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A B S T R A C T

Understanding the dynamical behaviour of quantum mechanical
many-particle systems comes with a wide range of challenges to
which mutually compatible answers have to be given. For the inves-
tigations in this thesis, the framework of Open Quantum Systems
is found to be particularily useful, matching several of our interests
such as a detailed description of a small part of a fairly large system,
a far-developed set of approximative schemes in order to arrive at
models of manageable complexity and the possibility to implement
the theory on the computer for numerical evaluation. The separa-
tion of the system introduces distinct time scales for the dynamics
of the two subsystems and the split up corresponds to the physical
understanding of a system weakly coupled to a second one which has
perturbative effects on the former. Due to this approach, the entire
time evolution is described in the reduced Hilbert space. In conclusion,
we want to employ this theory for our project and review its results
and methods.
Before employing the existing toolset of Open Quantum System the-
ory, this thesis first documents the derivation process for commonly
employed effective descriptions in this framework and approximative
schemes therein. After all, the numerical implementation of the full
system requires a discretized representation of the infinite bath. There-
fore, this topic is reviewed and several strategies, including recent
proposals, are evaluated numerically regarding their precision and
the size of the resulting bath that is required for the representation.
In summary the investigated topics include the Markov, the secular
and the weak-coupling approximation, bath discretization as men-
tioned above and aspects of physicality of mathematical descriptions
of the original system as well as experimentally measured spectra
of molecular rovibrational baths. We find interesting results on the
various methods to mimic an infinite (or continuous) environment,
which call for further investigations on this topic. Further, we are able
to demonstrate effects of the approximations of the master equation,
including temperature-dependent long-time behaviour of the secu-
lar approximation and its possible unphysicality for specific systems,
the failure of the Markovian description for systems with short-time
dynamics and the deviation introduced by explicitly employing the
weak-coupling approximation.
As second core part, this project looks at methods to evaluate the
results given by the Open Quantum System theory, treating the analyt-
ically solvable spin-boson-model and realizing the systems of interest
with the numerically exact Density Matrix Renormalization Group
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concept.
First of all, the new discretization scheme is rated and found to give
improved characteristics of the finite bath in comparison to a linearly
sampled bath.
For the reduced system case, i. e. the spin-boson-model, we find the
master equation within the Open Quantum System (OQS) framework
to describe the time evolution well in the dephasing limit, with devia-
tions from the exact solution in reasonable relation to the employed
approximations. For cases away from the pure dephasing limit, we
find the non-secular master equation to describe the numerically exact
dynamics very well for long times, predicting the approached state
correctly, whereas short-time behaviour and details of the evolution
are poorly reproduced by the Master Equation (ME). Finally, for the full
system and the dephasing configuration of the spin, we find the spin
dynamics to be disturbed by interactions with the cavity mode. The
cavity on the other hand is observed to approach a (quasi-)stationary
state which is not the thermal state for the cavity alone. We connect
this non-thermalizing behaviour to the conservation of the particle
number in the specific system and observe an interesting dependency
of the coherences in the OQS on the bath temperature, resulting in
seemingly stationary states of the system for large temperatures and
in fluctuating states with stationarity only in the system energies but
not in the coherences for lower temperatures. Likewise, the entire OQS

does not thermalize due to the dephasing configuration of the spin,
which limits the energy flow between the open system and the bath
and fixes the occupation number.
In summary, we were able to give an overview of the various approxi-
mations in the master equation, partially with interesting results that
call for careful analysis of a system before employing these common
methods. In future works our setup can be used to compute the full
system with increased complexity, i. e. for the spin Hamiltonian away
from the dephasing configuration and for strong couplings. Further-
more, by translating the weak-coupling bond, we can investigate the
cavity mode in presence of the dye molecule as an anharmonic bath,
connecting to multiple recent research projects [23, 28, 29].
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1
I N T R O D U C T I O N

In this thesis, we analyze the time evolution of composite systems
which combine electromagnetic fields, molecular vibrations and elec-
tronic degrees of freedom. We specifically treat a cavity containing a
single electromagnetic mode which interacts with a molecule, typi-
cally chosen to be a dye molecule in experimental setups. As an initial
motivation for our work we first introduce the physical system on
the basis of established experimental setups and discuss interesting
observations that have been made. The theoretical description of the
system and the transition towards a finite-size model is presented
below in chapter 2.
An illustration of the system is shown in fig. 1.1, displaying the

Figure 1.1: Scheme of the physical system of interest for our project: An
electromagnetic field enclosed in a cavity in the presence of a
single dye molecule; The relation of this setup to real-world
experiments is described in the text. Figure adapted from [36].

cavity that contains an electromagnetic field with a single mode and
showing a single molecule. The respective real experimental setup
differs significantly in size as typically a solution containing a huge
number of molecules is considered instead and the electromagnetic
cavity contains a whole range of modes [29, 30].1 Still our work is
potentially able to lead towards an understanding of the dynamics of
such bigger systems. On one hand, the simpler setup here analyzed
will allow us to study the regime of validity of the approximations
used for the analysis of the larger system containing many molecules.
Furthermore, effects present in the big system which originate from
the single-molecule dynamics can be described, which is a reasonable
idea because in such setups we consider a diluted sample of dye
molecules with neglegible direct interaction. On the other hand, one
can argue that the resonant two-level transition will be most relevant
and that thus our single-molecule system is a good starting point for

1 However, it is indeed possible to set the system up as presented here, injecting a
single dye molecule into a cavity. [49]
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2 introduction

the investigation of the full real-world system.
The motivation to understand the time evolution of our system can
be given on the basis of different insights made recently in both,
experiments and theoretical investigations. The first motivation we
want to give here is related to a result of Klaers et al.[29, 30], which
shows thermalization of the electromagnetic field within the cavity,
based on the interaction with dye molecules. Although there has been
theoretical work on the phenomenon of the photonic thermalization
and its breakdown [28], our work might provide new insights on how
to understand the time evolution of the system as the existing work
focuses on steady state solutions. Such steady states are associated to
different "phases" of the photon gas and depend on certain parameters
such as the cavity size or the vibrational degrees of freedom of the dye
molecules. The similarity of the experiments of interest to standard
laser setups is another interesting aspect of the presented system.
A second core result - this time of theoretical origin - is found in
[23] and deals with the behaviour of a two-level system (or spin) in
presence of two different environments. In the case of the environment
being harmonic, an increased decoherence rate for the spin can be
observed when increasing the temperature of the bath, whereas the
setup with an anharmonic bath - realized by inserting a mediating
two-level system between spin and bath - exhibits the astonishing
feature of decreased decoherence rates for increased temperatures of the
bath. The molecule in our system - as it is a combination of two-level
system and bosonic modes - exactly realizes such an anharmonic bath,
providing us with a connection to the above insights. Although being
interesting on its own because of its counter-intuitivity, the result
might additionally enable future experiments to observe quantum
physics under significantly less strict contraints, as decoherence can
be understood as "decay of quantumness" of a system or its state. Due
to high coherence requirements in quantum computing setups, the
result is even more interesting as it possibly could lead to relaxed
constraints on the cooling of such experiments and therefore facilitate
the realization of bigger systems and actually operable computing
setups. Therefore, understanding the mentioned result in detail and
investigating the behaviour of a bosonic mode in presence of an anhar-
monic bath, as provided by the dye molecule, is interesting from both
a theoretical and an experimental perspective. This thesis establishes
the models and methods towards such an understanding and provides
the necessary numerical implementations, but we want to mention,
that within this project, we do not cover the corresponding split up of
our system (by means of a weak-coupling bond) yet.
After having motivated our work by the above results from the past ten
years, we want to conclude which framework is suitable for our goals.
Our investigation focuses on the dynamical behaviour of the bosonic
mode and the two-level system incorporated in the dye molecule.
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Meanwhile, the details of the other degrees of freedom of the molecule
- we consider them to be of rovibrational nature and describe them as
harmonic - are of lesser importance to us. It therefore is reasonable
to choose a theory which is able to differentiate between parts of the
system in a corresponding manner, paying reduced attention to a large
part of the system. This leads us to the theory of open quantum systems,
which is widely used in quantum optics [20, 41], condensed matter
physics [4, 15] and quantum computing [2, 3, 27], amongst others. The
separation into a small system which is investigated closely and an en-
vironment or bath which is taken into account as an effective influence
on that small system exactly matches our preferences and as there
have been established both, rigorous proofs of desirable properties of
the theory and practical application and approximation schemes, we
have a proper set of tools and knowledge at hand for our work within
this framework. In particular, the master equation and its approximation
schemes and mathematical properties will play a central role for our
project.
In addition to the open quantum systems theory, we will employ
highly developed numerical tools to analyze the time evolution of
the considered system on a numerically exact level, enabling us to
evaluate results of the master equation, which includes a whole range
of approximations and corresponding assumptions, on one hand and
providing a fundamentally different setup of investigation in order to
gain a diversified view on the matter on the other hand.
In addition to the above motivation regarding research, we want to
state that this thesis of course also fulfils educational purpose for the
author. It therefore contains summaries of relevant aspects to our work,
such as the topic of bath discretization and approximation schemes in
the OQS theory, which contain lesser amounts of new results (although
not none) but mainly serve as a review and introduction to the main
part. As the reader might notice, these "prerequisites" form a major
part of the present thesis, which reflects the progress throughout the
project and the time and effort spend on particular topics.





Part I

G O O D T O K N O W

The first main part of the thesis contains a whole range
of preliminary topics and introductory reviews. Although
it does not consist of major new research, relevant ques-
tions to our project are answered and common notions are
applied to our case, going through some of the standard
procedures in a more critical way and testing some of them
numerically.
In chapter 2 we first clarify the notational conventions
and establish the mathematical models for the system in-
troduced in chapter 1, leading us to the challenge of the
infinite to finite bath conversion, which is tackled in chap-
ter 3. Following up, we review the weak-coupling master
equation and its derivation in chapter 4, paying particu-
lar attention to approximation schemes and assumptions
linked to them, including some evaluation of their practi-
cality and applicability to describe truely physical systems.
Finally we include a brief introduction to the Density Ma-
trix Renormalization Group (DMRG) in chapter 5 where
we establish the needed notions for our work and connect
them to standard literature but also discuss the application
of the more specific technique of purification to our model
as we will need it to realize thermal states.





2
N O TAT I O N A N D T H E T H E O R E T I C A L M O D E L

This chapter presents the theoretical description of the physical system
introduced in chapter 1 and establishes some standard notation used
troughout the entire thesis.
We start with the full system Hamiltonian H which can be split up in
three parts, corresponding to the open quantum system (HS), the bath
(HB), also referred to as environment, and the interaction of these two
subsystems (HI). We denote the standard time evolution operators
as U(t) and U0(t) for the full Hamiltonian and the interaction-free
part of H, respectively. For convenience we will not write out the time
evolution by preceding and trailing U’s but write the (interaction-free)
time evolution of an operator using the superoperator Vt which is
understood to act on one single operator to the right corresponding to
U
†
0 · U0. We summarize the basic notation as

H = H0 +HI ; H0 = HS +HB (2.1)

U(t) = e−itH ; U0(t) = e
−itH0 ; VtO = U†0(t)OU0(t)

Together with the separation of the system Hilbert space into two
subspaces, we can introduce the partial trace. It acts on the bath part
of an operator only and is denoted by trB {·} while tr {·} denotes the
trace over all dimensions of an operator that is we write

tr {O} tr {OS} tr {OB} (2.2)

for an operator O on the full system and subsystem operators OS/B
on the OQS part or the bath space respectively.
As is common in theoretical physics, we will abuse the notation with
respect to the Hilbert spaces on which operators act, meaning that
we will omit tensor factors of 1S or 1B for notational convenience.
This convention demands a certain amount of trust by the reader in
the proper mathematical treatment behind the results, which we shall
assume for our project. One consequence of the reduced notation is
that the expressions VtOS and VtOB for an arbitrary OQS or bath space
operator respectively are well-defined and make sense, evaluating to

VtOS = eitHSOSe
−itHS and VtOB = eitHBOSe

−itHB .

We will furthermore denote the density matrix of our full system by
ρ whereas the reduced density matrix of the OQS alone is written
as ρS = trB {ρ}. For as long as it is feasible, we will keep results
general before applying them to our concrete system (see below). In
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8 notation and the theoretical model

this context, we want to introduce one further notation regarding the
interaction Hamiltonian HI and write it in the form

HI = A ⊗B (2.3)

with open system operator A and bath operator B , both of which
are required to be Hermitian. In the most general setting, there is a
collection of these operators, but as our examples can be formulated
in terms of one operator for the OQS and the environment each, we
will stay in this restricted setting.
After having shown the general framework we are considering, we
now turn to the concrete exemplary systems investigated in this thesis.
We will choose the bath to be bosonic and interaction free, i. e. to
consist of harmonic oscillators which are not coupled to each other.
We elaborate on the distinction between an infinite and a finite bath
in chapter 3 and for now consider infinitely many discrete modes.
The bath models the rovibrational Degrees Of Freedom (DOFs) of the
dye molecule as described in chapter 1. Furthermore, the OQS consists
of the cavity mode, modelled as simple harmonic oscillator as well,
and the electronic two-level system of the dye molecule, represented
by a standard spin DOF and referred to as spin, two-level system or
dye. The combination of cavity and spin is then linearly coupled to
the bath via the two-level system and in a star configuration. This
means that the bath component of HI, B , is proportional to all the
harmonic oscillator positions {xk = b

†
k + bk}k, including a coupling

prefactor, and the system component A is a non-trivial operator on
the spin part only. In other words, the spin interacts with the bath in a
typical electronic-phononic coupling manner. The internal interaction
of the OQS is excitation-preserving w. r. t. the particle number basis
of the cavity and the σz-basis of the spin.1 In symbols, our system
Hamiltonian is [28]

HS = ωCa
†a+

ωS
2
σz +

∆

2
σx + g(a

†σ− + aσ+)

Full System HB =

∞∑

k=1

Ωkb
†
kbk (2.4)

HI = σz

∞∑

k=1

g̃k(b
†
k + bk)

where ωC, ωS and ∆ are the energies of the cavity mode and of
the z- and the x-direction excitations of the dye molecule, g is the
coupling parameter between the cavity and the spin, Ωk denotes the
k-th bath mode energy and g̃k stands for the corresponding coupling
coefficient between bath mode k and the spin. The used operators
are the raising and lowering operators of the harmonic mode, a†

1 Note that with the transition from the physical to the theoretical system the notion of
"internal" changed from the link spin-bath to the link cavity-spin.
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and a, the creation and annihilation operators for spin excitations,
σ+ and σ−, and the z- and x-direction spin operators defined by
σx = σ+ + σ− and σz = σ+σ− − σ−σ+. Finally, b†k and bk denote the
bosonic bath raising and lowering operators. For convenience, we will
sometimes abbreviate B =

∑∞
k=1 g̃kbk and as mentioned above we

have B = B† +B as well as A = σz.

For benchmarking purposes and in order to establish some basic
concepts and phenomena, we will also use a second model which is a
subsystem of the above, leaving out the cavity mode and thus reducing
the open quantum system to a single spin. This minor version of the
system is known as spin-boson model (c. f. chapter 6) and we will be
able to make use of well-known results for this easier case. Again we
write it out symbolically as

HS =
ωS
2
σz +

∆

2
σx

Spin-Boson Model HB =

∞∑

k=1

Ωkb
†
kbk (2.5)

HI = σz

∞∑

k=1

g̃k(b
†
k + bk)

Obviously, the transition from the full system to this smaller one can
be performed by setting g to 0 and ignoring the cavity part.
Throughout the whole project the bath will be assumed to be in
a thermal initial state, and depending on the method it might be
constrained to actually stay in this state, which for a given temperature
T and kB = 1 is defined as

ρ
β
B = Z−1e−βHB with Z = tr

{
e−βHB

}
,β = T−1. (2.6)

Due to its simple form and the resulting vanishing of [ρβB,HB], various
computations become easier for this initial state and we are able to
reach more concrete results than for an arbitrary bath state.





3
T H E E N V I R O N M E N T A N D I T S D E S C R I P T I O N

All theoretical investigations of physical systems inherently make a
transition from some inspiring original system to the actual mathe-
matical description. The former oftentimes is desired to be a realistic
configuration, observable in nature or experiments and incorporating
physical phenomena of interest, but in modern physics it is well-
established to work with toy models or hypothetic systems as well.
This relaxation of requiring "relevance to the real world" leads to
several questions for our work, as it includes the transition from an
arbitrary - and in particular an arbitrarily big - system to a finite-
sized approximation, requiring us to find computationally efficient
implementations of the most important features found in the original
system. Some central questions we encounter are:
By which means can the approximation via a finite system be rated? What
makes it a good model to represent its mother system?
Which properties of the original system are considered to be fixed, i. e. what is
the true starting point of investigation? Is the description based on measure-
ments or theory?
When enforcing the connection of a research project with the real
world, some of these questions can be answered rather strictly, exclud-
ing purely hypothetic systems and proclaiming experimental knowl-
edge to be the final authority. However, investigations not restricted
to a specific system but to a generalized class of systems, which thus
are dealing with more abstract and theoretical representations, come
with the need to answer the above questions. In this chapter, we will
address exactly this challenge as well as our way of rating different
approximations to the system which we want to describe.

