the model to stem from a Lagrangian depending
polynomially on only the fields and their first derivatives, as well as being of an additive form separating
kinetic and interaction terms

[45]Note that for free fields one knows that the commutator of the fields is a c-number times the identity
operator.

[46]See [Str13, Theorem 8.1, Proof of case ii)]. It is also possible to take this result as a corollary of
Lemma 3.8 of this document together with the fact that Bµνρσ(ξ) = dµνρσ(K(ξ) −K(−ξ)) where K is
the Lorentz-invariant tempered distribution from the decomposition Wµν = ηµνK + ∂µ∂νG.
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Theorem 2.52.
A Strocchi-Wightman QFT (H, 〈·, ·〉 , U,Ω, D, {Fµν}) satisfying free Maxwell’s equations

∂µFµν = 0 and ∂[µFνρ] = 0 (2.108)

where there is an additional vector field A such that F = dA and A satisfies either

a) locality, i.e., [Aµ(x), Aν(y)] = 0 for (x− y)2 < 0

or

b) covariance, i.e., U(a,Λ)Aµ(u)U(a,Λ)−1 = Aµ(ua,Λ), u ∈ S,

gives rise to a trivial two-point function of F

〈Ω, Fµν(x)Fρσ(y)Ω〉 = 0. (2.109)

Proof. See [Str13, Chapter 7.8 Appendix: Quantization of the electromagnetic potential,
pp. 191] for a text-book proof. See [Str67] for the original result. �

Remark 2.53. The result may be actually formulated in a stronger version, i.e., with
weaker assumptions. The result goes through without uniqueness of the vacuum, without
spectral condition, with covariance of the two-point function 〈Ω, Aµ(x)Aν(y)Ω〉 instead of
covariance of Aµ and with locality of A with respect to F instead of full locality (i.e., Aµ
and Fρσ weakly commuting on D for spacelike separated arguments).
Hence this result poses a severe problem for the construction of QED. We have either the
option to dispose of locality and covariance for A or to modify the equations of motion
governing A. In case of the former option, e.g. Coulomb gauge, little is known concerning
methods of renormalization for non-local non-covariant fields. Thus here and in many
cases within the literature the second option will be chosen.[47]

2.7.2 QED, Lorentz gauge, covariant gauges, and Gupta-Bleuler-
formalism

In the former section it was stressed that if we are not willing to sacrifice the properties
of locality and covariance we inevitably have to modify the equations of motion governing
A. Also we have learnt that it is advisable to select a specific representative for A by
applying a gauge condition. We will focus here on covariant gauges. In order to ensure
the covariance of A the gauge condition must be Lorentz-covariant. Well known from the
classical case is the Lorentz condition ∂A = ∂µA

µ = 0. Thus let us rewrite (classical)
Maxwell’s equation as a system of equations

�Aµ − λ∂µ∂A = 0, (2.110)
∂A = 0 (2.111)

with some up to now arbitrary real parameter λ. Note that eq. (2.110) is the most
general covariant second-order differential equation which is linear in A i.e., describing a

[47]Note that in the Lagrangian setting of QFT this modification of the equations of motion corresponds
to the addition of a gauge-fixing term to the Lagrangian.
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free field. If we accept that higher-order differential equations lead to pathological QFTs
(when considered to be a fundamental QFT)[48] then eq. (2.110) is the most general co-
variant equation for a free vector field.

The strategy for the construction of the quantum theory is now to focus at first on eq.
(2.110), taking it to be the equation of motion governing A. For λ 6= 1 this deviates from
free Maxwell’s equation and does not run into the triviality result. But because of this
deviation A will also necessarily generate unphysical states from the vacuum. In other
words, we enlarge our space of states to a broader space of virtual states. The physical
interpretation will be recovered by a condition for physical states that implies the validity
of the Lorentz condition (2.111) between matrix elements of physical states. We cannot
just use ∂A = 0 as an operator equation on the whole of the state space as then we just
recover the ordinary free Maxwell equations and run into the triviality result. We can
also not use the condition ∂Aψ = 0 for all physical states ψ (and in particular for the
vacuum state) because then the two-point function of A runs then into the same triviality
result[49] Eventually, the Gupta-Bleuler choice ∂A(−)ψ = 0 for all physical states ψ works
out: It implies that 〈ψ, ∂Aφ〉 = 0 for physical states ψ, φ and it does not run into the
triviality result. This condition is also called Gupta-Bleuler(GB) subsidiary condition.
For a detailed and explicit construction of the GB formalism the reader is referred to
[Sch61, Chapter 9b, pp. 242].

The described picture is well adapted to the Strocchi-Wightman framework for QFT that
we have introduced before. The GB-subsidiary condition takes here the role of selecting
the space of non-negative states. That is really necessary to allow for an indefinite metric
on the space of virtual states will be seen later.

[48]We do not want to go into this discussion here. It should be noted, however, that higher than second-
order derivatives lead to a non-renormalizable QFT which fits into the framework of effective quantum
field theory but causes severe problems when we are up to constructing a fundamental quantum field
theory. The non-renormalizable interaction terms become infinitely strong at high energies and therefore
violate the unitarity of the theory.

[49]On way to see this is that the condition implies that ∂µWµν = 0 where Wµν denotes the two-point
function of A. As also �Wµν = 0 the triviality result will be applicable to W , as well. Another way
to see this is to note that one has to require ∂AΩ then for the vacuum vector to be physical. By the
Reeh-Schlieder property of the vacuum we get that ∂A = 0 and see that in fact we have not weakened
the physicality condition.
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Chapter 3

The Details of the proof

This section gives the precise reasoning of the proof based on the preliminaries that were
worked out in the section above. The reasoning follows the three basic steps as outlined
in Section 1.1. The section is therefore subdivided, accordingly. But to begin with, we
will give the setup we are using in this section in detail. Part of the motivation of this
setting was already given in the introduction and the outline of the proof (see Section 1).

Suppose an indefinite metric relativistic quantum theory (H, 〈·, ·〉 , U) (not necessarily
satisfying the spectrum condition) and having some (not necessarily unique) vacuum
vector Ω ∈ H. Then suppose that there is a hermitian covariant vector field (D,A)
embedded in the rel. QT where Ω ∈ D. Moreover, let us define Fµν ≡ Fµν(A) ≡ ∂[µAν]
on D. Then F is clearly a hermitian covariant 2-tensor field (D,F ) (embedded in the
rel. QT). We may define the (manifestly translation-invariant) two-point functions (in
generalized function notation and according to Theorem 2.47) by

W (x− y) ≡ 〈Ω, A(x)⊗A(y)Ω〉 and B(x− y) ≡ 〈Ω, F (x)⊗F (y)Ω〉 . (3.1)

In components one may write

Wµν(x− y) ≡ 〈Ω, Aµ(x)Aν(y)Ω〉 and Bµνρσ(x− y) ≡ 〈Ω, Fµν(x)Fρσ(y)Ω〉 . (3.2)

This should give the setup of the proof of this section which aims to be fairly general.
Note that the special cases of a Wightman QFT with a hermitian covariant vector field
(D,A) and the case of free QED are included in the setup. The result which we will prove
in this section is

Theorem 3.1. Suppose that A fulfils the equation of motion

�Aµ − λ∂µ∂A = 0, λ 6= 1 (3.3)

and that (H, 〈·, ·〉) is a space with positive semidefinite metric. Then the two-point function
of F is trivial, i.e., B = 0.

This theorem will basically be an implication of the following result

Lemma 3.2. Let W be an arbitrary (Lorentz-)tensor-valued tempered distribution on M

which is subject to the conditions
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(a) W transforms covariantly under the representation D(1/2,1/2) ⊗D(1/2,1/2) of SL(2,C)

(b) W satisfies the equation of motion

�Wµν + λ∂µ∂
ρWρν = 0, λ 6= 1. (3.4)

Then supposing that the components Ŵµµ are non-negative, namely

Ŵµµ(u) ≥ 0 ∀ non-negative u ∈ S. (3.5)

implies
Wµν(x) = c∂µ∂νG (3.6)

for some constant c ≥ 0 and a non-negative Lorentz-invariant tempered distribution G.

Let us proof that under the assumption of Lemma 3.2 also Theorem 3.1 holds:

Proof. At first we have to show that the definition W = 〈Ω, A(x)⊗ A(y)Ω〉 in the given
setup fulfils all the properties (a) and (b) and the non-negativity condition required for
W :
(a): By the invariance of Ω and the covariance of A (and also the invariance of D under
actions of U and A) we have that

W (x− y) = 〈Ω, U(a,Λ˜)A(x)U(a,Λ˜)−1 ⊗ U(a,Λ˜)A(y)U(a,Λ˜)−1Ω〉

≡ D(1/2,1/2)(Λ˜)⊗D(1/2,1/2)(Λ˜) ·W (x− y).

(b): In generalized function notation the proof is quite immediate, but there is the
risk of oversimplified notation. Thus let us remember that the generalized function
W (x− y) is defined as a tempered distribution on M extending the definition W (u ∗ ṽ) ≡
〈Ω, A(u)A(v)Ω〉 for u, v ∈ S and where ṽ(x) = v(−x). Then for some differential Dα for
some multi-index α we have

DαW (u ∗ ṽ) = W (Dα(u ∗ ṽ)) = W ((Dαu) ∗ ṽ) = (−1)|α|W (u ∗ (Dαṽ)). (3.7)

The second two expressions correspond to derivatives taken with respect to x and y in
generalized function notation. As in the equations of motion there are only second-order
differentials, the minus-sign in the last expression is absent and there is no difference if
the differentials are taken with respect to x, y or x− y.
Non-negativity: From the hypothesis of the theorem, namely that (H, 〈·, ·〉) is a space
with non-negative definite metric, and the hermiticity of A it follows that for each u ∈ S

Ŵµµ(|û|2) = Wµµ(˜̄u ∗ u)
= 〈Ω|Aµ(ū)Aµ(u)Ω〉
= ||Aµ(u)Ω||2

≥ 0.

The first equality is given by Parseval’s theorem. It is not difficult to show that Wµµ

being of positive type (what is written above) implies the non-negativity of Ŵµµ, i.e.,
∀ non-negative u ∈ S : Ŵµµ(u) ≥ 0.
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From Lemma 3.2 we then obtain that Wµν = ∂µ∂νK for some Lorentz-invariant tempered
distribution K.
For the two-point function of F we therefore obtain

Bµνρσ = −∂µ∂ρWνσ + ∂µ∂σWνρ − ∂ν∂σWµρ + ∂ν∂ρWµσ

= 0 (3.8)

by taking the differential operators acting on A out of the expectation value. In the
second line we used thatWµν = ∂µ∂νK and that differential operators acting on tempered
distributions commute.

�

Remark 3.3. Another way to express the triviality of the resulting theory is to note that
Bµνρσ = 0 implies that ||Fµν(u)Ω||2 = Bµνµν(˜̄u ∗ u) = 0 for all u ∈ S. On the induced
physical Hilbert space we will therefore obtain F ph

µν (·)Ωph = 0. Here F ph and Ωph are
the objects on the induced physical Hilbert space associated to F and Ω. The Reeh-
Schlieder property of the vacuum then implies F ph = 0 and the vacuum becomes the only
physical state of the theory.[1] The equation Fµν = ∂[µAν] = 0 is equivalent to A being
gradientlike/trivial, i.e., Aµ = ∂µφ for some hermitian scalar field φ.[2]

With this the proof of the theorem reduces to the proof of the lemma. The proof of the
lemma will be a structure analysis of the tensor-valued tempered distribution W which
follows the three steps that were outlined in the introduction.

3.1 Step 1 - Covariant structure of W
The first step will focus on Condition (a), thus suppose for this part thatW is an arbitrary
Lorentz-covariant distribution transforming under D(1/2,1/2) ⊗D(1/2,1/2). Note that we do
not suppose Condition (b) and non-negativity. The important facts from the preliminaries
are

Fact 1: For each non-negative half-integral numbers s, t, s′, t′ the representation
(s, t) ⊗ (s′, t′) of SL(2,C) decomposes into ⊕|s−s′|≤j≤s+s′⊕|t−t′|≤k≤t+t′(j, k), where
j, k run in integral steps. (see Proposition 2.17)

Fact 2: An arbitrary Lorentz-covariant generalized function F on M transforming
according to (j, k) is non-zero only for j = k = n/2 and in this case may be
represented as a tempered distribution F (p;ω, ω̄) = (ω̄p̃ω)nf(p), where f(p) is a
Lorentz-invariant generalized function defined within n arbitrary constants and p̃ =
pµ(σµ)µ is a hermitian 2x2 matrix. More precisely, if f0(p) is a fixed solution then
the general solution has the form f(p) = f0(p) + ∑n−1

l=0 al�
lδ(p) for some constants

al, l = 0, ..., n− 1. (see Proposition 2.25)

Combining Condition (a) and the two facts from the preliminaries we obtain
[1]Note that here a state is understood as a ray of vectors
[2]See also Corollary 1 of [Str67].
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Lemma 3.4. Suppose W is an arbitrary tensor-valued tempered distribution in M satis-
fying Condition (a). Then W may be represented as either

W (p;ω, ω̄) = k(p) + g(p)(ω̄p̃ω)2 (3.9)

or
Wµν(p) = ηµνK̂(p)− pµpνĜ(p), (3.10)

where k, g and K = 1
4(k − p2g), G = −g are Lorentz-invariant generalized functions.

The equation (3.9) solving for the k and g uniquely determines k and determines g up
to addition of a term (a� + b)δ(p) for some constants a, b. Accordingly, K̂ and Ĝ are
determined up to shifts (K̂, Ĝ) 7→ (K̂ + 2aδ, Ĝ+ (a�+ b)δ).

Remark 3.5. The minus sign in (3.10) and the -̂symbols forK and G are just conventional.
They are there to indicate the relation between momentum and coordinate space that we
will later use.

