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A B S T R A C T

The Lindblad theory of open quantum systems has been successfully
applied in various fields ranging from quantum optics, condensed
matter physics, and quantum thermodynamics to quantum chem-
istry. Nevertheless, there are situations where we can compare its
predictions to those of exact methods or numerically exact results
and find discrepancies between them [1]. One example is the case
where a single harmonic oscillator is coupled to a thermal bath of
independent harmonic oscillators. In this case, for certain parameters,
the exact master equation describes equilibration of the system to a
thermal state with a temperature different from the one predicted by
the Lindblad master equation [2]. The Lindblad theory, based on a
weak coupling between the system and environment as well as the
Born-Markov approximation, predicts that the system will evolve to
a thermal state whose temperature is equal to the initial temperature
of the bath. This result is a consequence of the Born approximation,
which supposes that throughout the evolution, the bath only fluc-
tuates around its initial equilibrium state.1 In this master thesis we
study the validity of the Born approximation as well as its consis-
tency with other approximations.

By starting from a Hamiltonian for the total system we show that,
if the the Born approximation is not invoked, the dynamics of the
system is determined by a hierarchy of equations for matrices which
can be used to reconstruct the reduced density matrix of the system.
This hierarchy approach is fundamentally different from the stan-
dard approach, which describes the system dynamics with a weak-
coupling master equation, because the hierarchy does not restrict the
amount of entanglement possible between the system and the envi-
ronment. Furthermore, we show how invoking the Born approxima-
tion reduces to the usual result and how a generalised ansatz, which
we refer to as a generalised Born approximation, reduces the hierar-
chy to a master equation where the bath temperature is an additional
degree of freedom. Finally, we analyse the conservation of the energy
of the total system and its relationship to the Markov and secular ap-
proximations, and discuss whether imposing it as a condition can fix
the time-dependent temperature.

1 More specifically, the system and environment become correlated during the evolu-
tion, but the latter is continually being projected to its initial state.

iii





C O N T E N T S

1 introduction 1

1.1 What is an open quantum system . . . . . . . . . . . . 2

1.2 Why study open quantum systems . . . . . . . . . . . . 3

1.3 Examples of open quantum systems . . . . . . . . . . . 4

2 the lindblad theory of open quantum systems 7

2.1 Time-local master equations . . . . . . . . . . . . . . . . 7

2.2 Master equations in Lindblad form . . . . . . . . . . . . 8

2.3 Deriving a master equation in Linblad form . . . . . . 9

2.4 Entropy production, equilibration, and thermalisation 13

2.5 Deficiencies of master equations in Lindblad form . . . 15

2.6 Master equations in generalised Lindblad form . . . . 16

3 generalising the born approximation 19

3.1 Deriving the scalar hierarchy . . . . . . . . . . . . . . . 19

3.2 The weak coupling limit . . . . . . . . . . . . . . . . . . 21

3.3 Generalised Lindblad form . . . . . . . . . . . . . . . . 24

3.4 Imposing the Born approximation . . . . . . . . . . . . 26

3.5 Generalising the Born approximation . . . . . . . . . . 29

3.6 Properties of the generalisation . . . . . . . . . . . . . . 30

3.7 Steady state in the long time limit . . . . . . . . . . . . 31

3.8 Imposing energy conservation . . . . . . . . . . . . . . 32

3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 numerical tests 39

4.1 Truncating the hierarchy . . . . . . . . . . . . . . . . . . 39

4.2 Solving the hierarchy . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Solving the Jaynes-Cummings model . . . . . . 44

4.2.2 Increasing the number of cavity modes . . . . . 46

4.2.3 Solving the damped Jaynes-Cummings model . 47

4.3 Testing the generalised Born approximation . . . . . . 48

5 conclusion 51

6 outlook 53

a properties of bosonic baths 55

b exact diagonalisation 59

bibliography 63

v





1
I N T R O D U C T I O N

A quantum system is called open if it is coupled to another quantum
system commonly referred to as the environment. The main objective
of the study of open quantum systems is to derive effective equations
that describe the dynamics of the system while taking into account
the most important effects due to its coupling to the environment.
Different approaches used to achieve this goal exist, which can be
roughly divided into two categories: stochastic and master equation
approaches.

1. The master equation approach aims to derive a closed form
equation, called a master equation, for the time derivative of
the reduced density matrix of the system. In this case the effect
of the environment is encoded in the correlation functions of
the environment that show up in the master equation.

2. The stochastic approach describes the effect of the system us-
ing random variables. These random variables are used to for-
mulate a stochastic version of Schrödinger’s equation which in-
cludes the effect of the environment as noise variables. Predic-
tions for the evolution of state vectors of the system are then
obtained by averaging over many solutions of the stochastic
Schrödinger equation.

In many cases there exists a correspondence between master equa-
tions and stochastic Schrödinger equations. Stochastic approaches
that capture the reduced dynamics of the system are called unrav-
ellings, of which stochastic Schrödinger equations are a particular
example. In cases where this correspondence exists it allows one to
tackle the same problem from different angles, throughout this thesis
however, we restrict ourselves to the master equation approach.

This chapter is devoted to an exposition of the main concepts in the
theory of open quantum systems. We start by formally introducing
what we mean by an open quantum system and introduce the model
Hamiltonian we consider throughout this thesis in section 1.1. In sec-
tion 1.2 we motivate the study of open quantum systems from both a
fundamental and a practical point of view. Finally, we consider some
specific examples for the model Hamiltonian considered and connect
them to physical systems that they can be used to describe in section
1.3.
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2 introduction

1.1 what is an open quantum system

As mentioned in the introduction to this chapter, an open quantum
system is a quantum system S coupled in some way to another quan-
tum system E called the environment. Usually the Hilbert space di-
mension of the environment is assumed to be far bigger than the
Hilbert space dimension of the system, which validates the use of cer-
tain crucial approximations. Assuming that the environment is suf-
ficiently isolated from the rest of the universe we can consider the
combined system consisting of S and E as an isolated quantum sys-
tem.1 Suppose the Hamiltonian of the system and environment are
given by HS and HE respectively, then the Hamiltonian of the total
system can be written as

H = HS + HE + HSE (1)

where HSE describes the coupling between S and E.
The effective equations of motion for the dynamics of the system

S that we aim to derive take the form of differential equations for
the reduced density matrix ρS(t). The reduced density matrix is the
partial trace over the environment of the density matrix of the total
system, i.e.

ρS(t) = TrE [ρtot(t)] . (2)

At this point we would like to point out that since the size of the
reduced density matrix grows quadratically with the Hilbert space
dimension of the system, solving a master equation numerically is
only feasible if the latter is small enough.

When confronted for the first time with the problem of describing
the effective dynamics of a subsystem of a larger isolated quantum
system, one might be tempted to think that it is a trivial question.
After all, the time evolution of the total system is given by

ρtot(t) = e−iHtottρtot(0)eiHtott. (3)

In principle the evolution of any subsystem of the total system could
then be obtained by taking the partial trace over the degrees of free-
dom we are not interested in. However, this partial trace can only be
performed without additional approximations in a few cases. One of
the main objectives of the theory of open quantum systems is there-
fore to find the right approximations using which closed form equa-
tions for the reduced density matrix can be derived.

Master equations come in two major varieties, they are either in
time-local form or in an integral form:

1 In section 1.2 we argue that no quantum system can be considered to be truly iso-
lated from the rest of the universe. However, if we are only interested in the dynamics
of S, we can consider the total system consisting of S and E to be modelled as an
isolated quantum system if the effect of the rest of the universe on E is negligible for
the dynamics of S.



1.2 why study open quantum systems 3

1. Time-local master equations are master equations that can be
written as

ρ̇S(t) = Lt[ρS(t)], (4)

where Lt is some operator on the space of density matrices.

2. Master equations in integral form depend in some way on the
evolution history of the reduced density matrix. A well-known
master equation in integral form is the Nakajima-Zwanzig mas-
ter equation, which, for factorised initial conditions, can be writ-
ten as

ρ̇S(t) =
∫ t

t0

K(t, s)ρS(s)ds (5)

whereK is some operator that acts on the space of density matri-
ces. If the initial conditions are not factorised, i.e. the system and
environment are entangled at the initial time t0, the Nakajima-
Zwanzig master equation also has a contribution from the initial
conditions.

Throughout this thesis we will restrict ourselves to time-local master
equations of the form whose properties we discuss in section 2.1.

Our discussion thus far does not consider a particular model for the
system or environment. Throughout this thesis however, we consider
the case where the bath Hamiltonian is a sum of harmonic oscillators
and the coupling between the system and the bath is linear. More
precisely, the general model Hamiltonian in Eq. (1) is replaced by

H = HS + ∑
λ

ωλb†
λbλ + ∑

λ

gλ(bλL† + b†
λL). (6)

Here b†
λ and bλ are bosonic creation and annihilation operators respec-

tively, whereas L is a system operator and gλ denotes the coupling
between the system and a particular bosonic mode of the environ-
ment. This is the most general model Hamiltonian for a system and
environment which are coupled in a linear fashion [3].

1.2 why study open quantum systems

The study of open quantum systems is an inevitable consequence of
the fact that, in practice, almost no small quantum system can be
considered to be truly isolated from its surroundings. Even in the
extreme case of a single hydrogen atom in the near-perfect vacuum
between galaxies we need to take into account the environment, in the
form of vacuum fluctuations of the electromagnetic field, to explain
the Lamb shift of its energy levels. A more down-to-earth example
where the theory of open quantum systems is necessary would be
an experiment where some small quantum system is probed, using,
laser light for example. The number of examples where the theory
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of open quantum systems can be applied and their diversity is one
indicator of the importance of its study.

Apart from its broad applicability, the study of open quantum sys-
tems can be considered worthwhile due to its past accomplishments.
Most notably, it it has been successful in describing fundamental phe-
nomena such as decoherence and irreversibility in the weak coupling
limit. Furthermore, the theory of open quantum systems has pro-
vided a theoretical framework for describing experiments for several
decades, in particular for those in the field of quantum optics where
its study began [4–6]. More recently, the theory of open quantum sys-
tems has been used to study the laws of thermodynamics in quantum
mechanics [7].

By mentioning the past accomplishments of the theory of open
quantum systems we by no means intend to imply its study is pri-
marily of historical value. On the contrary, as the technical prowess
of experimentalists evolves, a quantum description for experimental
set-ups where quantum systems such as optical cavities and quantum
dots interact with their environments become all the more important.

1.3 examples of open quantum systems

In this section we discuss three examples of open quantum systems
that can be described by the model Hamiltonian we consider through-
out this thesis, i.e. the one proposed in Eq. (8). The first example we
consider is the Jaynes-Cummings model, which can be used to de-
scribe the interaction of a two-level atom with light in an idealised
optical cavity. The second model we consider is called the damped
Jaynes-Cummings model, which differs from the Jaynes-Cummings
model in the sense that the total system consisting of the atom and
the cavity is not isolated. Instead, the cavity mode itself is coupled
to an an environment of harmonic oscillators as well. Finally we con-
sider the model Hamiltonian for quantum Brownian motion.

The Hamiltonian corresponding to the Jaynes-Cummings model is

H = ω0σ+σ− + ωb†b + gω(bσ+ + b†σ−). (7)

Here σ+ and σ− are creation and annihilation operators for the two-
level system whereas b† and b are creation and annihilation operators
for the cavity mode which is represented by a harmonic oscillator.
The interaction term allows the cavity mode and the two-level atom to
exchange energy which corresponds to the emission and absorption
of photons by the two-level atom.

It is interesting to note that the Jaynes-Cummings model describes
a cavity that is ideal in the following sense. It supposes the total sys-
tem consisting of two-level atom and cavity to be perfectly isolated
from its surroundings and it supposes the cavity to accommodate
only a single frequency. In practice however, these ideal conditions
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may not be satisfied, in which case the damped Jaynes-Cummings
model might be a more accurate description.

The difference between the Jaynes-Cummings and the damped Jaynes-
Cummings model is that in the latter case the cavity mode is coupled
to an environment of harmonic oscillators, which we assume to be in
their respective ground states. It turns out that provided that there is
at most a single quantum in the combined system comprising of two-
level atom and the cavity mode, the cavity can be eliminated from
the model, i.e. we can consider the two-level atom to be coupled to
the environment influencing the cavity directly. In this case the model
can be described by the following Hamiltonian

H = ω0σ+σ− + ∑
λ

ωλb†
λbλ + ∑

λ

gλ(bλσ+ + b†
λσ−), (8)

provided that the coupling constants gλ are chosen in such a way
that the dynamics of the two-level atom resembles that of an identical
two-level atom coupled to a continuous bath of harmonic oscillators
whose spectral density is a Lorentzian given by [8]

J(ω) =
1

2π

ηW
(ω−ω0)2 + W2 . (9)

Here η denotes the coupling strength, W determines the width of
the Lorentzian, and ω0 is the frequency of the two-level system. This
simulation of a continuous environment by a finite set of harmonic
oscillators is a recurring theme in the field which we return to in
section 4.2.3.

The final model we consider in this thesis is that of quantum Brow-
nian motion, which refers to systems described by Hamiltonians of
the form

H = ω0a†a + ∑
λ

ωλb†
λbλ + ∑

λ

gλ(bλa† + b†
λa). (10)

Thus instead of a two-level system the open system under considera-
tion is described by a harmonic oscillator.





2
T H E L I N D B L A D T H E O RY O F O P E N Q U A N T U M
S Y S T E M S

In this chapter we review some basic aspects of the theory of open
quantum systems focusing on time-local master equations in Lind-
blad form. Time-local master equations in Lindblad form arise nat-
urally when imposing a number of physical constraints on the ef-
fective equations describing the dynamics of an open quantum sys-
tem. They provide a framework for describing irreversible dynamics
of quantum systems coupled to larger environments. In particular,
this framework can be used to describe equilibration as well as ther-
malisation and is consistent with the second law of thermodynamics.
These features, amongst other things, explain why master equations
in Lindblad form have found applications in areas as diverse as quan-
tum optics, condensed matter physics and ultra-cold quantum gasses.
Although at the end of this chapter we argue that in certain cases
the approach usually taken to obtain equations of the Lindblad type,
which comes down to imposing the Born-Markov approximation, can
no longer be justified, many of the arguments in this chapter still ap-
ply to the generalised formalism we propose in chapter 3.