We introduced our system in chapter 2 as a small finite system, the
OQS in interaction with an infinite collection of bath modes. This de-
scription is motivated by theory and basically results from extending
the same system with a finite bath in the thermodynamic limit; As we
will see below, there is the need for a constraint on the total coupling
when performing this limit in order to arrive at a correct discrete
representation of the continuous bath.
Hypothetically, one now could treat the system as dependent on the
infinite set of parameters {(Ωk, g̃k}k and therefore remain in a very
general setting. However, this would be fairly unreasonable as prac-
ticality and utility are lost: The former becomes apparent when we
try to implement the system numerically, confronting us with the
need to truncate the bath in general, but also requiring us to set every

11



12 the environment and its description

single coupling parameter to a value which is a priori not constrained.
This requirement introduces inconvenient effort when setting up the
system. The latter problem is clear by the fact that the system’s be-
haviour will depend on the specific values of the bath parameters,
preventing us from analyzing the system in the generalized setting but
introducing a dependency on the combination of the g̃k. Although the
influence of the bath - and therefore of the coupling parameters - on
the OQS can be shown to be restricted to second order fluctuations of
the bath coupling operators, i. e. to the correlation functions [1, 14], we
require a proper procedure for choosing the single couplings in order
to usefully pick the systems we want to simulate and gain insights on
the behaviour of the general system. The spectral density J will allow
for a systematic choice of the couplings and its accurate reproduction
with a discretized system will be of major importance, as the entire
bath influence is traced back to the density via (c. f. section 3.1)

c(τ) =

∫∞

0

dω J(ω)

[
cosh

(
βω

2

)
cos(ωτ) − i sin(ωτ)

]
. (3.1)

Having evaluated the need for constraints on the bath parameters, we
therefore want to perform the following two steps towards a manage-
able yet useful system description:

1. We introduce the spectral density J of the bosonic bath and demon-
strate its relations to our system in the thermodynamic limit, to other
common bath properties and, most importantly, to experiments.
From our starting point 2.5 we can introduce J in a rather pragmatic
way via

J(ω) =

∞∑

k=1

g̃2k δ(ω−Ωk) (3.2)

which guarantees consistency with the replacement

∞∑

k=1

g̃2k f(Ωk)→
∫∞

0

dω J(ω) f(ω). (3.3)

So far, we did not gain much, because J just summarizes the param-
eters of the bath, but it is the connection of J to other theories of
systems like our environment and to real world measurements that
makes this replacement valuable.
The spectral density is related to the Density Of States (DOS) of the
bath in an obvious fashion when expressing the latter as D(ω) =∑∞
k=1 δ(ω−Ωk), showing its meaning explicitly: In order to deter-

mine the number of states NI in a given frequency interval I = [a,b],
one simply integrates the DOS and receives

NI =

∫b

a

dω D(ω) = |{Ωk|a 6 Ωk 6 b}| . (3.4)
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As the DOS is a central quantity in condensed matter physics, being
derived in models of various systems and measured (indirectly) in
experiments, this connection between J and D is valuable for our
description.
Hence, the spectral density can be obtained from measurements on
physical systems and thus immediately allows for the consideration
of realistic systems. This is a big advantage over purely hypothetic
setups because the entire behaviour of the physical system is captured
and complicated phenomena of the bath dynamics are respected au-
tomatically rather than having to be implemented based on a theory.
Obviously, this is not helpful in order to understand the underlying con-
cepts that lead to the spectral density but provides us with a method
in accordance with the open quantum system approach, dealing with
the bath only as detailed as necessary and using the spectral density
as single input parameter.
An example of the above could be the setting of a single molecule as it
is represented in our spin-boson model 2.6. A naive approach would
consider a discrete set of transition frequencies for the vibrational
degrees of freedom, modelling them as harmonic subsystems. The dis-
creteness would be due to the finite number of atoms in the molecule
and the subsequently finite number of DOFs found in the vibrations.
However, a realistic system will exhibit a much richer spectrum, based
on thermal broadening of the characteristic peaks, complex dynamical
interplay between mechanic and electronic properties of the molecule,
solvent influences and more [12, 13, 32]
It therefore seems a hopeless endeavour to control a real-world setup
sufficiently, e. g. by cooling it down close to absolute 0, for these effects
to vanish. On the other hand, realizing a theory that takes into account
all aspects that influence the spectrum of the environment poses a
huge challenge, which will change with the considered system and
requires experimental validation on its own. Consequently, working
with J as only quantity which mediates bath influence on the OQS is
reasonable while allowing for the construction of a manageable model.
The input for the spectral density in turn can come from experiment
or theoretical models because the connection to both, measured quan-
tities and theoretical parameters, is well-established.
As mentioned earlier, we want to emphasize a constraint on the spec-
tral density - or on the couplings g̃k when understanding J as given
input - which readily results from 3.2 via integration:

∞∑

k=1

g̃2k =

∫∞

0

dω J(ω) (3.5)

This condition will play a central role in the following second step
towards the discretized model (also c. f. section 3.2).

2. Having introduced the spectral density, we are facing the challenge
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of converting the now truly infinite system into a model which can be
handled numerically but manages to describe the key features of the
bath effects on the open system well. This conversion will be referred
to as bath discretization and has been a topic of research on its own in
the last decades [26, 42, 43, 47, 48]. While we here want to emphasize
the conceptual aspect of discretization, we will summarize parts of
this research following [42] and elaborate on the resulting methods
including their numerical implementations in section 3.2.
As it was emphasized before, the transition to the continuous descrip-
tion is a necessary step in order to incorporate a realistic system in
our theoretical description. However, the goal to explicitly compute
system dynamics and properties not only analytically but also numer-
ically requires us to restrict ourselves to finitely many bath modes
while trying to mimic the original system as good as possible. We will
use the correlation function to test such a restriction, using the well-
recognisable phenomenon of correlation revivals in finite systems.
It should be emphasized that the idea is not to generate a perfect
description of the correlation function while making the bath finite,
but that only for a restricted timescale the behaviour of the bath is
well-modeled by its finite approximation. This scale can be interpreted
as the time that excitations need to "flow through the bath and back"
to the system we are observing and it is clear in this (intuitive) picture,
that increased bath sizes will increase this time. For linear bath dis-
cretization, this expectation can be validated via Fourier analysis and
for other discretization schemes we will confirm it in section 3.2

3.1 bath correlation functions

Before turning to the investigation of various bath discretization tech-
niques, we introduce the bath correlation function(s) which will be
involved in rating these methods.
In previous works, it has been stated that the entire influence of the
bath on an OQS is encoded in the correlation function which clearifies
the importance of this quantity and its proper computation, for exam-
ple in numerical simulations of a system [42]. This statement, clearly
being true within the framework of Master Equations (c. f. chapter 4),
is not obvious when treating the entire system dynamics incorporating
the bath explicitly. However, one can extract this insight by analyzing
the OQS dynamics with mathematical rigour. In [14], the investigation
of OQSs interacting with a linear bath like ours shows that the influence
of the latter is reduced to second order correlations and in [1] N-time
correlations are shown to depend on N+ 1-time correlations of the
bath. Thus the correlation function is the central quantity with which
we can observe the approximative behaviour of a discretized bath
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towards its continuous (i. e. infinite) counterpart.
We start by defining the correlators1

α+(t, τ) = tr
{
VtB

† Vt−τBρ
β
B

}

α−(t, τ) = tr
{
VtBVt−τB

† ρβB

}

and observing that they do not depend on the time t but only on the
time difference τ because of the thermal bath state, which commutes
with the bath time evolution operator, inviting us to simply write
α±(τ) = α±(t+ τ, τ). We next turn to our system and determine the
more explicit form these functions take when plugging in B† and B,
which requires us to compute

tr
{
VτB

† BρβB

}
=

∑

{nl}∈N∞0

〈{nl}|VτB† BρβB|{nl}〉

=
∑

{nl}∈N∞0

eiτE〈{nl}|B†e−iτHBB|{nl}〉e−βEZ−1

=
∑

{nl}∈N∞0

∞∑

k,m=1

eiτEg̃kg̃me
−iτ(E−Ωm)e−βEZ−1

× √
nk
√
nm 〈{nl,nk − 1}|{nl,nm − 1}〉

=

∞∑

k=1

g̃2ke
iτΩk

∑

{nl}∈N∞0

nke
−βEZ−1

=

∞∑

k=1

g̃2ke
iτΩk 〈nk〉β

tr
{
VτB B

†ρβB

}
=

∞∑

k=1

g̃2ke
−iτΩk

(
〈nk〉β + 1

)
.

Here, |{nl}〉 denotes a Fock basis state, which also is understood as
occupation number basis, Z is the partition sum of the thermal state
(c. f. 2.6) and for notational convenience we wrote |n1,n2, ...nk − 1, ...〉
as |{nl,nk − 1}〉 and abbreviated the energy of the state |{nl}〉 as E,
suppressing its dependence on the occupation numbers. However,
this abuse of notation is restricted to the above computation. For the
bosonic system under consideration we know the thermal expectation
value of the single-site occupation number to be given by the Bose-
Einstein distribution

〈nk〉β = n(Ωk) = (eβΩk − 1)−1 (3.6)

which allows for a convenient extension to the present case of in-
finitely many bath modes in the continuous description. This becomes
apparent in the next step when employing the replacement 3.3 in

1 For notation see chapter 2.



16 the environment and its description

the correlators. We additionally turn to the sum of both functions
instead of treating them separately, as they will only contribute in this
summed form throughout our work. The resulting function will be
referred to as correlation function and denoted by c:

c(τ) =

∫∞

0

dω J(ω)
[
e−iτωn(ω) + eiτω(n(ω) + 1)

]
(3.7)

=

∫∞

0

dω J(ω) [cos(τω)(2n(ω) + 1) − i sin(τω)]

As discussed earlier, the correlation function is seen as central quani-
tity encoding the bath influence on the open system in OQS theory
although there is no obvious proof for this in other frameworks; Still,
the importance of c remains without doubt. Its decay behaviour is
used to determine whether the Markov approximation is justified
and for master equations it indeed contains all information of the
bath considered in the time evolution of the OQS. Therefore, using the
correlation function to test approximation schemes for the bath is the
obvious choice and we will focus on the phenomenon of revivals and
the corresponding revival time when doing so below.

3.2 bath discretization

In this section we want to turn to the concrete techniques which can
be used in order to transit from the continuous bath description to a
finite approximative model, following [42] which is recommended as
a review of the subject. Additionally, we will explore the parameter
space for our system with respect to the different methods and numer-
ically evaluate their differences.
The discretization of the bath aims at generating a finite set of pa-
rameters {(Ωk, g̃k)}16k6L for L bath modes.2 When doing so, a single
constraint is to be considered, which can be referred to as normaliza-
tion condition and was introduced earlier in 3.5:

L∑

k=1

g̃2k =

∫∞

0

dω J(ω) (3.8)

After looking at the spectral densities we are going to consider (c. f. ap-
pendix A), we actually replace the upper integration boundary by
ωcut exploiting the step cutoff contained in all examples for J. If it
was not before, it is now obvious that the normalization constraint
resembles a quadrature.

2 Please note that we do not distinguish the notation between the original infinite set
of parameters and the result of the discretization. This is not critical as they never
play a role at the same time and the infinite set is never used concretely.



3.2 bath discretization 17

Discretization Schemes

The first, obvious attempt of discretization is to perform the quadrature
via a Riemann sum. This is done by generating the {Ωk} as an evenly
spaced set with spacing distance δω and assigning values to the g̃k
by evaluating J at those frequencies:

Linear Sampling

Ωk = k · δω− δω
2 with δω = ωcut

L

g̃k =
√
δω J(Ωk)

(3.9)

For large L, the approximation is improved and the limit L → ∞
actually corresponds to the integral itself by definition as δω→ dω.
Due to its simplicity, this sampling is commonly used [33].
On the pursuit of improving the approximation, the first step is to
generalize the intervals Ik into which the support of J is separated
and to compute the couplings as integral and the frequencies as
weighted average over these intervals, respectively. This yields a rather
general rule for discretization which relies on an adequate choice of
the {Ik}k. This choice in turn will depend on the methods used on the
discretized system, the properties of the spectral density and also on
the phenomena one is interested in, such as the behaviour for specific
energy scales. Commonly used samplings in addition to the linear
spacing include logarithmic [11, 17, 38] and cosine spacings [45] as
well as piecewise combinations of those [44].
We summarize this generalized quadrature rule as

g̃k =

√∫
Ik

dω J(ω) (3.10)
Direct Sampling

Ωk = g̃−2k

∫

Ik

dω ωJ(ω)

where the name refers to the fact that we previously fixed the intervals
{Ik}k and this choice dictates the sampling outcome.3 Note that the
quadrature is perfect in this case, as the sum over the squared cou-
plings is just a concatenation of the partial integrals over the respective
interval.
The direct sampling introduces k− 1 degrees of freedom correspond-
ing to the k+ 1 endpoints of the intervals except for 0 andωcut, which
reminds us of the initial situation we wanted to avoid by introducing
the spectral density of the bath (c. f. chapter 3). Although being a pos-
sibly mighty tuning parameter to adapt the discretization to a specific
problem [43, 50] or to prevent certain numerical methods from failing
(such as numerical renormalization group), this huge flexibility is a
possible source for bias and like the problematic situation introduced
by 2k freely chosen parameters for the bath, a major dependence on

3 In [42], the name direct sampling refers to all classic sampling methods, including
the linear as well as the mean and equal-weight sampling methods.
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the free choice of interval separation makes the direct discretization
method unfavourable to us.
Instead, we want to briefly recap two sampling strategies proposed in
[42] before turning to the so-called optimized sampling procedure. The
first is called mean method and constructs the bath mode frequencies
iteratively by averaging over stepwise refined intervals. This gives a
single frequency Ω1 in the first step and 2p − 1 sampled frequencies
after p steps. Once we reach the desired fine-graining, we relabel the
frequencies in ascending order and the couplings are computed as
integrals over the resulting intervals:

Ωk =

(∫Ωk+1
Ωk−1

dω J(ω)

)−1 ∫Ωk+1
Ωk−1

dω ωJ(ω)

Mean Sampling

g̃2k =

∫ Ωk+1+Ωk
2

Ωk−1+Ωk
2

dω J(ω) (3.11)

where the first line only holds for the frequencies which are added
in the last step. Note that for this procedure no choice of intervals
had to be made but that as a drawback this sampling only allows for
L ∈ {2p − 1| p ∈N} in a consistent spacing.
This limitation is overcome by yet another discretization technique,
for which one starts with computing the "coupling per mode" n for a
given L. Afterwards the intervals for the discretization are obtained
by demanding the contribution of each mode to be equal to n and the
frequencies are set to the average over these intervals as before:

n =
1

L

∫ωcut
0

dω J(ω)

Equal-Weight

g̃2k = n and
∫Ωk
ωk−1

dω J(ω)
!
= n (3.12)

Sampling

Ωk =

(∫ωk
ωk−1

dω J(ω)

)−1 ∫ωk
ωk−1

dω ωJ(ω)

With this method, we are able to capture specifics of the spectral den-
sity such as peaks, which will cause the algorithm to sample more
densely, and no parameters have to be chosen.
So far, all discretization techniques do either ignore the different en-
ergy scales by treating the spectrum "uniformly" or choose a specific
scale at which the discretization is supposed to work best, e. g. loga-
rithmic sampling focuses on low energy scales. As the energy scales
correspond to timescales in the correlation function and therefore in
the system dynamics, it is desirable to achieve discretization which is
suitable at all scales in order to describe short- and long-time evolution
correctly.