Proof. According to Condition (a) the two-point-function transforms as (1/2, 1/2) ⊗
(1/2, 1/2), which according to Fact 1 decomposes into (0, 0) ⊕ (1, 0) ⊕ (0, 1) ⊕ (1, 1).
When restricting to one of the summands, this defines an irreducible representation and
Fact 2 is applicable. From this we infer that the (1, 0) ⊕ (0, 1)-valued sector of the two-
point function vanishes and thus obtain eq. (3.9). Fact 2 also implies that k is uniquely
defined and g only up to addition of a term (a�+ b)δ(p) for some constants a and b.

The second representation of the two-point function is obtained by a change of value
space from a space of homogeneous polynomials in ω, ω̄[3] to the more common space of
symmetric Lorentz-two-tensors. Thus let us introduce the polynomials eµ(ω, ω̄) ≡ ω̄σµω,
where ω and ω̄ are understood as column- and row-vectors, respectively. By explicit cal-
culation one checks that e2(ω, ω̄) = ηµνeµ(ω, ω̄)eν(ω, ω̄) = ... = 0.[4]

With this we can write

W (p;ω, ω̄) = k(p) + g(p)(ω̄p̃ω)2

= k(p)ηµν
1
4η

µν + g(p)pµpνeµ(ω, ω̄)eν(ω, ω̄)

= k(p)ηµν
(1

4η
µν + eµ(ω, ω̄)eν(ω, ω̄)

)
+ g(p)pµpνeµ(ω, ω̄)eν(ω, ω̄)

=
[
ηµν(k(p)− g(p)p2) + pµpνg(p)

] [1
4η

µν + eµ(ω, ω̄)eν(ω, ω̄)
]

= Wµν(p)eµν(ω, ω̄).

In the last step we have defined eµν(ω, ω̄) ≡ 1/4 ηµν+eµ(ω, ω̄)eν(ω, ω̄). These polynomials
form a basis of P(0,0) ⊕ P(1,1). Whereas W (p;ω, ω̄) was characterized by the invariance

[3]The precise value space is P(0,0)⊕P(1,1) ∼= C+P(1,1). But this space may be included in some other
space of homogeneous polynomials in ω, ω̄.

[4]The explicit calculation goes as follows: e0(ω, ω̄) = ω̄1ω1 + ω̄2ω2, e1(ω, ω̄) = ω̄1ω2 + ω̄2ω1, e2(ω, ω̄) =
−i(ω̄1ω2 − ω̄2ω1), e3(ω, ω̄) = ω̄1ω1 − ω̄2ω2. Thus (e0)2 − (e3)2(ω, ω̄) = 4ω̄1ω̄2ω1ω2 = (e1)2 + (e2)2(ω, ω̄).
Hence e2 = ηµνeµeν = 0.
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conditionW (Λ(Λ̃)p; Λ̃ω, Λ̃̄ω̄) = W (p;ω, ω̄), we can infer from this thatWµν(p) transforms
as an ordinary two-tensor:

W (Λp; Λ˜ω, Λ̄˜ ω̄) = Wµν(Λp)eµν(Λ˜ω, Λ̄˜ ω̄)

= Wµν(Λp)
[
1/4 ηµν + (ΛT eΛ)µν(ω, ω̄)

]
= Wµν(Λp)

[
1/4 (ΛTηΛ)µν + (ΛT eΛ)µν(ω, ω̄)

]
= Λ−1

µ
ρΛ−1

ν
σWρσ(Λp) eµν(ω, ω̄)

!= Wµν(p) eµν(ω, ω̄),

where we kept implicit that Λ = Λ(Λ̃) and we used the invariance of the metric ΛTηΛ = η
and the transformation behaviour eµ(Λ̃ω, Λ̃̄ω̄) = (Λe)µ(ω, ω̄).[5]

Concerning the ambiguity of the decomposition one can simply observe that (k, g) 7→
(k, g − (a� + b)δ) becomes (K̂, Ĝ) 7→ (K̂ + a

4p
2�δ, Ĝ + (a� + b)δ) from the definitions

K̂ = 1
4(k−p2g), Ĝ = −g. As p2�δ = �(p2)δ = 8δ the stated ambiguity relation holds. �

Corollary 3.6. Suppose W is an arbitrary tensor-valued tempered distribution in M sat-
isfying Condition (a). Then W may be represented as

Wµν(x) = ηµνK(x) + ∂µ∂νG(x) (3.11)

for Lorentz-invariant tempered distributions K,G that for fixed Wµν are defined up to
shifts

(K,G) 7→ (K + 2a,G− ax2 + b) (3.12)

for arbitrary constants a, b.

Proof. Let Ŵ (p) denote the Fourier transform of W (ξ). Then Ŵ transforms covariantly
under the same representation as W does (see Proposition 2.11). Applying the Lemma
3.4 to Ŵ yields

Ŵµν(p) = ηµνK̂(p)− pµpνĜ(p). (3.13)

An inverse Fourier transform then gives the desired result. Note that the ambiguity
specified in (3.12) is the inverse Fourier transformed ambiguity specified in the referenced
lemma from above. �

An alternative proof of the covariant decompositions presented here is to be found in
Appendix E. The proof also contains an explicit check for the ambiguity of K and G.

Note that for later use we used the variables x and p to indicate which result we will
use in coordinate and which result we will use in momentum space. Generally, both
results, Lemma 3.4 and Corollary 3.6, can, however, be applied to both, coordinate and
momentum space.

[5]The transformation behaviour of eµ(ω, ω̄) may be checked explicitly: We know that ω̄p̃ω = pµω̄σ
µω =

pµe
µ(ω, ω̄). Then pµe

µ(Λ˜ω, Λ̄˜ω̄) = ω̄Λ˜∗p̃Λ˜ω = ω̄ ˜Λ−1pω = (Λ−1p)µeµ(ω, ω̄). In the second last step we
used the definition of the covering homomorphism. Namely, that ˜Λ−1p ≡ Λ˜∗p̃Λ˜ (see eq. (2.53) and adapt
it to the inverse ˜ instead of ˜ ). Here Λ˜∗ ≡ Λ̄˜T is the adjoint of Λ˜.
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3.2 Step 2 - Differential structure of W
Suppose now that W is satisfying not only Condition (a), but also Condition (b). Condi-
tion (b) states that the equations of motion

�Wµν − λ∂µ∂ρWρν = 0, λ 6= 1 (3.14)
are satisfied.

For simplicity in the following we will furthermore suppose that the support of Ŵ is con-
tained in the closed upper light cone. We refer to this as the spectral condition for W .
The condition makes it easier to relate the result to the special case of the Wightman
setting where the spectrum condition clearly holds. In Subsection 3.4 we will explain why
the lemma also holds when the spectral condition is not assumed.

The important fact from the preliminaries is

Fact 3: Let F be an arbitrary Lorentz-invariant tempered distribution on M satis-
fying p2F (p) = T (p) for some tempered distribution T . Then F = aD̂(+) + bD̂(−) +
cδ+Fpart for some constants a, b, and c and a particular solution Fpart. (see Theorem
2.29)

Note that when Fact 3 applies to F , then the spectrum condition, supp F ⊂ V̄ +, is
equivalent to b = 0. In this regard it is important to extend the support properties of Ŵ
to K̂ and Ĝ:

Lemma 3.7. Suppose Wµν = ηµνK + ∂µ∂νG for some Lorentz-invariant tempered distri-
butions K and G and let W satisfy the spectral condition. Then supp K̂ ⊂ V̄ + and supp
Ĝ ⊂ V̄ +.

Proof. By the spectral condition we have

supp Ŵµν ⊂ V̄ +. (3.15)

From Lemma 3.4 we know that K̂ and Ĝ are fixed by Ŵµν up to distributions supported at
the origin. Thus on the complement of V̄ + the decomposition is unique and the restriction
of Ŵµν to the complement yields

0 = Ŵµν�M\V̄ + = ηµνK̂�M\V̄ + − pµpνĜ�M\V̄ + . (3.16)

Clearly, K̂�
M\V̄ + = Ĝ�

M\V̄ + = 0 is a solution and therefore unique, as well. This implies
that the unrestricted K̂ and Ĝ are supported within V̄ +. �

Then the result of this section is

Lemma 3.8. Suppose W is an arbitrary tensor-valued tempered distribution in M satis-
fying Condition (a)-(c). Then W is of the form

Wµν = c1

(
ηµνD

(+) + λ

1− λ∂µ∂νx
2D(+)

)
− c2∂µ∂νD

(+)

+c3

(
−ηµνx2 + 4− λ

24(1− λ)∂µ∂ν(x
2)2
)

+ c4ηµν (3.17)
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or

Ŵµν = c1

(
ηµνD̂

(+) − λ

1− λpµpνD̂
′(+)

)
+ c2pµpνD̂

(+)

+c3

(
ηµν�δ −

4− λ
24(1− λ)pµpν�

2δ

)
+ c4ηµνδ (3.18)

for some constants c1, ..., c4.

Remark 3.9. The summands in the second lines of eqs. (3.17) and (3.18) are all monomials
in x or is Fourier transforms, terms concentrated at p = 0. These terms usually do not
appear in physics textbooks. The reason is that the c3-term can be shown to vanish when
existence and uniqueness of the vacuum is supposed and that the c4-term can be absorbed
into a redefinition of the field Aµ such that the new Aµ satisfies 〈Ω, Aµ(·)Ω〉 = 0. This
will be explained in more detail in the discussion of the results, Subsection 3.5. We will,
however, continue to work with these terms such that we can proceed without further
assumptions. In the next step these terms will be shown to drop out anyway.

Proof. The proof is a somewhat lengthy computation that can be done in either coordinate
or momentum space. The momentum space computation seems to be a bit easier. The
equations of motion in momentum space read

p2Ŵµν − λpµpρŴρν = 0. (3.19)

We will use the covariant decomposition from Step 1, i.e., Ŵµν = ηµνK̂ − pµpνĜ for some
Lorentz-invariant tempered distributions K̂ and Ĝ. Note that the support of K̂ and Ĝ
is contained in the closed upper light cone by Condition (c) and Lemma 3.7 from above.
Applying the equations of motion to the covariant decomposition yields

(ηµνp2 − λpµpν)K̂ − (1− λ)pµpνp2Ĝ = 0. (E1)

Contracting (E1) with pµ and dividing by (1−λ) (note that we have assumed λ 6= 1) one
obtains

pνp
2K̂ − pν(p2)2Ĝ = 0. (E2)

Multiplying (E1) with p2 and inserting (E2) one obtains

ηµν(p2)2K̂ − pµpν(p2)2Ĝ = 0. (E3)

We obtain then two new equations from (E1) by contracting with pµpν and from (E3) by
taking the trace, i.e., contracting with the metric. Combining them gives us an interme-
diate result:

1
1−λp

µpν(E1)µν (p2)2K̂ − (p2)3Ĝ = 0 (E4)
ηµν(E3)µν 4(p2)2K̂ − (p2)3Ĝ = 0 Tr(E3)

(E4) ∧ Tr(E3) ⇒ (p2)2K̂ = (p2)3Ĝ = 0. (E5)
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Step 2 - Differential structure of W

Inserting (E5) into (E3) yields
pµpν(p2)2Ĝ = 0. (E3*)

As Ĝ and thus (p2)2Ĝ are Lorentz-invariant (E3*) is equivalent to

(p2)2Ĝ = aδ (E6)

for some constant a. Inserting (E6) into the trace of (E1) then yields

p2K̂ = a
1− λ
4− λδ (E7)

in no conflict to (E5). Applying Fact 3 (and the support properties of K̂) to (E7) yields

K̂ = a
1− λ
4− λ

1
8�δ + bD̂(+) + cδ (E8)

for some constants b and c and where the first summand is a particular solution to (E7)
as p2 1

8�δ(p) = 1
8�(p2)δ(p) = δ(p). As an auxillary expression let us note that

pµpνK̂ = −aηµν
1− λ
4− λ

1
4δ + bpµpνD̂

(+) (E9)

where we used that pµpν�δ(p) = �(pµpν)δ(p) = 2gµνδ(p).
Similarly, we can apply Fact 3 (and the support properties of Ĝ) to (E6) and obtain

p2Ĝ = a
1
8�δ + dD̂(+) + eδ (E10)

for some constants d and e. Applying Fact 3 again, we obtain

Ĝ = a
1

196�
2δ − dĜpart + e

1
8�δ + fD̂(+) + gδ (E11)

for some constants f and g and where Ĝpart ∈ S ′ is a particular solution to p2Ĝ =
−D̂(+). We will need some space to discuss this division problem: Note at first that
what we are interested in is what pµpνG looks like and not G itself. Then note that
D̂′(+)(p) ≡ θ(p0)δ′(p2), p 6= 0 defines a generalized function on M× which solves the noted
division problem (on M×) as p2θ(p0)δ′(p2) = θ(p0)p2δ′(p2) = −θ(p0)δ(p2) = −D̂(+)(p) for
p 6= 0. The problem is now that the expression θ(p0)δ′(p2) is not a well-defined generalized
function on the whole of M. The good thing is that pµpνθ(p0)δ′(p2) is well-defined on the
whole of M as will be shown in a moment.[6] Thus we demand that Ĝpart is a tempered
distribution solving p2Ĝpart = −D̂(+) on the whole of M such that pµpνĜpart = pµpνD̂

′(+).
That pµpνD̂′(+) is well-defined can be seen by using distributional notation:

pµpνD̂
′(+)(u) ≡ −

∫ [
∂0
pµpνu(p)

2p0

]
p0=|~p|

d~p

2|~p| (3.20)

which is a well-defined (Riemann) integral for each u ∈ S. We are now only missing the ex-
istence Ĝpart as a particular solution to the division problem subject to pµpνĜpart = pµpνD̂

′(+).
[6]Technically speaking, we should say that there exists an extension of the expression

pµpνθ(p0)δ′(p2), p 6= 0, which defines a well-defined tempered distribution on the whole of M.
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Step 3 - The final argument

For this note that the Lorentz-invariant extensions of D̂′(+) to the whole of M fulfil these
conditions. They are furthermore determined up to the addition of a δ-term which van-
ishes when pµpν is applied to it (see e.g. the proof of Lemma 2.27). As an auxillary
expression let us note that

pµpνp
2Ĝ = aηµν

1
4δ + dpµpνD̂

(+). (E12)

Lastly, we have to apply (E1) to K̂ and Ĝ. Inserting (E7), (E9), and (E12) into (E1)
yields

0 = aηµν
1− λ
4− λδ − λ

(
aηµν

1− λ
4− λ

1
4δ + bpµpνD̂

(+)
)
− aηµν(1− λ)1

4δ − d(1− λ)pµpνD̂(+)

= aηµν

(
(1− λ

4 )1− λ
4− λ −

1
4(1− λ)

)
δ − (d(1− λ) + bλ)pµpνD̂(+)

= aηµν

(
4− λ

4
1− λ
4− λ −

1
4(1− λ)

)
δ − (d(1− λ) + bλ)pµpνD̂(+)

= −(d(1− λ) + bλ)pµpνD̂(+).

