
Ludwig-Maximilians-Universität München
Arnold Sommerfeld Center

Deep Learning Calabi-Yau Metrics

Master’s Thesis
Theoretical and Mathematical Physics

Mathis Gerdes

First Referee: Prof. Dr. Dieter Lüst
Second Referee: Dr. Sven Krippendorf
Day of Defence: 24 September 2020

Abstract

No analytic expressions for the Ricci-flat metrics on compact Calabi-Yau manifolds are known,
which has led to the development of multiple numerical approximation schemes. This thesis
shows that a deep learning approach using the energy functionals introduced by Headrick and
Nassar can replace existing methods to approximate Calabi-Yau metrics on projective varieties.
Building on top of the algebraic metrics introduced for Donaldson’s algorithm, the deep learn-
ing models introduced here can predict approximations to the Ricci-flat metric as a function of
complex moduli parameters. A comparison with the benchmark of balanced metrics produced
by Donaldson’s algorithm indicates these approximations are of relatively higher accuracy, jus-
tifying it as an alternative, standalone approximation scheme. This approach is facilitated by
modern machine learning frameworks, which provide efficient automatic differentiation that can
be used to derive geometrical objects, and work with complicated, geometrically motivated loss
functions.

Contents

1. Introduction 1

2. Mathematical Prerequisites 3
2.1. Calabi-Yau Manifolds . 3
2.2. Donaldson’s Algorithm . 8
2.3. Monte Carlo Integration . 12
2.4. Accuracy Measures . 13

3. Numerical Analysis of Donaldson’s Algorithm 17
3.1. Implementation and Validation . 17
3.2. Moduli and Random Seed Dependence . 21
3.3. Numerical Pattern of h Matrices . 23

4. Machine Learning Approach to Calabi-Yau Metrics 30
4.1. Deep Learning . 31
4.2. Overview of Machine Learning Approaches . 32
4.3. Algebraic Networks . 35
4.4. Calabi-Yau Losses . 37
4.5. Optimizing h for Fixed Moduli . 40
4.6. Moduli Dependent Learning of the Hermitian Matrix h 45

5. Conclusion 60

A. JAX as Computational Framework 63
A.1. Complex Differentiation with JAX . 63
A.2. Just-In-Time Compilation . 65
A.3. Computing the Metric from a Kähler Potential 66

B. Implementation Details 68
B.1. Constructing the Monomial Basis . 68
B.2. Computing Geometric Objects from the Algebraic Potential 69
B.3. Monte Carlo Integration and Sampling . 72
B.4. Donaldson’s Algorithm . 76
B.5. Training Moduli Dependent Networks . 77

C. Additional Figures 79

v

1. Introduction

Calabi-Yau manifolds are compact complex Kähler manifolds with a Ricci-flat metric. Besides
being of mathematical interest in their own right, they give a vacuum compactification for the
heterotic string which may reproduce the physics of the Standard Model at low energies [1].
Unfortunately, there is no known analytic expression for the Ricci-flat metric on a compact
Calabi-Yau manifold. While some physical properties can be deduced for the Calabi-Yau man-
ifold in general, there are properties like the numerical value of the Yukawa couplings that
depend on the metric [2]. The Yukawa couplings, in turn, determine the masses of the elemen-
tary particles that a top-down string theory would predict. Furthermore, the moduli of the
Calabi-Yau manifold are a candidate for driving early universe inflation [3]. The exact form
of the action of the four-dimensional effective field theory again depends on the metric, which
motivates a search for numerical approximatinos to the Calabi-Yau metric. In the following,
a new approach for finding moduli-dependent approximations to the Calabi-Yau metric using
deep learning methods is explored.

The existing approaches to finding a Ricci-flat metric (or more generally one of constant scalar
curvature) can be divided into two kinds. The first approach is to approximate the geometric
objects of interest, such as the Kähler potential (these will be introduced in section 2 below),
on a discretized lattice or a fixed set of points. This was first done by Headrick and Wiseman
[4], using a relaxation method for the Monge-Ampère equation, which captures Ricci-flatness,
on the K3 threefold. The second approach is based on an algebraic representation of the Kähler
potential, developed by Donaldson in [5, 6, 7], and expanded on in [8, 9, 10].

The second approach has several advantages with regard to a machine learning, specifically deep
learning, application. It provides a natural functional form for the Kähler potential character-
ized by a single Hermitian matrix h, without the need for explicit patches. These Hermitian
matrices are defined for each integer value of the hyperparameter k, in which they grow poly-
nomially. An algorithm introduced by Donaldson [5] provides an iterative scheme converging
to the so called balanced metric for each fixed value of k. These balanced metrics can be shown
to converge to the flat metric in the limit k → ∞. The convergence can be quantified using
several accuracy measures, introduced in section 2.4, which exploit properties of the Calabi-Yau
manifold to evaluate how much a given metric differs from the Ricci-flat Calbi-Yau metric.

Computing Donaldson’s algorithm for large values of k, however, quickly becomes computation-
ally expensive, making cheaper or higher-accuracy approximations desirable. A first attempt
to use machine learning to predict values of the balanced metrics on a fixed set of points on the

1

1. Introduction

manifold was made in [11].

In the following, the algebraic Kähler potentials introduced above will be used, in the context
of deep learning, to define an alternative approximation scheme that achieves better accuracies
than Donaldson’s algorithm in a similar amount of time. This will be done by producing
mappings from a subset of moduli space to the aforementioned matrices h, in a way that the
corresponding metrics minimize energy functionals introduced by Headrick and Nassar [10].

An overview of the mathematical prerequisites necessary to follow the numerical approach
outlined here is given in section 2 below. Following a review of the definitions of Kähler and
Calabi-Yau manifolds, Donaldson’s algorithm is introduced, as well as the utilized integration
scheme, and definitions of accuracy measures. These accuracy measures will not only be used
the assess the quality of an approximation, but also provide the basis for the loss functions
which are minimized in the final deep learning approach.

Section 3 presents an analysis of a new implementation of Donaldson’s algorithm and the numer-
ical values of the Hermitian matrices h it produces. The convergence of Donaldson’s algorithm
is well understood, which means that it gives a benchmark for accuracies that can be achieved
in a certain amount of computational time. Any new approximation scheme must at least re-
produce the accuracies achieved by Donaldson’s algorithm in a similar amount of time in order
to constitute an interesting alternative.

Section 4 lays out the deep learning approach. After a review of previous and possible future
applications of machine learning, the optimal h matrix with respect to the accuracy measures
are found using gradient descent for a fixed point in moduli space. This produces better ap-
proximations to the Ricci-flat metric than Donaldson’s algorithm, according to the accuracy
measures. Finally, the optimization is done with respect to a parametrized function from (a
subset of) moduli space to h. This will lead to a high accuracy approximation of the Calabi-Yau
metric, present as a function of moduli parameters. We will specialize to a subset of moduli
space, which simplifies the following discussion. This analysis should therefore be seen as a first
proof of principle of a deep-learning approach, laying the foundations for future improvements.