The main algorithm treated in [42] and referred to as optimized sampling,
tries to accomplish this goal and we will discuss it in the following
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by looking at the derivation, the numerical implementation, which
is universal w.r.t. J, and by evaluating in which cases the optimized
sampling actually is an improvement.
The new sampling method uses Gaussian quadrature, which is a far
developed topic because of its age and wide range of applications,
additionally coming with well-established numerical methods. In or-
der to employ the quadrature rule, we need to introduce the concept
of orthogonal polynomials, which is done in appendix B. The key
features we are going to use here are the existence of a unique set of
such polynomials for a given continuous measure and the recursion
relation which generates them.
The Gaussian quadrature rule proceeds as follows: Let us consider
the integral we want to approximate,

∫ωcut
0 dω J(ω), and split up the

integrand J(ω) into a part which is considered as weight function
w(ω) and its complementary part u(ω). As the weight function gives
rise to a continuous measure, different choices of w lead to different
orthogonal polynomials in the following procedure and investigations
of dynamical error bounds on the time evolution of discretized sys-
tems suggest that these choices actually are of different quality [47,
48]. In the following, we will assume w(ω) > 0, a finite support and
continuity of w.
After chosing L points {ωi}i in the support of w, we can construct
polynomials

`i(ω) =
∏

k6=i

ω−Ωk
ωi −Ωk

(3.13)

of degree L− 1which satisfy `i(ωj) = δij. Then we look at the function
u and again split it into two parts, an interpoland uL of degree L− 1
and the residual part rL. Constraining uL to coincide with u at the
above L points, it is uniquely determined and we can easily expand it
in the polynomials via

uL(ω) =

L∑

i=1

u(ωi)`i(ω). (3.14)

The integral from above now reads

∫ωcut
0

dω J(ω) =

∫ωcut
0

dω w(ω)

[
L∑

i=1

u(ωi)`i(ω) + rL(ω)

]

=

L∑

i=1

Wi u(ωi) + RL (3.15)

with Wi =

∫ωcut
0

dω w(ω)`i(ω)

and RL =

∫ωcut
0

dω w(ω)rL(ω).
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It is obvious that for u with degree up to L− 1 the interpoland uL is
able to describe the function exactly, yielding rL(ω) ≡ 0 and RL = 0.
As can be shown, the quadrature even is of order 2L− 1 which means
it is exact in the integration for deg u 6 2L− 1, rendering RL = 0.4

As one can show, this is achieved by choosing the support points
{ωi}16i6L to be the roots of the orthogonal polynomial pL of degree
L [40], where orthogonality is understood w. r. t. w as introduced
in appendix B. In addition to the sampling points Ωk gained in this
fashion, the weightsWi can be extracted from the system of orthogonal
polynomials as we mentioned in appendix B and is shown in [18,
37]. We then simply draw the analogy between the spectral density
normalization condition 3.5 and the quadrature 3.15 and identify

roots {ωi}i

weights {Wi}i

}
→
{

bath frequencies {Ωk}k

bath couplings {g̃2k}k
(3.16)

This optimized sampling can be shown to be optimal for quadratic
Hamiltonians whereas no optimal solution is enforced by the above
strategy for non-quadratic Hamiltonians [42]. We therefore, dealing
with the latter case, will have to evaluate the properties of this newer
method, where for convenience we will compare to the most simple
method namely linear sampling. This investigation is presented in the
following.

Rating Discretizations

In order to rate the discretization schemes, we first introduce the
notion of the revival time τrev, which is defined as the time up to
which the correlation function of an environment is well reproduced
qualitatively. Although there are recognizable deviations from the
approximated correlation function for very small numbers of bath
modes before τrev5, the revival time will first be considered as crite-
rion for the minimal bath mode number needed in order to describe
the system. Afterwards, the initial deviation σ shall be treated.
An example of the revivals occuring for finite environments is dis-
played in fig. 3.1, where an increase of the bath size L is seen to push
the revival time further away from 0. We observe very well coinciding
results up to the respective revival time, excluding very small bath
approximations as mentioned above, for which already at earlier times
τ < τrev the correlation function is not reproduced properly. In 4.12

the only contribution of the bath is encoded precisely in the correla-
tion function up to the current time, and for a quick decay in c(τ),
only the integrated correlation function at infinity is accounted for in
4.14, not being distinguished from the current value κ(t) because of

4 Note, that this does not imply rL ≡ 0, which for deg u > L is wrong.
5 Especially for linear sampling, c. f. analysis below.
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this decay. This demonstrates that for the description of our system
with the master equation, a sufficiently big finite system gives us the
same results as the infinite original - while being computationally
manageable - as we only use well-reproduced quantities.6 In order to
determine the revival time in an automated fashion, we subtract the
correlation function of the finite bath from the continuous case and
observe this difference to be a simple oscillation, shifted by a constant
for some parameter settings. We therefore compute the scale of the de-
viation, accounting for the oscillations, and calculate the revival time
as last maximum of magnitude that is not bigger than this averaged
amplitude.
The second way to rate the discretization of the bath is to quantify the
deviation of the reproduced correlation function before τrev. We will
do so by computing

σ =

√
τ−1rev

∫τrev
0

dτ |c∞(τ) − cL(τ)|2, (3.17)

which for discretized time steps corresponds to the standard deviation
of the correlation function for L modes from the correlation function
of the infinite bath denoted by c∞. Exemplarily, we can compute this
quantity for the discretizations in fig. 3.1 and their linearly sampled
counterparts and arrive at

L 8 12 16

σopt[meV] 11.2 2.2 1.3

σlin[meV] 26.0 17.7 13.4

For optimized sampling, we observe a drastic improvement in the
precision at which c(τ) is reproduced for τ < τrev with growing L,
whereas the linear bath shows worse values in general, which addi-
tionally improve much less for increased bath sizes.
We now can rate discretization schemes by determining the achieved

revival time τrev and the corresponding deviation σ for a given bath
size L, which in turn is desired to be small in order to render smaller
systems. However, it should be noted that a good representation of the
bath which shows earlier revivals is more important than a mediocre
one which lasts longer. We therefore are going to analyze both prop-
erties simultaneously putting emphasis on small σ but also taking
care of τrev in order to assure a discretization with overall useful
properties.7

6 For the Markovian Master Equation (MME), it then obviously is important to simulate
κ(∞) by κ(T) with T < τrev in order to avoid revivals to change κ(T).

7 A very precise reproduction of c at the cost of too small τrev would not be very
helpful for the later simulations.
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Figure 3.1: Demonstration of revivals in the optimized sampled finite bath
correlation function (exemplarily its real part) for various bath
sizes L at typical bath parameters with β = 10 eV−1.

For this, we choose a spectral density of Caldeira-Leggett type (see
appendix A)

J(ω) = α

(
ω

ωc

)s
e−ω/ωc (3.18)

which leaves us with the following parameters8:

ωc, ωcut, s, β, L (3.19)

The choice of these parameters - or more precisely their range - shall be
motivated in the following way: We want to investigate the discretiza-
tion of baths that can be relevant for the main computations in part
ii, and inspired by the spectral density of Rhodamine with its group
of main peaks located around 0.2 eV (see appendix A) we choose
ωc ∈ [0.2, 0.5]; ωcut will in turn be given as a multiple of the critical
frequency and we choose ωcut/ωc ∈ [1, 10] based on standard choices
for this proportion and the fact that contributions with ω� ωc are
suppressed exponentially.9 The Ohmicity of the bath, parametrized
by s, depends on several parameters of the described system, such as
the effective dimension of the phononic bath, and will be chosen from
{0.5, 1, 2}. As an example, in addition to the aforementioned peaks
the spectrum of Rhodamine contains a smooth background that can be
described by an ohmic spectral density that is a density J of type 3.18

with s = 1. It is this continuous part that we want to discretize and
the peaks, already discrete, are added independently. Finally, β can be
adapted to realistic values of the bath temperature T, which range up
to room temperature (T ≈ 300K, β > 40 eV−1), and L will be restricted

8 As for the correlation function we have c(τ) ∝ α, we fix α ≡ 1 throughout this section.
9 Standard choices for ωcut/ωc are 2, 4 and 10 and for the main analysis of this work,

we will mostly consider ωcut = 2ωc.
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to [5, 50]. It shall be noted that for some toy model computations and
demonstrations, such as fig. 3.1, we sometimes choose values outside
of these ranges in order to reach computationally convenient parame-
ter regimes.
First of all, we look at the influence of the temperature and the bath
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Figure 3.2: Revival time τrev for various bath sizes L and temperatures β at
fixed parameters ωc = 0.3 eV ,ωcut = 0.6 eV and s = 1 of the
spectral density. The plot on top displays the standard deviation
of τrev along vertical lines, i. e. for a constant bath size. The
optimized sampling method was used.

size on τrev, which is shown in fig. 3.2. It can be seen that the de-
pendence on L is strictly monotonous as expected, in correspondence
to the limit L → ∞ towards the continuous system. In contrast, we
do not observe any significant dependence on β, even though we are
looking at a properly big parameter range. This can be seen from the
absence of any trend within the main plot itself and in more detail
from the very small standard deviation ε(τrev) displayed in the upper
part of fig. 3.2. For linearly sampled baths, the influence of β is even
smaller (c. f. fig. D.1 in appendix D). This independence, as we want
to emphasize, only regards the revival time and not the details of the
correlation function itself, which in general will exhibit temperature
dependent behaviour.
After having observed the temperature influence to be fairly small,

we turn to the comparison between the linear and the optimized sam-
pling method for various bath sizes. Exemplary results are shown
in fig. 3.3, calling our attention to the opposite results compared to
our expectation: The linear sampling method actually yields bigger



24 the environment and its description

10 20 30 40 50

L

100

200

300

τ
r
e
v

[e
V

−
1
]

Linear

Optimized

Figure 3.3: Comparison of the revival time between linear (dashed) and op-
timized (solid) sampling in dependence of the bath size for the
same spectral density as in fig. 3.2 and at two exemplary tempera-
tures. The simulation induces a bound to τrev at 300 eV−1 which
is to be ignored.

revival times than the optimized method for all evaluated bath sizes;10

The slope is roughly the same for both methods but a constant offset
puts the linear sampling in favor. Please note that the simulational
upper boundary in time was chosen to be 300 eV−1 such that the
computed revival time is bounded by this value as is apparent in the
linear sampling case.
In conclusion, as we have encountered a whole parameter regime for
which the optimized sampling is not optimal - at least by means of the
revival time - we would have to determine which sampling strategy
is to be used depending on the parameters for each simulation. But
before deciding on this approach, we turn to the second measure of
quality for the discretization, that is the averaged deviation of the
finite from the infinite bath correlation function σ as introduced in
3.17. It is shown in fig. 3.4 for the same baths as in fig. 3.2 and suggests
using the procedure of optimized sampling: The averaged deviations
are very small with exceptions for some specific smaller bath sizes. As
these exceptions mainly lie on isolated lines for a fixed L, we interpret
them to be an issue arising from increased oscillations in the initial
deviation. This can be understood as follows: For smaller baths it is
possible that the transition between the time frame for which c(t) is
reproduced properly and the frame including correlation revivals is
rather smooth, similar to the behaviour of polynomial series expan-
sions for low orders. Thus, the revival time detection method becomes
less precise and the first increased deviations immediately before the
detected revival time are included in the computation of σ. However,

10 A further analysis in fig. D.2 shows that for the entire parameter range displayed
in fig. 3.2 the linear sampling method has bigger revival times as expected from
combining the insights of fig. 3.2 and 3.3.
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Figure 3.4: Deviation σ for the same parameters as in fig. 3.2. The optimized
sampling method was used.

we were not able to find any systematic problem with the computation
and claim the seen structures to be not physical but numerical artefacts.
It should be noted, that even for the increased σ, we observe a very
small deviation for the optimized sampling overall. In contrast, the
linear sampling method generates much bigger deviations as is shown
in fig. 3.511 and can be read off immediately of fig. D.3. We want to
note that observing an improved revival time in the linearly compared
to the optimized sampled bath does not contradict the optimality
statement in [42] because the revival time is not the main criterion
for optimality in the sense of properly reproduced OQS dynamics. As
argued before, obtaining well-reproduced correlations for τ < τrev is
more important that increasing τrev alone. Additionally, it should be
noted that improvements via linear sampling regarding the revival
time lie in the range of several %, whereas the averaged deviation σ
is reduced by at least one, typically even by two orders of magnitude
when switching to optimized sampling. For future works it would be
interesting to investigate the relation between the Markovianity of the
bath and the deviation σ as well as the revival time τrev.

Next, we consider the influence of the spectral density parameters
ωc and ωcut on the revival and precision of c(τ). In fig. 3.6 a corre-
sponding set of typical parameters is investigated, clearly displaying
a revival time dependence on the two parameters. We observe slightly
differing revival times for the two sampling methods and a compar-
ison shows that typically for ωcut/ωc > 6, the optimized sampling

11 Please note the different colour scales between fig. 3.4 and 3.5.
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Figure 3.5: Deviation σ for the same parameters as in fig. 3.2. Here the linear
sampling method was used.
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Figure 3.6: Dependence of τrev on the spectral parameters ωc and ωcut for
fixed bath size L = 20, ohmicity s = 1 and inverse temperature
β = 100 eV−1; (a) Optimized sampling, (b) Linear sampling.

yields bigger τrev whereas in the range ωcut/ωc 6 3 the linear sam-
pling has increased revival times. However, we again want to consider
the quality of the reproduced correlation function and for this take
a look at σ depending on ωc and ωcut. The result is shown in fig.
3.7 again for both methods, leaving us with deviations on two very
different scales.12 Given the fact that the smallest deviations in the
linearly sampled bath occur for settings which produce the biggest σ
in the optimized sampling, we actually can observe cases for which
σlin < σopt but it should be noted that these are corner cases for
very big ωcut/ωc. Away from this special regime, the linear sampling

12 The computation of σ becomes less reliable for small τrev, which can be observed in
the optimized sampling setting for big ωcut. Again we claim the irregular results for
σ to be of numerical origin.
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reproduces c(τ) much worse than the optimized technique, which
becomes apparent from the scales in fig. 3.7.

In summary, we were able to observe improved reproduction of the
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Figure 3.7: Dependence of σ on ωcut and ωc, for the same parameters as in
fig. 3.6. Note the different colour scales;
(a) Optimized sampling, (b) Linear sampling.

continuous correlation function by the optimized sampled discrete
bath. The few corner cases we found to deviate from this general
statement show that this is not a strict rule but for the parameter
regimes we are interested in, it is reasonable to state:
The optimized sampling method generates a bath which reproduces the corre-
lation function - and therefore the entire influence of the bath on the OQS -
better than the linear sampling method for times τ < τrev. Even though the
revival time itself typically is smaller, the averaged reproduction precision σ
is significantly better, in various realistic cases by orders of magnitude.
We therefore will continue to use the optimized sampling technique
throughout the upcoming simulations.

3.3 truncation of the harmonic bath

As it will be of importance for the numerical implementation of the
bath, we want to deal with the topic of truncation of the bath modes
in this section. Due to the full realization of each (discrete) bath mode
within the DMRG model, we need to replace the bosonic sites of infinite
matrix dimension with a finite-dimensional substitution. To this end,
we truncate the harmonic modes to a dimension mbath, which has to
be chosen in a trade-off between computational effort and preservation
of the physical bath properties.
For the thermal initial state of the bath, we can introduce a condition
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on mbath via the maximal population r of the i-th bath mode that is
to be discarded13:

Z ie
−βΩimbath

!
< r ⇒ mbath(Ωi) < −

ln r− lnZ i

βΩi
(3.20)

with Z being the partition sum of the untruncated i-th mode. Ob-
viously, the highest dimension is required for the first bath mode
with the lowest energy and therefore, regarding ρβB alone, the choice
mbath(Ω1) is reasonable.
Another way to choose the truncation relies on the fact that the corre-
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Figure 3.8: Maximal deviations of the truncated bath correlation function
from the untruncated case for different bath temperatures and
truncation dimensions with parameters in 3.21. The error for
high temperatures is hard to be reduced to the order of smaller
temperatures by increasing mbath.

lation function of the bath contains the entire bath influence on the dy-
namics. Following this train of thought, we can compute c(τ;mbath)
analytically for different truncations and demand convergence in that
parameter towards c(τ) = c(τ;∞). This could potentially discard sig-
nificant bath dynamics but due to the above statement will not change
the OQS dynamics, which are of our interest after all. Fig. 3.8 shows
maximal deviations ∆max = maxτ {|c(τ;mbath) − c(τ)|/c(0)} of the
correlation function from the untruncated case for a discretized bath
with14

L = 100,wc = 0.3,wcut = 0.6, s = 1 (3.21)

and for various inverse temperatures β and bath truncations mbath.
As expected, we see a strong dependence of the difference on the

13 Please note that there is a correction due to the normalization via the partition sum
Z . This influence is small for bath truncation dimensions close to convergence and is
neglected here for clarity of the qualitative argument.

14 As we found the revival time to be independent from β, we choose the same bath
size L for all temperatures.
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temperature and for high temperatures even very high truncation di-
mensions do not yield properly small errors. We therefore will have to
choose simulational parameters in a reasonable fashion and for cases
with high temperatures, the shown uncertainty has to be respected
and accounted for when interpreting the results.
In addition to the thermal state analysis we want to consider the fol-
lowing: Due to the interaction with the OQS, we expect populations
to be changed throughout the time evolution and depending on the
initial conditions, increased populations for some of the bath modes
are possible. This is called bath filling effect and its role in the DMRG

simulation has to be contrasted with the statement above, denying
such dynamical influence on the time evolution of the OQS.
However, combining the above ideas and results, we decide the fol-
lowing: For suitable temperatures15 the deviation of the truncated
correlation function is properly small for mbath > 30. Furthermore
the maximal discarded thermal population is given for a realistic bath
size L = 20, this truncation mbath = 30 and highest temperature
β = 40 eV−1 by

r = Z−1
1 e−βΩ1mbath = 5.8 · 10−4. (3.22)

Regarding the bath filling effect, no obvious strict statement can be
made but we will have to check on individual cases whether the OQS

significantly increases the bath populations, for example by introduc-
ing a large amount of energy into the mode closest to resonance with
the OQS.
We thus claim mbath = 30 to be a reasonable standard choice of the trun-
cation parameter and will use it unless there is specific reasons to increase
it.