The structure of this chapter is as follows. In section 2.1 we con-
sider what conditions the reduced dynamics should satisfy and what
implications this has for the form of the equations. Then we discuss
how requiring a semi-group property leads to the well-known Lind-
blad form of the master equation in section 2.2. In section 2.3 we
derive a master equation in Lindblad form from the model Hamilto-
nian introduced in section 1.1. Following this, we review some of the
properties of this master equation in Lindblad form regarding equi-
libration, thermalisation and the second law of thermodynamics in
section 2.4. In the final sections of this chapter we discuss some of
the deficiencies of master equations in Lindblad form and consider
a particular generalisation of the Lindblad theory of open quantum
systems.

2.1 time-local master equations

As explained in chapter 1 the theory of open quantum systems con-
cerns itself with effective equations that describe a quantum mechan-
ical system coupled to an environment whose Hilbert space is large
compared to that of the system. In this thesis we restrict ourselves
to time-local master equations which is why we review what restric-
tions certain commonly imposed physical requirements on time-local

7



8 the lindblad theory of open quantum systems

master equations lead to. For a more detailed overview of properties
of time-local master equations we refer the reader to appendix A of
[9], on which we based this section, and references therein.

Recall that time-local master equations are evolution equations for
the reduced density matrix of the form

ρ̇S(t) = Lt[ρS(t)], (11)

with Lt a linear operator acting on the space of density matrices,
called a generator. It turns out that such an equation can always be
written as

Lt[ρS] = ∑
k

Ak(t)ρS(t)B†
k (t). (12)

with Ak and Bk time-dependent operators acting on states in the
Hilbert space of the system. For such an evolution equation to rep-
resent a physical process it should preserve certain properties of the
reduced density matrix throughout its evolution such as its hermitic-
ity and trace.

In the case where the Hilbert space of the system is finite dimen-
sional, it can be proven constructively that imposing hermiticity and
preservation of the trace implies that Eq. (12) can be written as

ρ̇S(t) = −
i
h̄
[H, ρS(t)] +

N−1

∑
i,j=1

dij(t)
(

GiρS(t)Gj −
1
2
[GjGi, ρS(t)]

)
(13)

with Gi a particular basis of the finite-dimensional state space of the
system, dij(t) entries of what is called the decoherence matrix, and H
a hermitian operator often referred to as the Lamb shift Hamiltonian.
The properties the basis Gi has to satisfy as well as expressions for dij
and H in terms of Ak, Bk and Gi can be found in [9].

An additional requirement the reduced density matrix should con-
tinue to satisfy is positivity, i.e. positivity of its eigenvalues. After all,
we interpret the eigenvalues of the reduced density matrix as proba-
bilities which should never take on negative values. However, usually
a condition stronger than positivity called complete positivity is im-
posed, which amounts to requiring the density matrix of which ρS is
the partial trace to be positive. The dynamics described by a master
equation of the form described in Eq. (13) is completely positive if the
elements dij(t) of the decoherence matrix are positive at all times.

2.2 master equations in lindblad form

In section 2.1 we discussed what restrictions requiring basic physical
properties such as preservation of the trace, hermiticity and complete
positivity of the reduced density matrix imposes on the form that
a time-local master equation can take. An additional property that
is often satisfied by the dynamics of the system is that its dynam-
ics is irreversible. Although true irreversibility is only possible if the
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Hilbert space dimension of the environment diverges, i.e. the envi-
ronment is continuous, we often take the dynamics to be irreversible
if the environment is large enough so that reversible effects can be
neglected. One requirement that is often satisfied in such cases is
that an operator called the evolution operator, which we define below,
satisfies a condition that is called the semi-group property. If this semi-
group property is satisfied, the mathematical theory is particularly
well-developed, although in recent years the field has increasingly fo-
cused on extensions of the theory that do not impose this assumption.

The evolution operator is the operator that evolves ρS(t) through
time, i.e. it is the operator such that

ρS(t + s) = Λt[ρS(s)] (14)

The semigroup property of the evolution operator Λt, which is a state-
ment of irreversibility, is then defined as

ΛtΛs = Λt+s (15)

for all t for which Λt is defined and all s ∈ R>0.1 In other words,
using the evolution operator we can always see what a given state
evolves to over time, but we can not see what state it might have
been at an earlier time. This is the sense in which we mean that the
reduced dynamics of the system is irreversible.

Recall the particular form the master equation was forced to take
after imposing preservation of the trace and hermiticity as described
in Eq. (13). Such a master equation, where we do not yet make any
claims about positivity of the elements of the decoherence matrix, we
will refer to as a Lindblad-type master equation.

It has been shown by Lindblad [10] and under slightly different
conditions by Gorini, Kossakowski, and Sudarshan [11] that if the evo-
lution operator Λt satisfies the semigroup property in addition to the
requirements that led to Eq. (13) and preserves complete positivity
the master equation can be written as a Lindblad-type equation with
constant positive decoherence matrix. In fact, the converse statement
is also true, i.e. if a master equation can be written as a Lindblad-type
master equation with time-independent positive decoherence matrix
the dynamics it describes preserves complete positivity and satisfies a
semi-group property. Such master equations with time-independent
positive decoherence matrix we refer to as master equations in Lind-
blad form.

2.3 deriving a master equation in linblad form

In the previous sections we have shown how the form a time-local
master equation can take is restricted by imposing certain physical

1 Of course Λt+s should be defined for all combinations of t and s so we assume that
Λt is defined for all t ∈ [t0, ∞) for some t0 ∈ R.
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conditions. However, thus far we have not yet shown how such a
master equation can be derived from a Hamiltonian for the total sys-
tem comprising of system and environment. In this section we derive
a time-local master equation in Lindblad form for the model Hamil-
tonian introduced in section 1.1.

Starting from the total system we know that the time evolution for
the total density matrix in the interaction picture is given by

ρ̇(t) = [HI(t), ρ(t)] (16)

where HI(t) is the interaction picture Hamiltonian and ρ(t) is the
density matrix in the interaction picture. A formal solution can be
obtained from Eq. (16) by integrating w.r.t. time, which gives

ρ(t) = ρ(t0) +
∫ t

t0

ds[HI(s), ρ(s)]. (17)

Substituting back the solution into the evolution equation for the re-
duced density matrix we find

ρ̇(t) = [HI(t), ρ(t0)] +
∫ t

t0

ds[HI(t), [HI(s), ρ(s)]]. (18)

An evolution equation for the reduced density matrix is then obtained
by taking the partial trace over the environmental degrees of freedom

ρ̇S(t) = TrE

{
[HI(t), ρ(t0)] +

∫ t

t0

ds[HI(t), [HI(s), ρ(s)]]
}

. (19)

Although this is an evolution equation for the reduced density matrix
from the initial Hamiltonian obtained without doing any approxima-
tions, it is of limited use. After all, if one would want to use it to do
numerics without additional simplifications, the total density matrix
would have to be used, which is a huge object if the Hilbert space
dimension of the bath is large. Therefore we now show how this
equation can be further simplified under certain assumptions until
we have a time-local master equation in Lindblad form.

Suppose the spectrum of HS is discrete, then the system operators
can be decomposed as

L(t) = ∑
ω

e−iωtL(ω) (20)

L†(t) = ∑
ω

eiωtL†(ω) (21)

where

L(ω) = ∑
ε′−ε=ω

Π(ε) L Π(ε′). (22)

Here Π(ε) denotes a projection operator onto the eigenspace of HS
corresponding to the eigenvalue ε. Plugging the expansion in Eq. (20)
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and Eq. (21) into Eq. (19) gives rise to terms containing the phase
factor

e±i(ω−ω′)t (23)

where ω and ω′ are the expansion parameters. If the typical time scale
for the evolution of the system is large compared to |ω − ω′|−1, the
oscillations average out over time allowing us to neglect them unless
ω = ω′. This approximation is called the rotating wave approxima-
tion in quantum optics or the secular approximation.

Replacing ρ(s) by ρ(t) in Eq. (19), which is valid up to second order
in perturbation theory, as well as assuming the secular approximation
to hold, Eq. (19) reduces to

ρ̇S(t) = Tr

[(
∑
ω,λ

∫ t

0
dsg2

λei(ωλ−ω)s(L†(ω)ρS(t)L(ω)⊗ bλρBb†
λ)

)]

− Tr

[(
∑
ω,λ

∫ t

0
dsg2

λei(ωλ−ω)s(L(ω)L†(ω)ρS(t)⊗ b†
λbλρB)

)]

+ Tr

[(
∑
ω,λ

∫ t

0
dsg2

λei(ωλ−ω)s(L(ω)ρS(t)L†(ω)⊗ b†
λρBbλ)

)]

− Tr

[(
∑
ω,λ

∫ t

0
dsg2

λei(ωλ−ω)s(ρS(t)L†(ω)L(ω)⊗ ρBbλb†
λ)

)]
+ h.c. + ∑

λ

O(g4
λ) (24)

where

ρB =
e−βHB

TrB
[
e−βHB

] . (25)

Performing the partial trace of this equation gives

ρ̇S(t) = ∑
ω,λ

∫ t

0
dsg2

λei(ωλ−ω)sL†(ω)ρS(t)L(ω)nλ(β)

−∑
ω,λ

∫ t

0
dsg2

λei(ωλ−ω)sL(ω)L†(ω)ρS(t)nλ(β)

+ ∑
ω,λ

∫ t

0
dsg2

λei(ωλ−ω)sL(ω)ρS(t)L†(ω)(nλ(β) + 1)

−∑
ω,λ

∫ t

0
dsg2

λei(ωλ−ω)sρS(t)L†(ω)L(ω)(nλ(β) + 1)

+ h.c. + ∑
λ

O(g4
λ) (26)

where

nλ(β) :=
1

eβωλ − 1
. (27)
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One can check that this equation is in Lindblad-like form with dij(t) ∝
δij due to the secular approximation we did earlier. The explicit time-
dependence of the pre-factors however, indicates that we have not yet
arrived at an equation in Lindblad form.

To rid the elements of the decoherence matrix of their time-dependence,
a final approximation is required. Supposing that

∑
λ

g2
λei(ωλ−ω)s (28)

drops off sufficiently fast, we can let the upper bound of the integral
go to infinity without introducing a large error.2 Furthermore, it im-
plicitly assumes that after it has decayed there is no revival, which
is equivalent to saying that the Hilbert space dimension of the bath
diverges. Therefore we should be able to describe the sum over λ’s
with an integral, i.e. there should be a function J(ω̃) such that

∑
λ

g2
λ =

∫
dω̃ J(ω̃). (29)

Now we can use ∫ ∞

0
e±iωt′dt′ = ±iP 1

ω
+ πδ(ω), (30)

to obtain

ρ̇S(t) =− i[HLS, ρS(t)]

− π ∑
ω

J(ω)n(β, ω)
{

L(ω)L†(ω), ρS(t)
}

− π ∑
ω

J(ω)(n(β, ω) + 1)
{

L†(ω)L(ω), ρS(t)
}

+ 2π ∑
ω

J(ω)(n(β, ω) + 1)L(ω)ρS(t)L†(ω)

+ 2π ∑
ω

J(ω)n(β, ω)L†(ω)ρS(t)L(ω)

+ ∑
λ

O(g4
λ). (31)

where

HLS = ∑
ω

P
∫ ∞

0
dω̃

J(ω̃)

ω̃−ω
n(β, ω̃)L(ω)L†(ω)

+ ∑
ω

P
∫ ∞

0
dω̃

J(ω̃)

ω̃−ω
(n(β, ω̃) + 1)L†(ω)L(ω) (32)

is called the Lamb shift Hamiltonian. Note that we have achieved
our goal of deriving a master equation in Lindblad form from first
principles. For some purposes however, it can also be useful to write
this master equation in a different form which we describe next.

2 A bath that satisfies these requirements is called Markovian, which reflects the inde-
pendence of the time evolution from its evolution history.
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If the spectrum of the system Hamiltonian is discrete, we can ex-
pand ρ in an energy eigenbasis giving

ρS = ∑
k

pk|ψk〉〈ψk| (33)

with pk the population of a given energy state. In this case an evo-
lution equation for the populations can be obtained from Eq. (31) by
wedging both the left and right hand side with an energy eigenstate.
This gives

ṗm(t) = ∑
m′

Wmm′ pm′(t) (34)

with

Wmm′ =

Amm′ if m 6= m′

−∑n 6=m′ Anm′ if m = m′
(35)

where we defined

Amm′ =− 2π J(εm′ − εm)n(β, εm′ − εm)〈ψm|L|ψm′〉〈ψm′ |L†|ψm〉
− 2π J(εm − εm′)(n(β, εm − εm′) + 1)〈ψm|L†|ψm′〉〈ψm′ |L|ψm〉

Eq. (34) is also referred to as a Pauli rate equation.
The derivation in this section shows how under certain approxi-

mations effective equations for the system that take into account the
influence of the environment up to leading order in perturbation the-
ory can be derived. We would like to emphasise that here the effect
of the environment is incorporated in the master equation via the
spectral density and the bath correlation functions.

2.4 entropy production, equilibration, and thermali-
sation

In the macroscopic world we know that a finite system coupled to a
heat bath at temperature T approaches a thermal state with the same
temperature T.3 Since this macroscopic behaviour should somehow
be the effective behaviour of the underlying quantum description of
both system and heat bath, we might hope that master equations in
Lindblad form as discussed in section 2.2 predict this behaviour. In
this section we give an overview of the predictions of the Lindblad
theory of open quantum systems regarding entropy production, equi-
libration, and thermalisation. The part about entropy production in
this section is based on [12] and references therein.

3 By heat bath in this situation we mean a system whose heat capacity diverges. Other-
wise, the temperature not changing would be inconsistent with energy conservation
of the total system.
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It is always true that a thermal state for the system at the same
temperature as the bath is a steady state solution of Eq. (31). To show
this, we plug in

ρth
S =

e−βHS

TrS
[
e−βHS

] . (36)

as an ansatz for ρS(t). Using the fact that

ρth
S L(ω) = eβω L(ω)ρth

S (37)

ρth
S L†(ω) = e−βω L†(ω)ρth

S (38)

as a result of the definition for L(ω), we immediately see that[
ρth

S , HLS

]
= 0 (39)

The remaining terms contain factors of the form{
L(ω)L†(ω), ρth

S

}
= eβω L(ω)ρth

S L†(ω) (40){
L†(ω)L(ω), ρth

S

}
= e−βω L†(ω)ρth

S L(ω) (41)

From Eq. (40) and Eq. (41) we conclude that our thermal state ansatz
is a solution since

n(β, ω) = (n(β, ω) + 1)e−β′ω (42)

This shows that the thermal state of the system is indeed a steady
state solution of Eq. (31). However, it does not yet prove that this
state is always approached in the long time limit. To be able to say
more about the steady state that is approached in the long time limit,
we consider the entropy of the system.