Finally, a summary of the results is given in section 5, including an outlook of possible future
improvements and generalizations of the algorithm developed here.

Advances in modern machine learning frameworks, most centrally the feature of automatic
differentiation, have proven invaluable for the practical implementation. A discussion of this
can be found in section 3.1.1, in the context of Donaldson’s algorithm, as well as in appendices
A and B.

2

2. Mathematical Prerequisites

2.1. Calabi-Yau Manifolds

The subject of the investigation at hand are so called Calabi-Yau manifolds, which are compact
Ricci-flat Kähler manifolds. The remainder of this section will give a brief review of the defi-
nitions and constructions of immediate relevance here1. This serves both as a reference and to
clarify the choice of notation for the remainder of the analysis.

2.1.1. Projective Space and Algebraic Varieties

The maximum principle implies that all holomorphic functions f : X → CN defined on a com-
pact complex manifold X are constant, which means there are no compact submanifold of CN .
One is thus led to consider submanifolds of the complex projective space CPN , which is compact.
It is obtained as the quotient of CN+1 with respect to multiplication with C \ {0}. There are
two ways to denote points in projective space. The first is in terms of the coordinates of a repre-
sentative in CN+1, called homogeneous coordinates z, which are identified under multiplication
with a complex number:

[z0, . . . , zN] ∼ [λz0, . . . , λzN], λ ∈ C \ {0} . (2.1)

Although the homogeneous coordinates are numerically not unique for any given point (and
are thus not strictly speaking coordinates), they will prove very useful for expressing globally
defined objects. On each open patch

Uk =
{
z ∈ CPN : zk 6= 0

}
, (2.2)

we can use the above identification to set zk = 1, which removes the scaling ambiguity and
defines affine coordinates zk (the subscript refers to the patch and is not an index) that are
unique on Uk:

[z0, . . . , zN] ∼

[
z0

zk
, . . . ,

zk−1

zk
, 1,

zk+1

zk
, . . .

zN

zk

]
=∧ (z0k, . . . , z

k−1
k , zk+1

k , . . . , zNk) . (2.3)

1A physically motivated introduction to Calabi-Yau manifolds can be found in [12, 13]. A rigorous introduction
to complex differential geometry, sheaves, and line bundles not detailed here is given for example in [14].

3

2. Mathematical Prerequisites

To obtain submanifolds X of projective space we can consider the zero locus of a finite set of
homogeneous polynomials Qr : CPN → C,

X =
{
z ∈ CPN : Qr(z) = 0 ∀r

}
. (2.4)

Submanifolds defined in this manner are called algebraic varieties. Indeed, we can limit ourselves
to algebraic varieties [15].

Theorem 1 (Chow).
Every analytic submanifold of CPN is the zero-locus of some finite number of homogeneous
polynomials.

In the following only one defining polynomial will be considered. However, following [8] it should
be possible to extend the results to intersections.

Complex line bundles and their sections (maps from the manifold over which the bundle is
defined into its fibers) will play an important role in Donaldson’s algorithm. The trivial line
bundle on projective space is just OCPN = CPN × C. Sections of the trivial line bundle over any
complex manifold are the holomorphic functions on it. The tautological line bundle OCPN (−1)

is obtained by adjoining to each point in CPN its corresponding equivalence class, which is
a one dimensional subspace of CN+1. The dual of the tautological line bundle is denoted as
OCPN (1). The whole Picard group, i.e. the set of all line bundles over CPN , can be generated
as OCPN (k) = OCPN (1)⊗k.

A technically very useful description follows from their treatment as invertible sheaves. The
sections of OCPN (m), m ∈ Z, are holomorphic functions on each patch Ui with the transition
functions

f ij =

(
zj

zi

)m
. (2.5)

That is, a local section gj in Uj corresponds to the local section gi(z) = fij(z)gj(z) in Ui. The
global sections of OCPN (k) with k > 0 are the homogeneous polynomials of degree k in the
homogeneous coordinates, C[z0, . . . zN]k. A basis is given by the degree k monomials

sα(z) =

N∏
i=0

zpiαi , (2.6)

where piα is an appropriate matrix of powers and α is the index in the basis. The number of
degree k monomials in N +1 coordinates, and thus the basis size of global sections, is given by

Nk

(
CPN

)
= dimH0

(
CPN ,OCPN (k)

)
=

(
N + k

k

)
. (2.7)

It is important to note that while the global sections are formally polynomials, they are not
strictly functions on CPN , since due to the scaling ambiguity their value is undefined. Instead,

4

2.1. Calabi-Yau Manifolds

they represent local sections which are well defined functions in the local affine coordinates on
each patch Ui, obtained by following the prescription of (2.3) to remove the scaling ambiguity:

sαi (zi) =
∏
j 6=i

(
zji

)pjα
=

N∏
j=0

(
zj

zi

)pjα
. (2.8)

It can now be seen that the set of local sections obtained in this way transform under the
aforementioned transition rule (2.5):

fli(z)s
α
i (zi) =

(
zi

zl

)k N∏
j=0

(
zj

zi

)pjα
=

N∏
j=0

(
zj

zl

)pjα
= sαl (zl) , (2.9)

where it was used that
∑

i piα = k for all α (in other words, each element of the basis is a degree
k monomial).

For an n-dimensional variety X of projective space CPn+1 defined by a degree n+2 homogeneous
polynomial Q(z) = 0, the line bundle OX(k) can be constructed from OCPn+1(k) by removing all
sections that vanish on X. This is achieved for k ≥ n+2 by the quotient space of homogeneous
polynomials

C[z0, . . . zn+1]k /
〈
Q(z)

〉
, (2.10)

where
〈
Q(z)

〉
= QC[z0, . . . zn+1]k−(n+2) is the polynomial space that vanishes with Q. The

basis size of OX(k) is thus

Nk(X) = dimH0
(
X,OX(k)

)
= Nk

(
CPn+1

)
=

(
n+ k + 1

k

)
if k < n+ 2

= Nk

(
CPn+1

)
−Nk−(n+2)

(
CPn+1

)
=

(
n+ k + 1

k

)
−
(

k − 1

k − n− 2

)
if k ≥ n+ 2 .

(2.11)

How the reduction of the basis is done in practice, including a specific example, can be found
in section B.1 of the appendix.

2.1.2. Kähler Manifolds

In the following, metrics on complex manifolds are taken to be symmetric positive-definite 2-
tensors acting on the complexified tangent space. (A Riemannian metric from the point of view
of a real manifold, acting on the real tangent space, can be extended by demanding C-linearity.)