15 The reader shall be reminded that β = 40 roughly corresponds to room temperature
and therefore smaller β are rather unrealistic for an experiment in the field.
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W E A K C O U P L I N G M A S T E R E Q UAT I O N

In this chapter we want to derive the ME we use in this work and dis-
cuss the approximations considered in the derivation. As is commonly
done, we aim at the weak-coupling regime.
For the derivation, we mostly follow [10], chapter II.3.3, but further
discussion and elaboration on the details will be added. Starting from
the density matrix in the Schrödinger picture ρ(s)(t) and its time evo-
lution, the interaction picture density matrix ρ(t) is defined using the
interaction-free time evolution operator U0(t),

ρ(s)(t) = U(t)ρ(s)(0)U†(t) ; ρ(t) = U†0(t)ρ
(s)(t)U0(t), (4.1)

and its equation of motion can be computed as

.
ρ(t) =

d
dt
ρ(t) = i[H0, ρ(t)] − i[VtH, ρ(t)] = −i[VtHI, ρ(t)] (4.2)

which is the von Neumann equation in the interaction picture. Inte-
grating and then iterating this equation gives

ρ(t) = ρ(0) − i

∫t

0

dτ
[
VτHI , ρ(0) − i

∫τ

0

ds [VsHI, ρ(s)]
]

(4.3)

where the starting time was fixed to t0 = 0 for convenience. By taking
the time derivative and tracing out the bath afterwards, the relation
becomes

.
ρS(t) = −i trB {[VtHI, ρ(0)]}−

∫t

0

ds trB {[VtHI, [VsHI, ρ(s)]]} . (4.4)

Next, we use the assumption of the initial state being in a product
form i. e. ρ(0) = ρS(0)⊗ ρβB, as well as the specific linear form of the
system-bath coupling, allowing us to compute

trB {[VtHI, ρ(0)]} = [eitHSA e−itHS , ρS(0)]tr
{
eitHBB e−itHBρ

β
B

}

+ ρS(0)e
itHSA e−itHStr

{[
eitHBB e−itHB , ρβB

]}
= [eitHSA e−itHS , ρS(0)] tr

{
B ρ

β
B

}
= 0, (4.5)

where the traced term in the last expression is the thermal expectation
value of the coupling operator, which can be computed for any integer
power r > 1 using the occupation number or Fock basis for the single
bosonic bath sites:

〈brm〉β =
∑

{nl}∈N∞0

〈{nk}|brme−βHB |{nk}〉 (4.6)

=
∑

{nl}∈N∞0

e−βΩmnm〈nm|brm|nm〉︸ ︷︷ ︸
0

∏

l 6=m
〈nl|e−βHl |nl〉

 = 0,
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Our time evolution equation therefore takes the form

.
ρS(t) = −

∫t

0

ds trB {[VtHI, [VsHI, ρ(s)]]} (4.7)

which is exact so far, given the thermal initial bath state and a coupling
between the bath and the system which is linear in the bath operators.

4.1 born approximation - weak coupling

In addition to the assumption ρ(0) = ρS(0)⊗ ρβB we now perform the
Born approximation stating that ρ(s) = ρS(s)⊗ ρB(0) +O

(
α2
)

holds
for all times s, where we introduced the overall scale of the couplings
g̃k abstractly called α.1 Assuming this scale to be small and under-
standing that HI ∝ α, we are allowed to replace ρ(s) = ρS(s)⊗ ρB(0)
in the r.h.s. of the master equation, in order to gain a consistent per-
turbative description including second order (in α) changes of ρS. The
weak-coupling assumption severely restricts the range of applicabil-
ity of the resulting equation, as it does not consider bath changes
above second order consistently and therefore neglects the detailed
behaviour of the environment in the case where interactions are strong
and higher order correlations may play a relevant role. Also, it pre-
vents entanglement between the bath and the system as can clearly be
seen from the product structure of ρ. The reason why we still invoke
the above replacement is simply to arrive at a system description that
is handleable both, analytically and numerically, and because weakly
coupled systems pose interesting problems to investigate and not only
hypothetic toy models.
As one might notice, applying the Born approximation without any
further constraints, the description via the master equation violates
energy conservation as soon as the open system transfers excitations to
the bath, which in turn does not leave its thermal state, i. e. as soon
as a non-thermal initial state for the combined system of OQS and
environment is chosen. For a generalization of the Born approxima-
tion which respects energy conservation on its own by allowing for a
flexible bath temperature, see [51].
As we shall see below, the Born approximation can be shown to yield
reasonable results afterall, including energy conservation, when em-
ployed in synergy with other approximation schemes.
We now want to continue with the derivation of the weak-coupling
ME: Provided small α, we can not only invoke the Born approximation,
but also replace

ρS(s)→ ρS(t) +O
(
α2
)

(4.8)

1 For a more precise notion of the coupling strength scale and how the correspondence
between the single couplings {g̃k}k and the scale α is drawn, see appendix A and
chapter 3, in particular section 3.2.
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on the r.h.s. of 4.7 which we learn from 4.3 and 4.5. In summary,
the replacement scheme for the density matrix consists of the Born
approximation, the thermal initial condition for the bath (IC) and the
additional replacement 4.8 and reads

ρ(s) −→
Born

ρS(s)⊗ ρB(0) −→
IC
ρS(s)⊗ ρβB −→

4.8
ρS(t)⊗ ρβB , (4.9)

where we skip the formally required O
(
α2
)

in the last step and end
up with an approximant for ρ(s) which depends on a freely chosen
time t, enabling us to make the equation for ρS time-local. Please note,
that this approximation only is reasonable when used in the context of
4.4 because there higher order terms will lead to contributions O

(
α4
)
,

which we neglect. Approximating ρ(s) in general with the above
procedure would give us an instant solution to the time evolution of ρ
when choosing t = 0, which obviously would not be useful at all.
After the replacement 4.9, it is possible to split the bath and the
system terms and to compute the partial trace over the bath degrees
of freedom. Simplifying the resulting expressions algebraically and
reparametrizing the integral, we arrive at

.
ρS(t) = −

∫t

0

dτ [VtAVt−τA ρS(t)c(τ) − VtA ρS(t)Vt−τA c
∗(τ)]

+ h.c. (4.10)

where we used that the thermal expectation values 〈(b†k)2〉β and 〈b2k〉β
vanish (c. f. (4.6)), employed the reduced time evolution superoperators
Vt (see 2) and recalled the bath correlation function

c(τ) = tr
{
VtB

† Vt−τBρ
β
B

}
+ tr
{
VtBVt−τB

† ρβB

}
. (4.11)

as it was introduced and shown not to depend on the time t, but only
on the time difference τ, in section 3.1.
Reordering the terms to commutators and introducing yet another
shorthand notation, we can condense our result to find the

Weak-Coupling

.
ρS(t) = [VtK(t) ρS(t),VtA ] + h.c.

Master Equation with K(t) =
∫t
0 dτ c(τ)V−τA (4.12)

It can be seen that influences on the time evolution related to the past
are mediated via K(t) alone and that the correlation function plays a
major role in controlling the memory of the system in our description,
which in particular is important for the Markov approximation below
(section 4.2).

We now turn explicitly to our system, enabling us to compute the
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above quantities to a more detailed level. First of all, we use the
concrete form of c(τ), which was calculated in section 3.1 to read

c(τ) =

∞∑

k=1

g̃2k
[
eiτΩkn(Ωk) + e

−iτΩk(n(Ωk) + 1)
]

c(τ) =

∫∞

0

dω J(ω)
[
eiτωn(ω) + e−iτω(n(ω) + 1)

]
,

and then we plug in A = σz such that

K(t) =
∫t
0 dτ V−τσz

∑∞
k=1 g̃

2
k

[
(2 〈nk〉β + 1) cos τΩk − i sin τΩk

]
K(t) =

∫t
0 dτ V−τσz

∫∞
0 dω J(ω) [(2n(ω) + 1) cos τω− i sin τω]

in the discrete and the continuous description, respectively.
We will compute the time evolution using the master equation in
the interaction picture but in order to evaluate observables have to
return to the Schrödinger picture of course. Due to trace cyclicity this
is equivalent to transforming the observable to the interaction picture
and we get

ρ
(s)
S (t) = V−tρS(t)⇒ 〈O〉 = tr {OV−tρS(t)} = tr {VtOρS(t)} . (4.13)

Up to here, we made use of the Born and the weak-coupling ap-
proximation and assumed a thermal initial state of the bath. In the
following, two additional approximations are discussed as they are
commonly used and we will partially employ them in our work.

4.2 markov approximation - the long time limit

Commonly, Markovian systems are characterized by bath correlation
functions which decay on a timescale τB significantly smaller than the
relaxation time τrel of the OQS; More precisely, Markovianity character-
izes the flow of information from the bath to the system to vanish and
consistent measures can be defined to quantify non-Markovianity [9].
Under the assumption τB � τrel, we may extend the upper integration
boundary in K(t) to∞, as we only add contributions for which c(τ) is
decayed already, suppressing the integrand. Note that this integration
extension corresponds to K(t) → K(∞) which makes the transition
notationally very convenient.
We are going to investigate the influence of the Markov approximation
for an exactly solvable reduced system in C. For convenience, we
summarize the

Markovian

.
ρS(t) = [VtK∞ ρS(t),VtA ] + h.c.

Master Equation with K∞ =
∫∞
0 dτ c(τ)V−τA (4.14)

Note that we do not employ the Markov approximation in all cases, as
it requires the above assumptions2 and therefore poses restrictions to

2 Strictly speaking, it requires assumptions on the decoherence rates, see C.
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our system and its parameters. However, staying in the more general
non-Markovian setting prevents us from showing complete positivity
of the ME, possibly leading to serious flaws in the description of
physics [7]. Additionally, we encounter issues regarding the stability
of stationary states if we do not work with the MME, which is shown in
C as well. As we require a stable description via the master equation in
order to approximate the behaviour of the system for further analyses,
we will prefer 4.14 over 4.12 for the core computations.

4.3 secular approximation

The secular approximation usually is performed in addition to the
Markov approximation, although there is no strict necessity to com-
bine both schemes and we will perform them separately to keep the
concepts of both schemes separated from each other. The idea is that
for the spectrally decomposed master equation, all contributions with
a rapidly oscillating phase may be neglected, where we consider those
frequencies large which yield a high number of oscillations during the
system’s relaxation timescale τrel, intuitively causing the contribution
"to average out".
We start the derivation by performing a spectral decomposition of the
master equation via an orthonormal eigenbasis {|a〉}Na=1 of HS with
corresponding eigenvalues Ea. Expanding the coupling operator A in
this basis, the ME takes the form

.
ρS(t) =

∑

a,b,c,d

eit(Ea−Eb+Ec−Ed)A abA cd
[
|a〉〈b|ρS(t), |c〉〈d|

]
κab(t)

+ h.c. with κab(t) =

∫t

0

dτ e−iτ(Ea−Eb)c(τ), (4.15)

where each of the four sums runs over the eigenbasis containing
N = dim{HS} elements and we denoted A ab = 〈a|A |b〉.
The secular approximation, closely related to the rotating wave ap-
proximation in quantum optics,3 then states that for relatively big
energy terms in the first exponential, many oscillations occur during
characteristic time scales of the system dynamics. More formally, the
assumption reads

Ea − Eb + Ec − Ed �
2π

τrel
for Ea − Eb + Ec − Ed 6= 0. (4.16)

The approximation is performed by neglecting all the terms containing
a non-vanishing phase in the first exponential, which corresponds to
the replacement

eit(Ea−Eb+Ec−Ed) → δEa−Eb+Ec−Ed,0. (4.17)

3 In quantum optical systems, the difference between the secular and the rotating wave
approximation is restricted to the Lamb shift Hamiltonian HLS, c. f. 4.18.
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We finally note that the combination of the Markov and the rotat-
ing wave approximation amounts to replacing the upper integration
boundary in (4.15) by∞ in addition to the replacement (4.17).

We briefly want to state that for the full set of approximations of the
master equation, one arrives at a time-local differential equation with
constant decoherence rates which can be brought into Lindblad form

.
ρS(t) = −i[HLS, ρS(t)] +

N2−1∑

k=1

γk

(
AkρS(t)A

†
k −

1

2
{A
†
kAk, ρS(t)}

)
.

It can be shown that this equation describes diagonal elements (popu-
lations) and off-diagonal terms (coherences) of ρS separately, which
is possible because in the secular approximation the corresponding
coupling terms are neglected. Furthermore, complete positivity, trace-
preservedness and energy conservation are guaranteed (c. f. appendix
C and [31]), making the mathematical description via the Lindblad
form physically feasable. These properties can be shown to extend to
the non-Markovian Master Equation (nMME) under the condition of
positivity of the rates γ, which are time-dependent in the nMME.

4.4 stationarity of the thermal system state

As mentioned above in section 4.2 and elaborated in more detail in
appendix C, the Markov approximation has both, valuable advantages
and severe drawbacks, and the question whether to invoke it or not is
non-trivial. Here we want to give one reason why to be careful with
the approximation for our numerical analysis, where we prepare a sys-
tem for DMRG based on the approximative description with the master
equation. This is done in two steps by first proving the stationarity of
the thermal system state in the Markovian master equation and then
showing that stationarity is violated in the non-Markovian descrip-
tion by giving numerical counterexamples.4 This discrepancy is then
investigated via DMRG analysis, which provides us with a numerically
exact solution of the time evolution.5

Let us start with a useful identity of the bath correlation function
needed for the proof of Markovian stationarity: The Bose-Einstein
distribution n fulfils

n(ω) + 1 =
1+ eβω − 1

eβω − 1
= eβωn(ω) (4.18)

4 For both, the Markovian and the non-approximated description, we will use the
secular approximation.

5 We additionally were able to test the validity of DMRG for small toy models by compar-
ing it to exact diagonalization computations, which is skipped here for convenience
as it is a minor consistency check
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which yields the identity

c(−τ− iβ) =

∫∞

0

dω J(ω)
[
e−iτωeβωn(ω) + eiτωe−βω(n(ω) + 1)

]
= c(τ). (4.19)

In the secular approximated master equation, c enters via the "rates"
κab, which in the Markovian description have the key feature

e−βEbκab(∞) =

∫∞

0

dτ e−βEbe−iτ(Ea−Eb)c(τ)

=

∫∞

−iβ
dτ ′ e−βEbeiτ

′(Ea−Eb)e−β(Ea−Eb)c(τ ′) (4.20)

= e−βEaκba(∞) + ie−βEa
∫β

0

dτ ′′ eτ
′′(Ea−Eb)c(−iτ ′′)

where we performed the replacements τ → τ ′ = −τ− iβ and τ ′ →
τ ′′ = iτ ′, used 4.19 and were allowed to choose a path for the complex
integration freely as the integrand does not have singularities. Now,
note that c(x) is real for a purely imaginary argument, making the
second term in the last line purely imaginary. Then it is clear that

e−βEb(κab(∞) + κ∗ab(∞)) = e−βEa(κba(∞) + κ∗ba(∞)). (4.21)

It is important to see, that an additional contribution from the inte-
gral into the imaginary direction but at some finite real part t of the
integration boundaries would not vanish in the same way as the last
term in 4.20, showing that for a relation similar to 4.21 to hold, the
time limit t→∞ is necessary, and that therefore, the nMME in general
will not exhibit this property.
We now can turn to the master equation itself and compute for the
thermal initial system state ρ(th)S = Z−1

S e−βHS at inverse bath tem-
perature β,

.
ρS

(th)
=

∑

a,b,c,d

δEa−Eb+Ec−Ed,0 A abA cd (4.22)

×
[
|a〉〈b|ρ(th)S , |c〉〈d|

]
κab(∞) + h.c.

=
∑

a,b

e−βEbκab(∞)
[∑
d

δEa,EdA abA bd|a〉〈d|

−
∑

c

δEc,EbA abA ca|c〉〈b|
]

+ h.c.

6

=
∑

a,b

e−βEb
[
(κab(∞) + κ∗ab(∞))

∑

d

A abA bd|a〉〈d|δEa,Ed

− (κab(∞) + κ∗ab(∞))
∑

c

A abA ca|c〉〈b|δEb,Ec
]

=
∑

a,b

Kab
∑

d

[
A abA bd|a〉〈d|δEa,Ed −A abA da|d〉〈b|δEb,Ed

]
,
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which is skew-Hermitian because, using the abbreviation Kab =

e−βEb(κab(∞) + κ∗ab(∞)), Kab = Kba holds via 4.21. At the same
time, it can be seen easily e. g. from the first line in 4.22 that

.
ρS is

Hermitian, such that we find

.
ρS

(th)
=

.
ρS

(th)†
= −

.
ρS

(th) ⇒ .
ρS

(th)
= 0. (4.23)

Thus, we know the thermal system state to be stationary in the fully
approximated system, i. e. when invoking the Born, the weak-coupling,
the secular and the Markov approximation.