A quantity intrinsically linked to irreversibility is the entropy, which
for a quantum system can be formulated as

S(ρ) = −Tr [ρ ln ρ] . (43)

Supposing the spectrum of the system Hamiltonian to be discrete, the
reduced density matrix can be expanded as in Eq. (33). In this case
the equation for the entropy of the system reduces to

S(ρS) = −∑
k

pk ln pk (44)

If we suppose the evolution equation for the pk to be of the form as
described in Eq. (34) with

∑
m

Wmm′ = 0 (45)
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where now also the W may be time-dependent via some control vari-
able4, the change in the system’s entropy has two contributions. The
first comes from the entropy production of the system itself, i.e. the in-
ternal entropy production Ṡi(t). The second contribution comes from
the entropy change due to the interaction with the environment Ṡe(t).
It has been shown that Si(t) ≥ 0 at all times and the equality holds if
and only if the detailed balance condition is satisfied, i.e. if L(ρ) = 0
where L is the generator of the master equation under consideration
[12, 13].

The conclusion we can draw from this is that unless the system is
in a stationary state, the entropy is increasing. Now if the thermal
state of the system, which we showed to be a stationary state, is the
only stationary state we may conclude that thermal equilibrium is ap-
proached regardless of the initial conditions. This is the case if L has
only one eigenvalue whose real part is zero. If this is not the case there
may be more stationary states and the stationary state approached in
the long time limit may depend on the initial conditions.

2.5 deficiencies of master equations in lindblad form

One obvious short-coming of Eq. (31) is that certain environments
cannot be considered to be Markovian rendering the derivation in-
valid. This is reflected in the fact that the upper bound of the integral
in Eq. (26) cannot be taken to infinity up to the accuracy desired. The
obvious work-around however, is to use Eq. (26) as the master equa-
tion so that the time-dependence of the coefficients is still respected.
Although the preservation of complete positivity is no longer guar-
anteed by this master equation, it can still be used provided that we
work in the weak coupling limit. More can be said about how the
theory can be adjusted to describe non-Markovian environments, but
this is beyond the scope of this thesis.

A more subtle short-coming concerns energy conservation of the to-
tal system. The prediction of the master equation in Lindblad form in
Eq. (31) that if the Lindblad generator has a single eigenvalue whose
real part is zero, a thermal state is approached whose temperature
does not depend on the initial conditions violates energy conserva-
tion. After all, if we start in a highly excited state, the system loses
energy to the environment as time evolves. Due to the Born approx-
imation however, the bath is not allowed to change so that energy
conservation is violated more and more the further away from equi-
librium the initial state of the system is taken. In section 3.8 we revisit
this inconsistency.

4 Actually in chapter 3 we use the result discussed here where the time-dependence
comes from the bath temperature. This is not a control variable in the usual sense,
but the proof in [12] does not seem to depend on this.
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Finally, we note that Eq. (31) is only true if the coupling is suffi-
ciently weak because we neglect the higher order terms in the cou-
pling constant. Also, when the coupling of a quantum system to the
environment is strong enough it is expected that the correlations be-
tween the system and environment become more important. In this
case the assumption that the total system state is a product state is
incorrect. In section 3.2 we derive a system of equations that is pertur-
bative, but which can take into account strong correlations between
the system and the environment. To be able to compare this result to
an already known generalisation of the Lindblad theory proposed by
Breuer [14], we devote the next section to his proposal.

2.6 master equations in generalised lindblad form

In the previous section we mentioned that one of the short-comings
of the master equation in section 2.3 is that it assumes the reduced
density matrix to be in a product state throughout its evolution. Al-
though this does not mean that no system-bath correlations are taken
into account, as we will see explicitly in section 3.2, it does restrict
the effect the correlations between system and bath can have. In this
section we discuss a generalisation of the Lindblad theory of open
quantum systems as proposed in [14], which allows for a description
of open quantum systems that are strongly entangled with their en-
vironment.

The main idea is to suppose that the environment can be in a finite
number of normalised states, labelled by i, i.e.

ρ = ∑
i

ρi ⊗ |i〉〈i|. (46)

This extension of the space that the total density matrix is an element
of allows for more of the entanglement between the system and en-
vironment to be taken into account. The reduced density matrix is
obtained from Eq. (46) by taking the partial trace, i.e.

ρS(t) = ∑
i

ρi(t). (47)

The ρi(t) are therefore non-normalised matrices.
Supposing the dynamical map Λ to be completely positive and

trace preserving and the initial conditions to be a product state, it can
be shown that the evolution equation for ρi can be written as

ρ̇i = Kt
i (ρ1, . . . , ρn) (48)

where the Kt
i are in general time-dependent but we suppose them to

be constant in the following.
A Lindblad generator on the extended space is said to exist if we

can write

L
(

∑
i

ρi ⊗ |i〉〈i|
)

= K(ρ1, . . . , ρn)⊗ |i〉〈i| (49)
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The dynamics is guaranteed to preserve complete positivity as it does
for a master equation in Lindblad form. It turns out that such a Lind-
blad generator exists if and only if the generators Ki are of the form

Ki(ρ1, . . . , ρn) = −i[Hi, ρi] + ∑
jλ

(
Rij

λρjR
ij†
λ −

1
2
{Rij†

λ Rji
λ, ρi}

)
(50)

as shown by Breuer [14]. This is the generalisation of the result proven
by Lindblad to an extended space for the total density matrix.

However, it is again not necessary for the generators Ki to be con-
stant in order to preserve complete positivity. It is also sufficient for
the generators to be of the form as described in Eq. (50) with all Hi(t)
and Rij

λ(t) positive at all times.





3
G E N E R A L I S I N G T H E B O R N A P P R O X I M AT I O N

In this chapter we study the Born approximation by attempting to de-
rive a master equation for a particular model without assuming the
Born approximation. The model we consider is that of an arbitrary
quantum system with a discrete spectrum coupled linearly to an en-
vironment of harmonic oscillators introduced in section 1.1. It turns
out that if we do not invoke the Born approximation at all, we do
not obtain a time-local master equation as usual. Instead, we obtain
a coupled system of differential equations for matrices whose sum
is equal to the reduced density matrix. Although these equations in
principle allow for a treatment of open quantum systems beyond the
Born approximation, they are difficult to use in practice. In particular,
their numerical implementation is troublesome because the number
of equations grows quickly with the number of oscillators in the en-
vironment. In order to obtain a set of equations which can be imple-
mented more efficiently, we impose a generalised Born approxima-
tion which amounts to assuming the bath remains in a thermal state
at all times, albeit with a time-dependent temperature. This assump-
tion is weaker than invoking the Born approximation and results in
a master equation for the reduced density matrix by summing over
the system of equations derived before. Since we have introduced an
additional degree of freedom by allowing the bath temperature to be
time-dependent, we have to come up with an additonal constraint.
We consider several possible candidates for this constraint and dis-
cuss their suitability.

3.1 deriving the scalar hierarchy

In this section we derive a coupled system of equations determining
the time evolution of the entries of the reduced density matrix. This
system of equations, whose derivation does not involve any approxi-
mations, is one of the basic ingredients of the derivations to follow.

Consider a composite quantum system composed of an arbitrary
quantum system S and an environment E consisting of a finite num-
ber M of harmonic oscillators. The systems S and E are supposed to
be coupled in a linear fashion so that the Hamiltonian of the system
can be written in the following form:

H = HS + ∑
λ

ωλb†
λbλ + ∑

λ

gλ(bλL† + b†
λL). (51)

19
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Here HS is the Hamiltonian of the quantum system S, the ωλ are
the oscillator frequencies, and the gλ are the coupling constants cor-
responding to the different oscillators.

The quantity for which we want to derive an evolution equation
is the reduced density matrix of the system S. To this end, we first
consider the total system state |Ψ(t)〉. Expanding the system part of
the total state in an orthogonal basis of energy eigenstates {|ψr〉} and
the bath in the occupation number basis {|n〉} we get

|Ψ(t)〉 =
(

∑
r

ar(t)|ψr〉
)
⊗
(

∑
n

cr,n(t)|n〉
)

, (52)

with

n = (n1, . . . , nM) ∈NM
0 . (53)

Each of the M entries refers to the occupation number of the respec-
tive oscillator. For notational convenience we write

|Ψ(t)〉 = ∑
r,n

ar,n(t)|ψr, n〉, (54)

where we used the convention that

ar,n(t) := ar(t)cr,n(t). (55)

The complex function defined in Eq. (55) is a product of the probabil-
ity amplitudes of the system S being in an energy eigenstate labelled
by r and the environment being in an occupation number basis state
described by the vector n.

The reduced density matrix, which is the partial trace of the total
density matrix, can then be written as

ρS(t) = ∑
n,r,s

ar,n(t)a∗s,n(t)|ψr〉〈ψs| = ∑
n

ρn(t). (56)

Here we defined

ρn(t) = ∑
r,s

ar,n(t)a∗s,n(t)|ψr〉〈ψs|, (57)

which can be interpreted as a non-normalised matrix describing the
subsystem S provided that the environment is in a fixed state n.

In order to compute the time evolution of the coefficients of the ma-
trices defined in Eq. (57), we first consider the Schrödinger equation
for the total system in the interaction picture with respect to every-
thing but the coupling terms in the Hamiltonian, which reads

i
d
dt
|Ψ(t)〉 = ∑

λ

gλeiωλt ∑
v,m

av,m(t)L(t)b†
λ|ψv, m〉

+ ∑
λ

gλe−iωλt ∑
v,m

av,m(t)L†(t)bλ|ψv, m〉. (58)
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Here L(t) denotes the operator L in the interaction picture, which is
given by

L(t) := eiHStLe−iHSt. (59)

An equation for the time derivative of ar,n(t) is obtained by applying
〈n, ψr| to both sides of Eq. (58), which gives

iȧr,n(t) = ∑
λ,v

√
nλgλeiωλtDrv(t)av,n−eλ

(t)

+ ∑
λ,v

√
nλ + 1gλe−iωλtUr,v(t)av,n+eλ

(t). (60)

Here eλ denotes the λth unit vector in RM and we defined

Dr,v(t) := 〈ψv|L(t)|ψv〉, (61)

Ur,v(t) := 〈ψr|L†(t)|ψv〉, (62)

for notational convenience.
The coupled system of differential equations determining the ar,n(t),

i.e. the probability amplitudes for a given configuration, will hence-
forth be referred to as the scalar hierarchy. The first and second term
on the right hand side of Eq. (60) can be interpreted as the terms
contributing to the flow of quanta of energy from the system to the
environment and the other way around respectively. We emphasise
that the scalar hierarchy consists of infinitely many equations since
we have an equation like Eq. (60), i.e. a layer of the hierarchy, for each
n whose entries are non-negative integers. The layers of the scalar
hierarchy form the basic building blocks in the derivation of a time
evolution equation for the matrices ρn(t) in the following sections.

3.2 the weak coupling limit

In this section, we will use the scalar hierarchy to derive a system of
coupled differential equations for the matrices ρn. To derive this set
of equations for the ρn we are forced to do some approximations. In
particular, we invoke a weak coupling assumption from now on, i.e.
we suppose g2

λ � gµ to hold for all λ and µ. Furthermore, we assume
that the total state of the system at some initial time t0, which we take
to be 0, is a product state.

To obtain a system of coupled differential equations for the ρn, we
first consider the evolution equations for their coefficients, which we
rename to be

ρr,n,s,n(t) = ar,n(t)a∗s,n(t). (63)
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The time derivative of ρr,n,s,n(t), which encodes the time dependence
of ρn, can then be written as

iρ̇r,n,s,n(t) = ∑
λ,v

√
n1λgλeiωλtDr,v(t)ρv,n−eλ,s,n(t)

−∑
λ,w

√
n1λgλe−iωλtUw,s(t)ρr,n,w,n−eλ

(t)

+ ∑
λ,v

√
n1λ + 1gλe−iωλtUr,v(t)ρv,n+eλ,s,n(t)

−∑
λ,w

√
n1λ + 1gλeiωλtDw,s(t)ρr,n,w,n+eλ

(t) (64)

using Eq. (60).
To obtain a closed form equation for ρn(t) from Eq. (64), the right

hand side has to be made diagonal in n. This can be achieved by
integrating Eq. (64) and plugging it back into itself. The result has
terms diagonal in n as well as terms for which the sum over the
indices of the difference of the two vector indices is two. The terms
depending on the initial conditions vanish due to the assumption that
the initial state is a product state. It is important to note that this is
the first and only time that we use this assumption. Furthermore, we
want to make explicit that we do not assume the environment to be in
a thermal state initially. The terms in the resulting expression that are
still non-diagonal in n can be removed perturbatively by repeatedly
substituting the solution to Eq. (60) and keeping only the diagonal
terms. Using this procedure of integration and substitution, the time
derivative of ρn(t) up to quadratic order in the coupling parameters
is given by

ρ̇n(t) =−
∫ t

0
dt′∑

λ

g2
λeiωλ(t−t′)n1,λL(t)L†(t′)ρn(t′)

−
∫ t

0
dt′∑

λ

g2
λeiωλ(t−t′)(n1,λ + 1)ρn(t′)L†(t′)L(t)

+
∫ t

0
dt′∑

λ

g2
λeiωλ(t−t′)n1,λL(t)ρn−eλ

(t′)L†(t′)

+
∫ t

0
dt′∑

λ

g2
λeiωλ(t−t′)(n1,λ + 1)L†(t′)ρn+eλ

(t′)L(t)

+ h.c. + O(g4). (65)

Note that up to quadratic order in the coupling parameter we can re-
place ρn(t′) by ρn(t) in Eq. (65) because the difference is of quadratic
order.