Consider a complex manifold X of dimension n. The metric g is called Hermitian if locally
gij = gı̄̄, or equivalently g = gi̄dz

i ⊗ dz̄ ̄ + gı̄jdz̄
ı̄ ⊗ dzj . To every Hermitian metric g a 2-form

5

2. Mathematical Prerequisites

ω ∈ Λ1,1T ?X can be associated, called Kähler form:

ω(v, w) = g(v, Jw), locally ω = i
∑
i̄

(
gi̄ dz

i ⊗ dz̄ ̄ − gı̄j dz̄
ı̄ ⊗ dzj

)
= i
∑
i̄

gi̄ dz
i ∧ dz̄ ̄ ,

(2.12)

where J is the complex structure on X. The volume form induced by the metric can be expressed
in terms of the Kähler form as

dVolK =
ωn

inn!

locally
= det gi̄ . (2.13)

If the Kähler form is closed, the corresponding element of the de Rham cohomology [ω] ∈
H1,1(X) is called its Kähler class, and the manifold is called Kähler manifold.

Definition 1 (Kähler manifold).
A complex manifold X with a Hermitian metric g whose corresponding Kähler form ω is closed,
dω = 0 is called a Kähler manifold.

Kählerity dω = (∂ + ∂̄)ω = 0 implies the following for the local form of the metric2:

∂ω = 0 and ∂̄ω = 0 (2.14)

⇒ (∂kgi̄ − ∂igk̄) dzk ∧ dzi ∧ dz̄ = 0 and (∂k̄gi̄ − ∂̄gik̄) dzi ∧ dz̄ ∧ dz̄k̄ = 0 (2.15)

⇒ ∂gi̄
∂zk

=
∂gk̄
∂zi

and ∂gi̄
∂zk̄

=
∂gik̄
∂z̄

. (2.16)

This means that on a local patch, the metric is fully determined by some real, scalar function
K called Kähler potential (to see this note, than on local patches H1(Cd ∼= R2d) = 0 and for a
local 1-form f , ∂fi/∂xj = ∂fj/∂xi ⇔ df = 0, thus f = dh i.e. fi = ∂h/∂xi):

gi̄ =
∂2K

∂zi∂z̄ ̄
and ω = i∂∂̄K . (2.17)

The Kähler potential is not uniquely defined since the metric is invariant under Kähler trans-
formations

K ′(z) = K(z) + f(z) + f̄(z̄) , (2.18)

where f(z) is a holomorphic function. Furthermore, the Kähler potential cannot be globally
defined because else the Kähler form would be exact, and thus the volume of the manifold would
vanish. The Kähler potentials of two different patches thus differ by a Kähler transformation on
their overlaps. The form of the Ricci curvature tensor simplifies significantly for Kähler metrics:

Ri̄ = Rk̄ik̄̄ = −∂i∂̄ log det g . (2.19)

2Making use of the Einstein summation convention.

6

2.1. Calabi-Yau Manifolds

2.1.3. Calabi-Yau Manifolds

The holonomy of the tangent bundle of a manifold is the group of all linear transformations
generated by parallel transport (we consider manifolds with a metric here, and parallel transport
with respect to the Levi-Civita connection). For a generic real oriented Riemannian manifold
of dimension 2n, the holonomy is a subgroup of SO(2n). For a Kähler manifold, the Christoffel
symbols do not mix holomorphic and anit-holomorhic parts of a tangent vector, so parallel
transport respects the decomposition TC

X = T
(1,0)
X ⊕ T

(0,1)
X . This limits the holonomy group to

subgroups of U(n).

Given the Riemann curvature tensor of a Kähler manifold, one can define a matrix valued
curvature 2-form

R = i
∑
i̄

Rkli̄ dz
i ∧ dz̄ ̄ . (2.20)

Its trace R = trR is called Ricci form. Equation (2.19) implies the Ricci form is locally exact
(gi̄ is only locally defined, so this does not imply globally exact), and thus closed. The k-th
Chern class ck(X) ∈ Hk(X) is defined as the k-th term in the expansion

c(X) = det(1 +R) = 1 +R+ . . . , (2.21)

and only depends on topological properties of X. The first chern class can be read off as
c1(X) = [R], which clearly vanishes if X is Ricci-flat. In fact, the reverse also holds [16, 17].

Theorem 2 (Yau).
Let X be a complex Kähler manifold with vanishing first Chern class c1(X) = 0. Then each
Kähler class has a unique representative ω such that the corresponding metric is Ricci-flat.

If one is searching for Ricci-flat manifolds, one is thus lead to the following definition.

Definition 2 (Calabi-Yau Manifold).
A Calabi-Yau manifold is a compact, complex Kähler manifold with vanishing first Chern class.

More specifically, the problem is then to find (an approximation to) the Ricci-flat Calabi-Yau
metric on a manifold with vanishing first Chern class, on which by theorem 2 we know it to
exist. One can show that Ricci-flatness is equivalent to restricting3 the holonomy group to
SU(n) [18].

It can be shown that algebraic varieties in CPn+1 defined by a homogeneous polynomial of
degree n + 2 have vanishing first Chern class [19]. Varieties of dimension n = 2 are called K3
surfaces, those of dimension n = 3 are called quintics. For concreteness we will consider quintics

3The definition of Calabi-Yau manifolds often explicitly requires a holonomy group equal to SU(n), not sub-
groups thereof, which is satisfied in the following examples.

7

2. Mathematical Prerequisites

with a single parameter ψ

Qψ(z) =
4∑
i=0

(zi)5 + ψ
4∏
i=0

zi = 0 . (2.22)

The case ψ = 0 is called Fermat quintic, and ψ = −5 corresponds to the conifold (the derivative
of Q−5 vanishes where all coordinates are equal which means the manifold becomes singular).
In general, the set of all possible coefficients of degree 5 polynomials (modulo redefinitions of
the coordinates, c.f. [8]) define the complex structure moduli space of the quintic. By restrict-
ing ourselves to equation (2.22), we thus consider a one dimensional subspace of the complex
structure moduli space parametrized by ψ.

2.2. Donaldson’s Algorithm

In [5, 6, 7], Donaldson introduced an iterative scheme to approximate the Ricci-flat metric by
a sequence of unique algebraic metrics called balanced metrics. The balanced metric at a fixed
degree k ≥ 1 can be obtained by consecutive application of an integral T -operator. The series
of balanced metrics are known theoretically and numerically to converge to the Ricci-flat metric
like O(k−2) with respect to the σ-accuracy introduced in section 2.4 [20, 8].

2.2.1. Algebraic Metric

The following construction of Kähler potentials, and thus metrics, is the basis for both Don-
aldson’s algorithm described in section 2.2.2, and can serve as the starting point for machine
learning models. The use of this kind of algebraic ansatz in the context of Donaldson’s algorithm
was introduced in [5, 7], and further developed in [8, 10, 20]. A synthesis of these, stressing the
aspects relevant for the remaining analysis, is presented here.