In the second part we want to show a numeric example of the non-
secular master equation which does not exhibit the thermal stationarity
property. To this extend, we turn to the system introduced as spin-
boson-model in chapter 2 and initialize the OQS, which now is a single
spin, to be in its thermal state ρβS at the same temperature as the bath
for the following parameters:

ωc = 0.3 eV ωcut = 0.6 eV s = 1 ωS = 0.3 eV (4.24)

∆ = 0.3 eV β = 100 eV−1

DMRG: mbath = 30 mtrunc = 100

We then can numerically solve different master equations and observe
the behaviour in fig. 4.1, where the trace distance between the current
density matrix of the spin and the thermal initial state is used as a
measure to analyze the time evolution.
First, we can look at the secular MME results (orange, dashed) for the

thermal initial state which confirm the analytic result in 4.23 as there
is no movement away from the thermal state. Furthermore, the secu-
lar nMME (blue, dashed) is seen to coincide with this time evolution,
although this is proven analytically for the Markovian framework (see
above).
Next, we consider the non-secular MME solution (orange, solid), ex-
hibiting initial dynamics with which the open system moves away
from the thermal state and therefore denies its stationarity. Again, we
can go back to the non-Markovian framework and indeed observe the
same dynamics for the non-secular nMME (blue, solid).
In order to evaluate the two different results of the four approximative
schemes, we employ the DMRG simulation (yellow) and compare it
to the ME results. The initial dynamics are poorly described by the
master equation but we observe qualitatively similar dynamics for
the non-secular predictions and the numerically exact time evolution,
with a phase shift in the oscillations. This tells us that effectively, the
weak-coupling approximation is not suitable for the given tempera-
ture with β = 100 eV−1. However, we want to emphasize that the

6 Note that κab only depends on Ea and Eb but not on the particular a or b, making
the δEi,Ej

act correctly on κij.
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Figure 4.1: Time evolution of the spin starting from ρ
β
S at the initial bath

temperature β as predicted by the nMME, the MME and by DMRG

for parameters given in 4.24. For the ME approach the non-secular
(solid) and the secular (dashed) results are shown.

damped oscillation towards a constant value of the trace distance,
which is visible for both, the DMRG and the ME dynamics, coincide
well in shape and w. r. t. their approximate decaying envelope, such
that convergence towards the same (pseudo-)stationary state is pre-
dicted. Only for longer times a deviation from this simple behaviour
is seen in the DMRG simulation. This effect shall be left for further
investigation in future works.
We therefore conclude that for our system major changes can occur
when employing the common approximations and consequently we
will use the non-secular nMME whenever feasable. Mainly it will serve
to compare to the numerical results from DMRG and to estimate param-
eters such as the truncation of the bath modes and the relaxation time
and therefore the necessary revival time τrev and the corresponding
bath size L. A further review of the temperature influence on the
secular approximation is included in section 6.7.





5
D E N S I T Y M AT R I X R E N O R M A L I Z AT I O N G R O U P

Here we want to give a very brief introduction to the DMRG as tool to
evaluate the predictions made by the master equation(s) above and
as a numerically exact procedure serving us to simulate the entire
system dynamics at an arbitrary precision. We will include a review
of the necessary concepts on Matrix Product States (MPSs) and Matrix
Product Operators (MPOs) as they are used to perform our DMRG

analyses, but merely constrain ourselves to some key features.
We will mainly follow [39] in this chapter, as we precisely need DMRG

applied to matrix product states. Furthermore, we will restrict to the
relevant techniques to perform time evolution within DMRG although
the setup is able to solve many other tasks as well.
The numerical implementation of all DMRG calculations throughout
this project is carried out using the SyTen-toolkit by Claudius Hubig
et al [24, 25].

5.1 matrix product states and operators

Although an excellent overview of the topic is given in [39], we want
to introduce some notions on MPS’s and MPO’s in order to better
understand the precision of results gained with DMRG on one hand and
to show how the mixed initial state of our system can be implemented
on the other hand. Let us start with a Hilbert space H composed of
multiple subspaces {Hi}

N
i=1 via the tensor product. These subspaces

typically correspond to different sites of a chain-like setup, which is
not a restriction to specific systems1 but for us serves an illustrative
purpose and in general can be used for the categorization of the system
(not applicable in our case), e. g. via the range of interactions or the
distribution of the interaction parameters between the sites.
For this composite Hilbert space, a pure state takes the general form

|ψ〉 =
dimHi∑

ki=1

Ψk1...kN

N⊗
i=1

|ki〉Hi
(5.1)

which we need for a two-component separation into space A and B,
mainly:

|ψ〉 =
dimA∑

i=1

dimB∑

j=1

Ψab|i〉A ⊗ |j〉B (5.2)

1 Assuming a chain shape actually is far from our system 2.5 although a unitary
map exists which transforms the given star configuration into a nearest-neighbour
interacting chain.

41
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The single |ki〉 and |a,b〉 are elements of an orthonormal basis for the
respective space and Ψ can be understood as a tensor in the former or
a common matrix in the latter case. The goal is now to transform this
representation into a local notion of the coefficients Ψab, which can
be done via a Singular Value Decomposition (SVD) of Ψ:
It is known [39] that for each rectangular matrix M a decomposition
U S V† exists, such that S is a non-negative diagonal matrix with rank
r 6 max{dimA, dimB}, containing the singular values {sa}

r
a=1. This

enables us to rewrite 5.2 in its Schmidt decomposed form

|ψ〉 =
r∑

a=1

sa|a〉A ⊗ |a〉B (5.3)

where we defined |a〉A =
∑dimA
i=1 Uia|i〉A and likewise for |a〉B using

V†.2 The above procedure can be repeatedly applied to an arbitrary
state as in 5.1 by splitting the overall Hilbert space into subsequent
bipartitions, starting with A = H1, B =

⊗N
i=2Hi and ending with A =

HN−1, B = HN. In this way, we can assign a matrix Aa to each site Ha,
where the product of all A reproduces Ψk1...kN . If now the problem
is high-dimensional and thus computationally very expensive, one
can truncate the singular value matrix S in the above decomposition
such that the size of the system is reduced significantly. The error
introduced by this truncation can for example be controlled by setting
a truncation threshold for the singular values, setting a scale to the
introduced error. We do not want to go more into detail here, but refer
to the literature for details.

In order to compute system dynamics, the time evolution operator
has to be applied to the MPS describing the initial state. Therefore it is
mandatory to rewrite oprators in a matrix product form as well. This
shall not be discussed here either but can be found for example in [39],
together with details on normalization of matrix product states and
the prescription of purification for general settings. The application of
the latter concept to our case is shown in the following section.

5.2 purification

In order to describe mixed states, which can not be written in the form
5.1, we will make use of the so-called purification prescription, which
amounts to copying the system under consideration and interlacing the
sites of both copies. With this system, mixed states can be incorporated
as we show using the example of a thermal state for a single bosonic

2 Please note the abuse of notation as we distinguish fundamentally different sets of
states on the same subspace only by using a different index. This will not become a
severe problem in the following.
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mode k with energy Ωk. Denoting the original system with indices P
and the copy with Q, such a state has the form

|ψ
(th)
k 〉 =

√
Z k

−1∑

nk

e−βΩknk/2|nk〉P ⊗ |nk〉Q (5.4)

but as one can see, the local structure of a matrix product state is not
achieved yet because the indices of the physical and the auxiliary site
are fixed to be the same. In a collection of bosonic modes, we instead
would arrive at a state structure of blocks containing two sites each,
corresponding to the physical and the copied site for each mode. We
therefore rewrite the state coefficients as product which yields

|ψ
(th)
k 〉 =

√
Z k

−1 ∑

a,nk,n ′k

δnk,ae
−βΩka/2δa,n ′k

|nk〉P |n ′k〉Q (5.5)

for which we are able to separate the different single-site matrices.
Please note that due to the standard description of the bosonic mode in
the eigen basis of its Hamiltonian, the thermal state density matrix is
diagonal and the single-site matrices in the above decomposition take
their fairly simple form. In contrast to this, for the two-level system
included in our system and for detuning frequencies ∆ 6= 0 the single-
site matrices contain the transformation matrix between the energy
eigen basis and the basis in which the Hilbert space is described,
i. e. the eigen basis of σz, such that they become more complicated
and the splitting procedure does not appear in an artificial form like
5.5. The same holds for the initial state of the cavity if it is found in a
truly quantum mechanical state composed of multiple eigen states of
the Hamiltonian. The corresponding prescriptions can be computed
in general for the spin and the cavity at fixed dimension:

|ϕspin〉 =
∑

b,σ,σ ′
Uσb sb Uσ ′b |σ〉P |σ ′〉Q (5.6)

|ϕcvty〉 =
∑

c,nl,n ′l

Vnlc Sc Vn ′lc |nl〉P |n
′
l〉Q (5.7)

where s ad S denote the eigenvalues of the initial state density ma-
trix of the spin and cavity, respectively, which for a pure state are 1
(multiplicity 1) and 0 (remaining multiplicity). The matrices U and
V are the unitary transformation matrices between the respective
eigen basis of the density matrix and the basis of description, acting
as e. g. |b〉 = ∑σUσb|σ〉. Depending on whether the initial MPS is
wanted to be left- or right-normalized, one then separates the factors
in 5.5 - 5.7 into the two on-site matrices for the MPS and (for our
choice of left-normalization) arrives at

(AP,cvty)
nl
1,c = Vnlc (AQ,cvty)

n ′l
c,1 = Vn ′lc Sc

(AP,spin)
σ
1,b = Uσb (AQ,spin)

σ ′

b,1 = Uσ ′b sb (5.8)

(AP,k)
nk
1,a = δnka (AQ,k)

n ′k
a,1 =

√
Z k

−1
e−βΩka/2 δn ′ka
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This result can then be implemented immediately for DMRG simula-
tions. It should be noted, that there is no closed form for the transfor-
mation matrices V as its dimension depends on the chosen truncation
on the cavity mode Hilbert space.

5.3 time evolution methods

Throughout our simulations, two time evolution methods will be used
in combination, exploiting the advantages of each concept.
Simulation starts by employing the Krylov method, which refers to the
strategy of how the time evolution operator is applied and the massive
amount of matrix-matrix multiplications can be handled efficiently,
using the Krylov subspace to compute the eigenbasis and -values at
each time step. We will not go into detail on these methods but refer
to literature on the numerics used in the library [16, 21].
While the Krylov method is able to produce as exact results as re-
quired and can be controlled very well, it is rather slow, becoming very
computationally time-expensive for highly entangled states with large
bond dimensions. Therefore, a second method is used to perform
the subsequent time evolution, making use of the time-dependent
variational principle Time-Dependent Variational Principle (TDVP), as
it was introduced in [19]. Here, the errors are not controlled as nicely
(regarding the implementation in the library) but this method is sig-
nificantly faster, enabling us to explore bigger time scales. The reason
for the above composite procedure is that TDVP induces rather large
errors for low entangled states, for single site TDVP the entanglement
even is constrained via a fixed maximal bond dimension. We therefore
start with a Krylov time evolution to build up entanglement and after
reaching a desired maximal bond dimension to which we truncate
anyways, we switch to the faster single-site TDVP method.

5.4 parameters

The topic of parameter choice is a very involved one for DMRG because
wrongly chosen settings will easily disturb the result by inducing trun-
cation of relevant contributions. Therefore we briefly want to mention
the parameters and our standard choice for them.
First of all we introduce the truncation threshold rtrunc, which de-
scribes the minimal matrix element contribution that is considered in
the MPS calculations. It is an implemented setting in the SyTen toolkit
and we will set it at 10−6, a setting which we occasionally will check
to yield convergence.
The second parameter is responsible for truncating the matrices at the
bonds between the sites as well; The truncation dimension mtrunc
is the maximal dimension until which the exact bond matrix is kept
(up to the threshold truncation with rtrunc) and all occuring bigger
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matrices are truncated back to the size mtrunc. Typical settings for
this will be 100 to 400 - depending on the size and local dimension of
the bath.
The last parameter is the local bath dimension mbath, which is dis-
cussed in section 3.3 already and will be chosen problem-dependently.





Part II

T I M E E V O L U T I O N A N D T H E R M A L I Z AT I O N

With a rich toolbox at hand, which allows us to investigate
the time evolution of the introduced systems, we turn to the
second part. While the first chapter 6 serves the purpose
of evaluating the introduced methods and establishing
their numerical implementation by treating an analytically
solvable subsystem, the second chapter 7 contains our
results on the full system dynamics and the thermalization
of the cavity mode. The topic of quantum decoherence and
relevant insights on the nature of the real-world systems
are presented there as well.





6
A L O N E LY D Y E M O L E C U L E

Before turning to the final core topic of our project, we want to examine
the system dynamics of a subsystem of the general setting, introduced
in chapter 2 and described by 2.6. The special case of ∆ = 0 will be of
particular interest and we will focus on this setting in order to establish
the equations and methods derived in part i. Regarding the physical
context, the spin-boson model corresponds to a single dye molecule,
of which we investigate a single resonant two-level DOF in interaction
with its rovibrational modes. The simplified situation is depicted in
fig. 6.1, with the cavity being excluded from our description in this
chapter.

Figure 6.1: Physical system equivalent to the setup treated in chapter 6. Only
a single dye molecule is investigated, corresponding to electronic
and rovibrational DOFs. Figure adapted from [36].

6.1 the pure dephasing model

In this section, we look at the spin-boson model for the special case
of pure dephasing, that is we set ∆ = 0 and analyse the consequences
of this particular choice for the system dynamics. The open system
Hamiltonian, having been reduced for the spin-boson system already,
now takes the simple form

HS =
ωS
2
σz . (6.1)

An analytical solution for the time evolution of the open system has
been derived before [5, 22]1 such that we can test approximation
schemes like the ones introduced in chapter 4 and the numerical
procedures which we will implement. The spin dynamics will reveal
the origin of the name pure dephasing, as the two-level system only
relaxes its 〈σx〉-excitation but remains at fixed energy, proportional

1 Section A.2. in [5] and II.A. in [22]
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to 〈σz〉. We want to rederive this exact solution, following [5] but
correcting for some mistakes, finding the solution in [22] for the
particular choice α = 1. Afterwards we evaluate the master equation
for this reduced model.

6.2 analytic solution

We begin by stating the Dyson formula for the unitary time-evolution
operator and introducing the Magnus Expansion, which can be taken
from [6], chapter 2, and replaces the time ordered Dyson series as

U(t) = T← exp
[
−i

∫t

0

ds HI(s)
]
−→ exp[Ω(t)] .

Ω(t) can be computed using the formula 2

Ω(t) = −i

∫t

0

dt1 HI(t1) −
1

2

∫t

0

dt1
∫t1
0

dt2 [HI(t1),HI(t2)] +O(H3I )

and U(t) is then evaluated by plugging in the interaction Hamiltonian
as follows: We write down the time evolution of HI in the interaction
picture reading3

HI(t) = ei(HS+HB)tHIe
−i(HS+HB)t (6.2)

= σz

∞∑

k=1

g̃k

(
eiHBtbke

−iHBt + eiHBtb†ke
−iHBt

)
= σz

∞∑

k=1

g̃k(e
−iΩktbk + e

iΩktb
†
k) .

Next, this expression is used to compute the commutator

[HI(t1),HI(t2)] = O ([σz,σz]) + σ2z
∑

k,l

g̃kg̃l

(
O ([bk,bl]) +O

(
[b†k,b†l]

)
+ e−i(Ωkt1−ωlt2)[bk,b†l] + e

i(Ωkt1−ωlt2)[b†k,bl]
)

= −2i

∞∑

k=1

g̃2k sin(Ωk(t1 − t2))1S,B (6.3)

confirming (A3.1) (equation after (A3)) in [5]. Returning to the Magnus
expansion, we then get:

Ω(t) = −i

∫t

0

dt1 HI(t1) −
1

2

∫t

0

dt1
∫t1
0

dt2 [HI(t1),HI(t2)]

= σz

∞∑

k=1

g̃k(αk(t)b
†
k −α

∗
k(t)bk) − i1S,B tf(t)

2 Please note that [5] uses a different relative sign, this is found to be a confusion with
the prefactor (−i)2 and is corrected here.

3 differing from (A3) in [5] by the corrected exponent in the second summand.
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where we used (6.2) and (6.3) and defined

αk(t) = g̃k
1− eiΩkt

Ωk
f(t) =

1

t

∑

k

g̃2k
Ω2k

(Ωkt− sin(Ωkt))

corresponding to (A5) in [5]. Please note that the above result for Ω(t)

is exact, as the higher order contributions consist of iterated commuta-
tors and [HI(t1),HI(t2)] ∝ 1S,B, setting all higher order terms to 0.
Afterwards, we can decompose the time evolution operator, which is
diagonal in the spin subspace becauseΩ(t) is, i. e.U(t) =

∑
±U±(t)|±〉〈±|

and can write

U±(t) = exp

[
−i1Btf(t)±

∑

k

g̃k(αk(t)b
†
k −α

∗
k(t)bk)

]
(6.4)

confirming (A4) in [5]. We now continue to compute the decay rate
Γb introduced via ρ+−

S (t) = e−tΓb(t)ρ+−
S (0) as it is carried out in the

main part of [5] by using the periodicity of the trace:

Γb(t) = −
1

t
ln
(

trB
{
U
†
+(t)ρB(0)U−(t)

})
= −

1

t
ln
(

trB
{
ρB(0) (6.5)

× exp
[
− i1Btf(t) −

∞∑

k=1

g̃k(αk(t)b
†
k −α

∗
k(t)bk))

]
× exp

[
i1Btf(t) −

∞∑

k=1

g̃k(αk(t)b
†
k −α

∗
k(t)bk))

] } )
As we have [1B,b†k] = [1B,bk] = 0, the exponentials can easily be
decomposed and recombined such that the first terms in the exponents
cancel and the second ones add up such that

Γb(t) = −
1

t
ln
(

trB

{
ρB(0) exp

[
2

∞∑

k=1

g̃k(α
∗
k(t)bk − h.c.)