This implies that d = −b λ
1−λ . Putting everything together we obtain

Ŵµν = ηµν

(
a

1− λ
4− λ

1
8�δ + bD̂(+) +

(
c− e

2

)
δ

)
−pµpν

(
a

1
196�

2δ + b
λ

1− λD̂
′(+) + fD̂(+)

)
.

(3.21)
where we have used that pµpν�δ(p) = 2gµνδ(p) to put the c- and e-term together. Note
that the g-term does not contribute as pµpνδ = 0. A redefinition of the constants and an
inverse Fourier transform yields the desired expressions. �

3.3 Step 3 - The final argument
With the completion of Step 2 we have now obtained a precise expression for W which
is determined up to four constants. Let us continue with assuming Conditions (a) and
(b) as well as the spectral condition. Moreover, let us add the additional assumption of
non-negativity forW . As it will turn out this will imply that all but one of the summands
will drop out (i.e., the proportionality constants have to be zero for these terms). Let us
restate the condition of non-negativity for W . W is called non-negative if

Ŵµµ(u) ≥ 0 ∀ non-negative u ∈ S. (3.22)
The idea for the proof is that many of the summands are indefinite on its own and that one
can scale their contributions toW to be dominant. A non-negativity assumption will then
imply that the corresponding term/constant has to vanish. An important observation for
the argument is that all the summands of Ŵµν are homogeneous. This will simplify the
proof as we do not have to look for specific test function families that realize the scaling
idea.
Definition 3.10. A generalized function f on Rn is called λ-homogeneous if, and only if,
for some λ ∈ C

f(ρx) = ρλf(x) ∀ρ > 0. (3.23)
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Step 3 - The final argument

There are some obvious relations:

Proposition 3.11. Let f be an arbitrary λ-homogeneous generalized function on R
n.

Then:

(a) The degree of homogeneity of f is uniquely defined if, and only if, f 6= 0 (i.e.,
f(u) 6= 0 ∀u).

(b) A linear combination of λ-homogeneous gf.’s is λ-homogeneous.

(c) A product of λi-homogeneous gf.’s, whenever it is defined, is ∏i λi-homogeneous.

(d) The delta distribution is −n-homogeneous and a constant distribution is 0-homogeneous.

(e) The generalized function xαf for an arb. multi-index alpha is λ+ |α|-homogeneous.

(f) The generalized function ∂αf is λ− |α|-homogeneous.

(g) The Fourier transform f̂ of f is −λ− n-homogeneous.

(h) The generalized function D(±) and its Fourier transform D̂(+) = θ(p0)δ(p2) on M

are (-2)-homogeneous.

Proof. All the proofs are straight forward. Property (g) is also implied by the transfor-
mation formula of the Fourier transform for real linear transformations. (See Proposition
2.11). We will only prove (h) here:

D̂(±) ◦ ρ (u) = ρ−4D̂(±)(u ◦ ρ−1)

= ρ−4(−2πi)
∫ u ◦ ρ−1(|~p|, ~p)

2|~p| d~p

= ρ−4(−2πi)
∫ u ◦ ρ−1(|~p|, ~p)

2ρρ−1|~p|
ρ3d(ρ−1~p)

= ρ−2D̂(+)(u).

For its inverse Fourier transform we obtain the same degree of homogeneity:
−4− (−2) = −2 by the formula of Property (g). �

As the summands of Ŵµν show different degrees of homogeneity, this can be used to infer
that the summands with highest and lowest degree of homogeneity have to be of positive
type, too. In order to prove this we start with a basic lemma about scaling

Lemma 3.12. Let z1, ..., zn ∈ C and let

f(ρ) ≡ ρλ1z1 + ...+ ρλnzn ≥ 0 (3.24)

hold for arbitrary ρ > 0 and fixed integer λ1 < ... < λn. Then z1, ..., zn are real and z1 ≥ 0
as well as zn ≥ 0.
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Step 3 - The final argument

Proof. The function f(ρ) as a polynomial in ρ is clearly smooth with real derivatives.
Taking the λi-th derivative with respect to ρ and ρ→ 0 converges to zi. Therefore all the
z1, ..., zn have to be real.
Furthermore the expressions

ρ−λ1f(ρ) ≥ 0 and ρ−λnf(ρ) ≥ 0 (3.25)

converge for ρ → 0 against z1 and for ρ → ∞ against zn, respectively. Therefore z1 ≥ 0
and zn ≥ 0. �

Corollary 3.13. Let f1, ..., fn be homogeneous generalized functions on R
m with integer

degrees of homogeneity λ1 < ... < λn such that
n∑
i=1

fi non-negative. (3.26)

Then f1, ..., fn are real and f1 and fn are non-negative.

Proof. For each non-negative u ∈ Sm by homogeneity we have

ρλ1f1(u) + ...+ ρλnfn(u) ≥ 0. (3.27)

Lemma 3.12 implies that f1(u), ..., fn(u) are real and that f1(u) ≥ 0 and fn(u) ≥ 0. �

We are now ready to look at Ŵ :

Lemma 3.14. Let W be an arbitrary (Lorentz-)tensor-valued tempered distribution on
M which is subject to the conditions (a) and (b) as well as the spectral condition. Then
supposing that the components Ŵµµ are non-negative, namely that

Ŵµµ(u) ≥ 0 ∀ non-negative u ∈ S. (3.28)

implies
Wµν(x) = c∂µ∂νD

(+) (3.29)
for some constant c.

Proof. By Lemma 3.8 and with degrees of homogeneity written above the summands we
have

degr. of hom. − 2 − 2 0

Ŵµν = c1

(
ηµνD̂

(+) − λ

1− λpµpνD̂
′(+)

)
+ c2pµpνD̂

(+)

degr. of hom. − 6 − 6 − 4

+ c3

(
ηµν�δ −

1
24

4− λ
1− λpµpν�

2δ

)
+ c4ηµνδ. (3.30)

Note that Ŵµν is a sum of constants times real generalized functions. By Corollary 3.13
and the non-negativity of Ŵµµ we see that c1, ..., c4 have to be real. Moreover, as the
smallest and largest scaling degrees are 0 and -6, c2pµpµD̂

(+) and the c3-term have to be
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Proof without spectral condition

non-negative. This implies that c2 ≥ 0, as pµpµD̂(+) is non-negative, and c3 = 0, as the
term in brackets after c3 can be shown to be indefinite.[7]

Comparing the degrees of homogeneity again we obtain ηµµc4 ≥ 0 which implies c4 = 0
by taking µ = 0 and µ = i = 1, 2, 3. Finally, the c1-term has the lowest scaling degree
and therefore has to be non-negative. This implies c1 = 0 because of the indefiniteness of
the term in brackets behind c1. Let us show this here explicitly:
The c1-term applied to a non-negative test function u ∈ S reads

∫ [
ηµνu(p)− λ

2(1− λ)∂0
pµpνu(p)

p0

]
p0=|~p|

d~p

2|~p| . (3.31)

Let us look at the 00-component and the trace over the i-components of the term in edgy
brackets. Introducing a = λ

2(1−λ) we obtain

u− a∂0p0u = (1− a)u− ap0∂0u
at p0=|~p|= (1− a)u− a|~p|∂0u (3.32)

and

− u− a∂0
|~p|2

p0
u = −(1− a |~p|

2

p2
0

)u− a |~p|
2

p0
u

at p0=|~p|= −(1− a)u− a|~p|∂0u. (3.33)

Thus we obtain the same terms apart from a sign-change in the first summand. If there
exists a choice of u such that the first summand becomes dominant, the indefiniteness
of the whole term is shown. A possible choice of u is u(p) = w(|~p|)e−p2

0 for a compactly
supported smooth function w : [0,∞)→ [0, 1] with support in [0,

√
c] for some sufficiently

small positive constant c.[8]

What we end up with is

Wµν = c2∂µ∂νD
(+) (3.34)

for a constant c2 ≥ 0. Thus the non-negative case is proven. �

3.4 Proof without spectral condition
For simplicity throughout the proof we assumed the spectral condition to hold true.
Although this is the case in the Wightman setting it is not necessarily the case in the
general setup that we introduced in the beginning of this section. This is, however, not a
big problem, as the proof goes through without spectral condition with small adjustments.
The covariant decomposition of W did not assume the spectral condition and is therefore
not affected. For the precise form of W by the equations of motion, i.e., in the proof of
Lemma 3.8, the spectrum condition is only relevant in the equations (E8), (E10), (E11).
There the condition is only used to infer that in the general solution to the homogeneous

[7]The argument here goes as follows: Take test functions u ∈ S of the form u(x) = e−|x|
4+aµνxµxν with

a diagonal matrix a = diag(b0, b1, b2, b3) and b0, ..., b3 real constants. Then ∂2
µu�x=0 = 2bµ and hence

the family of test functions of this form may realize partial derivatives of second order of arbitrary sign.
Therefore any tempered distribution (

∑
µ cµ(∂µ)2)δ is indefinite. The c3-term (for µ = ν) falls into this

class as pµpν�2δ = (4ηµν�+ 8∂µ∂ν)δ.
[8]Sufficiently small here means that c < | 1−aa | as |~p||∂0u|(|~p|, ~p) = |~p|w(|~p|)|~p|e− 1

2 |~p|
2 ≤ cw(|~p|)e− 1

2 |~p|
2 =

cu(|~p|, ~p) < | 1−aa |u(|~p|, ~p).
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Discussion of the result and comparison with the literature

equation p2T = 0 for a Lorentz-invariant tempered distribution T the term proportional
to D̂(−) is not appearing. When taking it to account the precise result will be that
Wµν = ... + c5

(
ηµνD

(−) + λ
1−λ∂µ∂νx

2D(−)
)
− c6∂µ∂νD

(−) for some additional constants
c5 and c6 where the ... represents the terms that were there with assumed spectrum
condition. Note that these additional terms are precisely the c1- and c2 terms with the
only difference that there is a D(−) instead of a D(+). Thus the additional terms will also
have the same scaling degrees as the c1- and the c2-term. This is not a problem because
we can distinguish the scaling behaviour of D̂(+) and D̂(−) by choosing test functions with
support in V̄ + and V̄ −, respectively. The final result would thus be

Wµν = ∂µ∂ν
(
aD(+) + bD(−)

)
(3.35)

for some non-negative constants a, b. This completes the proof of Lemma 3.8.

3.5 Discussion of the result and comparison with the
literature

What we have obtained in the preceding subsections is that the two-point function W of
a hermitian covariant vector field A (in an indefinite metric QFT) subject to the equation

�Aµ − λ∂µ∂A = 0, λ 6= 1 (3.36)
is of the form

Ŵµν = c1

(
ηµνD̂

(+) − λ

1− λpµpνD̂
′(+)

)
+ c2pµpνD̂

(+)

+c3

(
ηµν�δ −

1
24

4− λ
1− λpµpν�

2δ

)
+ c4ηµνδ (3.37)

for constants c1, ..., c4 and that the assumption of non-negativity of the scalar prod-
uct of the underlying space implies that the two-point function of the associated field
Fµν(A) = ∂[µAν] vanishes.

Concerning the first result, the form of W , apart from the terms concentrated at p = 0,
may be found in [Ste00, Chapter 5.3, Eq. (5.83)] and a bit less explicit in [Str13, Chapter
8.2, Eq. (7.8.29)]. The specific case of λ = 0 may also be found in [WG64, Eq. (2.54)].
Note that the D(+) in the latter two publications is differing from the D(+) here by a
factor of i and i

(2π)3 , respectively. It should be explained why the additional terms here
do not show up in the cited publications:

The reason that these additional terms do not appear there is that they are there ruled
out by the cluster decomposition principle and the vanishing vacuum expectation value of
A. Here we have not made use of it as we did not assume the uniqueness of the vacuum
vector which is necessary to infer the cluster decomposition principle.[9]

[9]On a Hilbert state space the cluster decomposition principle is equivalent to the existence and unique-
ness of the vacuum vector (see [BLOT90, Proposition 7.1, pp. 276]). In the general indefinite metric case
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Discussion of the result and comparison with the literature

In order to give the relation to the other publications let us now assume the cluster
decomposition principle and apply it to the two-point function of A. The result is

〈Ω, Aµ(x)Aν(y + ka)Ω〉 →
k→∞

〈Ω, AµΩ〉 〈Ω, AνΩ〉 = 0 for each spacelike a ∈ M. (3.38)

Important to note is that 〈Ω, AµΩ〉 ≡ 〈Ω, Aµ(x)Ω〉 does not depend on x by translation
invariance, we therefore obtain a constant which, however, must transform as a vector.
This is only possible if the vacuum expectation value 〈Ω, Aµ(x)Ω〉 vanishes identically.