The Projective space CPN displays an SU(N + 1) symmetry of coordinate transformations.
There is a unique metric (up to scaling4) which is invariant under these transformations, called
Fubini-Study metric. Its Kähler potential is

KFS(Z) =
1

π
log

 N∑
α=0

Zα Z̄ᾱ

 . (2.23)

We can generalize this slightly by adding a Hermitian matrix h such that

KFS(Z) =
1

π
log

 N∑
α,β̄=0

Zα hαβ̄ Z̄
β̄

 , (2.24)

4The scaling is fixed to 1/π following [8] by requiring ωFS to be an integer class.

8

2.2. Donaldson’s Algorithm

which can be brought back to the canonical Fubini-Study potential by a coordinate transforma-
tion. The pullback of this defines a metric on any variety X ↪→ CPn+1, which is unfortunately
not Ricci-flat.

The geometric idea behind the algebraic metrics is to embed the manifold in some higher
dimensional projective space, and define a metric on it by the pull back of the higher-dimensional
Fubini-Study metric. One thus has to find an embedding such that this pullback is as close to
Ricci-flat on the variety as possible. For larger projective spaces one gets, roughly speaking,
more degrees of freedom for the embedding, and thus potentially more accurate approximations
to the Ricci-flat metric.

To construct these embedding, consider a holomorphic line bundle L over a Kähler manifold
X such that there are Nk global sections sα forming a basis for L⊗k. Given that by definition
there is no point at which all sα vanish, this gives an embedding into CPNk−1 (no frame for the
line bundle was fixed, which means the sections have the same scale equivalence as projective
space, allowing the identification):

ik : X ↪→ CPNk−1 , ik(z) =
(
s1(z) , . . . , sNk(z)

)
. (2.25)

For the application here, X is an n-dimensional algebraic variety in CPn+1 and L = OX(1).
A basis of section on OX(1) was introduced above as sα(z), which are formally defined as
homogeneous polynomials on projective space, restricted to evaluation on X. More generally,
one would require L to be ample, which means that sections of L⊗k induce a Kodaira embedding
into projective space in the above way, for large enough k. Note that for k = 1 we have
Nk = n + 2, by equation (2.11). The embedding is therefore one into the ambient projective
space ik : X ↪→ CPn+1, and for any k ≥ 1 the embeddings are well-defined.

The pullback of the generalized Fubini-Study metric on CPNk−1 can now be defined by the
Kähler potential in which the homogeneous coordinates are substituted by the embedding in-
troduced above:

K(z) =
1

πk
log

 Nk∑
α,β̄=1

sα(z)hαβ̄ s̄
β̄(z̄)

 . (2.26)

The metric on X defined with this potential is, by the chain rule, just the pullback via the
embedding ik of the generalized Kähler metric. Because of its algebraic construction, in the
following this type of potential will be referred to as algebraic potential, and the corresponding
metric as algebraic metric. Different values for h are now inequivalent since they cannot be
removed by a simple coordinate transformation. In fact, a transformation on CPNk−1 that
brings the generalized Fubini-Study back to canonical form, P>hP̄ = 1, reveals that different
h matrices just correspond to different embeddings:

ihk(z) =
(
P 1

α s
α(z) , . . . , PNk−1

α s
α(z)

)
. (2.27)

9

2. Mathematical Prerequisites

The prefactor 1/k in equation (2.26) was introduced to keep the Kähler class constant in k

(indeed, substituting
(∑

|zi|2
)k into the logarithm gives back the Fubini-Study potential defined

on the ambient projective space of X for any k). Note that since the sections sα of OX(k) are not
themselves functions but represent functions on each patch, the above Kähler potential must be
understood as representing different functions on each patch as well. The Kähler potential can
be written as a global expression in terms of the homogeneous coordinates, because the overall
scaling drops out when computing the derivatives of the logarithm. By restricting to affine
coordinates, one automatically gets local Kähler potentials on each patch of projective space
which are compatible via Kähler transformations. One can see this is explicitly by comparing
the local Kähler potentials obtained by substituting with the local sections of (2.8). On the
patch Ui of the ambient projective space the Kähler potential is

Ki(z) =
1

πk
log

∑Nk

α,β̄=1
sα(z)hαβ̄ s̄

β̄(z̄)

|zi|k

 . (2.28)

Between patches Ui and Uj the relation therefore is

Ki(z) = Kj(z) +
1

π
log zj −

1

π
log zi , (2.29)

which is just a Kähler transformation. This makes clear another great advantage of using
algebraic metrics. The Kähler potential is well defined on each patch of the ambient projective
space, and it is therefore unnecessary to explicitly introduce patches on X. Note that the Kähler
potential on X is defined by restriction, and derivatives to obtain the metric still have to be
done in a local coordinate system on X. More detail on this can be found in section B.2 of the
appendix.

The moduli space of Calabi-Yau metrics can be divided into Kähler moduli and complex struc-
ture moduli, whose dimensions are h1,1 and h2,1 respectively. As mentioned at the end of section
2.1.3, the complex structure moduli are the polynomial coefficients of the defining equation (af-
ter equivalent coefficients are identified). The Kähler class of the algebraic metric is fixed by
a single number, namely the factor in front of the logarithm in equation (2.26) (here fixed to
1/π; 1/k is needed to keep the Kähler class constant in k). This means that one is limited to a
one dimensional subspace of the Kähler moduli space. However, for the quintic it is h1,1 = 1,
which means using the ansatz of algebraic metrics does not amount to a restriction.

There is another useful interpretation of the algebraic metrics. The eigenfunctions of the first
k eigenvalues of the Laplacian on CPn+1 can be expressed using the basis functions [21, 10]

Φαβ̄ =
sα(z)sβ̄(z̄)(∑

i

∣∣zi∣∣2)k , (2.30)

where the sα(z) are defined as before. Two Kähler potentials that differ by a globally defined
scalar function lie in the same Kähler class, since the difference between the induced Kähler
forms is exact. As noted above, the Kähler class of K for all degrees k is fixed and the same as

10

2.2. Donaldson’s Algorithm

that of the Fubini Study metric (2.23) given by

KFS =
1

π
log

∑
i

∣∣∣zi∣∣∣2
 . (2.31)

Therefore, the difference K −KFS is a globally well defined function on X. One may therefore
try to expand eπk(K−KFS) in terms of the Φαβ̄. This indeed gives the algebraic metric

K(z) = KFS(z) +
1

πk
log

∑
αβ̄

hαβ̄Φ
αβ̄(z)

 =
1

πk
log

∑
αβ̄

hαβ̄s
α(z)sβ̄(z̄)

 , (2.32)

where h is the matrix of coefficients of the expansion. The ansatz of algebraic metrics for some
fixed k can thus be interpreted as the truncation of a spectral expansion.