Furthermore, provided that the spectrum of HS is discrete, we can
expand the coupling operators as

L(t) = ∑
ω

e−iωtL(ω) (66)

L†(t) = ∑
ω

eiωtL†(ω) (67)
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where

L(ω) = ∑
ε′−ε=ω

Π(ε)LΠ(ε′). (68)

Here Π(ε) denotes a projection operator onto the eigenspace of HS
corresponding to the eigenvalue ε. Substituting these expansions and
transforming the integration variables from t′ to t− t′, Eq. (65) can be
written as

ρ̇n(t) =− ∑
ω,ω′

ei(ω′−ω)t ∑
λ

Γd,n,λ(t, ω′)L(ω)L†(ω′)ρn(t)

− ∑
ω,ω′

ei(ω′−ω)t ∑
λ

Γu,n,λ(t, ω′)ρn(t)L†(ω′)L(ω)

+ ∑
ω,ω′

ei(ω′−ω)t ∑
λ

Γu,n−eλ,λ(t, ω′)L(ω)ρn−eλ
(t)L†(ω′)

+ ∑
ω,ω′

ei(ω′−ω)t ∑
λ

Γd,n+eλ,λ(t, ω′)L†(ω′)ρn+eλ
(t)L(ω)

+ h.c. + O(g4) (69)

for which we introduced the following notation

Γu,n,λ(t, ω′) =
∫ t

0
dt′e−iω′t′g2

λ

〈
bλ(0)b†

λ(t
′)
〉

n
(70)

Γd,n,λ(t, ω′) =
∫ t

0
dt′e−iω′t′g2

λ

〈
b†

λ(t
′)bλ(0)

〉
n

(71)

We recall from section 2.3 that if the typical time scale for the evo-
lution of the system is large compared to |ω − ω′|, the oscillations
average out over time allowing us to neglect them unless ω = ω′.
Under this assumption Eq. (69) reduces to

ρ̇n(t) =− i ∑
ω,λ

Sd,n,λ(t, ω)
[

L(ω)L†(ω), ρn(t)
]

− i ∑
ω,λ

Su,n,λ(t, ω)
[

L†(ω)L(ω), ρn(t)
]

− 1
2 ∑

ω,λ
γd,n,λ(t, ω)

{
L(ω)L†(ω), ρn(t)

}
− 1

2 ∑
ω,λ

γu,n,λ(t, ω)
{

L†(ω)L(ω), ρn(t)
}

+ ∑
ω,λ

γu,n−eλ,λ(t, ω)L(ω)ρn−eλ
(t)L†(ω)

+ ∑
ω,λ

γd,n+eλ,λ(t, ω)L†(ω)ρn+eλ
(t)L(ω)

+ O(g4) (72)

where we defined

γd,n,λ(t, ω) = Γd,n,λ(t, ω) + Γ∗d,n,λ(t, ω) (73)

γu,n,λ(t, ω) = Γu,n,λ(t, ω) + Γ∗u,n,λ(t, ω) (74)
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as well as

Sd,n,λ(t, ω) =
1
2i
(
Γd,n,λ(t, ω)− Γ∗d,n,λ(t, ω)

)
(75)

Su,n,λ(t, ω) =
1
2i
(
Γu,n,λ(t, ω)− Γ∗u,n,λ(t, ω)

)
. (76)

We will refer to the coupled set of differential equations described by
Eq. (72) as the hierarchy. Note that although each layer of the hierarchy
is similar to a master equation of Lindblad-type, it is not really in
this form. The reason for this is that the right hand side of Eq. (72)
depends not only on ρn but also on other matrices.

Although the hierarchy is attractive from a theoretical perspective
because it does not involve the Born approximation or the assumption
that the bath is Markovian, it also has its disadvantages. One problem
is that when one is interested in using the master equation numeri-
cally, it is inevitable to take some cut-off in the hierarchy. How such a
cut-off can be taken consistently will be discussed in section 4.1. How-
ever, still we are left with very many matrices that we are forced to
take into account since the number of matrices required grows with
the number of bath modes. This problem can be mitigated slightly
by restricting our attention to fluctuations around an initial thermal
state for the bath as we show in section 4.1 but still solving these
equations is significantly more time-consuming than solving a single
master equation.

3.3 generalised lindblad form

Comparing the discussion in section 2.6 to the derivation of the hi-
erarchy in the previous sections, one might expect it to be possible
to write our equations in generalised Lindblad form. If this were the
case, it would have the advantage of guaranteeing that our equations
give rise to trace-preserving and completely positive dynamics. More-
over, in this section we show that to bring Eq. (72) into generalised
Lindblad form approximations would have to be done that cannot be
justified.

The most general form for which we know the dynamics to be com-
pletely positive and trace-preserving is the scenario where the rates
in the generalised Lindblad-form are time-dependent but positive. In-
deed, supposing the rates to be positive, we would be able to write
Eq. (72) in generalised Lindblad form as defined in Eq. (50) provided
that we take the Hn to be

Hn = ∑
ω,λ

Sd,n,λ(t, ω)L(ω)L†(ω)

+ ∑
ω,λ

Su,n,λ(t, ω)L†(ω)L(ω), (77)
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and the non-zero entries of R to be

Rn,n−eλ
1,ω (t) =

√
γd,n,λ(t, ω)L(ω), (78)

Rn,n+eλ
1,ω (t) =

√
γu,n+eλ,λ(t, ω)L†(ω). (79)

To see why this works, it should be noted that

γu,n−eλ,λ(t, ω) = γd,n,λ(t, ω). (80)

However, the assumption that the decay rates are positive does not
hold. After all, the decay rates are multiples of some time-dependent
complex exponential integrated over time.

Furthermore, we cannot, as is usually done to obtain an equation in
Lindblad form, take the upper bound of the time integrals to infinity
at each level of the hiearchy yielding constant and positive rates. This
is due to the fact that the rates are not superpositions of oscillating
terms whose sum decays, but consist of a single oscillating term with
nothing to interfere with. This can be seen from the formulas above
by noting that the rates corresponding to the different oscillators are
equal to two times the real part of∫ t

0
dt′e−iω′t′g2

λ

〈
bλ(0)b†

λ(t
′)
〉

n
(81)

whereas there is only one rate if we assume the Born approximation
that is given by ∫ t

0
dt′e−iω′t′ ∑

λ

g2
λ

〈
bλ(0)b†

λ(t
′)
〉

0
. (82)

The superposition in Eq. (81) is what allows the integrand to decay
quickly with time due to interference effects between different fre-
quencies. From the fact that we have a single oscillation in Eq. (82)
it is clear that no such cancellation effects can occur, which prevents
us from taking the long time limit. This leads us to the conclusion
that the hierarchy derived in section 3.2 cannot be brought into gen-
eralised Lindblad form.

This does not mean however, that it is not possible at all to de-
rive a master equation in generalised Lindblad form from first prin-
ciples, it only means that the Fock basis for the environment is not
the right tool to do so. In fact, master equations in Lindblad form
have been derived [12, 15, 16]. There are two important differences
between our approach and the one taken in [12] which we would
like to clarify. Firstly, for the numerical implementation in [12] it is
assumed that the coupling operators of the environment are Gaus-
sian orthogonal random matrices whereas we couple the system to
the bath with quantum mechanical raising and lowering operators.
Secondly, the basis used to describe the environment in [12] is the en-
ergy eigenbasis. Why the basis is an important factor in the success
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can be seen as follows. If we consider the conditioned time evolution
for the system where the bath is in a given energy eigenstate, it may
be a superposition of many Fock states. These in turn can give rise
to the superpositions in the integrands of the rates that are neces-
sary to take the long time limit and arrive at a master equation in
generalised Lindblad form. However, using the energy eigenbasis for
the environment in the model we consider in this thesis is far from
straightforward.

3.4 imposing the born approximation

Verifying that the hierarchy reduces to the usual Lindblad-type mas-
ter equation if we impose the Born-Markov approximation is an im-
portant consistency check of the hierarchy derived in section 3.2 which
we perform in this section. The method by which we do so however,
also hints towards a possible generalisation of the Born approxima-
tion as introduced in section 3.5.

To impose the Born approximation on the hierarchy we introduce
the following ansatz:

ρn(t) =
e−β ∑µ ωµnµ ρS(t)

∑m e−β ∑µ ωµmµ
. (83)

It supposes the environment to be in a thermal state at an inverse
temperature β which does not change as the system evolves. Impos-
ing this ansatz for the case where the environment starts in a thermal
state with inverse temperature β is therefore equivalent to enforcing
the Born approximation.

Now that the different levels of the hierarchy no longer depend
on different matrices, the hierarchy can be summed over to obtain
a master equation for ρS(t). To be more precise, by plugging in the
ansatz from Eq. (83) into Eq. (72) and summing over n we obtain a
closed form equation for ρS(t). The resulting equation includes terms
of the form

∑n nλe−β ∑µ ωµnµ

∑m e−β ∑µ ωµmµ
. (84)

This expression represents the expectation value of the number oper-
ator of a single bath oscillator which is given by

nλ(β) :=
1

eβωλ − 1
(85)
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as is reviewed in appendix A. The resulting equation for the reduced
density matrix reads

ρ̇S(t) = ∑
n

ρ̇n(t) =

− i ∑
ω

∫ t

0
dt′Im

[
α+(t′, ω, β)

] [
L(ω)L†(ω), ρS(t)

]
− i ∑

ω

∫ t

0
dt′Im

[
α−(t′, ω, β)

] [
L†(ω)L(ω), ρS(t)

]
−∑

ω

∫ t

0
dt′Re

[
α+(t′, ω, β)

] {
L(ω)L†(ω), ρS(t)

}
−∑

ω

∫ t

0
dt′Re

[
α−(t′, ω, β)

] {
L†(ω)L(ω), ρS(t)

}
+ 2 ∑

ω

∫ t

0
dt′Re

[
α−(t′, ω, β)

]
L(ω)ρS(t)L†(ω)

+ 2 ∑
ω

∫ t

0
dt′Re

[
α+(t′, ω, β)

]
L†(ω)ρS(t)L(ω)

+ O(g4), (86)

where we defined

α+(t′, ω, β) = ∑
λ

g2
λe−i(ω−ωλ)t′nλ(β), (87)

α−(t′, ω, β) = ∑
λ

g2
λe−i(ω−ωλ)t′(nλ(β) + 1), (88)

which represent the correlation functions of the bath.
Thus far we have imposed the Born approximation, but have made

no assumption on the Markovianity of the bath yet. Recall that we
called a bath Markovian if the correlation functions drop of quickly
with respect to the time scales over which ρS(t) changes, which is
used to justify taking the limit of the upper bound of the integrals
in Eq. (86) to ∞. Again we stress that this approximation on the inte-
gral is only truly valid if the spectrum of the system is continuous as
otherwise we always have some finite recurrence time. Therefore we
replace the finite model for the bath with one with a continuous spec-
trum, which guarantees irreversibility, such that the dynamics before
the recurrence time of the finite model is identical.

The bath only influences the reduced system dynamics via its cor-
relation functions in the perturbative equation that we derived, which
makes it sufficient to find a continuum model that accurately repro-
duces these before the recurrence time. In practice, the replacement
of a finite bath model can be achieved by replacing the sums over λ

by an integral over ω and g2
λ by a function J(ω) called the spectral

density. To see how this can be consistent, note that

J(ω) = ∑
λ

g2
λδ(ω−ωλ) (89)
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gives the same result as the finite bath. With this choice of J(ω) one
could rightly argue that we have not changed anything. However, we
can approximate J(ω) with an actual function as long as the correla-
tion functions do not change significantly and we nevertheless end
up with a continuous spectrum and irreversibility.

Supposing we can find some J(ω) that accurately describes the
influence of the bath on the system dynamics, we can take the long
time limit on the integrals, which, using∫ ∞

0
e±iωt′dt′ = ±iP 1

ω
+ πδ(ω), (90)

gives

α+(t, ω, β) = π J(ω)n(β, ω) + iP
∫ ∞

0
dω̃

J(ω̃)

ω̃−ω
n(β, ω̃)

α−(t, ω, β) = π J(ω)(n(β, ω) + 1) + iP
∫ ∞

0
dω̃

J(ω̃)

ω̃−ω
(n(β, ω̃) + 1),

where

n(β, ω) =
1

eβω − 1
. (91)

Using the relations above, Eq. (86) can be reduced to

ρ̇S(t) =− i[HLS, ρS(t)]

− π ∑
ω

J(ω)n(β, ω)
{

L(ω)L†(ω), ρS(t)
}

− π ∑
ω

J(ω)(n(β, ω) + 1)
{

L†(ω)L(ω), ρS(t)
}

+ 2π ∑
ω

J(ω)(n(β, ω) + 1)L(ω)ρS(t)L†(ω)

+ 2π ∑
ω

J(ω)n(β, ω)L†(ω)ρS(t)L(ω)

+ O(g4), (92)

where

HLS = ∑
ω

P
∫ ∞

0
dω̃

J(ω̃)

ω̃−ω
n(β, ω̃)L(ω)L†(ω)

+ ∑
ω

P
∫ ∞

0
dω̃

J(ω̃)

ω̃−ω
(n(β, ω̃) + 1)L†(ω)L(ω) (93)

is usually referred to as the Lamb shift Hamiltonian.
This shows how the master equation in Lindblad form derived in

section 2.3 can be derived from the hierarchy by invoking the Born
approximation.
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3.5 generalising the born approximation

The master equation in Lindblad form from section 3.4 has certain ad-
vantages compared to the hierarchy we introduced in section 3.2. For
example, we know from section 2.1 and section 2.2 that the master
equation in Lindblad form preserves fundamental physical proper-
ties, whereas we have no such guarantee for the weak-coupling hier-
archy. Furthermore, the master equation in Lindblad form is easier to
solve numerically. The difference in numerical complexity is mainly
due to the fact that the number of density matrices we need to com-
pute for the hierarchy grows with the number of particles and the
number of excitations allowed as we discuss in section 4.1. However,
the master equation in Lindblad form also has disadvantages com-
pared to our hierarchy. Since we used the Born approximation in
its derivation, it does not allow the bath to change its state, an as-
sumption that we expect to fail when we consider systems far from
equilibrium. In this section we propose a compromise between the
generality of the hierarchy and the desirable properties of the master
equation in Lindblad form by introducing what we call the generalised
Born approximation.

The generalised Born approximation assumes that the environment
remains in a thermal state throughout the evolution, but is allowed
to change its temperature, i.e.