]})
,

which then can be converted via a more involved computation of the
partial trace to yield

Γb(t) =
1

t

∞∑

k=1

g̃2k 8 coth
(βΩk
2

)sin2(Ωkt/2)
Ω2k

, (6.6)

coinciding with (4) in [22] for α = 1.4 Making use of the spectral
density replacement 3.3, we write the decay rate as

Γb(t) =
8

t

∫∞

0

dω J(ω) coth
(
βω

2

)
sin2 (ωt/2)

ω2
. (6.7)

4 One uses the trigonometric identity 1 − cos x = 2 sin2(x/2) and corrects for the
deviation in the definition of Γb(t) between [5] and [22] and actually recieves a
slightly different result than (9) in [5]
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We finalize this review by evaluating the resulting time evolution
of 〈σx〉 and 〈σz〉. Transforming back to the Schrödinger picture (or
equivalently transforming σx to the interaction picture), we can write

〈σx〉 (t) = tr
{
σxe

−itHSρS(t)e
itHS
}

= ρ+−
S (t)e−itωS + ρ−+

S (t)eitωS (6.8)

= e−Γb(t)t 2Re
{
ρ+−
S (0)e−itωS

}
.

Likewise, we can compute 〈σz〉 (t) based on the diagonal analogue of
Γb(t), which can be easily seen to be 1 (the exponentials cancel each
other out). We therefore simply get

〈σz〉 (t) = tr
{
σze

−itHSρS(t)e
itHS
}

= ρ++
S (0) − ρ−−

S (0) (6.9)

= 〈σz〉 (0)

that is the energy of the spin does not change throughout the time
evolution. This motivates the name pure dephasing model as the entire
system dynamics lie in the 〈σx〉 excitation.
As a side remark, we want to note that due to the fixed spin energy,
corresponding to a fixed occupation of the states |±〉, thermalization
is not possible in the pure dephasing case unless the initial state was
tuned to have the thermal diagonal elements and arbitrary off-diagonal
elements, which then would decay.

6.3 master equation

For the specific setup of the pure dephasing model, the master equa-
tion can be simplified and the explicit weak-coupling approximation
corresponding to 4.8 is incorporated at a scalar rather than the density
matrix level, reduced to the comparison of two ordinary differential
equations.
Let us start with the Born master equation and compute5

.
ρS(t) = −

∫t

0

dτ [ρS(τ)c(τ) − σzρS(τ)σzc
∗(τ)

+ ρS(τ)c
∗(τ) − σzρS(τ)σzc(τ)]

= −

∫t

0

dτ 2Re {c(τ)} [ρS(τ) − σzρS(τ)σz] (6.10)

5 Please note that employing the Born approximation already goes along with assuming
a weak coupling α.
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where we used σ2z = 12 and the fact that [HS,σz] = 0 allowed us to
skip the time evolution of σz. Similarly to the analytic solution above,
we evaluate the master equation componentwise and write

.
ρS
±±

(t) = −

∫t

0

dτ 2Re {c(τ)} ρ±±S (τ)(1− (±1)2) = 0

.
ρS
±∓

(t) = −

∫t

0

dτ 2Re {c(τ)} ρ±∓S (τ)(1− (±1)(∓1))

= −4

∫t

0

dτ Re {c(τ)} ρ±∓S (τ) (6.11)

leaving us with a single (non-trivial) scalar differential equation. In
the weak coupling case one can now easily substitute ρ±∓S (τ) with
ρ±∓S (t), simplifying the master equation from an ODE of second to
one of first order. This can be seen by taking the derivative of the
non-approximated equation and comparing both6

non-weak (
. .
ρS
±∓

)NW(t) = −4Re {c(t)} ρ±∓S (t) (6.12)

weak (
.
ρS
±∓

)W(t) = −4Re {C(t)} ρ±∓S (t) (6.13)

where we wrote the integral over c as C in order to demonstrate the
similarity. By iterating the second equation and subtracting the non-
approximated version, we can boil down the difference in the second
order ODE to

(
. .
ρS
±∓

)NW(t) − (
. .
ρS
±∓

)W(t) = −16 (Re {C(t)})2 ρ±∓S (t) (6.14)

which in the Markovian limit C(t)→ C(∞) can be identified to give
an oscillating contribution of frequency 4Re {C(∞)}.

We will use these results and the existence of an analytic solution for
the spin-boson model to understand the effects of approximations and
to test numerical procedures used throughout the present work. Note
that for the case ∆ 6= 0 there is no similar analytic solution because 6.3
does not hold and therefore the Magnus expansion is not finite. We
now continue by briefly describing the DMRG setup for the reduced
model.

6.4 density matrix renormalization group

For the pure dephasing model, the DMRG implementation is straight
forward when using the concepts introduced in chapter 5, in particular
we use the purification prescription in order to initialize the bosonic
bath in a thermal state. The initial state of the two-level system on the

6 We here refer to the result in 6.11 as non-approximated or non-weak although the
Born ME is not exact.
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other hand is given by three independent real parameters a, b1 and
b2 as can be seen from hermiticity and normalization of ρS:

ρS(0) =

(
a b1 + ib2

b1 − ib2 1− a

)
(6.15)

When restricting to a pure state with real coefficients, the initial state
even is to be described by a single parameter α ∈ R, as can be seen
via

|ϕS(0)〉 = λ−1/2
(

α

1−α

)
⇒ ρS(0) = λ

−1

(
α2 α(1−α)

α(1−α) (1−α)2

)

with normalization factor λ = α2 + (1−α)2.
While the master equation became computationally very cheap due to
the small dimension of the OQS, the effort in the DMRG computation
is still potentially high because the full bath dynamics are computed,
depending on the simulational parameters. This of course comes with
the benefit of numerical precision and as exact solutions as desired for
any coupling scale.

6.5 numerical results

We now turn to numerical results gained via the various methods
introduced in the preceding sections. To this extend, we will demon-
strate the dephasing for a 〈σx〉-excited initial state as predicted by
the analytic computation 6.7 and compare it to the solution of the ME

given by 6.13. The simulation employs the parameters

ωc = 0.3 eV ωcut = 0.6 eV s = 1 ωS = 0.3 eV (6.16)

∆ = 0 eV β = 10 eV−1

and yields the results shown in fig. 6.2. The time evolution of the
spin excitation takes the expected form: Oscillating with the two-level
system frequency ωS, it decays with a coupling-dependent rate which
is proportional to α via J as can be read off of 6.7. The deviation of the
weak-coupling nMME solution without secular approximation from the
exact solution is shown in fig. 6.2b) in form of the relative difference

δ(τ) =

∣∣∣∣〈σx,exact〉 (τ) − 〈σx,nMME〉 (τ)
〈σx,exact〉 (τ)

∣∣∣∣ (6.17)

and it can indeed be observed to grow with the coupling strength α.
This dependency is non-linear as expected due to our approximation
up to quadratic order in α. It should be noted, that the simulational
parameter dt, which is not a physical quantity, has a major influence
on the precision of the ME results and that it has to be chosen as
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Figure 6.2: (a) Dephasing in the spin-boson model as predicted by the analytic
solution. (b) Numerically computed relative difference between
the weak-coupling ME and the exact solution.
Parameters are given in 6.16 and the continuous environment
model 6.7 and dt = 5 keV−1 are used for these computations, α
is given in eV .

a compromise between accurate results and limited computational
effort. The presented results employ dt = 5 keV−1 leaving us with
a reasonably simple computation and properly precise results at the
same time.7 Investigating the dependence on dt in fig. D.4 in appendix
D, we can state that for relevant regimes dt ∈ [0.001, 0.15] the relative
error approaches a rule max ∆〈σx〉〈σx〉 = m · dt for bigger dt but for small
time stepsizes, an error larger than this can be observed. This can be
interpreted as a linear influence of dt relevant for bigger time incre-
ments which is superseded by a non-linear behaviour for small dt,
leading to a non-vanishing error towards arbitrarily small stepsizes.
This residual error is due to the approximations performed in the ME.
We then can turn to the numerically exact simulation of the pure
dephasing model, employing a DMRG analysis with the same param-
eters.8 The corresponding results are displayed in fig. 6.3 where we
see the absolute deviation between the simulation and the analytic
solution. For small local bath dimensions mbath we see rather big
errors on 〈σx〉 but they can be reduced to properly small regimes by
increasing this purely simulational parameter. It is clear by our choice
of the initial bath state ρβB that the necessary truncation dimension of
the bath depends on β and the amount of energy transferred into the
bath by the OQS because the truncation neglects high-excitation states
of the bath modes which are only relevant for small temperatures, that
is big β, and for high energy transitions via interaction with the OQS.
The influence of mbath on the results is astonishingly big and will
therefore be important in the upcoming analysis of the full system.
We see an inverted dependence of the error on the coupling parameter
α, i. e. the stronger the coupling the smaller deviations are found. A

7 Please note, that the overall scale of the deviations between the nMME and the exact
result is fairly small.

8 but a finite bath size L, of course
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review of the dephasing dynamics shows that this is only due to the
faster decay of 〈σx〉 itself for bigger α, which imposes a small devia-
tion ∆ 〈σx〉 given a constant relative error. However, as can be seen in
fig. 6.3, for DMRG simulations it is the absolute value (or its periodic
maximum) that is constant yielding strongly increased relative errors
for 〈σx〉 as it decays to 0. Nonetheless, the fact that we can reduce
the error of the DMRG results by increasing the size of the simulated
system assures us that the implementation works and matches the
expected behaviour of a truncation-based approximation, and the
constant absolute deviation is in agreement with this expectation as
well. The time step size for DMRG was chosen bigger than for the ME

in order to keep the computational effort in bounds and because its
influence on the DMRG results has been observed to be neglegible.
Again, it should be emphasized that the main purpose of figs. 6.2b)
& 6.3 is not the direct comparison between the methods but the in-
dividual evaluation of their quality and sensitivity to simulational
parameters. When comparing both please note that the shown quan-
tities differ as fig. 6.2b) displays relative and fig. 6.3 shows absolute
deviations from the corresponding analytic solution and different
scales are used.
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t [eV−1]
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Figure 6.3: Numerical simulation of the pure-dephasing model including the
bath using DMRG with different local bath dimensions mbath =

5, 10 and 20 for the dotted, dashed and solid lines, respectively.
The parameters are as in fig. 6.2 but we used dt = 0.05 eV−1 and
the absolute rather than the relative deviation from the analytic
solution is shown. Furthermore, as DMRG is not treating an in-
finite system, we turned to the finite size L = 10 for both, the
numerical simulation and the analytic solution 6.6. (Please note
the logarithmic scale.)

We thus first can use the analytic solution to look at the influence of
J (section 6.6) and then can proceed to treat the spin-boson model
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without analytic solution, that is for ∆ 6= 0 (section 6.7), and the more
complex full system (chapter 7).

6.6 structured spectral densities - poking the dynamics
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Figure 6.4: (a) Spectral densities with peaks of Rhodamine 800 added (c.f.
appendix A). Different numbers of peaks and different FWHM 2Γ

were used.
(b) Resulting decay modulation in the dynamics of the pure de-
phasing model as computed by 6.7.

In order to give a qualitative insight into the influence of character-
istic peaks in J as introduced in appendix A, we will use the exact
dephasing result and plug in a structured spectral density into 6.7.
As a result the decay of the amplitude, exp[−Γb(t)t], is shown in fig.
6.4 for a different number of selected peaks and Half Width at Half
Maximum (HWHM) Γ . For this analysis, the peaks of Rhodamine 800

with properties taken from [12] are simply added to a smooth back-
ground.9

We observe an increased dephasing rate overall, which is clear by the
fact that we increased the overall coupling. More interestingly, the
rate is modulated with oscillations corresponding to the characterstic
frequencies of the peaks. This means that for special relations between
the two-level system frequency ωS and a single characteristic line Ω
in the bath the dynamics can be damped stronger or less strong. The
choice of ωS = Ω, for example, leads to an increased damping of
the minima and a decreased damping of the maxima of 〈σz〉 whereas
ωS = Ω/2 yields bigger amplitudes for the minima. When testing
these analytical insights in the system, the smooth background dis-
turbs the clear differentiation of the cases and therefore we beforehand
want to change our method slightly: For every peak added to the

9 Please note that this changes the peak amplitude even though the experimentally
measured values naturally include the background. We neglect this fact for this purely
qualitative analysis.
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spectral density, we rescale the smooth background JBG with a factor
κ such that

∫∞

0

dω κJBG(ω) + JL(ω) =

∫∞

0

dω JBG(ω). (6.18)

This means that adding peaks changes the shape of the spectral density
in dependence on the number and width of the peaks but preserves
the overall coupling and keeps the density ohmic because of the linear
low-energy modification of the peaks (see appendix A). With this
modified strategy, we can investigate the influence of the peaks inde-
pendently of the overall coupling

∫∞
0 dω J(ω). This is in accordance

with experimental procedures in vibrational specroscopy where the
focus lies on the characterstic peaks and the background influence is of
lower importance. The corresponding decay modulations e−Γb(t)t and
the results for 〈σx〉 (t) are shown in fig. 6.5. We see a fairly reduced
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Figure 6.5: Pure dephasing dynamics for a spectral density with a single
peak, renormalized via 6.18. When tuning the spin frequency to
the decay in (a), which is is reduced significantly for long times
even though the overall coupling is fixed, we can modify the
amplitude in the 〈σx〉 (t) excitation for the first extrema in (b).
Please note the different time ranges.

damping prefactor of the 〈σx〉 (t) oscillations for the peaked spectral
densities in fig. 6.5a), even though the coupling is renormalized to a
constant overall coupling strength. This shows that the characteristic
lines are less effective at damping the dynamics, i. e. they provide a
less effective dissipative behaviour. Due to the temperature influence
in Γb(t) we can understand this phenomenon: The contributing fac-
tor coth

(
βω
2

)
filters out low-energy contributions and therefore the

low-energy behaviour is most important for the observed dynamics.
Interestingly, this fits to the common understanding of Markovian
dynamics, even though the above results are exact.
Subsequently, we want to check the estimated behaviour for specific
choices of the spin frequency, which merely amounts to selecting the
times t for which the damping is explicitly stronger or weaker than
for the background alone by synchronizing them with the maxima in



6.7 thermal influence on the secular approximation 59

magnitude of the factor cos(ωSt).10 The results of tuning ωS to Ω1
an Ω1/2, respectively, are shown in fig. 6.5b) and indeed confirm the
desired behaviour for the first extrema of the dephasing dynamics:
For ωS = Ω1 we see a stronger damping of the first two minima,
compared to the less damped amplitude of the first maximum. For
ωS = Ω1/2, the first minimum lies at the first maximum of the previ-
ous tuning, such that we see a weakly damped first minimum. These
were exactly the expectations. It should be noted, that this can be done
for single extrema primarily and all further occurences of maximized
or minimized damping are due to mutual periodicity of the decay and
the oscillatory part in 〈σx〉 (t).
Furthermore we want to emphasize, that even though this analysis is
fairly straight forward, it can lead to interesting insights on the inter-
play between the OQS and the bath, especially for structured spectra.
For future investigations it might be interesting to find special modifi-
cations of the spectral density which induce more complex or repeated
structures in the system dynamics. This then could be exploited by
using an OQS with more frequencies that then could be adapted to the
specialized bath. However, we will leave this to future work and go
on with an investigation on the role of the secular approximation.

6.7 thermal influence on the secular approximation

In this section we want to analyze the influene of the secular approx-
imation in the spin-boson-model as we have the possibility to gain
analytic insights on this to some extend. The nMME with and without
the secular approximation was seen to give very different results when
treating the thermal stationarity in section 4.4. While the secularly ap-
proximated equation predicts a stationary thermal state, a movement
away from this state is seen for the other ME and confirmed by the
numerical simulation with the DMRG setup. As we saw the MME to
coincide well with the non-Markovian equations, we will employ the
Markov approximation, making use of analytic insights first shown
in [34]. This enables us to evaluate our implementations with yet
another benchmark and at the same time gain insights on the secular
approximation.

We start out by trying to solve the ME analytically for the general spin-
boson model. For this we follow the approach of [34], which employs a
rotation of the OQS subspace Hamiltonian and a corresponding change

10 This is the only contribution for ρ+−
S (0) ∈ R.



60 a lonely dye molecule

of what is understood as interaction picture. Due to the specific choice
of this rotation, this diagonalizes HS,

H̃S = U†
(
ωS
2
σz +

∆

2
σx

)
U =

η

2
σz for U = e−iϑσy/2

with η =
√
ω2S +∆

2 and ϑ =

{
π/2 for ωS = 0

arctan ∆
ωS

for ωS 6= 0
making the computation of the master equation easier. Carrying out
the derivation as in chapter 4 and employing the spectral decompo-
sition, we arrive at the following for the Schrödinger picture master
equation in the Markovian approximation:

.̃
ρS(t) = −i

η

2
[σz, ρ̃S(t)] +

∑

ω,ω ′

(
κ(ω ′)[P(ω ′)ρ̃S(t),P(ω)] + h.c.