2.2.2. Balanced Metric

The matrix hαβ̄ that parametrizes the algebraic metrics (2.26) can be interpreted as a Hermitian
metric on the line bundle OX(k). Given two sections S, S′ it is defined point-wise as

(S, S′)(z) =
S(z)S̄′(z)∑
αβ̄ s

α(z)hαβ̄s
β̄
=
S(z)S̄′(z)

||s||h,k
. (2.33)

In turn, this induces a Hermitian metric on the space of sections as

〈
S, S′〉 = Nk

VolCY

∫
X

S S̄′

||s||h,k
dVolCY . (2.34)

Evaluated on the basis of sections sα this is Hαβ̄ = 〈sα, sβ〉. The T -operator is defined as the
map from hαβ̄ to Hαβ̄

T (h)αβ̄ =
Nk

VolCY

∫
X

sαsβ̄

||s||h,k
dVolCY . (2.35)

The matrices hαβ̄ and Hαβ̄ are in general different. If they coincide, the metric hαβ̄ is called
balanced [5].

Definition 3 (Balanced Metric).
The metric hαβ̄ on the line bundle OX(k) is called balanced if

hαβ̄ =
(
Hαβ̄

)−1
. (2.36)

By iteratively computing the metric on sections using the T -operator and taking its inverse to
obtain a new metric on the line bundle, one obtains an approximation to the balanced metric
[5, 7].

11

2. Mathematical Prerequisites

Theorem 3 (Donaldson).
Iteratively applying

hαβ̄ =
(
T (h)αβ̄

)−1
(2.37)

converges to the unique balanced metric for any k ≥ 1 and initial metric h. Furthermore, the
sequence of algebraic metrics on X (2.26) defined by the balanced metrics h converges to the
unique Calabi-Yau metric in the given Kähler class and complex structure as k → ∞.

2.3. Monte Carlo Integration

For both the accuracy measures defined in the next section and Donaldson’s algorithm defined
above, it is important to be able to numerically integrate on the manifold X. The easiest way
to achieve this, since the integration space is relatively high dimensional, is by Monte Carlo
integration [22]. The integration scheme used in the remainder of this analysis is the one laid
out in [20]. For completeness, a short summary is given here.

Let X be an n-dimensional Calabi-Yau manifold defined as algebraic variety of CPn+1 by
Q(z) = 0. Associated to X is a holomorphic n-form Ω. Without loss of generality assume
z is in patch U0 and (z1, . . . , zl−1, zl+1, . . . , zn) are good coordinates on X. Then Ω can be
written using the Poincaré residue map as [15]

Ω(z) = (−1)l−1 dz
1 ∧ . . . ∧ dzl−1 ∧ dzl+1 ∧ . . . ∧ zn

∂lQ(z)
. (2.38)

Using Ω, one can write the unique top form (up to scaling) of the Calabi-Yau manifold as

dVolCY = (−i)nΩ ∧ Ω̄ . (2.39)

Samples for the Monte Carlo integration can be generated by uniformly sampling two points on
CPn+1 and finding the intersections of the line they define with the manifold X. By Bezout’s
theorem the line always intersects X at n+ 2 points (solutions to an n+ 2 polynomial), which
can be efficiently computed as the roots of a polynomial. This is outlined in more detail in
section B.3.2 of the appendix. Assuming the sampling has a probability distribution according
to some volume form dA, the Monte Carlo integration approximates the integral as a sum

∫
X
f dVolCY =

∫
X
f
dVolCY
dA

dA ≈ 1

Np

Np∑
a=1

f(za)w(za) , (2.40)

where Np is the number of sample points za. The weights w(z) are the ratio of the Calabi-
Yau and probability measures evaluated at the sample points (implicit using the basis tangent

12

2.4. Accuracy Measures

vectors given by the local coordinates):

w(z) =
dVolCY
dA

∣∣∣∣
z

. (2.41)

The Calabi-Yau volume of the manifold is then simply the mean over the weights w

VolCY =

∫
dVolCY =

1

Np

Np∑
a=1

w(za) . (2.42)

The volume VolK of a Kähler manifold with Kähler form ωK given by a potential K can be
similarly computed, using the volume form dVolK = ωnK/n!.

Since the points are found as the intersections with a line in projective space that is chosen
with uniform probability, their random distribution is invariant under the SU(n+ 1) action of
coordinate transformations on projective space. The measure dA is thus proportional to the
pullback of the Fubini-Study Kähler form which respects this symmetry, [20]

dA ∝ (i∗Q ω
FS
CPn+1)

n , (2.43)

where iQ is the embedding into the ambient projective space defined by the homogeneous
polynomial Q(z) = 0 that defines X. How the Monte Carlo approximations are calculated in
practice is outlined in section B.3.3 in the appendix.

2.4. Accuracy Measures

Measures of how close a given metric on X is to the Ricci-flat Calabi-Yau metric serve two
purposes. The first is that they facilitate statements about the convergence of, and comparison
between, numerical approximations. The second is that they define a minimization problem
which, if solved for a given parametrization of metrics, provides an alternative to Donaldson’s
algorithm. If these accuracy measures are interpreted as loss functions, one is naturally led to
a formulation in the language of machine learning.

The most straight-forward accuracy measure to define is the ||R||-measure, defined as the inte-
gral of the absolute value of the Ricci scalar5

||R|| =
Vol1/nK

VolCY

∫
X
dVolK |R| , (2.44)

where n is the dimension of the manifold X. The Ricci scalar is the full contraction of the
Ricci curvature as defined in equation (2.19) with the metric. The main disadvantage is that it
is computationally expensive to evaluate. The Ricci curvature is given by a second derivative
of the metric, which in turn is given as the second derivative of the Kähler potential. If used

5the volume factor is chosen to cancel the scaling in k, as described in [23]

13

2. Mathematical Prerequisites

as the loss function in gradient descent, a fifth differentiation with respect to the parameters
is needed. While still feasible for small values of k, the accuracy measure introduced next is
significantly cheaper, especially if used as loss for gradient descent.

The top form on a Calabi-Yau manifold is unique up to scaling. This means that the volume
form given in terms of the sought Ricci-flat Kähler form ω (or the corresponding metric) must
be proportional to the known Calabi-Yau volume form of equation (2.39):

ωn

n!
= λΩ ∧ Ω̄ . (2.45)

Any deviation from proportionality can be interpreted as a deviation from the Calabi-Yau
metric. We can rewrite equation (2.45) in terms of the ratio

η̂ =
ωn/n!

Ω ∧ Ω̄
= λ . (2.46)

Integrating both sides of equation (2.45) implies the proportionality constant λ is given by the
ratios of volumes. One is thus led to the normalized form

η = η̂
VolK
VolCY

. (2.47)

The σ-measure is now defined as the average deviation of the η form from being constant:

σ =
1

VolCY

∫
X
dVolCY |1− η| . (2.48)

It therefore measures how much the given metric differs from the Calabi-Yau metric, and van-
ishes for the true metric.