ρtot(t) = ρS(t)⊗
e−β′(t)HB

TrB
[
e−β′(t)HB

] . (94)

This condition can be imposed on the hierarchy by substituting

ρn(t) =
e−β′(t)∑µ ωµnµ ρS(t)

TrS ∑m e−β′(t)∑µ ωµmµ ρS(t)
. (95)

Other than being a straightforward generalisation of the Born approx-
imation, this ansatz can be motivated by considering the results pre-
sented in [2]. In this paper a system consisting of a single harmonic
oscillator is considered that is coupled via a Caldeira-Legett spectral
density to an environment consisting of harmonic oscillators. The pa-
per shows analytically that in the weak coupling limit the system
evolves to a thermal state, albeit at a temperature that is not necessar-
ily equal to the initial temperature of the bath. This thermalisation to
a temperature different from the initial one is incompatible with the
Born approximation but not the generalisation proposed here.

Imposing the generalised Born approximation on the hierarchy by
substituting the ansatz from Eq. (95), we can repeat the procedure of
resumming the hierarchy to obtain an expression nearly identical to
Eq. (86). The only difference between the equation we obtain and Eq.
(86) is that the constant inverse bath temperature β is replaced by a
time-dependent inverse bath temperature β′(t). Thus by imposing the
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generalised Born approximation we have reduced the hierarchy to a
time-local master equation in Lindblad form with a time-dependent
generator. This time-local master equation can be more solved more
efficiently numerically than the hierarchy because we now again only
need one density matrix. Furthermore, the fact that we now have a
time-local master equation with time-dependent Lindblad generator
forms the starting point for showing desirable properties similar to
those satisfied by equations in Lindblad form as discussed in section
3.6.

3.6 properties of the generalisation

Thus far we have derived a Lindblad-type master equation where the
time-dependence of the elements from the decoherence matrix comes
from the time-dependence of the bath temperature. The number of
equations however, is still not big enough to determine the evolution
of all the variables which necessitates the imposition of an additional
constraint on the dynamics. In this section however, we do not discuss
candidates for this constraint to which we devote section 3.8. Instead
we suppose that a constraint has been found that fixes the dynamics
and satisfies β′(t) > 0 at all times and discuss the general proper-
ties that the master equation with the time-dependent temperature
satisfies under this assumption.

From the discussion in chapter 2 we can draw the following con-
clusions about the generalised master equation we derived:

• It preserves hermiticity and the trace because it is a Lindblad-
type master equation.

• Under the assumption that β′(t) > 0 at all times, it preserves
complete positivity becacuse the elements of the decoherence
matrix are positive.

• It does not generate a quantum dynamical semi-group because
the elements of the decoherence matrix are time-dependent.

• The change in entropy is non-negative at every point in time
because it is a time-dependent Markovian master equation.

Thus the Lindblad-like master equation we derived satisfies the most
important physical properties while being more general than a master
equation in Lindblad form.

3.7 steady state in the long time limit

Generally, open quantum systems in contact with a large environ-
ment approach a thermal state in the long time limit provided that
the coupling is sufficiently weak. This is consistent with the predic-
tions of the Born-Markov master equations provided that there are
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no conservation laws prohibiting thermalisation. In this section we
assume that β′(∞) exists to show that in the long time limit a thermal
state of the system is a steady state solution, provided that it has the
same temperature as the environment. Although this is not equiva-
lent to showing that a thermal state is approached, it is a necessary
condition that has to be satisfied.

A general thermal state for the system at some a priori unspecified
temperature β′ is given by

ρth
S =

e−β′HS

TrS
[
e−β′HS

] . (96)

Before plugging in this equation as an ansatz into the master equation
derived using the generalised Born approximation, we note that

ρth
S L(ω) = eβ′ω L(ω)ρth

S (97)

ρth
S L†(ω) = e−β′ω L†(ω)ρth

S (98)

as a result of the definition for L(ω). From these relations we see that[
ρth

S , HLS

]
= 0 (99)

as well as {
L(ω)L†(ω), ρth

S

}
= eβ′ω L(ω)ρth

S L†(ω) (100){
L†(ω)L(ω), ρth

S

}
= e−β′ω L†(ω)ρth

S L(ω). (101)

From Eq. (100) and Eq. (101) we conclude that our thermal state
ansatz is a solution provided that

n(β∞, ω) = (n(β∞, ω) + 1)e−β′ω. (102)

This condition is satisfied if and only if β′ = β∞, which shows that
a thermal state of the system with the temperature of the bath is a
solution in the long time limit.

3.8 imposing energy conservation

The generalised Born approximation introduces a new unknown, the
inverse temperature of the bath, for which an additional requirement
on the system has to be imposed in order to fix it. In this section
we discuss if energy conservation of the total system can fulfil this
role. After all, the violation of energy conservation due to the Born
approximation, as discussed in section 2.5, was the main motivation
for us to study generalisations of the Born approximation in the first
place.
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Energy conservation of the total system is usually imposed by re-
quired that

0 =
d
dt

Tr [Hρ(t)] (103)

where ρ(t) is the density matrix of the total system. One could plug
in the assumption from Eq. (94) which gives

0 =
d
dt

Tr

[
H

(
ρS(t)⊗

e−β′(t)HB

TrB
[
e−β′(t)HB

])] . (104)

Introducing the following notation for clarity

〈...〉S := TrS [...ρS(t)] (105)

〈...〉B := TrB

[
...

e−β′(t)HB

TrB
[
e−β′(t)HB

]] (106)

allows us to write Eq. (104) as

0 =
d
dt
〈HS〉S

− β̇′(t)
[
〈HS〉S〈HB〉B + 〈H2

B〉B
]

+ β̇′(t) [〈HS〉S + 〈HB〉B] 〈HB〉B. (107)

Note that in the above we used TrS [ρ̇S(t)] = 0, which holds because
the evolution equation for the reduced density matrix is a Linblad-
like master equation. Thus β̇′(t) can now be written as

β̇′(t) =
d
dt 〈HS〉S

〈H2
B〉B − 〈HB〉2B

. (108)

Here the denominator in Eq. (108) is the variance of the bath energy
which can be explicitly calculated as shown in appendix A.

An important check for the consistency of our equations is that the
generalisation of the Born approximation that we propose does not
violate preservation of the trace of the total system. This can be seen
explicitly by considering

1 = Tr

[
ρS(t)⊗

e−β′(t)HB

TrB
[
e−β′(t)HB

]] . (109)

Taking the derivative with respect to time gives

0 =
d
dt
〈I〉S − β′(t)〈I〉S〈HB〉B + β′(t)〈I〉S〈HB〉B〈I〉B, (110)

where I denotes the unit operator. Thus we see that Eq. (110) reduces
to 0 = 0 showing that the total trace is conserved.
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An important step after deriving a master equation is determining
its domain of validity. In order to see when the system of equations in-
troduced in this section is expected to produce results different from
the standard second order equation using the Born approximation,
let us consider the bath temperature β′(t), which by integrating Eq.
(108), can be written as

β′(t) = β +
∫ t

0
dt′

d
dt 〈HS〉S

〈H2
B〉B − 〈HB〉2B

. (111)

From this we see that we expect different results if the change in
energy of the system is comparable to the energy variance of the bath
for non-negligible periods of time. If the bath is accurately described
by the Born approximation, i.e. if its heat capacity is huge compared
to the energy transfer, we should recover the results obtained using
the Born-Markov master equation to high accuracy.

In summary, we have derived two equations, one time-local master
equation in Lindblad-form with a time-dependent generator and a
scalar equation determining the time evolution of the bath tempera-
ture. These equations are coupled since the master equation depends
on β′(t), and Eq. (108) depends on both the current temperature of
the bath and the current reduced density matrix. Furthermore, we
have imposed energy conservation on the total system and checked
that the trace of the total system remains conserved. However, it turns
out that although the condition for energy conservation that we get
seems appealing1, the resulting numerical predictions are not better
than those predicted by the master equation in Lindblad form as we
will see in chapter 4. To explain the failure of Eq. (111) as displayed in
section 4.3, we now consider a subtle point in the derivation outlined
above.

A more precise version of any ansatz that supposes the density
matrix of the total system to be a product state should read like

ρ(t) = ρS(t)⊗ ρB(t) + h.o. (112)

Here the higher order terms describe the entanglement that can be ne-
glected in the weak coupling limit. We implicitly assumed that these
higher order terms do not contribute. Although this is usually the
case since we usually plug such an ansatz into a perturbative expan-
sion whose leading order term is of second order. In this case however,
if there terms linear in the coupling in Eq. (112), it could give rise to
terms of second order in Eq. (104). Neglecting these terms introduces
an inconsistency because we do keep the terms quadratic in the cou-
pling arising from the derivative with respect to ρS(t) in Eq. (107).
This inconsistency is a possible explanation for the numerical results
presented in section 4.3.

1 Since the energy variance of a bosonic bath is equal to kBT2 times the heat capacity,
Eq. (108) is consistent with the thermodynamic definition of the heat capacity.
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To impose energy in a way more consistent with the perturbative
approach we have chosen, we consider a second order perturbative
expansion of d

dt 〈H〉 = 0 before inserting our ansatz. To this end we
note that we can consider the energy of the total system in the inter-
action picture, i.e.

〈H〉 = Tr [Hρ(t)] = Tr [HI(t)ρI(t)] . (113)

We emphasise that ρ(t) denotes the density matrix of the total system
and Tr denotes the trace over all degrees of freedom. Furthermore,
we introduce the notation

HI(t) = eiH0tHe−iH0t (114)

for the interaction picture Hamiltonian. Similarly,

ρI(t) = e−iH0tρ(t)eiH0t (115)

denotes the total density matrix in the interaction picture. Since we
have been considering the density matrix to be in the interaction pic-
ture throughout this thesis, we drop the index I from now on.

Imposing energy conservation is then equivalent to requiring

0 =
d
dt
〈H〉 = Tr

[
(H0 + HI(t))

d
dt

ρ(t)
]

. (116)

To derive the final expression, we already used that we eventually
plug in the generalised Born ansatz for the total density matrix, which
is a product state between the reduced density matrix and a thermal
state for the environment. This causes terms involving a product of
an odd number of interaction picture Hamiltonians to vanish under
the trace.

Since our goal is to find an equation that fixes β′(t) from Eq. (116),
we recall that in section 2.3 we derived the evolution of the total den-
sity matrix up to highest order in perturbation theory to be given
by

dρ(t)
dt

=
1
i
[HI(t), ρ(0)]−

∫ t

0
ds [HI(t), [HI(t− s), ρ(t− s)]] . (117)

Plugging Eq. (117) into Eq. (116) gives

0 = −
∫ t

t0

Tr [H0 [HI(t), [HI(t− s), ρ(t− s)]]] (118)

where we again used the fact that expectation values of odd factors of
HI(t) do not concern us since we eventually plug in the generalised
Born ansatz. Furthermore, we can replace ρ(t− s) by ρ(t) because the
difference is of higher order.
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Now that we have an equation expressing energy conservation at
second order in perturbation theory we can plug in the generalised
Born ansatz, which we recall to be given by

ρ(t) = ρS(t)⊗
e−β′(t)HB

Tr
[
e−β′(t)HB

] . (119)

Plugging this into Eq. (118) and simplifying the commutators using

L(t) = ∑
ω

e−iωtL(ω) (120)

and employing the secular approxmation, we get

0 =Tr

[
H0

(
∑
ω

∑
λ

∫ t

0
dsg2

λei(ωλ−ω)s(L†(ω)ρS(t)L(ω)⊗ bλ
e−β′(t)HB

TrB
[
e−β′(t)HB

]b†
λ)

)]

−Tr

[
H0

(
∑
ω

∑
λ

∫ t

0
dsg2

λei(ωλ−ω)s(L(ω)L†(ω)ρS(t)⊗ b†
λbλ

e−β′(t)HB

TrB
[
e−β′(t)HB

] ))]

+Tr

[
H0

(
∑
ω

∑
λ

∫ t

0
dsg2

λei(ωλ−ω)s(L(ω)ρS(t)L†(ω)⊗ b†
λ

e−β′(t)HB

TrB
[
e−β′(t)HB

]bλ)

)]

−Tr

[
H0

(
∑
ω

∑
λ

∫ t

0
dsg2

λei(ωλ−ω)s(ρS(t)L†(ω)L(ω)⊗ e−β′(t)HB

TrB
[
e−β′(t)HB

]bλb†
λ)

)]
+h.c.

Thus far the calculation is the same as when one would try to derive
a master equation. Now however, we also have the operator H0 in the
trace. Let us consider the two operators HS and HB that compose H0

separately. If we consider the terms involving HS, we note that taking
the trace over the degrees of freedom of the environment is unaffected
by its presence, so we simply get the trace over HS times the time
derivative of the reduced density matrix. For HB = ∑µ ωµb†

µbµ we
consider the cases where µ is unequal or equal to λ separately. In the
former case we get a scalar factor multiplied with the trace over the
time derivative of the reduced density matrix which gives zero. In the
latter case we get different combinations of creation and annihilation
operators which gives rise to quadratic terms in the number operator,
whose exact form we turn to now.
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Taking the trace and replacing ∑ωλ
g2

λ by
∫

dω̃ J(ω̃) and taking the
long time limit gives

0 = TrS [HSρ̇S(t)]

+ ∑
ω

∫ ∞

0
ds
∫

dω̃ J(ω̃)ei(ω̃−w)sn(β′, ω̃)(n(β′, ω̃)− 1)ω̃Tr
[

L†(ω)ρS(t)L(ω)
]

−∑
ω

∫ ∞

0
ds
∫

dω̃ J(ω̃)ei(ω̃−w)sn(β′, ω̃)2ω̃Tr
[

L(ω)L†(ω)ρS(t)
]

+ ∑
ω

∫ ∞

0
ds
∫

dω̃ J(ω̃)ei(ω̃−w)s(n(β′, ω̃) + 1)2ω̃Tr
[

L(ω)ρS(t)L†(ω)
]

−∑
ω

∫ ∞

0
ds
∫

dω̃ J(ω̃)ei(ω̃−w)s(n(β′, ω̃) + 1)n(β′, ω̃)ω̃Tr
[
ρS(t)L†(ω)L(ω)

]
+ ∑

ω

∫ ∞

0
ds
∫

dω̃ J(ω̃)e−i(ω̃−w)sn(β′, ω̃)(n(β′, ω̃)− 1)ω̃Tr
[

L†(ω)ρS(t)L(ω)
]

−∑
ω

∫ ∞

0
ds
∫

dω̃ J(ω̃)e−i(ω̃−w)sn(β′, ω̃)2ω̃Tr
[

L(ω)L†(ω)ρS(t)
]

+ ∑
ω

∫ ∞

0
ds
∫

dω̃ J(ω̃)e−i(ω̃−w)s(n(β′, ω̃) + 1)2ω̃Tr
[

L(ω)ρS(t)L†(ω)
]

−∑
ω

∫ ∞

0
ds
∫

dω̃ J(ω̃)e−i(ω̃−w)s(n(β′, ω̃) + 1)n(β′, ω̃)ω̃Tr
[
ρS(t)L†(ω)L(ω)

]
.