Now let us remind ourselves that in the final argument to the proof we have established the
scaling degrees for the different summands ofWµν in momentum space. The corresponding
scaling degrees in coordinate space are given by the negative momentum space scaling
degrees -4 (see Proposition 3.11(g)). Thus for the c1−, c2−, c3−, and c4-terms we have
scaling degrees of -2, -4, 2, and 0, respectively. Thus the c1- and c2-term drop to zero
in the limit k → ∞ and the c3-term must vanish identically because otherwise the limit
k → ∞ would not be finite. The c4-term must then coincide with 〈Ω, AµΩ〉 〈Ω, AνΩ〉 or,
in other words, must vanish. Thus we end up with

Wµν = c1

(
ηµνD

(+) + λ

1− λ∂µ∂νx
2D(+)

)
− c2∂µ∂νD

(+). (3.39)

This result coincides with the mentioned results in the literature.

In this document, however, we did not make these simplifying assumptions for Wµν . In
this regard it is nice that the result of a vanishing two-point function of F when non-
negativity is assumed is not affected. Thus the result here is a bit more general than in
[Ste00], [Str13] and [WG64].
There are also publications that prove the necessity of indefinite metric Hilbert spaces for
the covariant quantization of a vector field and especially for the gauge field of QED which,
however, do not make recourse to the axiomatic setting. Many of them consider what
can be understood as considerations pertaining to the construction of 1-photon states.
Notable are the following two papers by Bertrand and Bracci:

The first paper [Ber71] obtains that Poincaré-invariant separately continuous hermitian
sesquilinear forms on a certain space of vectorial functions uµ, µ=0,1,2,3 are either van-
ishing or indefinite.[10] The space of vectorial functions consists of smooth compactly
supported functions with supports in ∂V +\{0}. The relation to this document is that
the two-point function of a vector field may be understood as a Lorentz-covariant and
translation-invariant continuous hermitian sesquilinear form on S(M) and that Lorentz-
covariant sesquilinear forms on S(M) stand in one-to-one correspondence to Lorentz-
invariant sesquilinear forms on the vectorial functions S(M)×4 (we mean here 4-tuples
uµ,µ=0,1,2,3 with uµ ∈ S(M)). In order to see this let us denote the former by Sµν and the
latter by S. Lorentz-covariance of Sµν means that

the cluster decomposition principle may fail even in the case of a unique vacuum vector. For this and
more on the cluster decomposition principle on indefinite metric spaces the reader is referred to [Str78,
Section V].

[10]In the notation of the reference the sesquilinear form is denoted by B and most of the time the
µ-index for the vectorial functions is omitted.
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Discussion of the result and comparison with the literature

Sµν(uΛ, vΛ) = Λ ρ
µ Λ σ

ν (u, v), u, v ∈ S(M) (3.40)

where uΛ(x) ≡ u(Λ−1x). Lorentz-invariance of S means that

S(uΛ, vΛ) = S(u, v), u, v ∈ S(M)×4. (3.41)

The one-to-one correspondence is given by associating B(u, v) ≡ Bµν(uµ, vν) to each Bµν

and by associating Bµν(u, v) ≡ B(ueµ, veν) to each B (eµ, µ=0,1,2,3, denote the standard
basis vectors of R4).
Note that in the first case W is 2-tensor-valued and u is complex-valued where in the
second case W is complex-valued and u is vector-valued.
That they restrict to test functions supported within ∂V +

× ≡ ∂V +\{0} is the same as
to consider tempered distributions S ′(∂V +

× ).[11] Converted into the notation and mathe-
matical objects which are used here the referenced paper [Ber71], in particular eq. (24),
classifies Lorentz-covariant Lorentz-2-tensor-valued tempered distributions Ŵ on ∂V +

× to
be of the form

Ŵµν(p) = aηµνD̂
(+)(p) + bpµpνD̂

(+)(p) (3.42)

where D̂(+) is understood here as elements of S ′(∂V +
× ). When extending this result to

zero, one will achieve the same result as obtained here. The difference between the result
of the paper and the result in this document is that the paper looks only on ∂V +

× and not
on the whole of M, but therefore does not have to make explicit use of the equations of
motion that were used in this document.

In the second paper [Bra72] again unitary Poincaré representations on vectorial functions
on M are discussed.[12] The result is that a positive definite separately continuous hermitian
sesquilinear form (i.e., a sep. cont. inner product) on a space of vectorial functions
(that is spin 1 or rather helicity ±1) transforming under a massless unitary Poincare
representation requires the functions to be gradientlike, i.e., uµ(p) ≡ pµu(p) for some
function u. This corresponds to the result that a Lorentz-covariant Lorentz-2-tensor-
valued tempered distribution Ŵ which is positive definite is of the form

Ŵµν(p) = pµpνK (3.43)

for some Lorentz-invariant tempered distribution K. Thus the result agrees with what we
found here. Interesting is that in the reference there is a very similar result for massless
spin 2 representations which are relevant for gravitons. In the outlook of this document
there will be more about this.

It would also be interesting to discuss the different escape routes from the presented no-
go-theorems. We will postpone this discussion to the summary chapter, Chapter 5. At
first we will continue with the implications for the interacting case of QED which can be
drawn from this result.

[11]Note that so far we have only introduced tempered distributions restricted to open subsets of Rn (or
M). We can still apply this case by observing that R3 ∼= ∂V + by the map ~p 7→ j(~p) ≡ (|~p|, ~p). Then we
characterize distributions on ∂V + by: T ∈ S ′(∂V +)⇔ T : S(M)→ C such that ∃S ∈ S ′(R3) : T = S◦j−1.
Then the restriction to ∂V +

× corresponds to the restriction from R3 to the open subset R3
×.

[12]In the reference the vectorial functions are denoted by Aµ(K).
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CHAPTER 4. IMPLICATIONS FOR THE INTERACTING CASE

Chapter 4

Implications for the interacting case

In the former section we have seen the completion of the proof that a formulation of free
QED which is insisting on hermiticity, covariance, free evolution and non-negativity of
the two-point function of A, necessarily leads to a trivial theory in the sense that the
two-point function of the observable field Fµν vanishes.

What we are finally up to is to draw conclusions for the interacting case of QED. As it
is well known that there are no (non-perturbative) constructions of interacting quantum
field theories available in 1+3 dimensions so far, our conclusions take the form of a no-go
theorem. That is, we will show that a gauge formulation of an interacting theory of QED
that relies on covariance and non-negativity of the two-point function of A is trivial in a
certain sense specified below.

As we will see, the strong relation between the free and the interacting theory will make it
very hard to construct an interacting theory without having a satisfactory free version of
it at hand. Scattering theory provides a strong relation between the free and the interact-
ing theory (not only in QED). In scattering theory the asymptotic in- and out-fields are
expected to be free. In standard scattering theory, however, the interaction is assumed to
be short-ranged. QED is a limiting case of this class of interactions and falls just out of
it. Although a scattering theory for massless particles is existent [Buc75, Buc77][original
work in algebraic setting] and [Str90][Wightman setting], this is much more delicate than
the standard setting of scattering theory and it is in fact not really necessary to go into
this construction for our purposes here.

What we will focus on is based on the idea that also the interacting theory should have
sectors, which are completely free. In particular, the one-particle sectors should be free of
any dynamics. In the usual interpretation of elementary quantum fields the one-particle
states are generated by the action of the elementary quantum field on the vacuum.

In the setting here, the elementary quantum field which is supposed to generate the one-
photon states is the Maxwell field Fµν . The space of the one-photon states should be a
subset of the space of massless states. What we will show here, is that Fµν is not able to
create any massless states from the vacuum. With the usual interpretation of F such a
theory is inevitably non-satisfactory.
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The setup

4.1 The setup
In order to make the above statement an adequate theorem, let us clarify the setup
and write down some proper definitions. For simplicity we will now start assuming the
condition of a positive definite metric right away and do not aim for full generality. Let
us begin by properly defining the subspace of massless states:

Definition 4.1. Suppose a relativistic quantum theory with vacuum vector (H, U,Ω)
satisfying the spectrum condition. Then the subspace of massless states is given by

H(1) ≡ χ∂V +\{0}(P )H, (4.1)

where P is the energy-momentum operator associated to the translation group represen-
tation induced by U and where χ denotes the characteristic function on M.

Remark 4.2. The operator χ∂V +\{0}(P ) is defined by the functional calculus for finitely
many strongly commuting self-adjoint operators and is basically a spectral projection such
that the Pµ will have a joint spectrum lying inside ∂V +\{0}. ∂V +\{0} is precisely the
subset of M with massless dispersion relation and positive energy. In a theory with spec-
tral condition this is equivalent to the space of massless states (without the zero-energy
state/vacuum). The existence of strongly commuting self-adjoint operators Pµ is guaran-
teed by Stone’s theorem. For the functional calculus of self-adjoint operators and Stone’s
theorem the reader is referred to Section 2.5 on unitary Hilbert space representations.
In order to convince us that this definition is reasonable let us prove the following result

Proposition 4.3.
H(1) ∪ kerP = kerP 2 (4.2)

where ker A ≡ {φ ∈ D : Aφ = 0} for any A ∈ L(D,H).

Proof. H(1) ⊂ kerP 2: It is clear that p2χ∂V (p) = 0 and thus

0 = I(p2χ∂V +\{0}) = I(p2)I(χ∂V +\{0}) = P 2χ∂V +\{0}(P ).

kerP 2 ⊂ H(1)∪kerP : Let φ ∈ kerP 2\kerP be arbitrary. Then by the spectrum condition
we know that (P0 + |~P |)φ 6= 0[1] and by the commutativity of the Pµ’s then P 2φ implies
φ ∈ kerP or φ ∈ ker(P0 − |~P |). This amounts to σ(P �kerP 2) = ∂V + and thus

χ∂V +(P )kerP 2 = χ∂V +\{0}(P )kerP 2 + χ{0}(P )kerP 2 ⊂ H(1) ∪ kerP.

�

Consider now a Wightman-theory of QED (H, U,Ω, D, {Fµν , Jν}) with an additional her-
mitian covariant vector field (D,A) such that Fµν = ∂[µAν]. Let H(1) and P (1) denote the
subspace of massless states as specified above and the projection onto it, respectively.

[1]Note that |~P | is the unique positive square root of the operator |~P |2 = ~P 2. For this the self-adjointness
of ~P is required.
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4.2 The properties of the ’massless’ two-point func-
tion

Then define the ’massless’ two-point-function W (1)
µν to be

W (1)
µν (ξ) ≡ (Ω, Aµ(x)P (1)Aν(y)Ω) (4.3)

for ξ = x − y. For this W (1) we can derive the following conditions that could appear
somewhat familiar:

(a) transforms covariantly under the representation D(1/2,1/2) ⊗D(1/2,1/2) of SL(2,C)

(b) W (1) satisfies the free massless KG equation, namely

�W (1)
µν = 0. (4.4)

(c) The components Ŵ (1)
µµ are non-negative, namely

Ŵ (1)
µµ (u) ≥ 0 ∀ non-negative u ∈ S. (4.5)

Concerning

(a) From the covariance of Aµ we see that

W (1)
µν (x+ a, y + a) = (Ω, U(0, a)Aµ(x)U(0, a)−1P (1)U(0, a)Aν(y)U(0, a)−1Ω)

= (Ω, Aµ(x)U(0, a)−1P (1)U(0, a)Aν(y)Ω)
= (Ω, Aµ(x)Aν(y)Ω)
= W (1)

µν (x, y)

and therefore W (1) is translation-invariant and the definition above in one variable
ξ is justified. We used here the invariance of Ω and of the domain D, as well as that
P (1) and U(g) commute. The commutativity of P (1) and U(g) is a consequence of
the functional calculus of commuting self-adjoint operators. The Lorentz covariance
of W (1) follows in the same way.

(b) We will prove that �P (1)Aµ(u)Ω = 0 for each µ and each u ∈ S:

�P (1)Aµ(·)Ω = P (1)Aµ(�·)Ω (by def)
= −iP (1)[Pν , Aµ(∂ν ·)]Ω (by Heisenberg eom)
= −iP (1)PνAµ(∂ν ·)Ω (by inv. of Ω)
= −P (1)P 2Aµ(·)Ω (same as above)
= −P 2P (1)Aµ(·)Ω (by strong commutativity and functional calc. )
= 0 (by def of P (1)).
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(c) The non-negativity condition is not affected by the insertion of the orthogonal pro-
jection P (1) and is a consequence of the hermiticity of A and the positive-definiteness
of (·, ·).

With the same conditions at hand as in the case of free QED (for λ = 0) we can infer
that a two-point function of F with support in the massless spectrum only (this is due to
the projection P (1)) vanishes:

B(1)
µνρσ(x− y) ≡ (Ω, Fµν(x)P (1)Fρσ(y)Ω) = 0. (4.6)

From this we can further derive that

||P (1)Fµν(u)Ω||2 = B(1)
µνµν(˜̄u ∗ u) = 0 ⇔ P (1)Fµν(·)Ω ∼ 0. (4.7)

The rhs denots that P (1)Fµν(·)Ω is equivalent to 0 on the induced physical Hilbert space
(zero-norm states are divided out there). Thus on the induced physical Hilbert space we
have that P (1)F ph

µν (·)Ωph = 0 where ph marks the induced objects on the physical Hilbert
space. The Reeh-Schlieder property of the vacuum implies that

P (1)F ph
µν = 0⇔ 〈H(1),ph, F ph

µν (·)Ω〉 = 0. (4.8)
Thus F is not able to create any (physical) massless states, specifically single-photon
states, from the vacuum. With the usual interpretation of quantum electrodynamics this
situation cannot lead to a satisfactory formulation of the theory.

4.3 Discussion of the results and comparison with
existing literature

In this chapter of the document we showed that if we suppose a (possibly interacting)
Wightman theory of a hermitian 2-tensor field F for which there exists a hermitian (co-
variant) vector field A such that F = ∂[µAν], then F will not be able to generate massless
states from the vacuum. We concluded that this makes covariant gauge formulations of
QED on Hilbert spaces unsatisfactory and that it indicates the need for indefinite metric
state spaces. In this section we shall briefly raise discussion points concerning this state-
ment.