As shown by Headrick and Nassar [10], there is a whole class of convex6 energy functionals
that are uniquely minimized by the Ricci-flat metric. Given a convex differentiable function
F : R+ → R that is bounded from below, one can define an energy functional

EF =

∫
X
dVolCY F (η) . (2.49)

The minimum of this functional among a set of metrics, such as degree k algebraic metrics, is
called optimal. Note that the σ-measure is a special case of this functional. Since the algebraic
metrics can be interpreted as a spectral expansion truncated at some order k, the optimal
algebraic metrics can, in analogy to a Fourier expansion, be expected to approximate the flat
metric exponentially well in k with respect to the σ-measure [10]. More specifically, there is a
sequence of balanced metrics ωk such that

||ωCY − ωk|| = O(k−ν) (2.50)

6Convexity here is in terms of the Kähler form and implies its uniqueness. Unfortunately, this property is
not preserved once some parametrization for the metrics is chosen, and therefore does not guarantee good
convergence for minimization with gradient descent.

14

2.4. Accuracy Measures

for any ν and Cr-norm on X [7]. This would be a significantly more rapid convergence than
that of the balanced metrics produced by Donaldson’s algorithm, which converge like O(k−2)

in the σ-measure.

Underlying the energy functionals is the fact that the closer the metric is to Ricci-flat, the smaller
the variance of η̂. This can be seen qualitatively in Figure 2.1 which shows the narrowing
of the distribution of η̂ for Donaldson’s balanced metrics for successively larger k, and thus
successively better approximations to Ricci-flatness. As laid out in section 2.3, the integrals
are approximated by Monte Carlo sums. Figure 2.4 compares the convergence behaviors of the
||R||-measure, σ-measure, and the standard deviation of η̂ computed over the same samples,
for different number of sample sizes. The measures were computed for the balanced metric at
k = 7, and at each sample size for 6 sets of points over which the standard deviation is shown.
Based on these results, the relative error of the σ-measure can be expected to be less than 1%
for a sample size of about Np = 10 000. If not otherwise stated, this is the number of samples
used to compute the accuracy measures in the following.

15

2. Mathematical Prerequisites

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
0

1k

2k

co
un

t p
er

 b
in

k = 2
k = 4
k = 6
k = 12

Figure 2.1.: Distribution of η evaluated on 10 000 points on the Fermat quintic (sampling as
defined in section 2.3, no Monte Carlo weights applied) for balanced metrics of
different degrees.

0.2

0.6

1.0

1.4

1.8

re
sc

al
ed

 m
ea

su
re

=

0

-accuracy ||R||-accuracy standard deviation of

101 102 103 104 105
0.2

0.6

1.0

1.4

1.8

re
sc

al
ed

 m
ea

su
re

=

10
0

101 102 103 104 105 101 102 103 104 105

number of sample points

Figure 2.2.: Comparison of convergence behavior with respect to the number of sample points for
σ- and ||R||-measures, and the standard deviation of η̂. Accuracies were computed
for the balanced metrics produced by Donaldson’s algorithm at degree k = 7 with
ψ = 0 and ψ = 100 for the upper and lower plots respectively. The values shown
are mean and standard deviations computed over 6 independent sets of points for
each sample size. The standard deviations of η̂ are computed with respect to the
Monte Carlo measure (2.43) with no weights applied.

16

3. Numerical Analysis of Donaldson’s
Algorithm

This section lays out the results and a numerical analysis of a new implementation of Donaldson’s
algorithm. The balanced metrics approximated by Donaldson’s algorithm are known to converge
for large k to the Ricci flat metric, and thus provide a basic benchmark in terms of accuracy
and computational cost, to which other approximation schemes can be compared. Besides that,
it allows for a validation of implementations of algorithms that will be reused for the machine
learning methods later. More details regarding the implementation can be found in section B
of the appendix.

3.1. Implementation and Validation

This section presents the main results for the implementation of Donaldson’s algorithm. Fol-
lowing a summary of implementation decisions, the accuracy’s dependence on the degree k is
analyzed for the Fermat quintic, as well as how much computation time this requires. After
these principal results, further dependence on the complex structure moduli (in our case the
parameter ψ), the random seed, and the numerical patterns of the produced h matrices will be
examined.

3.1.1. Implementation Choices

Before analyzing the convergence behavior of Donaldson’s algorithm in more detail, a few words
must be said about its implementation. The numeric behavior of Donaldson’s algorithm was an-
alyzed previously, for example in [7, 20, 8, 11], using implementations in C/C++, Mathematica,
and BASIC. Compiled languages like C/C++ have the advantage of generally smaller run-times
at the cost of larger implementation complexity, while a high-level language like Mathematica
is capable of symbolic differentiation, and may lead to a simpler implementation.

While deep learning has gained popularity in recent years, many new frameworks have been
developed to facilitate it. At their core is the ability, called automatic differentiation, to gen-
erate a function that calculates the (partial) derivative of another given function to numerical
accuracy. In contrast to symbolic differentiation the function whose derivative is computed does
not have to be present as a single symbolic expression, but as an implementation in code which

17

3. Numerical Analysis of Donaldson’s Algorithm

can make use of most of the constructs of the programming language. This allows for much
greater flexibility and ease of implementation. The way the derivative is computed also differs
from symbolic differentiation, and is fundamentally numerical, which in practice makes it work
for high dimensional spaces and higher derivatives.

The framework chosen for the following implementations is JAX [24], which is based on the
Python programming language. There are several advantages to JAX when compared to other
frameworks that were considered. In the most common applications of deep learning, only
a first-order, real, high-dimensional derivative has to be computed, which means that some
frameworks cannot easily be used for higher derivatives or complex numbers. JAX can be used
to compute holomorphic and anti-holomorphic derivatives (see appendix A.1), as well as higher
derivatives which naturally occur in the geometric setting outlined above (such as in computing
the metric from the Kähler potential).

Python itself is an interpreted language, which means that code is not compiled to faster
machine code before it is run, leading to comparatively slow run times. This can already
be significantly ameliorated by using linear algebra libraries like NumPy, which internally use
fast, pre-compiled implementations of algorithms. In many cases, code written in Python which
calls these algorithms still has a large overhead cost. Another feature of JAX that has proven
to be of great practical value is called just-in-time compilation (JIT). If applied to a Python
function, it is translated into a sequence of compiled linear algebra operations at the time it is
first called. This means that in consecutive runs the evaluation of the function is significantly
faster. For an example that shows this, see Figure 3.2 below, and appendix A which gives a
more detailed overview of the features of JAX and how they are used here.