This expression can be simplified by using the cyclicity of the trace
which reduces it to

0 = TrS [HSρ̇S(t)]

−∑
ω

∫ ∞

0
ds
∫

dω̃ J(ω̃)ei(ω̃−w)sn(β′, ω̃)ω̃Tr
[

L†(ω)ρS(t)L(ω)
]

+ ∑
ω

∫ ∞

0
ds
∫

dω̃ J(ω̃)ei(ω̃−w)s(n(β′, ω̃) + 1)ω̃Tr
[

L(ω)ρS(t)L†(ω)
]

−∑
ω

∫ ∞

0
ds
∫

dω̃ J(ω̃)e−i(ω̃−w)sn(β′, ω̃)ω̃Tr
[

L†(ω)ρS(t)L(ω)
]

+ ∑
ω

∫ ∞

0
ds
∫

dω̃ J(ω̃)e−i(ω̃−w)s(n(β′, ω̃) + 1)ω̃Tr
[

L(ω)ρS(t)L†(ω)
]

.

Finally, we can make use of Eq. (90) to arrive at the following final
expression.

0 = TrS [HSρ̇S(t)]

−∑
ω

2π J(ω)n(β′, ω̃)ωTr
[

L†(ω)ρS(t)L(ω)
]

+ ∑
ω

2π J(ω)(n(β′, ω) + 1)ωTr
[

L(ω)ρS(t)L†(ω)
]

. (121)

Here we can interpret the first term as the change of energy of the
system and the remaining two terms as flow of energy to and from
the bath respectively.
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To simplify the second order energy conservation equation we re-
call that

L(ω) = ∑
ε′−ε=ω

|ε〉〈ε|L|ε′〉〈ε| = ∑
ε′−ε=ω

Lεε′ |ε〉〈ε′| (122)

L†(ω) = ∑
ε′−ε=ω

|ε〉〈ε|L†|ε′〉〈ε| = ∑
ε′−ε=ω

L∗ε′ε|ε〉〈ε′| (123)

where |ε〉 refers to the energy basis of the system and we have intro-
duced the following convention

Lεε′ = 〈ε|L|ε′〉 = 〈ε′|L†|ε〉∗ = (L†
ε′ε)
∗. (124)

Using these expansions it can be shown that the right hand side of
Eq. (121) is actually zero regardless of β′, i.e. energy is conserved up
to second order regardless of the inverse temperature of the bath if
we assume the initial state to be a product state. The generalised Born
ansatz with time-dependent temperature is therefore consistent with
energy conservation although imposing energy conservation does not
fix the temperature of the bath.

3.9 discussion

In this chapter we have considered possible generalisations of the
master equation in Lindblad form derived in chapter 2 for the model
Hamiltonian introduced in Eq. (8). We showed that if the Born approx-
imation is not invoked, the reduced density matrix is determined by
an infinite system of coupled differential equations instead of a sin-
gle master equation. Furthermore, we introduced an ansatz called
the generalised Born approximation that allows the temperature of
the environment to change over time. This ansatz allowed us to re-
duce the hierarchy to a Lindblad-type master equation. We showed
that this master equation preserves the most important physical prop-
erties provided that the additional constraint required to fix the evo-
lution of the bath temperature satisfies certain conditions. Finally, we
considered two ways of imposing energy conservation of the total sys-
tem which we aimed to use as a constraint to fix the newly introduced
time-dependent bath temperature. The first way of imposing energy
conservation results in a system of equations whose predictions re-
duce to those of the master equation in Linblad form in the limit
where the bath is continuous, but they do not necessarily yield more
accurate predictions away from this limit as we will show in chapter
4. We explained the failure of this constraint to produce better numer-
ical predictions by arguing that its derivation is not consistent with
our perturbative approach. The second way in which we imposed
energy condition, which was fully consistent with our second order
approach, showed that the generalised Born approximation is consis-
tent with energy conservation provided that we assume the secular
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and the Markov approximation, but did not fix the temperature of
the environment.



4
N U M E R I C A L T E S T S

In this chapter we study the equations derived in chapter 3 from
a numerical perspective. In section 4.1 we start with some general
considerations regarding the system of equations determining the re-
duced density matrix, without relying on the Born approximation,
derived in section 3.2. In particular, we consider the number of ma-
trices required to solve the equations numerically for given cut-off
parameters. In section 4.2 we discuss numerical results that indicate
that in the limit where the number of modes in the environment di-
verges, the predictions obtained by numerically solving the hierarchy
coincide with those obtained when solving the standard second order
equation, whose derivation involves the Born approximation. By com-
paring to numerically exact results, we also evaluate its predictions
in the case where the consists of few oscillators.

In section 4.3, we support the claim we made in section 3.8 that
Eq. (108) is not the correct formula to determine the evolution of
the inverse temperature of the bath. In the previous chapter we gave
a general argument concerning the inconsistent use of perturbation
theory, here we support it with numerical evidence instead.

4.1 truncating the hierarchy

One may rightly wonder how the hierarchy involving infinitely many
equations and infinitely many non-normalised density matrices can
be solved numerically. The honest answer is that it cannot be done
without further approximations. What can be done however, is solv-
ing a closely related problem where we introduced some cut-off, which,
if chosen correctly, should make the solution of this new problem
equivalent to solving the hierarchy up to the desired accuracy. In this
section we discuss how this truncation can be performed and how
it affects the number of non-normalised density matrices required to
solve the problem numerically.

One way the hierarchy can be truncated is by imposing the restric-
tion that each oscillator in the environment can have at most a fixed
finite number of quanta d. A problem with this approach is that the
number of non-normalised density matrices involved in the hierar-
chy then grows exponentially with the number of oscillators in the
environment M, i.e. the number of non-normalised density matrices
required to solve the truncated hierarchy numerically would be dM.
Furthermore, it is likely that there will be non-normalised density
matrices that remain zero throughout the evolution which therefore

39
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do not play a role. Therefore we first discuss an alternative approach
to deriving a hierarchy which we use to come to a smarter truncation
scheme.

Recall that the model under consideration is that of a system cou-
pled to a single thermal bath1 initially. It turns out that this system
can be equivalently modelled by the same quantum systems coupled
to two identical baths at zero temperature using what is called a ther-
mofield transform, see [17] and references therein. To be more precise,
it transforms the model Hamiltonian we introduced in section 1.1 to

H = HS + ∑
λ

ωλb†
1λb1λ + ∑

λ

h1λ(b1λL† + b†
1λL)

−∑
λ

ωλb†
2λb2λ + ∑

λ

h2λ(b†
2λL† + b2λL) (125)

where b1λ and b2λ are the annihilation operators of the first and sec-
ond bath respectively. The constants describing the coupling to both
baths are given by

h1λ = gλ

√
1 + nλ (126)

h2λ = gλ

√
nλ (127)

In this new formulation of the problem, excitations in the first bath
and second bath correspond to ’particles’ and ’holes’ in the environ-
ment we considered before doing the thermofield transform respec-
tively. Let us discuss an example to clarify what we mean by this
terminology. Consider a state for the environment where a given os-
cillator in the first bath has x excitations corresponds to a state for the
environment in the picture before the thermofield transform where
the same oscillator has x excitations on top of its thermal energy dis-
tribution.

In this case the reduced density matrix of the system can be com-
posed similarly to before as

ρS(t) = ∑
n

ρn(t) (128)

where the only difference lies in the fact that now we have that
n ∈ N2M. In fact, the derivation from section 3.1 and 3.2 can be
straightforwardly generalised to this case. If we introduce the follow-
ing definitions

γi,u/d,n(t, ω) = Γi,u/d,n(t, ω) + Γ∗i,u/d,n(t, ω) (129)

Si,u/d,n(t, ω) =
1
2i
(
Γi,u/d,n(t, ω)− Γ∗i,u/d,n(t, ω)

)
(130)

1 Thus far we referred to the surroundings of the quantum system as its environment
because it was only necessary to assume that it was in a thermal state initially at
some points during the derivation. Here it essential throughout because it is a re-
quirement to do the thermofield transform. Therefore we will use the term bath or
thermal bath in this section.
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where

Γ1,u,n(t, ω′) =
∫ t

0
dt′e−iω′t′ ∑

λ

h2
1λ

〈
b1λ(0)b†

1λ(t
′)
〉

n

Γ1,d,n(t, ω′) =
∫ t

0
dt′e−iω′t′ ∑

λ

h2
1λ

〈
b†

1λ(t
′)b1λ(0)

〉
n

Γ2,u,n(t, ω′) =
∫ t

0
dt′eiω′t′ ∑

λ

h2
2λ

〈
b2λ(0)b†

2λ(t
′)
〉

n

Γ2,d,n(t, ω′) =
∫ t

0
dt′eiω′t′ ∑

λ

h2
2λ

〈
b†

2λ(t
′)b2λ(0)

〉
n

the resulting hierarchy we get from repeating the derivation consists
of layers given by

ρ̇n(t) = ∑
ω

γ1,u,n−e1λ
(t, ω)L(ω)ρn−e1λ

(t)L†(ω)

+ ∑
ω

γ1,d,n+e1λ
(t, ω)L†(ω)ρn+e1λ

(t)L(ω)

− i ∑
ω

S1,d,n(t, ω)
[

L(ω)L†(ω), ρn(t)
]

− i ∑
ω

S1,u,n(t, ω)
[

L†(ω)L(ω), ρn(t)
]

− 1
2 ∑

ω

γ1,d,n(t, ω)
{

L(ω)L†(ω), ρn(t)
}

− 1
2 ∑

ω

γ1,u,n(t, ω)
{

L†(ω)L(ω), ρn(t)
}

+ ∑
ω

γ2,d,n+e2λ
(t, ω)L(ω)ρn+e2λ

(t)L†(ω)

+ ∑
ω

γ2.u,n−e2λ
(t, ω)L†(ω)ρn−e2λ

(t)L(ω)

− i ∑
ω

S2,u,n(t, ω)
[

L(ω)L†(ω), ρn(t)
]

− i ∑
ω

S2,d,n(t, ω)
[

L†(ω)L(ω), ρn(t)
]

− 1
2 ∑

ω

γ2,u,n(t, ω)
{

L(ω)L†(ω), ρn(t)
}

− 1
2 ∑

ω

γ2,d,n(t, ω)
{

L†(ω)L(ω)ρn(t)
}

+ O(g4). (131)

This thermofield-based hierarchy is the starting from which we dis-
cuss how a truncation procedure can be devised.

Recall that in section 3.3 we noticed that the hierarchy and master
equations in generalised Lindblad form both amount to considering
an extended state space when compared to master equations invok-
ing the Born approximation. The generalised space considered for
the hierarchy are the states in the combined Hilbert space of the sys-
tem and environment where the bath itself is not entangled, i.e. its
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density matrix is diagonal. In particular, we stress that entanglement
between the system and environment is allowed for. The idea of the
cut-off method we introduce in the following is that we restrict the
state space a bit more by only allowing for a certain number of fluc-
tuations in the bath compared to its initial state.

Before discussing the general truncation procedure, we show how
the equations that one usually derives using the Born approximation
can be obtained from our this thermofield-based hierarchy, which
is a specific case of the truncation procedure we discuss next. As
a first step we recall that the Born approximation comes down to
continually projecting the total system onto the subspace in Hilbert
space for which the bath is in its thermal state. In this case we get

P0ρS(t) = P0 ∑
n

ρn(t) = ρ0(t) (132)

where P0 denotes the projection operator onto the subspace of Hilbert
space where the bath is in its vacuum state (the vacuum state corre-
sponds to the initial thermal state of the physical system because of
the thermofield transformation we did). Furthermore, we obtain a
master equation for P0ρS(t) by applying the projection operator to
the equation for the time derivative of ρS(t)

ρ̇0(t) = P0ρ̇S(t) = P0 ∑
n

ρ̇n(t) (133)

Noting that there are terms involving ρ0(t) in both the time derivative
of ρ0(t) and the time derivative of the ρei,λ(t) we find that

ρ̇0(t) = ∑
ω,λ

γ1,u,0,λ(t, ω)L(ω)ρ0(t)L†(ω)

− i ∑
ω,λ

S1,u,0,λ(t, ω)
[

L†(ω)L(ω), ρ0(t)
]

− 1
2 ∑

ω,λ
γ1,u,0,λ(t, ω)

{
L†(ω)L(ω), ρ0(t)

}
+ ∑

ω,λ
γ2.u,0,λ(t, ω)L†(ω)ρ0(t)L(ω)

− i ∑
ω,λ

S2,u,0,λ(t, ω)
[

L(ω)L†(ω), ρ0(t)
]

− 1
2 ∑

ω,λ
γ2,u,0,λ(t, ω)

{
L(ω)L†(ω), ρ0(t)

}
+ O(g4) (134)

which can be checked to agree with the weak-coupling master equa-
tion derived under the Born approximation before taking the long
time limit, i.e. Eq. (26).

More generally, we can consider a continual projection onto the
subspace of Hilbert space where the baths have at most n excitations
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denoted by Pn. In this case, we take the density matrix under consid-
eration to be given by

PnρS(t) = Pn ∑
n

ρn(t) (135)

where Pn reduces the range of the index set in the sum to the finite
set of all vectors the sum of whose entries is smaller than or equal to
n. To take only these environmental states into account consistently,
the equation for ρ̇n(t) has to be adjusted if the sum of the entries of
n is equal to n.

Let us consider a vector ñ with positive integer-valued entries whose
sum is equal to n. In this case the expression for ρ̇ñ involves terms like
ρñ+e1λ

and ρñ+e2λ
, which, due to the assumption on ñ, refer to states

of the environment with n + 1 excitations in the two baths combined.
Therefore such terms are projected to zero under Pn. However, there
are also terms in the expression for Pnρ̇S(t) that involve ρñ which
arise from ρ̇n+e1λ

for example. We take these terms into account by
adding them to the layer corresponding to ñ in analogy to what we
got in Eq. (134). With these modifications, the hierarchy is reduced to
a finite system of coupled differential equations which can be solved
numerically.