First let us note the following: That it is unsatisfactory for QED that F generates no
massless states from the vacuum relies heavily on the strength of the relation between free
and interacting theory. Specifically, it is dependent on how relevant the space of massless
states is in an interacting theory (of QED). It could in principle be that interacting ’pho-
tons’ are not particles with sharply vanishing mass and thus that F does not generate
massless states would be not of great interest. However in the standard approaches to
QED and also in most of the other cases where massless bosons arise we expect their mass
to be sharply defined.[2]

[2]In [Buc77] for instance it is argued that there are basically two mechanisms leading to the appearance
of massless bosons in the theory. Namely, spontaneous symmetry breaking which gives rise to the so-called
Goldstone bosons and the appearance of gauge bosons whenever local gauge symmetries are present. In
both cases there are no indications that the bosons have a not sharply vanishing mass. Also perturbative
QED gives strong heuristic arguments.
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If one accepts that what we are doing is indeed physically relevant, we can also argue that it
is mathematically relevant. The Källen-Lehmann-representation for the non-negative(!)[3]

two-point function Bµνρσ(x− y) = (Ω, Fµν(x)Fρσ(y)Ω) of a hermitian covariant antisym-
metric 2-tensor field F subject to the spectral condition reads

B̂µνµν(p) =
∫ (
−p2

µηνν − p2
νηµµ

)
D̂(+)
m (p)dµ(m) (4.9)

for some positive measure dµ on R̄+ and the positive frequency Pauli-Jordan commutation
function D̂(+)

m (p) ≡ θ(p0)δ(p2−m2) of mass m.[4] Let us require µ to be only supported at
m = 0, i.e., dµ(m) = aδ(m)dm for some a ≥ 0. Then the Källen-Lehmann representation
gives

B̂µνµν(p) = a
(
−p2

µηνν − p2
νηµµ

)
D̂(+)(p). (4.10)

Thus the requirements on Bµνρσ allow for a non-trivial two-point function of P (1)F . In
other words, the result of F not generating massless states from the vacuum is non-trivial.

The discussion on how to evade the necessity to introduce indefinite metric state spaces
will be conducted in the next chapter.

[3]Remember that we are talking about physical fields now and thus requiring non-negativity makes
sense.

[4]See [Buc86, Eq. (4)] or [Str13, Eq. (7.5.10)] for reference.
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Chapter 5

Summary, final discussion and
outlook

This last chapter aims to summarize the results of this thesis and put them into perspec-
tive. Moreover, we give an outlook on related topics beyond this document.

The result of this thesis is that covariant gauge formulations of QED (with standard in-
terpretation) need to have recourse to indefinite metric Hilbert spaces. In particular we
have obtained two main results. Firstly, that a free hermitian covariant vector field giving
rise to a non-negative two-point function needs to be gradientlike, i.e. of the form ∂µφ.
The consequence is that the field Fµν vanishes (on the induced physical Hilbert space)
and therefore the vector field cannot be part of a satisfactory description of free QED.
Secondly, that in QED on a state space with non-negative metric the field Fµν = ∂[µAν],
defined in terms of a hermitian covariant vector field A, cannot generate massless states
from a vacuum (within the induce physical Hilbert space).

The first result can be found in different variants in the literature. Detailed proofs like
presented here are however scarce.[1] Moreover, it is new that we do not assume the cluster
decomposition principle. This gave rise to two extra terms in the two-point function of A
which are however still prohibited by the non-negativity condition.

The author is not aware of any explicit mention of the second result in the literature. In
most of the literature only free QED is mentioned and the consequences for interacting
QED are kept mostly implicit. In only some parts of the literature there are remarks to
relate free QED with the asymptotic in or out fields of an interacting QED without much
further explanation.[2]

[1]The references to existing literature were mostly given in the discussion section of the free QED case,
Section 3.5.

[2]See e.g. [NO90, Section 2.2.2, footnote at p. 57]
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What is a bit unsatisfactory about the proofs is that we still have to assume that explicit
equations of motions for A, i.e., �Aµ − λ∂µ∂A = 0, hold. That this is the most general
equation of motion for a covariant gauge formulation was merely a heuristic argument
and not a proof. It seems however unlikely to derive a triviality result, requiring only
hermiticity, covariance, and non-negativity of the two-point function of A, with the same
methods applied here. The problem is that one then has no information to compare the
contributions of K̂ and Ĝ to the two-point function Ŵ = ηµνK̂ − pµpνĜ. If Ĝ can be
arbitrarily large it is unclear how to infer K̂ = 0 from the non-negativity condition.

5.1 Routes to evade the necessity of an indefinite
metric state space

We should also summarize the routes to evade the no-go theorems presented here. The
most obvious one is to let go of the covariance of the vector field. As A is a non-physical
field it is allowed to have a more general transformation behaviour like

U(a, Λ̃)Aµ(u)U(a, Λ̃)−1 = (Λ(Λ̃)−1A)µ(ua,Λ) + ∂µB(Λ̃, u), u ∈ S (5.1)

for an arbitrary operator-valued B which is a function with respect to Λ̃ and a tempered
distribution with respect to u. The use of such non-covariant fields is however linked
with very inconvenient computations and many of the standard results for dealing with
quantum fields (like extension of analyticity domains of the Wightman functions) have to
be proven anew.[3]

Another way to evade the theorems is to violate the hermiticity of A. It is instructive
here to look at the concrete example of the free vector potential in the Gupta-Bleuler
formalism.[4] To begin with, let us sketch a part of the ordinary construction (for λ = 1).
Thus we have �Aµ = 0. In generalized function notation we obtain

Aµ(x) =
3∑

λ=0

∫ (
ε(λ)
µ (p)a(λ)(p)e−ipx + ε(λ)∗

µ (p)a(λ)†(p)eipx
)
dΩ(p) (5.2)

where dΩ(p) ∝ θ(p0)δ(p2)dp is the (up to normalization) unique Lorentz-invariant measure
on the massless mass shell, ε(λ)(p) denotes a set of four (with respect to η) orthonormal p-
dependent polarization vectors, and a(λ)(p) and a(λ)†(p) are the annihilation and creation
operators. ( )† denotes the adjoint with respect to the indefinite inner product of the
Krein space. Note that a(λ)(p) and a(λ)†(p) may be understood as generalized functions
in ~p.

Covariant canonical quantization[5] leads to
[3]See [Str67, Eq. (28) and below.].
[4]We will follow [Str13, Section 7.8.2] here.
[5]... of the gauge-fixed Lagrangian LGB = − 1

4F
µνFµν − 1

2 (∂A)2. This ensures non-vanishing momen-
tum conjugate to A0 given by Π0 = ∂L

∂(∂0A0) = ∂µAµ. This choice of gauge-fixing term corresponds to a
choice of deformation term Ldeform

µ = −∂µ∂A and thus to Feynman-Gupta-Bleuler gauge λ = 1. See also
in the introductory section for this.
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[Aµ(x), ∂0Aν(y)]x0=y0 = −iηµνδ(~x− ~y) (5.3)
and by decomposition into positive and negative energy parts implies covariant canonical
commutation relations for the corresponding annihilation and creation operators:

[a(κ)(~p), a(λ)†(~q)] = −ηκλ|~p|δ(~p− ~q). (5.4)
This relation clearly implies that ||a(0)†(·)Ω|| < 0 due to −η00 = −1 where Ω is the vac-
uum state defined by a(λ)(·)Ω = 0.

Let us choose the polarization vectors ελ(p) to be timelike (λ = 0), transversal (λ =
1, 2) and longitudinal (λ = 3) with respect to p. For appropriate normalization of the
polarization vectors the physicality condition

∂µA(−)
µ (·)ψ = 0 (5.5)

is equivalent to demand

pµaµ(·)ψ = |~p|
(
a(0) − a(3)

)
(·)ψ = 0, p0 = |~p|. (5.6)

Thus the physical subspace will contain an equal amount of scalar and longitudinal pho-
tons for each momentum ~p. The induced physical Hilbert space will be obtained by
identifying zero-norm states.

We are ready now to state the proposed evasion of the consequence of an indefinite metric
state space. The proposal is to replace a(0) with ia(0) and a(0)† with ia(0)† in A.[6] In this
way a ’part’ of A becomes anti-hermitian and A in total is not hermitian anymore.[7] The
advantage is that the derived canonical commutation relations change to

[a(κ)(p), a(λ)†(q)] = δκλ|~p|δ(~p− ~q) (5.7)
such that the minus sign of the 00-component disappears and quantization can be carried
out on a state space with non-negative states. In particular we obtain now ||a(0)†(·)Ω|| >
0). The non-hermiticity of A does not need to cause problems because on physical states
the physical field Fµν will remain hermitian.[8] There will be no problem with energy
because the contributions from scalar and longitudinal photons cancel each other.

What we have basically done here is that we have exchanged the hermiticity of the
sesquilinear form 〈·, ·〉 with non-negativity. In this formalism we can define a new type of
conjugation K with respect to which A becomes hermitian again. Representing the con-
jugation by a bounded invertible self-adjoint operator η = η†, η2 = 1 we write AK = ηA†η.
Redefining the sesquilinear form accordingly, we obtain

〈φ, ψ〉new ≡ 〈φ, ηψ〉 (5.8)
[6]See e.g. [Sch89, Chapter 2.11, pp. 119]. Note that in the reference a special coordinate frame is

chosen such that a0 = a(0).
[7]Choosing for instance ε(0)

,µ(p) = (1, 0, 0, 0) would yield A0 to be anti-hermitian und Aj , j = 1, 2, 3 to
be hermitian.

[8]One representative space of the physical Hilbert space is the subspace with no scalar and no longitu-
dinal photons. See the reference from above.
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and thus regain the notion of an indefinite metric space. Therefore the hermitian indefi-
nite metric case and the antihermitian (referring to the 0-component of A) non-negative
metric case are two representations of the same situation and the choice of one or the
other is then usually a matter of convenience.

An alternative proposal is to exchange the role of a(0) and a(0)† such that a(0)† annihilates
the vacuum. In this way the sign-flip is achieved, as well, by the antisymmetry of the
commutator under exchange. The problem is now that applications of a(0) to the vacuum
successively lead to lower and lower energies opposed to the usually increasing energy.
Thus the Hamiltonian is unbounded from below.[9]

Finally, there is the ’intended’ way out, which is to accept that the theory has to be
defined on an indefinite metric state space. This is the most common choice including the
popular Gupta-Bleuler formalism. Problematic with these approaches is that the analysis
on indefinite metric spaces becomes more complicated, that the physicality condition is
not under good control in the interacting case and that it therefore also becomes hard to
interpret. In the end the choice of route if indefinite metric state space, non-hermitian
vector field, a Hamiltonian which is unbounded from below is a matter of practicability
as in all cases physical consequences remain unchanged.

5.2 The necessity of an indefinite metric state space
in local gauge formulations of QED

What we did not really speak about in this document (so far) is the other property which
one would like to have for A, namely locality. There are also statements in the literature
that a local gauge formulation of QED implies the necessity of an indefinite metric state
space. The terminology in the literature is however a bit ambiguous and sometimes the
covariance of A is also assumed. Here we will still follow the convention of this document:
We assume only locality and hermiticity of A if we speak about a local gauge formulation
of QED.
The only references which the author is aware of that formulate such a statement are
[Str70, Section VII], [Str13, Proposition 3.3, p. 155], and [FPS74, Theorem 2]. In the
first reference we find two relevant statements. The first one, which is however given with-
out any motivation or sketch of proof, is that in a local gauge formulation of free QED
the physical states, i.e. the states on which Maxwell’s equation are satisfied in terms of
expectation values, cannot form a dense subset of the state space. The second one is that
a non-trivial local and covariant gauge formulation of free QED necessarily is defined
on an indefinite metric state space. For the proof the reader is referred to the paper
[WG64] which was already referenced in this document. There we will however only find
a proof of the necessity of indefinite metric state spaces for the Gupta-Bleuler formalism
in Feynman gauge (λ = 1, �Aµ = 0) which was already discussed here. Although this
choice (λ = 1) might be in fact the only local and covariant gauge formulation of QED,
the statement remains dubious to the author. In the second reference what is referred to
as ’local FGB quantization’ actually assumes the covariance of A. It can be considered
as a special case application of the result of the third reference. Let us briefly present the

[9]For reference the reader is referred to [Sch61, Chapter 9b, in particular p.244 below eq. (24)].
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result of the third reference (Lemma 1 and Theorem 2 of the reference). Note that we
will choose here a slightly different style of presentation of the result than in the reference:

The lemma runs as follows: Suppose a local field jν such that jν = ∂µFµν for some
antisymmetric local field Fµν . Moreover, j and F are assumed to have a common dense
and invariant domain D of a state space with a possibly indefinite metric. Then for any
field Φ with D as an invariant domain which is local with respect to jν and Fµν we obtain

lim
R→∞

[QR,Φ(u)] = 0, u ∈ S (5.9)

where QR can be considered as a charge generator and is defined by QR ≡ j0(wfR) for
compactly supported functions R > 0, w ∈ D(R), and fR ∈ D(R3) such that fR(~x) = 1
for |~x| < R and fR(~x) = 0 for |~x| > R + ε for some ε > 0.

The proof of the lemma consists of not too difficult considerations on the support prop-
erties of the participating fields.
Without bigger problems one can weaken the statement by not assuming any invariance
of the domain, but instead sandwiching eq. (5.9) between states of the domain.[10]

What this result establishes is that for QED one cannot expect Maxwell’s equation j = ∂F
to hold on the whole state space - unless one is willing to have no local charged fields in
the theory. Thus we have to modify the equations of motion by a deformation term Lν
such that we have j = ∂F − L. Let us take now an arbitrary subspace H′ fulfilling only
the condition that there exists a dense domain D ⊂ H′ which is invariant under j and F .
Then this implies that D is also a dense and invariant domain to L = ∂F − j. The aim
is now to apply the lemma again and to show that j = ∂F cannot hold on H′.