While these properties of JAX already make it a good choice for implementing Donaldson’s
algorithm, it is important to keep in mind that the eventual goal is to apply deep learning
techniques to approximating the Ricci-flat metric. A by-product of implementing Donaldson’s
algorithm in JAX is that it brings all involved geometric constructions into the context of deep
learning. They can then, without modification, be automatically differentiated, JIT compiled,
and thus immediately used later. Comparing the results achieved using Donaldson’s algorithm
here with previously published values can serve to validate the implementation, before reusing
parts of it for the deep learning approach.

Finally, note that JAX allows code to be compiled, without modification, to run on a GPU or
TPU. While this may be interesting to study further in the future, and was tested in principle,
it is not further pursued here.

3.1.2. Validation and Convergence for the Fermat Quintic

For a first study of Donaldson’s algorithm, we consider now the quintic with ψ = 0. The
number of points required in the Monte Carlo approximation of the integral T -operator in

18

3.1. Implementation and Validation

order to achieve convergence was studied in [8, 21], and found to be approximately

Np = 10N2
k + 50 000 , (3.1)

where Nk is the basis size of global sections of OX(k). The scaling in N2
k can be understood

by noting that this is the number of entries of the h matrix which parametrizes the algebraic
metric, leading to Np � N2

k . If not otherwise stated, this is the number of sample points used to
compute the T operator, and the initial h-matrix used in Donaldson’s algorithm is the identity
hαβ̄ = δαβ̄. To validate the implementation of Donaldson’s algorithm, Figure 3.1 compares the
σ-measures for the quintic with ψ = 0 with those obtained in previous studies [11, 8]. The
values are in close agreement.

2 4 6 8 10 12
degree k

10 2

10 1k

T15(h =)
T1(h =)

arXiv:1910.08605
h =

0 1 2 3 4 5 6 7
Donaldson's algorithm iteration n

10 1

100

ac
cu

ra
cy

k(n

) /
k(0

)

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7
k = 8
k = 9
k = 10
k = 11
k = 12

Figure 3.1.: Left: σ-accuracies of results obtained with the implementaion of Donaldson’s al-
gorithm used in the following for ψ = 0 and monomial degrees between 1 and 11,
compared with previous results [11]. The identity was used as initial h-matrix, for
which the σ-accuracy is shown as dotted line. Right: Convergence of Donaldson’s
algorithm over iterations of the T -operator, depending on degree k, for the Fermat
quintic (ψ = 0). Accuracy σk is shown relative to initial value for h = 1.

A comparison of the σ-accuracy for the approximated balanced metric with that of the initial h-
matrix displayed in the same plot shows that only for k greater than about 4 does the balanced
metric lead to an improvement. This behavior is strongly dependent on the point in moduli
space. For example at ψ = 100, the σ-accuracies achieved with hαβ̄ = δαβ̄ are strictly worse than
those achieved by Donaldson’s algorithm (see Figure C.2 in the appendix). The comparison
does help, however, in understanding the convergence behavior in the number of iterations of
Donaldson’s algorithm, shown in the right plot of Figure 3.1. Corresponding to the difference
between initial and final σ-accuracies, one can see the value quickly converge after only a few
iterations of the T -operator (as observed before [11, 8]), with slightly more iterations required
for larger degrees k. Not too much should be read into the exact convergence behavior, as it is
contingent on the chosen manifold. However, the cases where hαβ̄ = δαβ̄ have better accuracies
than the balanced metrics already show that the balanced metrics are not necessarily optimal
with respect to the σ-measure for a given degree k.

19

3. Numerical Analysis of Donaldson’s Algorithm

3.1.3. Numerical and Theoretical Benchmark

The two primary attributes of any algorithm that approximates the Calabi-Yau metric are the
achieved accuracy and its computational cost. There is no unique measure for the accuracy of
a given metric to Ricci-flatness, and instead several accuracy measures can be introduced, as
was outlined in section 2.4. To make all results produced in the present analysis comparable,
the σ-measure is used as a reference1.

The σ-accuracy achieved by Donaldson’s algorithm in relation to the degree k was shown in
Figure 3.1 for the quintic. Both theoretically and numerically, one finds a convergence of the
order O(k−2) [25, 7, 20] (both in terms of the σ-measure, and the difference between Kähler
forms in any Cr norms on X [25]). A curve fit for k ≥ 3 gives approximately

σk =
3.18

k2
− 4.30

k3
+O

(
1

k4

)
, (3.2)

which is close to the values 3.1 k−2 − 4.2 k−3 found in [20].

The second question is how the time required for Donaldson’s algorithm scales in the degree k,
and by proxy how much time is needed to achieve a given accuracy. While there is still room
for optimizing the implementation of Donaldson’s algorithm, which among other things allows
for a much greater parallelism than used here, the computational time can reveal the scaling
in k and serve as comparison for other approximation schemes. All time benchmarks presented
in the following are obtained in the same environment, running on 10 parallel threads on the
CPU. Since there is in each case room for optimization, the values should be read as order of
magnitude and relative to each other.

Figure 3.2 shows the time needed for one iteration of the T -operator depending on the degree
k. In addition, it illustrates the advantage of using JIT compilation (used frequently in this
and the following implementations) for computing the σ-measure, which reduces the overhead
of the Python implementation but not the overall scaling of the computational complexity.
It is obvious that the computational cost of Donaldson’s algorithm rises steeply, making it
unfeasible to run on a single standard workstation for k > 12 in a time span of days. An
inspection of Donaldson’s algorithm reveals that there are O

(
Nk

2
)

evaluations of the integrand,
each containing an inner product with the Nk ×Nk matrix h, leading to an overall scaling of

O
(
Nk

4
)
= O

(
k4(n+1)

)
. (3.3)

For the quintic this is O
(
k16
)
. While not the focus here, note that it is possible to reduce

the computational cost (although not the overall scaling in k) by specializing to set of defining
equations and manually exploiting their symmetry to reduce the number of free parameters in

1The σ-measure has the additional advantage as a reference measure between published results, that it does not
depend on the pre-factor in front of the logarithm in the definition of the algebraic metric, or on whether or
not the Monte Carlo measures were properly normalized. In other words, it is independent of the volume of
the manifold.

20

3.2. Moduli and Random Seed Dependence

h, as was done in [10]. Since the Calabi-Yau metric is unique, it has to respect all symmetries
of the defining equation, which can be translated to numerical conditions on h.

2 4 6 8 10 12
k

100

101

102

103

104

105

tim
e

[s
]

Average time per iteration of T-operator

2 4 6 8 10 12
k

100

101

tim
e

[s
]

Time to compute
JIT
no JIT

Figure 3.2.: Scaling in k of the computational time for one iteration of Donaldson’s T -operator,
and the evaluation of the σ-accuracy measure. The time for the T -operator is the
average over 15 iterations for the quintic with ψ = 0. The σ accuracies were each
computed with 10 000 sample points, once with and once without JIT-compilation
enabled, which reduces the overhead.