)
(6.19)

with κ(ω ′) =

∫∞

0

dτ eiω
′τc(τ) , H̃I(t) =

∑

ω

P(ω)e−iωt,

the sum running over {−η, 0,η} and where the tilde denotes the rotated
frame throughout. For our system the spectral operators are

P(0) =
ωS
η
σz P(±η) = ∆

η
σ∓. (6.20)

The secular approximation, which is carried out in the interaction pic-
ture, yields an equation of reduced complexity due to the requirement
ω ′ = −ω originating from the approximation procedure as described
in section 4.3.11

.̃
ρS(t) = −i

η

2
[σz, ρ̃S(t)] +

∑

ω

(
κ(−ω)[P(−ω)ρ̃S(t),P(ω)] + h.c.

)
(6.21)

We now solve the above MMEs for the special case of ωS = 0, cor-
responding to the first case in [34] and enabling us to compare the
results of the secular and the non-secular equation, and for the initial
state ρS(0) = a|−〉〈−|+ (1− a)|+〉〈+|. The spectral operators become
P(0) = 0, P(±η) = σ∓ and we have ϑ = π/2 as well as η = ∆. Because
of the special setup for ωS = 0, the basic interesting quantity we
consider is 〈σz〉 (t). From the componentwise treatment of 6.19 we
obtain the solutions

〈σz〉 (t) = 〈σz〉 (0)e−At
[

cos (Bt) +
A

B
sin (Bt)

]
(6.22)

and

〈σz〉 (t) = 〈σz〉 (0)e−At cos(Ct) (6.23)

for the non-secular and the secular ME, respectively. We introduced
the abbreviations

A = Re {κ(∆) + κ(−∆)} B =
√
∆2 + 2∆Im {κ(∆) − κ(−∆)}−A2

C = ∆+Im {κ(∆) − κ(−∆)}

11 As we follow the notation of Nazir [34] here, the conditionω ′ = ω becomesω ′ = −ω.
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and can write

A =

∫∞

0

dt 2 cos(∆t)Re {c(t)} A ′ =

∫∞

0

dt 2 sin(∆t)Re {c(t)}

B =
√
∆2 + 2∆A ′ −A2 C = ∆+A ′. (6.24)

Let us first analyze the non-secular solution, which exhibits a transi-
tion between qualitatively different time evolutions [34]:
For ∆2 + 2∆A ′ > A2 we know B to be real and positive. This means,
that the 〈σz〉-excitation decays in an oscillating manner, with ampli-
tude decay e−At and a weighted combination of a cosine and a sine
wave. Because of the dependence of A and A ′ on the real part of the
correlation function and the monotonous decrease relation between
β and c(t), we see the above condition fulfilled if the temperature is
properly low, corresponding to big values of β and therefore to smaller
A and A ′.
A different behaviour is seen in the case when ∆2 + 2∆A ′ < A2. Here
we find B to be purely imaginary, converting the oscillatory factors in
6.22 to real exponentials, of which one slows down the decay by a con-
tribution eIm{B}t. This case, demanding large A and A ′, corresponds
to large temperatures. In summary, the case separation is

∆2 + 2∆A ′ > A2 ⇒ Damped oscillation

∆2 + 2∆A ′ < A2 ⇒ Reduced exponential decay

The corresponding temperature regimes and the transition between the
cases can then be found numerically,12 for now we just give exemplary
time evolutions in fig. 6.6 (solid lines) with parameters

ωc = 0.3 eV ωcut = 0.6 eV s = 1 ωS = 0 eV (6.25)

∆ = 0.3 eV α = 0.05 eV

As mentioned above, we also want to use the present system as a
benchmark and therefore numerically evaluate the MME as well. As
for the pure dephasing case treated above, we find excellent coincision
and therefore refrain from displaying both the numeric result. Having
understood the non-secular results we want to turn to the secular
ME results in 6.23 and analyze them in a similar fashion. Due to the
simpler form of C compared to B, we do not find different behaviour
in dependence on the temperature but always obtain an exponentially
decaying cosine wave. It is therefore clear, that for small temperatures,
where A and A ′ are small, we can find coinciding results between the
two ME solutions. Consequently we can state that the secular approxi-
mation only works for small temperatures, which is confirmed with
the secular MME results shown in fig. 6.6 (dashed).

12 For the parameters in 6.25 we obtain the huge transition temperature of Tcrit =

24000◦K
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Figure 6.6: Time evolution of the 〈σz〉-excitation for three different temper-
atures exhibiting the three fundamentally different forms of dy-
namics derived here (Solid). Additionally the secularly approxi-
mated dynamics are displayed (Dashed), showing better coincid-
ing results for small temperatures. The parameters are given in
6.25

Before moving on, we want to refine the understanding of the transi-
tion in the quality of the secular approximation. We start by noting
that the condition ∆2 + 2∆A ′ > A2, which discriminates the oscil-
latory and the monotonous scenarios in the non-secular dynamics,
leads to the statement A < ∆ when assuming A ∼ A ′. Guided by
this, we look at the limit A� ∆, in expectation of coinciding secular
and non-secular dynamics, and by comparing orders and relations
between the used quantities, we can write:

∆� Re {c(t)} ⇒ ω ′ −ω� Γ ⇒ (ω ′ −ω)τ� 1.

where we wrote Γ for the decay rate induced by the bath. The latter
inequality is the condition of validity for the secular approximation
as it is commonly known, showing that the secular approximation
is self-consistent and explicitly demonstrating its connection to the
temperature of the bath, which is incorporated in Re {c(t)}.

Outside of the special case ωS = 0, the non-secular ME is not solvable
analytically and we therefore refrain from extending the analysis to
that regime. However, we want to emphasize the insight we gained
from the above work: The secular approximation changes the solution
of the corresponding master equation in a temperature-dependent
manner, always displaying damped oscillations for our case, and we
therefore have to go to a proper temperature regime if we want to
gain qualitatively coinciding results or want to rely on the secular
MME alone, for example when requiring a master equation in Lindblad
form.



7
A D Y E M O L E C U L E I N A C AV I T Y

In this chapter we now consider the full system as introduced in 2.5
and analyze its dynamics. We will make use of the insights gained
throughout the previous chapters, enabling us to choose proper sim-
ulation parameters and the correct methods in order to arrive at
meaningful results.
Please note, that we will restrict ourselves to the case ∆ = 0 in order to
investigate the influence of the cavity on the dephasing of the spin. It
should be noted that for more interesting thermalization dynamics of
the cavity mode itself, ∆ 6= 0 is expected to be essential. As we learned
in the previous chapters, the energy exchange between the OQS and
the bath is mediated via HCS alone if there is a spin-bath-coupling
diagonal in the spin Hamitonian. It thus is clear, that the ultimate goal
of finding whole parameter regimes in which the cavity thermalizes is
not reached within this work but will have to be pursued in its final
steps in upcoming projects.

the cavity disturbs pure dephasing

We will look at the special case ∆ = 0, which we saw to exhibit special
features in the spin-boson model, such as an analytic solution and
a stationary energy of the two-level system. For the full system, the
interaction Hamiltonian between the cavity mode and the spin, HCS
is the only part of HS which allows for energy flow from the OQS

to the bath and vice versa, because [ωS/2σz,HI] = [ωCa
†a,HI] = 0

but [HCS,HI] 6= 0. Therefore, the OQS will only change its energy if
interactions between spin and cavity mode occur via HCS, enabling
HI to act on the overall system energy ES = 〈HS〉.
For ∆ = 0, we furthermore can show particle number conservation.
To this end, we define the particle number as N = a†a+ σz+1

2 , that is
the sum of the subsystem particle numbers w. r. t. their Hamiltonians,
ignoring the interaction Hamiltonian HCS. We then first compute

[N,HS] = g

(
[a†a,a†σ− + aσ+] +

1

2
[σz,a†σ− + aσ+]

)
= a†σ− − aσ+ −

1

2
(2a†σ− − 2aσ+) = 0 (7.1)

⇒ VtN = N
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and subsequently evaluate the time evolution of N with the non-
Markovian master equation 4.12:

˙〈N〉(t) = 2Re { tr {VtN [VtK(t) ρS(t),Vtσz]} }

= 2Re { tr {[Vtσz,N]VtK(t) ρS(t)} } (7.2)

= 0

where the last equality is due to [Vtσz,N] = Vt[σz,N] = 0 which
holds because of 7.1 and [σz,N] = 0. We thus have particle number
conservation for the present system.
The clear separation between the open system dynamics and the
bath interaction, which we explained above, allows us to artificially
construct states which are stationary in an exact treatment. For this,
we observe that in order to yield cavity-spin interactions, it must be
possible to create or annihilate an excitation in the cavity and to do
the respective opposite in the two-level system. By initializing the
system in the state ρS(0) = |0〉〈0|⊗ |−〉〈−|, i. e. the product state of
the subsystem ground states, we can prevent these transitions from
happening and therefore get a stationary state:

.
ρ = −i [H, ρ(0)] = −i[HS, ρS(0)]⊗ ρβB − iρS(0)⊗

[
HB, ρβB

]
− i|0〉〈0|⊗

[
HI, |−〉〈−|⊗ ρβB

]
= −i(E0 − E0)ρ(0) − i(E

β
B − EβB)ρ(0) (7.3)

+
i

2
(ωS −ωS)ρS(0)⊗ (B ρβB) +

iωS
2
ρS(0)⊗

[
B , ρβB

]
.
ρS =

iωS
2
ρS(0) · tr

{
B ρ

β
B − ρβBB

}
= 0

Here we used the explicit form of the initial state, which is an eigen
state of HS and HB with energies E0 and EβB, respectively. The peri-
odicity of the trace then yields a vanishing rate of change for the OQS

density matrix overall. Due to the finite number of bound states in
the cavity mode within our numerical simulations, we actually can
design a state with highest excitations w. r. t. the subspace Hamiltoni-
ans Hcvty and Hspin which also fulfills the above stationarity, namely
ρmaxS = |mcvty − 1〉〈mcvty − 1|⊗ |+〉〈+|. However, this is not a very
reasonable initial state by means of physicality, because it exploits
the truncation of the harmonic mode, which itself is made under the
condition that it does not severely restrict the dynamics and only
truncates unimportant transitions in the system. This condition clearly
would be violated for ρmaxS .
The numerical simulation with both of the above initial states correctly
reproduces the stationary behaviour.1

Now we can turn to analyzing the system dynamics for more inter-
esting initial states and investigate whether the system or the cavity

1 We refrain from showing the plots here as they simply display constants.
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mode alone thermalize. To this end, we start in the ground state of the
cavity but initialize the spin in a mixed state, such that

ρS(0) = |0〉〈0|⊗ |∗〉〈∗| with |∗〉 =
√
2
−1

(|−〉+ |+〉). (7.4)

We will employ the following parameters for the ME computation:

ωc = 0.3 eV ωcut = 0.6 eV s = 1 β∈ {1, 100} eV−1 (7.5)

ωS = 0.3 eV ∆ = 0 eV ωC = 0.3 eV g = 0.1 eV mcvty
2

= 4

This enables us to compare the system dynamics for different tem-
peratures of the bath, which is taken to be infinitely big, i. e. the
exact correlation function is used here. Furthermore, we will choose
the nMME without secular approximation as explained in section 4.4,
yielding the OQS behaviour displayed in fig. 7.1 for the different tem-
peratures. We start by looking at the energy of the open system 〈HS〉
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Figure 7.1: Dynamical behaviour of the full system for the parameters in 7.5
with high (β = 1 eV−1, orange) and lower (β = 100 eV−1, red)
temperatures. We look at the OQS energy and the 〈σx〉 excitation
in (a) and at the population and coherences of the cavity in (b).

in fig. 7.1a). For the higher temperature case, the OQS roughly stays at
its initial energy value whereas the bath at lower temperature absorbs
energy contained in the cavity and the spin, bringing them to the
ground state energy of Hcvty +Hspin. The spin excitation dynamics
depend heavily on the bath temperature and qualitatively different
behaviour occurs: While the low-temperature environment only in-
duces a mediocre decay of the oscillations and then even allows for
oscillations with growing amplitude, the hot bath quickly damps them
towards the equilibrium value 0. Correspondingly, a similar behaviour
is seen for the coherences of the cavity mode,

〈
a† + a

〉
displayed in

fig. 7.1b). This means that the hot bath suppresses interaction of the
two-level system and the harmonic mode, whereas the open system
in the cold lower-temperature environment enters a pseudo-stationary
state with ongoing excitation exchange of coherences, even when the

2 For the given initial state, this truncation of the harmonic cavity mode has been
shown to be sufficient.
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occupations of both subsystems reached equilibrium already. Finally,
we look at the occupation of the cavity,

〈
a†a

〉
, which converges with a

temperature dependent decay towards the same final value for all tem-
peratures we investigated3 and is constrained by the particle number
preservation shown above. The occupation number of the spin is the
corresponding complement and therefore not shown here. An analysis
of the trace distance between the thermal state and the time evolved
states for the cavity and the entire OQS, respectively, showed that the
observed convergence towards a (pseudo-)stationary state does not
show thermalization but that a different state is attained. This can be
understood in the light of the particle number conservation because
the fixed particle number from our initial state is N = 1

2 and the ther-
mal states contain N(β = 1 eV−1) = 1.06 and N(β = 100 eV−1) = 0

particles, respectively. Therefore at least the initial particle number
would need to be tuned to its thermal equivalent in order to not strictly
prevent thermalization.
For future work it will be interesting to consider the system in a setting
without particle conservation, that is for ∆ 6= 0. We then expect richer
dynamics and the possiblity to thermalize the OQS. Furthermore, the
thermalization of the cavity alone has been shown for a weak cavity
mode to spin coupling [28] and we will be able to test these statements
with the help of our DMRG implementation.

3 Including multiple more in the range β ∈ [0.1 eV−1, 100 eV−1] than the ones shown
in fig. 7.1



Part III

A P P E N D I X

We introduce typical spectral densities that are used through-
out the project and that resemble a realistic choice for the
dye molecule in the cavity, namely Rhodamine 800, in chap-
ter A. On a rather technical level that would be distracting
for the main text we introduce orthogonal polynomials in
chapter B as a preparation to Gaussian quadrature rules
and the optimized bath discretization strategy in section
3.2. In chapter C we discuss the physicality of the nMME

or - to be precise - its violation, complementing the corre-
sponding sections 4.2 and 4.4.





A
S P E C T R A L D E N S I T I E S

Throughout the thesis, we introduce the bath spectral density J as
a helpful quantity for the description of physical systems, which
provides connections to other theories and measurements. Here we
want to briefly discuss the used examples of spectral densities.

We start with the Caldeira-Leggett spectral density, which is given by

J(ω) = α

(
ω

ωc

)s
e−ω/ωc , ω > 0

with normalization constant or coupling parameter α, ohmicity s
and critical frequency ωc. For low frequencies, there is a monomial
behaviour with power s and the cases s < 1, s > 1 and s = 1 are
called sub-, super- and ohmic. This growth is suppressed by the ex-
ponential cutoff for higher frequencies. This allows us to consider an
arbitrary frequency band - including the semi-infinite interval [0,∞)

- as it bounds J, therefore giving it a finite norm and in particular
assuring that J generates a continuous measure such that the opti-
mized frequency sampling algorithm can be used (c. f. appendix B).
The second possibility to guarantee these properties is to include a
step-shaped cutoff in the spectral density, which we will do in most
cases. For consistency reasons with the infinite range case and with
experimentally obtained densities (see below), we will nonetheless
keep the exponential term in the case of a finite support of J, giving
us our standard spectral density as

Caldeira-

Leggett

J(ω) = α

(
ω

ωc

)s
e−ω/ωc Θ(ωcut −ω), ω > 0 (A.1)

with the Heaviside step-function Θ and step cutoff frequency ωcut.1

The Caldeira-Leggett model is empirically motivated and one of the
standard settings for J, being widely used in purely theoretic consid-
erations [38] and investigations towards applications, e. g. in quantum
chemistry [33, 43]

The second example we want to present here is the spectral density of
the molecule Rhodamine 800. It has been measured reliably and on
a detailed level with modern vibrational spectroscopy methods [12]
and was used in theoretical studies as an example for molecules in
interaction with an electromagnetic mode in a cavity [35, 36], just like

1 We will refer to this version of the spectral density as Caldeira-Leggett shape whereas
the first expression without step cutoff is the original but unused version.
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Figure A.1: Spectral densities for the bosonic bath. Examples for J of Caldeira-
Leggett type (left) and the measured spectrum of Rhodamine 800

including a smooth background (right); Peak data is taken from
[12].

our system.
The spectrum of Rhodamine 800 consists of 16 characteristic peaks,
which are described by their frequency ν and reorganisation energy
λ. With a FWHM 2Γ depending on the temperature, the peaks are
modelled as usual using a Lorentzian for each peak, given by

JL(ω) = λ
Γ2

(ω− ν)2 + Γ2

which is normalized to λΓπ and has the maximum (ν, λ). Note that the
sum of these peaks will give us a nonvanishing coupling for ω = 0,
which yields problems for the continuous description we use in some
parts of our work. We therefore modify the Lorentzians by replacing
the low-frequency tail of JL by a linear relation, tailored to give a
continuous and continuously differentiable function with J(ω) = 0. It
is uniquely determined and reads

Jpeak(ω) =

{
ηω for ω 6 ω∗

JL(ω) for ω > ω∗
(A.2)

with the ω∗ chosen such that the continuous slope condition can be
fulfilled and η = JL

′(ω∗).
In addition to the peaks, the spectrum contains a smooth background
which we take to be of the above Caldeira-Leggett type, such that the
characteristic peaks are simply an addition to our standard spectral
density. We show examples of the spectral density in fig. A.1.