The deformation term can be interpreted as an additional fictitious current: j = ∂F−L ⇔
j′ = j+L = ∂F . If L is local, then so is the resulting current j′. The lemma applies now
to j′ with charge Q′R ≡ Q

(fict)
R +QR where Q(fict)

R = L0(wfR). Let Φq be a field of charge
q 6= 0 with domain D. Then for states ϕ, ψ ∈ D we have

− q 〈ϕ,Φq(u)ψ〉 = lim
R→∞

〈ϕ, [QR,Φq(u)]ψ〉 = lim
R→∞

〈ϕ, [Q(fict)
R ,Φq(u)]ψ〉 , u ∈ S (5.10)

If (∂F − j)ν(·)D = Lν(·)D = 0 then this implies that Φq vanishes on expectation values
within H′. Therefore, unless all the charged fields of QED have vanishing expectation
values between states in D, Maxwell’s equations cannot hold as operator equations.[11]

If the existence of local charged fields (with non-trivial expectation values) in QED is
assumed, then there are now two consequences of this result. The first is: Maxwell’s
equations can at most hold as expectation values on a subspace of the whole state space.
If we demand that they are indeed satisfied as expectation values on some physical sub-

[10]That the resulting expressions are well-defined is then a consequence of the implicit assumption for
quantum fields that the domain of the field is contained in the domain of the adjoint field.

[11]Note that one can also dispose of the assumption of D being an invariant domain to F, j and Φq and
obtain the same result. This is done in the appendix of [FPS74].
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space, then the second consequence is: There exist zero- and negative-norm states[12] in
the state space, thus the metric is necessarily indefinite.

For the second statement the argument runs as follows: As Lν(u)D 6= 0 for some u ∈ S,
there exists φ ∈ D such that ψ ≡ Lν(u)φ 6= 0. ψ is a zero-norm state as

〈ψ, ψ〉 = 〈ψ,Lν(u)φ〉 = lim
n→∞

〈ψn,Lν(u)φ〉 = 0 (5.11)

for some sequence (ψn)n ⊂ D converging to ψ. The existence of such a sequence is im-
plied by the density of D and that the rhs-term vanishes by assumption. There have to be
negative-norm states as well because positive semi-definiteness and non-degeneracy of the
sesquilinear form imply its positive definiteness which is incompatible with the existence
of zero-norm states.[13]

In this regard we obtain here a complementary result to what was obtained in this the-
sis. We have shown that in any covariant gauge formulation of QED one needs to have
recourse to an indefinite metric state space. This result tells us that in any local gauge
formulation of QED one needs to have recourse to an indefinite metric. It is an interest-
ing, but somewhat peculiar feature of this result, that it relies on the existence of local
charged fields and thus does not apply to free QED. As a conclusive statement we can
formulate:

In a gauge formulation of QED the (hermitian) gauge field is either non-local and non-
covariant or it has to be defined on a state space equipped with an indefinite metric.

5.3 An outlook beyond
There is a very interesting and recent proposal which tries to overcome the conflict between
locality and covariance of A on the one side, and non-negativity and physicality of the
state space on the other side. The proposal is a formalism of so-called string-localized
fields.[14] Starting with a non-gauge formulation of QED, one may define a string-local
vector potential

Aµ(x, e) =
∫ ∞

0
dsFµν(x+ se)eν , (5.12)

where e is some additional Minkowski direction. In general A will be a generalized function
in x and in e. The resulting field Fµν(x, e) = ∂[µAν](x, e) can in fact be shown to be
independent of e and to coincide with Fµν(x). Moreover, A satisfies so-called string-
locality, i.e., (in the sense of weak commutativity on some common dense and invariant
domain)

[Aµ(x, e), Aν(y, f)] = 0 (5.13)
[12]Meaning that the scalar square of the hermitian sesquilinear form of the state space is zero and
negative, respectively

[13]See footnote [34] on p. 35.
[14]The presentation follows [JM17]. For the details the reader is referred to that reference.
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whenever x + R
+
0 e is spacelike with respect to every point on the other string y + R

+
0 f .

This notion is clearly weaker than pointlike locality. A also satisfies a different covariance
condition

U(a,Λ)Aµ(x, e)U(a,Λ)−1 = (ΛA)µ(Λx+ a,Λe). (5.14)

In this way the formalism of string-localized fields may escape the conflict which is over-
shadowing gauge formulations of QED, in particular, and of QFT, in general.

Finally, there is another topic that deserves mention, namely linearized gravity in quan-
tum field theory, or in other words, gravitons. Gravitons are massless spin-2 particles
which arise as gauge bosons of the gravitational interaction in the weak-field approxi-
mation (linearized gravity). The methods which were used in this document should be
applicable to gravitons, too. Let hµν be the dynamic part[15] of the metric tensor of
Einstein gravity which is assumed to be small. For a quantized field we therefore sup-
posed the corresponding linearized free (i.e., the energy-momentum tensor is assumed to
be vanishing) field equations to hold, we demand that it is hermitian and it transforms
covariantly as a Lorentz-2-tensor. The relevant two-point function would be

Wµνρσ(x− y) = 〈Ω, hµν(x)hρσ(y)Ω〉 . (5.15)

This two-point function can be shown to be of a certain simple form which yields a trivial
two-point function of the Riemann tensor.[16] This result is in the spirit of the former
triviality result of free QED with Maxwell’s equations satisfied on the whole state space
and is again independent of the definiteness of the metric. It is possible that similar
methods as applied here (however more complicated computations) could show a similar
result as obtained here.

[15]For a metric tensor gµν we assume a decomposition into g = g(0) + h where g(0) is a constant metric
tensor and h are ’small’ variations from it.

[16]See [Str68].
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Appendix

The appendix collects a bunch of different material that I gathered and wrote down to
learn about the foundations and background of the proof in detail. Most of the material
is either basic or not specifically tailored to be relevant to the proof.

A Proof of additional properties for tempered distri-
butions

This is a collection of basic results and properties on tempered distributions. They are
mainly based on exercises within [BLOT90, Chapter 2].

Proposition A.1. (Tempered distribution concentrated at the origin) Let T ∈ S ′ be
concentrated at the origin and u ∈ S an arbitrary test function. Then T has the form

T (u) =
∑
|α|≤N

cαD
αu(0) (A.16)

for some natural number N and where cα is a fixed (finite) set of constants.

Lemma A.2. For each compactly supported T ∈ S ′(Rn) there exists c ≥ 0 and a non-
negative integer m such that

|T (u)| ≤ c||u||l,0 = c sup
x∈Rn

(1 + |x|)m|u(x)| ∀u ∈ S ′. (A.17)

Proof. For each w ∈ Dn with w�supp T ≡ 1 we have

|T (u)| = |T (wu)| ≤ c||wu||l,m (A.18)

for some constant c ≥ 0 and non-negative integers l,m. Now for each multi-index α
(corresponding to Rn) with |α| ≤ l we have

||(1 + |x|)mDα(wu)||∞ ≤ ||
∑
β

[
(1 + |x|)mDβwDβcu

]
||∞

≤ ||
∑
β

[
(1 + |x|)mDβw

]
||∞
|γ|≤l

sup ||Dγu||∞

where the sum over β runs over decompositions of α into multi-indices β and βc. The
estimate is possible because (1 + |x|)mDβw are compactly supported functions. �

69



Proof of additional properties for tempered distributions

Prop. A.1. (according to [BLOT90, Proof of Prop. 2.2, p. 52]) By Lemma A.2 we have
that there exists c ≥ 0 and a non-negative integer l such that

|T (u)| ≤ c||u||l,0, ∀u ∈ S. (A.19)

Choosing w ∈ Dn with w ≡ 1 in an open region around the origin and a function v ∈ S
with Dαv(0) vanishing for all α with |α| ≤ l the norm ||w(k·)v||l,0 goes to zero of k →∞.
Thus |T (v)| = |T (w(k·)v)| ≤ c||w(k · v)||l,0 has to vanish. Choosing

v(x) ≡ u(x)− w(x)
∑
|α|≤l

xα

α!D
αu(0) (A.20)

gives the desired expression with cα = 1
α!T (xαw). �

Proposition A.3. (Tempered distribution concentrated at a point times a closed subset
of Rn) Let T ∈ S ′(Rm × R

n) with supp T ⊂ {a} × S for some a ∈ R
m, S ⊂ R

n closed
subset. Then T can be represented as

T (x, y) =
∑
|α|≤N

Dα
xδ(x)hα(y), (A.21)

where hα ∈ S ′(Rm) with supp hα ⊂ S.

Proof. Let u ∈ Sm and v ∈ Sn. Then supp T (·, v) ⊂ {a} and thus for each v ∈ Sn there
exists non-negative integers Nv and constants cα,v such that

T (u, v) = T (·, v)(u) =
∑
|α|≤Nv

cα,vD
αu(a). (A.22)

By the linearity and temperedness of T (u, ·) for each u ∈ Sm we furthermore have that
hα(v) ≡ cα,v define tempered distributions on Rn and that there is a maximal non-negative
integer N majorizing the numbers Nv. �

For simplicity we will only prove the gluing principle for finitely many patches, i.e., a
finite family of tempered distributions glued together. The statement is the following:

Proposition A.4. (The gluing principle for tempered distributions)
Let {Oj}j=1,...,m finite open covering of Rn such that

Qj = R
n\
⋃
i 6=j
Oi (A.23)

closed and contained in Oj and that for each x ∈ Qj the distance d(x, ∂Oj) to the boundary
∂Oj of Oj satisfies

d(x,Oj) ≥ A(1 + |x|)−δ (A.24)

for fixed[17] numbers A > 0, δ ≥ 0. Then for any family {Tj}j=1,...,m of tempered distribu-
tions on Rn satisfying

(Ti − Tj)�Oi∩Oj = 0 ∀i, j = 1, ...,m (A.25)

there exists a unique tempered distribution T ∈ S ′(Rn) coinciding with Tj in Oj for all j.
[17]only dependent on the given covering
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Proof of additional properties for tempered distributions

Proof.
Step 1: Construct a partition of unity subordinated to {Oj}j=1,...,m.

To begin with, assume δ = 0 such that d(x, ∂Oj) ≥ A > 0 ∀x ∈ Qj. Then for each j take
ẽj ∈ D(Rn) such that

ẽj�Qj ≡ 1 and ẽ
j�Q

1
2
j

≡ 0, (A.26)

where Q
A
2
j is the set of all points x ∈ Rn that have d(x,Qj) ≤ A

2 . When we now define

ej ≡
1∑m

k=1 ẽk
ẽj (A.27)

we obtain a finite partition of unity subordinated to the covering {Oj} as supp ej ⊂ Q
A
2
j ⊂

Oj and
∑
j=1,...,m ej(x) ≡ 1.

For δ ≥ 0 define Bk ≡ {x ∈ R
n : k − 1 ≤ |x| ≤ k} for each natural number k. Then

Akj ≡ Bk∩Oj gives rise to a locally finite countable covering of Rn where for each x ∈ Qkj

(defined as above for {Akj})

d(x, ∂Oj) ≥ A(1 + |x|)−δ (A.28)

and therefore

d(x, ∂Akj) ≥ inf
x∈Akj

(A(1 + |x|)−δ (A.29)

≥ Ak−δ. (A.30)

This means that for each Akj one can apply the (δ = 0)-case (only for countably many
ekj) and then define

ej =
∑
k∈N

ejk (A.31)

to obtain a finite partition of unity {ekj} subordinated to the covering {Oj}.

Step 2: define T .

Let u ∈ S be an arbitrary test function then

T (u) ≡
m∑
i=1

eiTi(u) (A.32)

defines a generalized function[18] with

T�Oj = Tj�Oj (A.33)

as

eiTi�Oj = eiTi�Oi∩Oj
= eiTj�Oi∩Oj .