However, as noted in section 3.2 the number of density matrices
can become a problem as we consider many oscillators in the envi-
ronment and/or a high cut-off. Let us first suppose that the initial
temperature of the physical bath is unequal to zero. If we then allow
for at most one excitation in the environment, the number of oscilla-
tors required2 is 2M + 1. This is because we consider an additional
density matrix corresponding for every possible excitation in the en-
vironment, for which there are 2M options. If we consider the case
where we allow for two fluctuations, the situations already becomes
a bit more difficult. In addition to the number of density matrices
we had before we have 2M density matrices corresponding to the
possibilities for a single oscillator in the environment to have two
excitations and we get M(2M − 1) density matrices representing an
environment that has two excitations shared by two different oscilla-
tors. If the initial bath is at zero temperature we can repeat the same
arguments illustrated above only we have to replace 2M by M.

Using such combinatorial arguments, similar calculations can be
done for the cases where we allow for even more excitations, but
it should already be clear that the coupled system of differential
equations grows very complex very quickly in this way. Still, we can
choose to allow for few excitations which allows us to simulate large
baths in contrast to the naive truncation procedure outlined at the
start of this section which was plagued by an exponentially growing
number of density matrices.

2 As before, M denotes the number of oscillators in the physical environment.



44 numerical tests

4.2 solving the hierarchy

In this section we discuss the numerical results obtained when solv-
ing the truncated hierarchy for two examples. The examples we con-
sider are the Jaynes-Cummings and the damped Jaynes-Cummings
model, which we introduced in section 1.3. We compare the numer-
ical results obtained from the truncated hierarchy to those obtained
from the exact solution and the second order equations which rely
on the Born approximation, which corresponds to truncating the hi-
erarchy to allow for no excitations in the environment as discussed in
section 4.1.

Master equations whose derivation involves invoking the the Born
approximation implicitly allow for fluctuations in the environment
because in such cases the Born approximation is only invoked after
a second order expansion. Nevertheless, a consequence of the Born
approximation is that at each point in time the bath part of the to-
tal system state is projected back onto its initial state. The situations
that we consider in this section, with environments consisting of few
oscillators, were chosen to test the hierarchy because they represent
situations where we expect effects due to the exchange of quanta be-
tween the system and the environment to be most pronounced.

4.2.1 Solving the Jaynes-Cummings model

To put the hierarchy, i.e. the system of system of equations defined by
Eq. (72), to the test, we begin by considering an example for which we
know the exact evolution equations so that we have a reliable result to
compare the predictions of the truncated hierarchy to. The situation
we consider is that of a two-level system coupled to a harmonic os-
cillator that is in its vacuum state initially, i.e. the Jaynes-Cummings
model at zero temperature as described in section 1.3. We obtain the
numerically exact solution in this case by numerically solving the
scalar hierarchy, which is possible in this case is because it is natu-
rally truncated due to the fact that there is at most one excitation in
the total system and the number of excitations is conserved by the
interaction. For the same reason, truncating the hierarchy at one pos-
sible excitation for the environment is not a restriction up to the order
in perturbation theory that we consider.

We suppose that initially the two-level system is in an entangled
state given by

|ψ〉 = 1√
2
|0〉+ 1√

2
|1〉 (136)

i.e. the initial reduced density matrix of the two-level system is a
matrix with all its entries equal to one half. In the case, where in
addition we suppose that the frequency of the harmonic oscillator to



4.2 solving the hierarchy 45

which we couple the two-level system is equal to that of the latter, we
get the results depicted in figure 1 and figure 2.

Figure 1: The off-diagonal elements of the reduced density matrix in the case
where the environment consists of a single oscillator. The frequencies used
to produce this plot are ω0 = 3 and ω = 3, which represent the frequency
of the two-level system and the environmental oscillator respectively. The
coupling between the two-level system and its environmental oscillator is
g = 0.1. The lines corresponding to the the 0-excitation and the 1-excitation
case coincide.

Figure 2: The diagonal elements of the reduced density matrix in the case
where the environment consists of a single oscillator with parameters as
described in figure 1. The prediction of the hierarchy in this case coincides
with the mean value of the oscillations predicted by the exact solution.

The predictions of the truncated hierarchy allowing for one and
zero excitations coincide for the non-diagonal entries. More interest-
ingly, we see from figure 2 that if we do not allow the bath to fluctuate,
we lose the quantum entirely, i.e. the total energy is not conserved.
However, in the case where we allow for one excitation the quan-
tum of energy that we start with does not disappear. Instead, it is
eventually shared equally by the two-level system and the harmonic
oscillator comprising the bath. The exact solution on the other hand
does not predict quasi-equilibration, but predicts a continual oscilla-
tion that is captured by neither truncated version of the hierarchy.
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4.2.2 Increasing the number of cavity modes

Let us now consider what happens if we add more resonant oscilla-
tors to the environment whilst keeping all the other parameters and
the initial state the same. In figure 3 the results for the diagonal en-
tries of the same problem that we considered before only now with
five oscillators in the environment is shown. The predictions of the
off-diagonal entries are again the same as those for the master equa-
tion that does not allow the environment to change.

Figure 3: The off-diagonal elements of the reduced density matrix in the
case where the environment consists of five identical oscillators. The fre-
quencies used to produce this plot are ω0 = 3 and ω = 3, which represent
the frequencies of the two-level system and the environmental oscillators
respectively. The coupling between the two-level system and the environ-
mental oscillators is g = 0.1.

From figure 3 we see that the steady state approached by the trun-
cated hierarchy allowing for one excitation changes with respect to
the case where the environment consisted of a single oscillator. In-
stead of sharing its initial energy with one oscillator, it is distributed
among all five oscillators in the environment and the two-level sys-
tem itself. Thus we see that as we increase the number of oscillators
in the environment, the predictions by the truncated hierarchy allow-
ing for one excitation coincide increasingly with the predictions of the
hierarchy where no excitations in the environment are allowed. This
is consistent with the fact that for a larger environment the validity of
the Born approximation increases. However, it can also be seen from
figure 3 that the hierarchy allowing for one excitation now no longer
predicts the correct mean value because the only change in the exact
solution is that its oscillations have become more rapid.

The example considered thus far shows how due to allowing the
environment to have excitations, the number of oscillators in the en-
vironment becomes an important variable. It also shows that there
may still be important effects of the open system dynamics that are
not captured by the hierarchy even with when the system is weakly
coupled to the environment. More surprisingly, it turns out that there
are cases where the predictions of the master equation that does not
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allow for fluctuations of the environment are better than a less trun-
cated version of the hierarchy as show in the next section.

4.2.3 Solving the damped Jaynes-Cummings model

In this section we consider the damped Jaynes-Cummings model,
which consists of a two-level system coupled to a continuous environ-
ment of harmonic oscillators as discussed in section 1.3. The spectral
density, which is the continuous generalisation of the squares of the
coupling parameters, is in this case given by

J(ω) =
1

2π

ηW
(ω−ω0)2 + W2 , (137)

where η denotes the coupling strength, W determines the width of the
Lorentzian, and ω0 is the frequency of the two-level system. However,
the number of degrees of freedom of the hierarchy and the scalar hi-
erarchy diverge when considering a continuous environment so they
cannot be solved in this case. Therefore we make use of a discreti-
sation scehme that allows us to model the continuous environment
with finitely many oscillators.

The idea behind discretisation schemes is that the spectral density
determines the influence of the environment on the quantum system
[18]. At least in the weak coupling case we see this in the fact that the
influence of the environment on the system enters into the effective
equations via ∫ t

0
ds ∑

λ

g2
λe±i(ω−ωλ)s. (138)

We aim to choose the frequencies and the couplings in such a way
that it approximates ∫ t

0
ds
∫

dω̃ J(ω̃)e±i(ω−ω̃)s (139)

well before the revival time that depends on the number of oscillators
chosen to model the continuous environment.

The easiest discretisation scheme imaginable is the one where we
take an evenly spaced, i.e. linear, sampling of frequencies from the en-
vironment. Then we choose the coupling parameter gλ corresponding
to an oscillator of frequency ωλ to be given by√

J(ωλ)∆ω (140)

where ∆ω denotes the spacing between the discretised frequencies.
Then

∑
λ

g2
λ = ∑

λ

J(ωλ)∆ω ≈
∫

dω̃ J(ω̃ (141)

because it is the Riemann sum corresponding to the integral.
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For the simulations whose results are displayed in figure 4, we con-
sider an environment consisting of twenty-one oscillators with evenly
spaced frequencies between 2.5 and 3.5 such that ∆ω = 0.05. We take
a linear sampling of the Lorentzian spectral density in Eq. (137) as
described above. The remaining parameters we take to be η = 0.1,
W = 0.25, and ω0 = 3 and the initial state we consider is one where
the two-level system is in its excited state initially. Therefore the off-
diagonal elements of the reduced density matrix are not of interest in
this case.

Figure 4: The probability of finding the two-level system in its excited state
upon measurement.

As can be seen from figure 4, the truncation of the hierarchy al-
lowing for quanta in the environmental oscillators predicts a steady
state that is quantitatively different from the one predicted by the
exact equations. The maximally truncated hierarchy, i.e. the hierar-
chy that does not allow for any excitations in the environment which
is equivalent to the invoking the Born approximation, on the other
hand does predict a steady state that is essentially the same as that
predicted by the exact solution. By increasing the number of oscilla-
tors in the environment the predictions of the steady state in all three
cases can be brought closer together, as discussed before, but this ex-
ample clearly shows that considering a version of the hierarchy that
allows for more entanglement between the system and environment
does not necessarily give rise to more accurate results.

Based on the numerical results we conclude that the Born approx-
imation is consistent with the perturbative expansion up to second
order. Going beyond the Born approximation without increasing the
order of the perturbative expansion does not produce more accurate
results.

4.3 testing the generalised born approximation

In the previous section, we saw that the numerical predictions of the
(truncated) hierarchy allowing for excitations in the bath are not an
improvement when compared to the predictions made by the stan-
dard second order master equation. Thus far we have however not
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yet numerically tested the system of equations resulting from the hi-
erarchy by using the generalised Born approximation and the initial
method of imposing energy conservation as discussed in section 3.8.
Therefore we devote this section to the numerical predictions of this
approach when considering quantum Brownian motion.

To be able to use the system of equations derived using the gener-
alised Born approximation, it is necessary to assume that the initial
temperature is non-zero. Otherwise the variance of the bath energy
is zero making the time derivative of the inverse temperature of the
bath diverge. This assumption is not very restrictive as no environ-
ment can ever truly reach its vacuum state. Therefore the situation in
which we are troubled by this divergence is never really relevant. As
a result of this non-zero temperature, it is no longer efficient to use
the scalar hierarchy to obtain the numerically exact solution. Instead
we use make use of the exact diagonalisation procedure outlined in
Appendix B for the rest of this section.

Using the exact diagonalisation procedure necessitates the intro-
duction of a cut-off for the oscillators, i.e. a maximal number of exci-
tations each oscillator is allowed to have. For the results presented in
this section we take this cut-off to be twenty-five. As in the previous
section we take the coupling to the environment to be described by a
Lorentzian spectral density which we again sample linearly using the
same sampling range and number of oscillators. Also we take W, η,
and ω0 as before. The only other difference other than considering
a harmonic oscillator as the system instead of a two-level system is
that we now consider an initial state where the system has ten excita-
tions and we consider the environment to be in a thermal state at a
temperature equal to 0.5. The predictions for the expectation value of
the number operator for the three different approaches under consid-
eration here, and for the parameters specified above, are displayed in
figure 5.

Figure 5: The expectation value of the number operator for the harmonic
oscillator comprising the system at a given time as predicted by the three
different approaches considered.

Note that figure 5 displays not only the time evolution of the expec-
tation value for the number operator, but also the value of the number
operator if the harmonic oscillator comprising the system were in a
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thermal state at temperature β or β′(t). The system of equations asso-
ciated to the generalised Born approximation, denoted by GB in the
legend, predicts that the expectation value of the number operator
approaches the thermal expectation value at temperature β′(t). The
same holds for the master equation associated to the Born approxi-
mation, denoted by B in the legend, provided that we replace β′(t)
by β in the above. The difference between these two cases however,
is that β′(t) decreases due to the transfer of energy from the system
to the environment which raises the temperature of the latter, which
is in line with our predictions from section 3.8. Nevertheless, the pre-
diction from the exact diagonalisation procedure clearly again shows
that the equations associated to the Born approximation are more
accurate.

In the light of our general considerations regarding the inconsis-
tency in the use of perturbation theory in section 3.8, it should not
surprise us that the system of equations corresponding to the gener-
alised Born approximation does not produce more accurate results
than the standard second order equations. Nevertheless, the possibil-
ity that the numerical failure illustrated in this section is in fact (par-
tially) due to the same issue that caused the numerical predictions
of the truncated hierarchy to fail to produce more accurate results
cannot be excluded.



5
C O N C L U S I O N

In this thesis we have studied energy conservation in quantum sys-
tems with a discrete spectrum coupled linearly to an environment of
harmonic oscillators. In order to do so, we have explored the possi-
bility of describing open quantum systems without the Born approx-
imation or by using a generalisation of the Born approximation.

We showed that a semi-infinite coupled system of differential equa-
tions, dubbed the hierarchy, can be derived that determines the re-
duced density matrix up to second order using a perturbative expan-
sion but without relying on the Born approximation. The most im-
portant difference between the hierarchy and the usual second order
time-local master equations is that it allows for an arbitrary amount
of entanglement between the system and the environment at least
up to second order. In order to solve the hierarchy numerically, we
showed how the hierarchy can be truncated consistently. Surprisingly,
the numerical tests we did show that the predictions of the (truncated)
hierarchy are not necessarily more accurate than those of the usual
second order master equation. This means not only that the Born ap-
proximation is fully consistent with the second order perturbative ex-
pansion but also that going beyond the Born approximation without
considering higher order terms in the perturbative expansion does
not give rise to more accurate predictions. This synergy between the
Born approximation and the second order approach has, to the best
of our knowledge, not been described in the literature.

Starting from the hierarchy we derived another generalisation of
the usual second order master equation by introducing a generalised
Born approximation, which allowed us to resum the hierarchy to a
time-local master equation. Like the Born approximation, it supposes
that the density matrix of the total system in second order terms can
be written as a product state where the environment is in a thermal
state, but now this temperature is allowed to be time-dependent. The
introduction of this additional degree of freedom necessitates the im-
position of an additional constraint in order to keep the problem from
being undetermined. We showed that, after taking the long time limit
and the secular approximation, the resulting master equation satisfies
most of the properties that master equation in Lindblad form do, e.g.
it preserves the trace and hermiticity of the reduced density matrix as
well as complete positivity, provided that the constraint determining
the evolution of the temperature of the environment does not allow
this temperature to become non-positive. We considered energy con-
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servation of the total system as the additional constraint required to
make the system of equations fully determined.