B
O RT H O G O N A L P O LY N O M I A L S

For the procedure of Gaussian quadrature, which is used in the opti-
mized frequency sampling algorithm for the bath discretization, we
require some basics about orthogonal polynomials. We mainly take
these from [40].
We start with a weight function w which fulfils the following three
conditions:

1. w is defined on the (possibly infinite) interval [a,b]
and w(x) > 0 ∀ x ∈ [a,b]

2. For all k ∈N0, the moment µk =
∫b
a dx xkw(x) is well-defined

and finite.

3. For all polynomials q with q(x) > 0 ∀x ∈ [a,b] it holds that∫b
a dx w(x)q(x) = 0 ⇒ q(x) ≡ 0

As mentioned in [40], an exemplary case for which these requirements
are satisfied is given when w is continuous on [a,b], w(x) > 0 ∀x ∈
[a,b] and |a|, |b| < ∞. In most cases throughout the thesis, we will
consider weight functions of this type and if not, w still will be a
positive function and an exponential cutoff enforces property 2 to
hold, while the last point above is assured by

∫b
a dx w(x) > 0.

For the quadrature rule, the following statement is important, enabling
us to use the procedure on any weight function in the above sense:

For all weight functions w with the properties above there exists a unique set
of monic polynomials {pj}j which are orthogonal w. r. t. the scalar product
〈f,g〉 =

∫b
a dx w(x)f(x)g(x).

Monic polynomials are those of the form

p(x) = xdeg p + a1x
deg p−1 + · · ·+ adeg p (B.1)

and we note that orthogonality is invariant under scalar multiplication,
such that there is a unique second set of polynomials {p̃j}j when
requiring orthonormality, i. e. 〈p̃i, p̃j〉 = δij.
In addition to the existence statement, there is an explicit recursion
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relation to generate the coefficients for pj, such that knowing w is
sufficient to find {pj}j:

p−1(x) = 0 p0(x) = 1

pj+1(x) = (x−αj+1)pj(x) −β
2
j+1pj−1(x) ∀j > 0 (B.2)

with αj+1 =
〈xpj,pj〉
〈pj,pj〉

and β2j+1 =

{
1 for j = 0

〈pj,pj〉
/
〈pj−1,pj−1〉 for j > 0

It is the universality of this recursion relation for all weight functions
w which enables us to implement the Gaussian quadrature conve-
niently and efficiently.
Furthermore, one can show that the j roots of pj are simple, i. e. pair-
wise distinct, and lie in the open interval (a,b). This assures the bath
frequencies that are computed by the optimized sampling algorithm
to be real, distinct and to lie in the frequency band on which the bath
spectral density is defined.
As mentioned in the main text, the Gaussian quadrature is of exactness
degree 2L− 1, meaning that integrals of the form

∫b
a dx w(x)p(x) are

reproduced exactly by a weighted sum of p at L points for degrees of
p up to 2L− 1, i. e.

∫b

a

dx w(x)p(x) −
L∑

i=1

Wip(xi) = 0 ∀p : deg p < 2L. (B.3)

Here {xi}16i6L are the roots of pL and the {Wi} can be computed
explicitly as the solutions to the system

L∑

i=1

pk(xi)Wi =

{
〈p0,p0〉 for k = 0

0 for 1 6 k 6 L− 1
(B.4)

which are uniquely determined because all roots are distinct. One can
relate the first equation in this system of equations to the constraint
with the norm of the spectral density 3.5 because p0 ∝ x0 and therefore

L∑

i=1

Wi =

∫b

a

dx w(x). (B.5)

We now turn to the computational aspects of the orthogonal polyno-
mial strategy. As the quadrature we are aiming at exactly corresponds
to B.3, we want to sample the bath frequencies at the roots of pL,
requiring us to implement a stable routine that finds these roots as
well as the solutions Wi to the system of equations B.4. This is done
for example in [18] and [37] and our implementation follows these
routines.



C
V I O L AT I O N O F P H Y S I C A L I T Y W I T H O U T M A R K O V
A P P R O X I M AT I O N

In this chapter we are going to briefly discuss the appearance of un-
physical results when considering the non-Markovian master equation.
The purpose of doing so is not to give a full analysis of parameter
spaces regarding the failure of the method but to demonstrate that
in principle, unphysical results can be generated when the Markov
approximation is not employed.
For the Born-Markov master equation, which can be brought into
Lindblad form, Lindblad himself showed complete positivity and that
the time evolution is preserving the trace of ρS [31], which later was
extended to systems with positive time-dependent decoherence rates
[8, 46].1. Furthermore, the Markovian master equation can be shown
to have the thermal system state (with the temperature of the bath) as
a stationary solution, that is

ρ
(th)
S = Z−1

S e−βHS
.
ρS

(th)
(t) = 0 (C.1)

which is not true in general for the non-Markovian description (see
section 4.4).
For systems with at least one rate which is not positive for all times,
complete positivity is violated and there might appear unphysical
results throughout the time evolution of the system [7, 8]. The conclu-
sion is then that the setting of the Born-approximated master equation
fails to describe the physical system and instead generates a patho-
logic unphysical system. It then also becomes clear that invoking the
Markov approximation - despite the fact that the system itself can
be shown to be non-Markovian - leads to a physical description if
and only if the resulting time-independent rates are positive. This
amounts to the condition of the partially negative rates to compensate
the negative values by positive parts when integrated up to infinite
times.
Combined, these results are rather remarkable: Skipping an assump-
tion on our system and refraining from using the corresponding
approximation, our description of the physical system gets distorted
significantly in the case of decoherence rates which are not positive at
all times. Performing the additional approximation, those problems

1 These systems are referred to as time-dependent Markovian which might lead to
confusion as intuitively such systems could be considered Markovian which are
described in a Markovian way, i. e. with the Markov approximation. We will consider
Markovianity as a system property and refer to the approximative description as
Markovian master equation; A measure of Markovianity is introduced in [8], an extended
overview is given in [9]
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are resolved and the effective description via the master equation is
valid for a physical system (although one expects major deviations
from the real behaviour of the treated system). A similar phenomenon
has been found for the Born approximation, which we also use in our
work, showing that the Born approximation seems to level out flaws
introduced into the theory by the other approximation schemes [51].



D
S U P P L E M E N TA RY F I G U R E S

Here we show some additional figures, which contain insightful infor-
mation and are mentioned throughout the thesis. They were decided
to be appended in order to not tear the main text because of too many
pictures.
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Figure D.1: Revival time τrev for parameters as in fig. 3.2 but for linearly
sampled bath frequencies. The standard deviation displayed on
top is significantly reduced corresponding to an even smaller
temperature dependence in comparison with the optimized sam-
pling method. See fig. D.2 for a comparison between the results
of the two sampling methods.
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Figure D.2: Difference of the revival times for both sampling methods, corre-
sponding to fig. 3.2 & D.1. As can also be seen by the scale, the
linear sampling always yields bigger revival times. Note that the
reduction to 0 for big bath sizes L is artificial due to the 300 eV−1

bound for τrev.
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Figure D.3: Factor between the average deviation for both sampling methods,
corresponding to fig. 3.4 & 3.5. As can also be seen by the scale,
the linear sampling always yields much bigger deviations, at
least by a factor of 10.
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Figure D.4: Maximal relative deviation of the ME solution for the spin expec-
tation value 〈σx〉 (corresponding to the maxima in fig. 6.2) for the
same couplings as in fig. 6.2 and various time stepsizes dt. The
lines are adapted to the last three data points, please note that
due to the logarithmic scale all linear laws y = m ·x are displayed
as parallel lines with differing offsets: logy = logm+ log x.





B I B L I O G R A P H Y

[1] Daniel Alonso and Inés de Vega. “Hierarchy of equations of
multiple-time correlation functions.” In: Phys. Rev. A 75 (5 2007),
p. 052108. doi: 10.1103/PhysRevA.75.052108.

[2] C. Anastopoulos, S. Shresta, and B. L. Hu. “Non-Markovian
Entanglement Dynamics of Two Qubits Interacting with a Com-
mon Electromagnetic Field.” In: Quantum Information Processing
8.6 (2009), pp. 549–563. doi: 10.1007/s11128-009-0137-6.

[3] Brian Baker, Andy C. Y. Li, Nicholas Irons, Nathan Earnest, and
Jens Koch. “Adaptive Rotating-Wave Approximation for Driven
Open Quantum Systems.” In: arXiv 1808.01247 (2018).

[4] R.A. Bertlmann and W. Grimus. “Dissipation in a 2-dimensional
Hilbert space: various forms of complete positivity.” In: Physics
Letters A 300.2 (2002), pp. 107 –114. doi: 10 . 1016 / S0375 -

9601(02)00816-2.

[5] D. D. Bhaktavatsala Rao and Gershon Kurizki. “From Zeno
to anti-Zeno regime: Decoherence-control dependence on the
quantum statistics of the bath.” In: Phys. Rev. A 83 (3 2011),
p. 032105. doi: 10.1103/PhysRevA.83.032105.

[6] S. Blanes, F. Casas, J.A. Oteo, and J. Ros. “The Magnus Expansion
and some of its applications.” In: Physics Reports 470 (2009),
pp. 151–238. doi: 10.1016/j.physrep.2008.11.001.

[7] Heinz-Peter Breuer, Bernd Kappler, and Francesco Petruccione.
“Stochastic wave-function method for non-Markovian quantum
master equations.” In: Phys. Rev. A 59 (2 1999), pp. 1633–1643.
doi: 10.1103/PhysRevA.59.1633.

[8] Heinz-Peter Breuer, Elsi-Mari Laine, and Jyrki Piilo. “Measure
for the Degree of Non-Markovian Behavior of Quantum Pro-
cesses in Open Systems.” In: Phys. Rev. Lett. 103 (21 2009),
p. 210401. doi: 10.1103/PhysRevLett.103.210401.

[9] Heinz-Peter Breuer, Elsi-Mari Laine, Jyrki Piilo, and Bassano Vac-
chini. “Non-Markovian dynamics in open quantum systems.” In:
Rev. Mod. Phys. 88 (2 2016), p. 021002. doi: 10.1103/RevModPhys.
88.021002.

[10] P. Breuer and F. Petruccione. The Theory of Open Quantum Systems.
2002. doi: 10.1093/acprof:oso/9780199213900.001.0001.

[11] Ralf Bulla, Hyun-Jung Lee, Ning-Hua Tong, and Matthias Vojta.
“Numerical renormalization group for quantum impurities in
a bosonic bath.” In: Phys. Rev. B 71 (4 2005), p. 045122. doi:
10.1103/PhysRevB.71.045122.

79

http://dx.doi.org/10.1103/PhysRevA.75.052108
http://dx.doi.org/10.1007/s11128-009-0137-6
http://dx.doi.org/10.1016/S0375-9601(02)00816-2
http://dx.doi.org/10.1016/S0375-9601(02)00816-2
http://dx.doi.org/10.1103/PhysRevA.83.032105
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1103/PhysRevA.59.1633
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/RevModPhys.88.021002
http://dx.doi.org/10.1103/RevModPhys.88.021002
http://dx.doi.org/10.1093/acprof:oso/9780199213900.001.0001
http://dx.doi.org/10.1103/PhysRevB.71.045122


80 bibliography

[12] N. Christensson, B. Dietzek, A. Yartsev, and T. Pullerits. “Elec-
tronic photon echo spectroscopy and vibrations.” In: Vibrational
Spectroscopy 53.1 (2010), pp. 2 –5. doi: 10.1016/j.vibspec.2010.
01.009.

[13] Nicola De Mitri, Susanna Monti, Giacomo Prampolini, and Vin-
cenzo Barone. “Absorption and Emission Spectra of a Flexi-
ble Dye in Solution: A Computational Time-Dependent Ap-
proach.” In: Journal of Chemical Theory and Computation 9.10

(2013), pp. 4507–4516. doi: 10.1021/ct4005799.

[14] R.P Feynman and F.L Vernon. “The theory of a general quantum
system interacting with a linear dissipative system.” In: Annals
of Physics 24 (1963), pp. 118 –173. doi: https://doi.org/10.
1016/0003-4916(63)90068-X.

[15] Michael R. Gallis. “Models for local Ohmic quantum dissipa-
tion.” In: Phys. Rev. A 48 (2 1993), pp. 1028–1034. doi: 10.1103/
PhysRevA.48.1028.

[16] Juan José García-Ripoll. “Time evolution of Matrix Product
States.” In: New Journal of Physics 8.12 (2006), p. 305. doi: 10.
1088/1367-2630/8/12/305.

[17] Andreas Gleis. “On using the interleaved Numerical Renormal-
ization Group as an impurity solver for the Dynamical Mean
Field Theory.” In: Bachelor Thesis (2016).

[18] William B. Gragg and William J. Harrod. “The Numerically
Stable Reconstruction of Jacobi Matrices from Spectral Data.”
In: Numer. Math. 44 (1984), pp. 317–335. doi: 10.1016/0024-
3795(78)90086-1.

[19] Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Iztok
Pižorn, Henri Verschelde, and Frank Verstraete. “Time-Dependent
Variational Principle for Quantum Lattices.” In: Phys. Rev. Lett.
107 (7 2011), p. 070601. doi: 10.1103/PhysRevLett.107.070601.

[20] C. Henkel. “Laser theory in manifest Lindblad form.” In: Journal
of Physics B: Atomic, Molecular and Optical Physics 40.12 (2007).
doi: 10.1088/0953-4075/40/12/012.

[21] Marlis Hochbruck and Christian Lubich. “On Krylov Subspace
Approximations to the Matrix Exponential Operator.” In: SIAM
J. Numer. Anal. 34.5 (1997). doi: 10.1137/S0036142995280572.

[22] Thomas E. Hodgson, Lorenza Viola, and Irene D’Amico. “To-
wards optimized suppression of dephasing in systems subject to
pulse timing constraints.” In: Phys. Rev. A 81 (6 2010), p. 062321.
doi: 10.1103/PhysRevA.81.062321.

[23] Peihao Huang and Hang Zheng. “Effect of bath temperature on
the quantum decoherence.” In: Chem. Phys. Let. 50 (2010). doi:
10.1016/j.cplett.2010.10.009.

http://dx.doi.org/10.1016/j.vibspec.2010.01.009
http://dx.doi.org/10.1016/j.vibspec.2010.01.009
http://dx.doi.org/10.1021/ct4005799
http://dx.doi.org/https://doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/https://doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1103/PhysRevA.48.1028
http://dx.doi.org/10.1103/PhysRevA.48.1028
http://dx.doi.org/10.1088/1367-2630/8/12/305
http://dx.doi.org/10.1088/1367-2630/8/12/305
http://dx.doi.org/10.1016/0024-3795(78)90086-1
http://dx.doi.org/10.1016/0024-3795(78)90086-1
http://dx.doi.org/10.1103/PhysRevLett.107.070601
http://dx.doi.org/10.1088/0953-4075/40/12/012
http://dx.doi.org/10.1137/S0036142995280572
http://dx.doi.org/10.1103/PhysRevA.81.062321
http://dx.doi.org/10.1016/j.cplett.2010.10.009


bibliography 81

[24] Claudius Hubig. “Symmetry-Protected Tensor Networks.” PhD
thesis. LMU München, 2017. url: https : / / edoc . ub . uni -

muenchen.de/21348/.

[25] Claudius Hubig, Felix Lachenmaier, Nils-Oliver Linden, Teresa
Reinhard, Leo Stenzel, and Andreas Swoboda. The SyTen Toolkit.
url: https://syten.eu.

[26] Keith H. Hughes, Clara D. Christ, and Irene Burghardt. “Effective-
mode representation of non-Markovian dynamics: A hierarchi-
cal approximation of the spectral density. II. Application to
environment-induced nonadiabatic dynamics.” In: The Journal
of Chemical Physics 131.12 (2009), p. 124108. doi: 10.1063/1.
3226343.

[27] Michael Kastoryano and Mark S. Rudner. “Topological transport
in the steady state of a quantum particle with dissipation.” In:
arXiv 1808.06963 (2018).

[28] Peter Kirton and Jonathan Keeling. “Thermalization and break-
down of thermalization in photon condensates.” In: Phys. Rev. A
91 (3 2015), p. 033826. doi: 10.1103/PhysRevA.91.033826.

[29] Jan Klaers, Frank Vewinger, and Martin Weitz. “Thermalization
of a two-dimensional photonic gas in a "white wall" photon box.”
In: Nature Physics 6 (2010), pp. 512–515. doi: 10.1038/nphys1680.

[30] Jan Klaers, Julian Schmitt, Frank Vewinger, and Martin Weitz.
“Bose–Einstein condensation of photons in an optical microcav-
ity.” In: Nature 468 (2010), pp. 545–548. doi: 10.1038/nature09567.

[31] G. Lindblad. “On the Generators of Quantum Dynamical Semi-
groups.” In: Commun. Math. Phys. 48 (1976), pp. 119–130. doi:
10.1007/BF01608499.
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