[18]Note here that the ej ’s clearly are multiplicators on S.
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Proof of additional properties for tempered distributions

and therefore ∑
i

eiTi�Oj =
(∑

i

ei�Oi∩Oj

)
Tj�Oj = Tj�Oj . (A.34)

Moreover, T is uniquely specified by (A.33) as {Oj} covers Rn. �

Here are two lemmas that will be used for the following two propositions:
Lemma A.5. Suppose a sequence (Tn)n ⊂ S ′ such that for limn→∞ Tn(u) exists for each
u ∈ S (pointwise convergence). Then the linear map T defined by

u 7→ T (u) ≡ lim
n→∞

Tn(u) (A.35)

is continuous (uniform convergence). In addition, there exist a constant c and natural
numbers k, l such that Tn(u) ≤ c||u||k,l ∀n ∈ N, u ∈ S.
Proof. This is a corollary from the uniform boundedness principle for Frechét spaces,
i.e., for separated complete locally convex spaces (see e.g. [BLOT90, Theorem 1.7 and
Corollary 1.9]). �

Lemma A.6. Suppose a sequence (un)n ⊂ S converging to u = limn→∞ un in S and a
sequence (Tn)n ⊂ S ′ converging to T = limn→∞ Tn in S ′. Then Tn(un) converges to T (u).
Proof. We have ||T (u) − Tn(un)|| ≤ ||(T − Tn)(u)|| + ||Tn(u − un)||. The first summand
clearly converges to 0 (uniformly in u) and for the second summand we have

||Tn(u− un)|| ≤ c||u− un||k,l ∀n ∈ N (A.36)
by Lemma A.5 from above. Important is here that c, k, and l are independent of n. Thus
also the second summand converges to 0. �

Proposition A.7. Suppose a Hilbert space H and a linear map A : S → H. Then the
following properties are equivalent:
(a) (φ,A(·)) is continuous for each φ ∈ D,

(b) (φ,A(·)) is continuous for each φ ∈ H, i.e., A is weakly continuous

(c) A is norm continuous
Proof. (c) ⇒ (a),(b): Clear by the separate continuity of the Hilbert product.
(a) ⇒ (b): For each vector ψ ∈ H there exists a sequence (ψn)n ⊂ D converging against
ψ in H. Then (ψn, A(·)) convergences pointwise, i.e., for each u ∈ S, against (ψ,A(·))
and by Lemma A.5 also in S ′.
(b) ⇒ (c): Similarly, for a sequence (un)n converging against u in S we have that
(A(un), A(·)) defines a sequence in S ′ converging against (A(u), A(·)) pointwise and thus
in S ′. Applying the other lemma, Lemma A.6, we obtain that ||A(un)||2 = (A(un), A(un))
converges to ||A(u)||2 and thus A is norm continuous. �

Proposition A.8. Suppose a Hilbert space H, a dense linear subspace D ⊂ H and a
linear map A : S → L(D,H). Then the following properties are equivalent:
(a) (φ,A(·)ψ) is continuous for each ψ, φ ∈ D,

(b) (φ,A(·)ψ) is continuous for each ψ ∈ D and φ ∈ H, i.e., A is weakly continuous

(c) A(·)ψ is continuous for each ψ ∈ D, i.e., A is strongly continuous.
Proof. The result is an immediate corollary of Proposition A.7 by noting that A(·)φ defines
a vector-valued tempered distribution for each φ ∈ D. �
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d’Alembert equation as a Cauchy Problem

B d’Alembert equation as a Cauchy Problem
The goal of this section is to determine the solutions of the equation

�F (x) = ηµν∂µ∂νF (x) = 0 (B.1)

in the space of tempered distributions on M. This equation is known as d’Alembert equa-
tion or may also be interpreted as massless Klein-Gordon equation. Other than in the
main section we will understand this problem as a Cauchy problem instead of a division
problem.

(In this section we have used slightly different notation than in the main document. For
a tempered distribution T , (T (x), u(x)) ≡ T (u). Moreover, the Fourier transform is de-
noted by T̃ , T˜ or even (Fp→xT )(x)))

The first thing to note is that these solutions will be tempered distributions in ~x that are
C∞-dependent on x0 (or vice versa):

Proof. Let F̃ denote the Fourier transformation of F in S ′. Then it satisfies

(p2
0 − ~p2)F̃ (p) = 0. (B.2)

Therefore supp F̃ ⊂ Γ ⊂ {|~p| ≤ A(1 + |p0|)δ} for some positive constants A, δ. By
[BLOT90, Ex. 2.32] this implies that F̃ is a convolute w.r.t. ~p and hence (see [BLOT90,
Ex.2.48(b)]) F is a gen. fct. in ~x that is C∞-dependent on x0. �

As a result we obtain the Cauchy problem

∂2
t Ft(~x) = ∂2

~xFt(~x) (B.3)

with initial values u0(~x) ≡ Ft=0(~x), u1(~x) ≡ ∂tFt=0(~x). This problem is uniquely solvable.
Uniqueness can be shown in the following way:

Proof. Take IV to be 0 (i.e., ui(~x) ≡ 0, i = 1, 2). Then by induction on m also all
derivatives ∂mt Ft=0(~x) vanish identically (apply (B.3) and commute differentials). Now if
we can proof analyticity in t we are done. Therefore take ũ ∈ D(R3) and observe that
(F̃ , ũ(−~p)) as a generalized function in p0 has compact support (see above in the proof of
C∞-dependence) That implies that the Fourier transform

(F (x0, ~x), u(~x)) ≡ (Fp0→x0F̃ (x0, ~p), u(−~p)) (B.4)

is analytic. �

Existence can be shown in the following way: First show the existence of the funda-
mental solution D(x) to the Cauchy problem (namely the solution with initial data
u0(~x) = 0, u1(~x) = δ(~x)). Then show the existence of arbitrary solutions.

First:
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d’Alembert equation as a Cauchy Problem

Proof. define the tempered distribution

D(x) = 1
2πε(x0)δ(x2) (B.5)

or equally well, its Fourier transform with respect to ~p

D˜(t, ~p) = sin(|~p|t)
|~p|

. (B.6)

This gen. function fulfills

D(0, ~x) = 0
∂tD(0, ~x) = δ(~x).

This can be seen from the following facts: D(x) is antisymmetric in x0 thereforeD vanishes
at x0 = 0. For ∂tD = δ regard

∂tD˜(0, ~p) = cos(0) = 1, (B.7)

thus transforming it back gives δ. And lastly we see that �D(x) = 0 as

(∂2
t + ~p2)D˜(t, ~p) = (−|~p|2 + ~p2)D˜(t, ~p) = 0. (B.8)

�

Here we will list some properties of the fundamental solution (apart from its characterising
ones as a fund. solution):

odd D(x) = −D(−x)
locality supp D ⊂ V ≡ {x ∈ M|x2 > 0}

Lorentz-inv. D(Λx) = D(x)∀Λ ∈ L↑+

Second:

Proof. For arb. initial data ui(~x) ∈ S ′(R3)

F (x) = ∂tD(t, ~x) ∗~x u0(~x) +D(t, ~x) ∗~x u1(~x)
= D(x) ∗ [∂x0δ(x0)u0(~x) + δ(x0)u1(~x)]

is the unique solution to the Cauchy problem. F (x) is well-defined as supp D ⊂ V .
Therefore D and ∂tD are convolutes w.r.t. ~x (again by [BLOT90, Ex 2.32]) and the
convolutions in the first line are well-defined. [19] Then

F (0, ~x) = ∂tD (0, ~x) ∗~x u0(~x) +D(0, ~x) ∗~x u1(~x)
= δ(~x) ∗~x u0(~x)
= u0(~x)

[19]For the second line note that the support of the right term is concentrated at x0 = 0. Then [BLOT90,
Ex. 2.41] applies such that the convolution is canonically defined
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Seperating distributions of advanced and retarded type

as well as

∂tF (0, ~x) = u1(~x)

and most importantly

�F (x) = �D (x) ∗ [...]
= 0.

For the last equality we used that for arb. u, v ∈ S ′ such that u∗v is canonically defined[20]

then for arbitray polynomial P (∂)

P (∂)(f ∗ g) = P (∂)f ∗ g = f ∗ P (∂)g.

This follows from [BLOT90, Ex. 2.39(a)] and the linearity of the convolution. �

Now we have the following theorem

Theorem B.1. For an arbitrary F ∈ S ′(M) which satisfies �F = 0 we have

F (x) = D(x) ∗ [∂x0δ(x0)u0(~x) + δ(x0)u1(~x)] (B.9)

where u0 = F |t=0 and u1 = ∂tF |t=0.

C Seperating distributions of advanced and retarded
type

[This section is basically a detailed proof of [RS75, Problem 56, Section IX].]
In this subsection we want to address the task to decompose a given tempered distribution
with support in the closed light cone V̄ ⊂ M into two tempered distributions T± with
support in the closed upper/lower light cone V̄ ±, respectively. Such distributions are
sometimes called to be of advanced/retarded type. It is clear that such a decomposition

T = T (+) + T (−) (C.1)
can only be unique up to shifts by arbitrary tempered distributions concentrated at x = 0.
Therefore our strategy is to begin with separating the part of T that is concentrated at
the origin, naming it T0. It will turn out that this is actually necessary for the decompo-
sition as otherwise we cannot construct a sufficiently regular multiplicator for T in order
to define T±. This sufficient regularity will in fact not be smoothness, but only finite
differentiability. To make this work let us show the following lemma

Lemma C.1. Let T be a tempered distribution of order at most N .[21] Then there exists
a linear and continuous extension T̃ of T to rapidly decreasing functions that are in CN

and for every function χ ∈ CN(Rn) that is of polynomial growth the map

T (χ·) : S(Rn) 3 u 7→ T̃ (χu) (C.2)

defines a well-defined tempered distribution. Moreover, supp T (χ·) ⊂ supp χ.
[20]This is equivalent to u(x)v(y − x) being of integrable type w.r.t. x. If u or v is a convolute this
automatically implies that u(x)v(y − x) is of integrable type.

[21]A distribution is said to be of order at most N ∈ N0 when for some constant c ≥ 0 and M ∈ N0 it
satisfies the inequality |T (u)| ≤ c||u||M,N ∀u ∈ S(Rn).
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Seperating distributions of advanced and retarded type

Proof. (Of the Lemma) By the Schwartz representation theorem there exist continuous
functions cα of polynomial growth such that

T =
∑
|α|≤N

cαD
α (C.3)

It is clear that the above representation (rhs) extends also to rapidly decreasing functions
that are in CN and that this defines a linear and continuous extension of T , denoted above
by T̃ .
That T (χ·) is tempered can be seen by the following calculation

T (χu) =
∑
|α|≤N

∫
cα(x)Dα(χu)(x)dnx

=
∑

|β|,|γ|≤N

∫
cα=β+γ(x)(−1)|β|Dβχ(x)Dγu(x)dnx

=
∑
|γ|≤N

∫
c̃γ(x)Dγu(x)dnx

where c̃γ = ∑
|β|≤N(−1)(|β|)cβγ are continuous functions of polynomial growth, too.

That the support of T (χ·) is contained in the support of χ is evident. Just take any
Schwartz function u supported outside the support of χ, then χu ≡ 0 and T (χu) =
T (0) = 0. �

Proof. (Of the decomposition) One natural way to project distributions onto distributions
with certain support properties is to multiply them by a function that has the desired
support properties, and which acts as a multiplicator on the test function space (meaning
that the product still lies in the test function space:
Thus let f be a smooth function on the unit sphere S ⊂ R

n mapping to [0, 1] with
S ∩ V + ≡ 1 and S ∩ V − ≡ 0. Then χ(x) ≡ f(x/||x||) is smooth except for the origin.[22]

At the origin there is a singularity of order 1 meaning that (x2)nχ is in C2n−1.[23] This
is the key observation for the decomposition. We cannot construct a smooth function
separating V ±, but we can make it finitely differentiable up to any order by multiplication
with (x2)n.
There exist[24] natural numbers (incl. 0) M,N and c ≥ 0 such that

|T (u)| ≤ c||u||M,N ∀u ∈ S(Rn). (C.4)

Then the next step is to observe that

S±(u) = T ((x2)M+1χ±u) (C.5)

where χ+ = χ and χ− = 1 − χ are well-defined tempered distributions supported in the
closed upper/lower light cone V̄ +. This assertion is given by the lemma above. Together

[22]Here the norm ||x|| denotes the (or let us say one of the) Euclidean norms on Rn.
[23]For this statement we simply have to check that the partial derivatives (at all orders up to 2n − 1)
at the origin yield continuous functions. These derivatives yield a polynomial P (x) with P (x) → 0 for
x→ 0. Therefore we have |P (x)χ(x)| ≤ |P (x)||χ(x)| ≤ |P (x)| → 0 for x→ 0. These statements are the
same for any chosen norm on Rn.

[24]valid for any tempered distribution
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Proof of Stone’s theorem

they give the want decomposition for the ’regularized’ version of T : (x2)M+1T = S+ +S−.
Hence, what we would like to have is to write down T (u) = (x2)M+1T ((x2)−M−1u) which
is only well-defined for u that go sufficiently fast to zero towards the origin. defining the
linear continuous map H : S → S by

u 7→ Hu = 1
(x2)M+1

u− h ∑
|β|≤2M+1

1
β!D

βu(0) xβ
 (C.6)

where h ∈ D(Rn) with h ≡ 1 near the origin, we achieve that for arbitrary u ∈ S(Rn)

T (u) = (x2)M+1T (Hu) + T0(u) (C.7)

where T0(u) = ∑
|β|≤2M+1 T (hxβ) 1

β!D
βu(0) such that T0 is concentrated at the origin. The

left term is then decomposable into the above defined S± such that we obtain

T (u) = S+(Hu) + S−(Hu) + T0(u). (C.8)

Splitting up T0 in some way among S+ and S− will then give us a possible decomposition
into T (+) + T (−) as we wanted to achieve. �

D Proof of Stone’s theorem
Theorem D.1 (Stone’s Theorem). Let U be a map R → U(H). Then the following two
statements are equivalent:

(a) U is a continuous group homomorphism

(b) There exists a self-adjoint operator A on H such that U(t) = eitA for each t ∈ R.

Lemma D.2. Let A be a self-adjoint operator on H. Then the unitary group U(t) ≡ eitA

satisfies

(a) for each φ ∈ D(A) the strong derivative is lim
t→0

U(t)−1
t

φ = iA.

(b) for each strongly differentiable vector φ ∈ H it follows φ ∈ D(A).

Proof. (a): Let φ ∈ D(A) be arbitrary, then

eitA − 1
t

φ = I

(
eitλ − 1

t

)
φ

= lim
n→∞

I

(
eitλ − 1

t
χ[−n,n](λ)

)
φ

→ lim
n→∞

I
(
iλχ[−n,n](λ)

)
as t→ 0.

In the last line we interchanged the limits n→∞ and t→ 0, which is possible as each of
the single limits clearly exists pointwise and as one of the limits exists also uniformly. The
existence of the single limits is implied by the norm continuity of I for bounded functions,
see Proposition 2.32(e), although we only need strong continuity here:

lim
n→∞

I

(
eihλ − 1

h
χ[−n,n](λ)

)
φ = I

(
eihλ − 1

h

)
φ ∀h ∈ R, (D.1)
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and
lim
h→0

I

(
eihλ − 1

h
χ[−n,n](λ)

)
φ = I

(
iλχ[−n,n](λ)

)
φ ∀n ∈ N. (D.2)

As ([−n, n])n defines a bounding sequence[25] of measurable sets for the identity func-
tion f(λ) = λ, the limit exists uniformly if and only if φ ∈ D(I(f)). In other words∫
λ2 〈φ,EA(λ)φ〉 = ||Aφ||2 has to be finite, which is implied by φ ∈ D(A).