Our initial approach prescribes the rate of change of the inverse
temperature of the bath to be given by the transfer of energy at this
moment divided by the variance of the energy of the bath at this time.
This result is consistent with what would have been obtained if regu-
lar thermodynamics were used to describe the change of temperature
of the environment. Although in the limit where the environment
consists of infinitely many oscillators we argued it to give rise to the
same results as those predicted by the Born approximation, we saw
that away from this limit its predictions were not necessarily more
accurate. We explained this failure to produce more accurate predic-
tions by pointing to a subtlety in the derivation that shows that this
initial approach is not consistent with the perturbative approach if
the perturbative expression for total density matrix contains terms
linear in the coupling.

In order to avoid this problem we considered a perturbative ex-
pansion for the total energy which allowed us to impose the gener-
alised Born approximation consistently. It turns out that in this case
the total energy is conserved up to second order for our generalised
master equation, regardless of the temperature of the environment,
provided that we use the secular and Markov approximations in the
second order expansion for the derivative of the total system energy.
This means that this approximative way of imposing energy conser-
vation, i.e. including the secular and Markov approximations, does
not function as a constraint that determines the evolution of the tem-
perature of the environment. Also, this shows that the master equa-
tion in Lindblad form corresponding to the model we consider is
consistent with energy conservation, provided that we use the afore-
mentioned approximations. If we do not invoke these approximations
energy conservation is not necessarily satisfied. This means that the
weak coupling master equation does not conserve energy and that its
departure from energy conservation becomes more relevant the less
accurate the secular and Markovian approximations are.

Our findings lead naturally to a number of interesting questions
and possible generalisations which we discuss in chapter 6.



6
O U T L O O K

In the master project presented here we have initiated a detailed study
of energy conservation and its role in the theory of open quantum
systems. From the results we have obtained, a number of directions
for further research present themselves. Some of them are:

• We found that if we do not invoke the Markov and secular ap-
proximations energy conservation is in general not satisfied by
second order master equations. It would therefore be interest-
ing to investigate if this failure to satisfy energy conservation
could be used to quantify the validity of the Markov and the
secular approximation.

• Can energy conservation play a role if the system is truly irre-
versible, i.e. if the system is continuous, or can it only ever be
relevant for finite environments?

• Do the conclusions we arrived at for the harmonic environment
considered in this thesis change if we were to consider an en-
vironment consisting of anharmonic oscillators instead of har-
monic ones?

• We have shown that the second order hierarchy allowing for
more fluctuations in the environment does not outperform the
second order master equation due to the synergy between the
Born approximation and the second order approach. What has
not been explored however, is if this conclusion is still valid if
we include higher order perturbative terms into account in the
hierarchy. To this end we note that the procedure by which we
obtained the hierarchy, outlined in section 3.2, gives a straight-
forward recipe for obtaining the higher order generalisations.

53





A
P R O P E RT I E S O F B O S O N I C B AT H S

The effect of the bath on an open quantum system is usually encoded
in the effective equations for the system by expectation values of cer-
tain bath operators and the spectral density. Such expectation values
can most easily be calculated by using the partition function as a gen-
erating functional. In this section we review this method and demon-
strate how the bath observables used throughout the thesis can be
determined.

We consider the case where the environment consists of harmonic
oscillators with a discrete set of frequencies, i.e. the case where the
Hamiltonian is given by

HB = ∑
λ

ωλb†
λbλ = ∑

λ

ωλnλ. (142)

As before, bλ and b†
λ represent annihilation and creation operators

satisfying the canonical commutation relations.
If we assume the bath to be in a thermal state at inverse tempera-

ture β, the partition function for a given oscillator is given by

Zλ = ∑
nλ

e−βωλnλ =
1

1− e−βωλ
. (143)

Since the oscillators are independent, the partition function of the
total system is given by

Z = ∏
λ

Zλ. (144)

The partition function of the total system acts as a generating func-
tional from which we can derive all the relevant expectation values,
as we will show next.

As an example, let us consider the expectation value of the number
operator of a given oscillator, which is given by

〈nλ〉 =
1
Z ∏

µ
∑
nµ

nλe−β ∑µ ωµnµ . (145)

From the expression above we can note that it can also be expressed
as

〈nλ〉 = −
1
β

∂

∂ωλ
ln Z. (146)

Knowing this, 〈nλ〉 can be easily computed using Eq. (143) and Eq.
(144), which gives

〈nλ〉 =
e−βωλ

1− e−βωλ
=

1
eβωλ − 1

. (147)
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Similarly, we see that the expectation value of the energy of a given
oscillator is given by

〈Hλ〉 = −
∂

∂β
ln Zλ =

ωλ

eβωλ − 1
, (148)

from which it follows that the total energy of the bath is equal to

〈HB〉 = ∑
λ

〈Hλ〉 = ∑
λ

ωλ

eβωλ − 1
. (149)

The final expectation value we are interested in is the variance of
the energy, which is given by

∆HB = 〈H2
B〉 − 〈HB〉2 (150)

Noting that

− ∂

∂β
〈HB〉 =

∂2

∂β2 ln Z =
1
Z

∂2Z
∂β2 −

(
1
Z

∂Z
∂β

)2

= 〈H2
B〉 − 〈HB〉2 (151)

allows us to compute the variance of the energy from Eq. (149) which
gives

∆HB = ∑
λ

ω2
λeβωλ

(eβωλ − 1)2 . (152)

This concludes our discussion of the case where describe the environ-
ment with a discrete set of oscillators.

To describe our finite system as a continuous system, we start from
the Hamiltonian, which we rewrite as

H = ∑
k

ωkb†
k bk =

∫
dk̃g(k̃)ωk̃b†

k̃ bk̃ (153)

with

g(k̃) = ∑
k

δ(k̃− k) (154)

Noting the similarity of the procedure above with how the spectral
density was introduced, we might suppose that g can be approxi-
mated by an actual function instead of a distribution as long as the
integrals we are interested in coincide in both cases.

Doing a transformation from wave vectors to frequencies, we can
obtain a expression which allows us to replace sums over k by inte-
grals over the frequency. First changing the delta functions to frequen-
cies gives

g(k̃) = ∑
k

δ(ωk̃ −ωk)

∣∣∣∣ ∂k̃
∂ω

∣∣∣∣−1

(155)
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Then taking into account the transformation of the integral over k to
an integral over ω gives

g(ω) = ∑
k

δ(ωk̃ −ωk). (156)

In summary, if we want to replace a sum over wave vectors by some
integral, we replace

∑
k
→
∫

dk̃g(k̃), (157)

∑
k
→
∫

dωg(ω), (158)

with g(k̃) and g(ω) as above.
Using this we partition function can be written as

ln Z =
∫

dωg(ω) ln
[

1
eβω − 1

]
(159)

The result we would then get for the variance is

∆EB =
∫ ∞

0
dωg(ω)

ω2eβω

(eβω − 1)2 (160)





B
E X A C T D I A G O N A L I S AT I O N

For a certain class of Hamiltonians quadratic in creation and annihila-
tion operators analytic expressions for expectation values of operators
in terms of the initial conditions can be found. The main idea of this
method is to find a basis of creation and annihilation operators in
terms of which the Hamiltonian is diagonal using what is called a Bo-
goliubov transformation. In the diagonal basis the time-dependence
is well-known. To then make predictions about expectation values of
operators, we expand them in the diagonal basis, plug in the time-
dependence, and transform back to our original basis. Taking the ex-
pectation value afterwards leaves us with the desired expression in
terms of the initial conditions. In this section we state only the re-
sults that are relevant to the discussion in section 3.8 and not give an
overview of the general theory of diagonalisation, for which we refer
the reader to [19] on which we based this appendix.

The general form of a Hamiltonian quadratic in the creation and
annihilation operators is

H =
n

∑
i,j=1

(αijc†
i cj +

1
2 γijc†

i c†
j +

1
2 γ∗jicicj). (161)

The Hamiltonian we considered throughout this thesis is of this form
provided that we take γij = 0 for all i and j as well as

αij =


gj−i if i ≤ ns and j > nS

gi−j if j ≤ ns and i > nS

0 otherwise

(162)

where n denotes the number of harmonic oscillators in the total sys-
tem and nS denotes the number of oscillators in the system part.

The Hamiltonian can be formulated differently if we define a vector
of operators given by

ψT =
(

c1 . . . cn c†
1 . . . c†

n

)
(163)

as well as a 2n× 2n matrix given by

M =

(
α 0

0 αT

)
. (164)

Here the zeros in the definition of M denote n × n matrices. As a
result, we can write the Hamiltonian as

H =
1
2

ψ† Mψ. (165)
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To eventually find a basis in terms of creation and annihilation op-
erators such that the Hamiltonian is diagonal, we introduce a general
transformation

c = Ad + Bd† (166)

where d and d† are again assumed to be creation and annihilation op-
erators, i.e. they satisfy the canonical commutation relations. In terms
of the matrix formulation that we introduced before, this corresponds
to

ψ = Tϕ (167)

where ϕ is defined analogously to ψ, only with the c’s replaced with
d’s and T is given by

T =

(
A B

B∗ A∗

)
. (168)

To ensure that T does indeed map onto bosonic creation and annihi-
lation operators the requirement that T is unitary has to be imposed.

The problem of diagonalisation is now to find a matrix T that satis-
fies the conditions above which at the same time makes T† MT diago-
nal so that

H =
1
2

ϕ†T† MTϕ (169)

is diagonal. It turns out that γij = 0 for all i and j is a sufficient
condition for the existence of such a matrix and it can be constructed
explicitly [19]. Therefore we will assume from now on that T is known
to us.

To obtain an expression for the expectation for the number operator
of one of the system oscillators we start by expanding the creation and
annihilation operators in terms of the diagonal basis, which gives

ci(t) =
n

∑
k=1

aikdk(t) +
n

∑
k=1

bikd†
k(t)

=
n

∑
k=1

aikdk(0)e−iωkt +
n

∑
k=1

bikd†
k(0)e

iωkt. (170)

Here aik and bik are the entries of the matrices A and B. Whenever we
want to compute an expectation value of a combination of creation
and annihilation operators, we substitute the expansion from Eq. (170)
and its hermitian conjugate after which we substitute expressions for
dk(0) and d†

k(0) in terms of the original creation and annihilation op-
erators. The equation for the dk(0) in terms of the original operators
is given by

dk(0) =
n

∑
k=1

a∗kick(0) +
n

∑
k=1

bkic†
k(0) (171)
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The result of the procedure outlined above is

ci(t) =
n

∑
k=1

aike−iωkt

(
n

∑
l=1

a∗lkcl(0) +
n

∑
l=1

blkc†
l (0)

)

+
n

∑
k=1

bikeiωkt

(
n

∑
l=1

aklc†
l (0) +

n

∑
l=1

b∗klcl(0)

)
. (172)

It turns out that in the specific case we consider, Eq. (172) can be
simplified. To this end we consider the Heisenberg equation of mo-
tion for ck(t) which reads

dck(t)
dt

= i[H, ck(t)]

= i
n

∑
r,s=1

αrs[c†
r cs, ck]

= i
n

∑
r,s=1

αrs

(
c†

r [cs, ck] + [c†
r , ck]cs

)
= i

n

∑
s=1

αkscs(t). (173)

From Eq. (172) we see that we can also write ci(t) as

ck(t) =
n

∑
l=1

fkl(t)cl(0) +
n

∑
l=1

gkl(t)c†
l (0) (174)

Combining this with Eq. (173) we see that

dgkl(t)
dt

= 0, (175)

which, combined with the initial condition that gkl(0) = 0, implies
that gkl(t) = 0. This reduces Eq. (172) to

ci(t) =
n

∑
k,l=1

aike−iωkta∗lkcl(0)

+
n

∑
k,l=1

bikeiωktb∗klcl(0) (176)

Now that we have expressions for the creation and annihilation op-
erators in terms of the initial conditions, we turn to the quantity that
we use to test the equations derived using the generalised Born ap-
proximation which is the expectation value of the number operator.
In order to efficiently express 〈c†

i (t)ci(t)〉 in terms of the initial con-
ditions, we introduce matrices A(t), Ã, B(t) and B̃ whose entries are
given by

Aij(t) = aije−iωjt (177)

Ãij(t) = aij (178)

Bij(t) = bijeiωjt (179)

B̃ij(t) = bij (180)
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This allows us to re-express Eq. (176) as

ci(t) =
n

∑
l=1

(
Ã(t)A†

)
il

cl(0)

+
n

∑
l=1

(
B̃(t)B†

)
il

cl(0) (181)

Using this, we find

〈c†
i (t)ci(t)〉 =

n

∑
l,s=1

(
Ã(t)A†

)
il

(
Ã(t)A†

)∗
is
〈c†

s (0)cl(0)〉

+
n

∑
l,s=1

(
Ã(t)A†

)
il

(
B̃(t)B†

)∗
is
〈c†

s (0)cl(0)〉

+
n

∑
l,s=1

(
B̃(t)B†

)
il

(
Ã(t)A†

)∗
is
〈c†

s (0)cl(0)〉

+
n

∑
l,s=1

(
B̃(t)B†

)
il

(
B̃(t)B†

)∗
is
〈c†

s (0)cl(0)〉.

Since we assume in our model that the bath is in a thermal state
initially, we have that

〈c†
s (0)cl(0)〉 = δr,s〈Nr(0)〉 (182)

provided that r, s ≥ nS. If we assume that the initial state of the sys-
tem is a statistical mixture as well, we get

〈c†
i (t)ci(t)〉 =

n

∑
l=1

∣∣∣Ã(t)A†
∣∣∣2
il
〈c†

l (0)cl(0)〉

+
n

∑
l=1

(
Ã(t)A†

)
il

(
B̃(t)B†

)∗
il
〈c†

l (0)cl(0)〉

+
n

∑
l=1

(
B̃(t)B†

)
il

(
Ã(t)A†

)∗
il
〈c†

l (0)cl(0)〉

+
n

∑
l=1

∣∣∣B̃(t)B†
∣∣∣2
il
〈c†

l (0)cl(0)〉. (183)
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