(b): On a strongly differentiable vector φ ∈ H the limit lim
t→0

U(t)−1
t

φ exists. In case
φ ∈ D(A) this limit coincides with the operator iA. Thus B ≡ lim

t→0
iU(t)−1

t
(with

domain of existence of the limit) fulfils B ⊃ A and B is clearly symmetric. Hence
A ⊂ B ⊂ B† ⊂ A† = A ⇒ A = B. �

of Stone’s Theorem. (b)⇒ (a): Immediate as a consequence of the functional calculus for
self-adjoint operators. In particular we have U(s+ t) = ei(s+t)A = eisAeitA and continuity
according to Proposition 2.32(f).
(a) ⇒ (b): As seen in the Lemma D.2, if (a) ⇒ (b) holds, the self-adjoint operator to be
found must coincide with −i times the strong derivative with respect to U . In the proof
of Lemma D.2(b) this operator was defined as B. Thus we need to show that B generates
the unitary group. Let us define V (s) ≡ eisB.
For φ ∈ D(B) a short computation shows that

U ′(t)φ = iBU(t)φ and V ′(t)φ = iBV (t)φ. (D.3)

One has to note here that U(t)φ ∈ D(B) as lim
s→0

U(s)−1
s

U(t)φ = U(t)lim
s→0

U(s)−1
s

φ =
U(t)U ′(0)φ and V (t)φ ∈ D(B) likewise. Lastly let us define w(t) ≡ U(t)φ − V (t)φ and
hence w′(t) = iBw(t). This implies that d

dt
||w(t)||2 = 〈iBw(t), w(t)〉+ 〈w(t), iBw(t)〉 = 0.

With w(0) = 0 we see that actually w(t) = 0 ∀t and thus U(t) = V (t) ∀t. �

E Alternative proof of the covariant decomposition
of the two-point function

Lemma E.1. The covariance of the two-point-function Wµν and the spectral condition
together imply the form

Wµν = ηµνK + ∂µ∂νG, (E.1)

with K and G being scalar Lorentz-invariant generalized functions. For a given Wµν

the decomposition gives rise to K and G defined up to a simultaneous shift by K 7→
K − 2a,G 7→ G+ az2 + b.

Proof. The covariance of Wµν(x) can be analytically continued to the covariance Wµν(z)
under the proper complex Lorentz-group L+(C).[26] The analyticity domain may be chosen
to be the extended past tube T −ext.[27] Using these complex Wightman distributions is

[25]A bounding sequence of a function f is a sequence of sets (Mn)n such that for each Mn the function
fχMn

is bounded, Mn ⊂ Mn+1 and E(∪nMn) = 1, where E is the spectral measure with respect to
which the spectral integral is defined.

[26]given by Bargmann-Hall-Wightman-Theorem, see e.g. [BLOT90, Chapter 9.B Theorem 9.1, p. 362].
[27]The analyticity domain can be chosen even wider to be the extended permuted tube, but this is not
necessary here.
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advantageous for the following reason: Analytic distributions can shown to be necessarily
regular, i.e., they are analytic functions (with the natural action on test functions)[28].
This means that for the complex Wightman distribution one does not have to deal with
singularites. The classification of representations of L+(C) in terms of such analytic
functions[29] gives us the form

Wµν(z) = ηµνW1(z) + zµzνW2(z). (E.2)

with Wi being Lorentz-invariant distributions. The Lorentz-invariance of the Wi can be
directly seen by the covariance of Wµν and the invariance of ηµν :

ηµνW1(Λz) + (Λz)µ(Λz)νW2(Λz) = Wµν(Λz)
cov. of W= Λ ρ

µ Λ σ
ν Wρσ(z)

= (ΛgΛT )µνW1(z) + (Λz)µ(Λz)νW2(z)
inv. of g= ηµνW1(z) + (Λz)µ(Λz)νW2(z). (E.3)

and therefore Wi(Λz) = Wi(z).[30]

The analyticity of the l.h.s. of (E.2) (in the extended past tube) gives the same analyticity
on the r.h.s. Taking the off-diagonal terms gives then the analyticity of W2 and taking
the trace gives the analyticity of W1. Within their analyticity domains W1 and W2 are
Lorentz-invariant functions (remember that analytic distributions are regular as stated
above). These may be written as functions of invariants. The only invariant that can be
constructed from zµ is z2.[31] Therefore we can write

Wi(z) = Ti(z2), i = 1, 2 (E.4)

within their analyticity domains.

Now, for an arbitrary generalized functions G(z2) we have the equation

∂µ∂νG(z2) = 2ηµν
d

dz2G(z2) + 4zµzν
(
d

dz2

)2

G(z2). (E.5)

defining G(z2) as the solution of the equation(
d

dz2

)2

G(z2) = 1
4T2(z2) (E.6)

we establish then the connection (see Eq. (E.5)) between the terms zµzνT2(z2) and
∂µ∂νG(z2) via a shift proportional to ηµν that we can put into T1. The existence of

[28]See e.g. [BLOT90, Chapter 5.E p. 208 Prop. 5.13(a)]
[29]see Appendix C, based on original work from Hepp [Hep63] and comments of Araki within
[30]That the one can induce the separate invariance of the Wi can be seen in the following way: Taking
the off-diagonal terms of eq. (E.3) only the second term survives. One can divide by (Λz)µ(Λz)ν (z 6= 0
because zero is not contained in the extended past tube, thus this term is not zero) and gets the invariance
of W2, hence of W1, too.

[31]For the more general setting of many variables see [BLOT90, Chapter 5.F pp. 209].
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such a generalized function F (z2) is guaranteed by giving the explicit solution of Eq.
(E.6)

F (z2) = 1
4

∫ z2

const.

∫ s2

const.
T2(t2)dt2ds2, (E.7)

where the constants are choosen inside the analyticity domain of T2(z2).

Thus, finally, we can express Eq. (E.2) in the desired way

Wµν(z) = ηµνW1(z) + ∂µ∂νW2(z), (E.8)

where W1(z) = T1(z2)− 2ηµν d
dz2F (z2) and W2(z) = F (z2).

Taking the boundary value of this eq. then gives the proof of eq. (E.1).

To see the uniqueness of W1 and of W2 up to linear shifts we take two pairs K,G and
K ′, G′ satisfying eq. (E.8) (i.e., the complex one). Taking the off-diagonal terms we obtain

∂µ∂νG = ∂µ∂νG
′ ∀µ 6= ν. (E.9)

Let us take fixed indices µ, ν. Then integrating this eq. two times we get that the possible
shift terms relating G and G′ can be only of the following form:

G(z) = G′(z) + µ̂+ ν̂). (E.10)

Here we introduced the short-hand notation where µ̂ means not dependent on the compo-
nent zµ. Now running through the µ with µ 6= ν we get that G(z) = G′(z)+ν+ ν̂ meaning
that the terms are either only ν-dependent or not ν-dependent. Running through all the
ν we get that G(z) = G′(z) + h0(z0) + h1(z1) + h2(z2) + h3(z3) where hi are generalized
functions which are only dependent on zi. As we required Lorentz-invariance for G and
G′ this has to be true for ∑i hi as well. Thus ∑i hi has to be a function which is only
z2-dependent. As a consequence ∑i hi(z) = az2 + b.
As a result we obtain that G = G′ + az2 + b for some constants a, b and that K =
K ′ − 1

4�(az2 + b) = K ′ − 2a. �

F Scalar Wightman two-point function
Let φ be a free massless scalar Wightman Quantum Field in a Wightman Theory with
W (ξ) being its two-pt. fct. in translation-invariant form

Theorem F.1.
W (ξ) = a+ bD

(+)
0 (ξ) (F.1)

with a, b ∈ R̄+ and D(+)
m (ξ) =

∫
θ(p0)δ(p2 −m2)eipξd4p being the positive frequency Pauli-

Jordan commutation function of mass m.

Proof. By positivity we know that the Fourier transform Ŵ (p) is a non-negative gen. fct.
and therefore a non-negative measure of power growth. By the spectral condition it has
support in the upper light cone V̄ +. As we are considering a scalar field it is furthermore
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Lorentz-invariant. A Lorentz-invariant, non-negative measure with support in V̄ + has the
general form

dµ(p) =
(∫ ∞

0
θ(p0)δ(τ − p2)dρ(τ) + a(2π)4δ(p)

)
d4p (F.2)

where a ≥ 0 and ρ(τ) is a monotone decreasing function of power growth[32]. Thus we
have

dŴ (p) =
[
a(2π)4δ(p) +

∫ ∞
0

2πθ(p0)δ(p2 −m2)dσ(m2)
]
dp (F.3)

with σ(λ) a monotone decreasing function of power growth. As φ is a free massless scalar
field we know that �φ = 0 and therefore (for every p ∈ M) p2dŴ (p) = 0 or in other words
p2dŴ (p) is the zero-measure. Therefore if we take the upper light cone and an arbitrary
measurable set X ⊂ R and V̄ +

X ≡ V̄ + ∩ {p2 ∈ X} then
0 = (p2dŴ (p))(V̄ +

X ) ∝ (λdσ(λ))(X). (F.4)
In this notation the functions p2dŴ (p) and λdσ(λ) are understood as measures evalu-
ated on the measurable sets V̄ +

X and X. The proportionality follows from the eq. (F.3)
together with the fact that p2δ(p) vanishes everywhere and that dσ(X) =

∫
X dσ(m2) =∫

[0,∞]
∫
X δ(p2 −m2)dp2dσ(m2).

Hence we know that λdσ(λ) = 0 meaning that dσ(λ) = 0 for λ > 0 such that
dσ(λ) = bδ(λ) (F.5)

with b ≥ 0. Thus we arrive at
Ŵ (p) = a(2π)4δ(p) + b2πθ(p0)δ(p2) (F.6)

or in coordinate space redefining the constants a and b at
W (ξ) = a+ bD

(+)
0 (ξ). (F.7)

�

For the commutator we arrive at (omitting the 0-index for D)

〈[φ(x), φ(y)]〉 = W (ξ)−W (−ξ) = b(D(+)(ξ)−D(+)(−ξ)) = bD(ξ). (F.8)
It should be noted that the constants a and b can also be absorbed into redefinitions of φ.
In order to do that proceed as follows (the trivial generalized function 1(f) =

∫
f(x)dx is

omitted):

define: φ′(f) ≡ φ(f)− 〈φ(f)〉 (F.9)
define: φ′′(f) ≡

√
bφ′(f) +

√
a (F.10)

Both redefinitions do not alter the Wightman conditions. The first redefinition ensures
that 〈φ〉 = 0, the second redefinition absorbs the constants a and b. Thus we end up with
a possible choice of φ to yield

W (ξ) = D(+)(ξ). (F.11)
It should be noted that the absorption of a as in eq. (F.9) is usually done in physics.
Whereas b is usually fixed by experimental results.

[32]’of power growth’ means that the associated measure gives
∫
τ<r

dρ(τ) being bounded from above by
a power of r.
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G Relation betweenWightman and commutator func-
tion

Let us take a scalar field φ and let us denote its two-point function by W and the corre-
sponding (vev of the) commutator function by D. If we have been given the Wightman
two-point functions it is easy to obtain the commutator functions. We just have

D(ξ) ≡ 〈[φ(x), φ(y)]〉 = W (ξ)−W (−ξ). (G.1)

Therefore we know that the commutator function is local (vanishes for spacelike vectors),
satisfies the generalized spectral condition (support of its Fourier transform lies in the
light cone) and transforms covariantly as the two-point function does.

Here we want to take a look at the inverse problem. Let Dµν(ξ) be a fixed (vacuum ex-
pectation value) of the commutator of A with the relation from eq. (G.1). What can we
say about W if W is an arbitrary generalized Lorentz-invariant function which satisfies
the spectral condition.

Let us decomposeW into symmetric and antisymmetric partsW±, respectively, such that
W = W+ +W−. It is easy to show that this decomposition exists, is unique and that also
W± have to be Lorentz-invariant and satisfy the spectral condition.[33] and therefore

D(ξ) = W (ξ)−W (−ξ) = (W+(ξ)−W+(−ξ)) + (W−(ξ)−W−(−ξ)) = 2W−(ξ). (G.2)

Thus we know that W = 1
2D + W+ with W+ satisfying Lorentz-invariance and spectral

condition. If we would also know that W is of positive type, this would imply that W+ is
of positive type, too.

Let us now decompose D̂ and X̂ ≡ Ŵ+ into tempered distributions that have support
in V̄ ±. For D̂ we can just define D̂(±) = θ(±p0)D̂ as D̂ is supported outside the origin.
For X̂ it is more complicated, but also possible. Such a decomposition is achieved for an
arbitrary tempered distribution with support in the closed light cone in the next section
of the Appendix, Subsection C. This condition is satisfied for X̂ = Ŵ − 1

2D̂. Here X̂(±)

shall denote a specific choice of such a decomposition which is unique up to distributions
concentrated at 0. Let us therefore introduce w to denote equalities up to distributions
concentrated at 0. The symmetry of X̂ implies X̂(±)(−p) = X̂(∓)(p). By the spectral
condition we know that the negative energy parts of W should give zero, hence

1
2D̂

(−)(p) + X̃(−)(p) w 0 (G.3)

and therefore

X̃(+)(p) = X̃(−)(−p) w −1
2D̂

(−)(−p) = 1
2D̂

(+)(p). (G.4)

Finally, we obtain
[33]define W±(ξ) ≡ 1

2 (W (ξ)±W (−ξ)) and note that the upper light cone is closed under addition.

82



Relation between Wightman and commutator function

Ŵ (p) w D̃(+)(p). (G.5)

As Ŵ and D̂(+) are Lorentz-invariant we arrive at

Ŵ (p) = D̂(+)(p) + P (�)δ(p). (G.6)

or

W (x) = D(+)(x) + P (x2). (G.7)
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