3.2. Moduli and Random Seed Dependence

Donaldson’s algorithm has two primary parameters, the degree k and the number of sample
points used in the Monte Carlo integration. The convergence relative to the σ-measure in the
degree k has been shown in Figure 3.1 for the Fermat quintic. In the same figure, convergence
after just a few iterations of the T -operator is visible. This indicates that the number of sample
points has been selected sufficiently large.

To confirm that the observed scaling of the accuracy measure in k is not unique to the Fermat
quintic, Figure 3.3 shows the σ-measures achieved by Donaldson’s algorithm for different values
of ψ over a range of degrees k. All points in moduli space displayed in the figure seem to show
similar convergence in the limit, with slightly different offsets (since shown on a logarithmic
scale, the offset corresponds to different factors of k−2). Since the conifold at ψ = −5 has
local regions of large curvature, one may expect the balanced metrics to give relatively worse
accuracies at that point in moduli space. The reason for this is that the algebraic metrics can
be interpreted as a spectral expansion, with more localized fluctuations requiring larger values
of k (exactly as for a Fourier expansion). The values shown in the figure are compatible with
that being the case, however a scan to larger values of k would have to be done for a final
conclusion to be drawn.

As mentioned previously, the σ-measure will be used as the main accuracy measure in order
for the different results to be easily compared. The analysis of Donaldson’s algorithm provides
an opportunity to compare it to the more expensive ||R||-measure, and check their consistency.
The same figure as above, Figure 3.3, shows the correlation between σ- and ||R||-measures for
the balanced metric for different values of ψ. The two measures agree closely, warranting the use
of the cheaper σ-measure over the ||R||-measure. This is especially important for the machine

21

3. Numerical Analysis of Donaldson’s Algorithm

1 2 3 4 5 6 7
k

10 1-m
ea

su
re

convergence in k

10 2 10 1 100

||R||-measure

measure compatibility
= 0 = 5 = 10 + 10 i = 100

Figure 3.3.: Right: σ-measures achieved by Donaldson’s algorithm in a range of degrees k for
different ψ values. Left: Correlation of the σ- and ||R||-measures computed over
a fixed set of 10 000 sample points for the results of Donaldson’s algorithm with k
between 1 and 7 and different ψ values on a double-logarithmic scale.

learning application later, since the loss is used in every iteration of gradient descent.

Besides the ψ (i.e. complex structure moduli) dependence of the convergence of Donaldson’s
algorithm, one may wonder if the accuracies achieved depend on the random seed. Since random
numbers are only used to compute the Monte Carlo approximation of the T -operator, significant
variation would indicate insufficiently large sample sizes. Figure 3.4 shows the relative standard
deviation of σ accuracies achieved by Donaldson’s algorithm over 10 runs with different random
seeds. The magnitude of variation is comparable to the accuracy with which the σ-measures
are approximated (as analyzed in section 2.4), which indicates no significant seed dependence,
and thus a sufficiently large sample size. Each of the σ-measures in this plot were computed
using the same 10 000 points, so the variation comes only from the randomness in Donaldson’s
algorithm, not the approximation of the accuracy.

2 4 6 8 10
iteration of T-operator

0.0 %

0.2 %

0.4 %

0.6 %

0.8 %

1.0 %

1.2 %

1.4 %

re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n
of

 k = 5

2 4 6 8 10
iteration of T-operator

k = 6

= 0 = 1 = 10 = 100

Figure 3.4.: Standard deviation divided by mean of the σ-measures obtained using Donaldson’s
algorithm for each iteration computed over 10 runs with different random seeds.
The results are for degree k = 5 on the left and k = 6 on the right, each for 4
different values of ψ.

22

3.3. Numerical Pattern of h Matrices

3.3. Numerical Pattern of h Matrices

So far, only the convergence of the σ-accuracies achieved by Donaldson’s algorithm have been
analyzed but not the numerical values of the h matrices themselves. A qualitative overview
of h matrices produced by Donaldson’s algorithm is shown in Figure 3.9, which displays the
absolute value of entries of h as a logarithmic heat map. Besides consistently large values on
the diagonal, it is difficult to recognize a pattern. Close inspection reveals however, that there
seem to be a few distinct off-diagonal entries with relatively large magnitude. The remainder of
this section analyses the structure in the h matrices produced by Donaldson’s algorithm, and
in how far only a few entries are significant in producing the balanced metrics.

The algebraic metrics are manifestly invariant under multiplications of the matrix h by a con-
stant 0 6= λ ∈ R

hαβ̄ ∼ λhαβ̄ , (3.4)

since the potential (2.26) shifts by a constant which does not contribute to the derivative.
Figure 3.5 shows the absolute values of diagonal entries of h at k = 7, as well as the eigenvalues
(which are real since h is Hermitian) sorted by magnitude. It indicates that on the positive real
strip of ψ values, the larger ψ is the more dominant a few of the entries of h become, and the
larger the span of the spectrum. The absolute values and the spectrum are numerically close,
which can be attributed to the fact that the h matrices are numerically dominated by entries on
the diagonal. In fact, Figure 3.6 shows that for small values of k there is almost no difference
in the σ-measure if off-diagonal entries are discarded (i.e. set to 0). However, for larger k, and
especially for larger values of ψ, the accuracy is significantly reduced, which means that the
off-diagonal entries must be included. To come to this conclusion, in Figure 3.6 the relative
increase of the σ-measure defined as

σ(h)− σ(hreduced)

σ(h)
(3.5)

is shown, where h is the original matrix, hreduced the modified one, and σ(h) denotes the σ-
measure computed for the algebraic metric given by the matrix h. Naturally, the relative
decrease of the σ-measure is defined by inverting the sign.

The integral of the T -operator is approximated by a Monte Carlo sum over a finite number
of sample points. This means that in each step the random choice of sample points leads to
random fluctuations in the produced h matrix, even after the σ-measures no longer change
meaningfully. Entries that would be zero if the integral was computed exactly may therefore
continue to fluctuate. In order to determine which of the entries in h contribute significantly
and which may constitute noise, consider the element-wise relative standard deviation over a

23

3. Numerical Analysis of Donaldson’s Algorithm

0 50 100 150 200 250 300
diagonal index sorted by |h(= 0)|

10 4

10 3

10 2

10 1

100
no

rm
al

ize
d

|h
(

)|

0 50 100 150 200 250 300
sorted by magnitude

10 5

10 4

10 3

10 2

10 1

100

no
rm

al
ize

d
ei

ge
nv

al
ue

s o
f h

(
)

= 0
= 5

= 10 + 10 i

= 100

Figure 3.5.: Left: Absolute values of the diagonal entries of h matrices produced by Donaldson’s
algorithm after 10 iterations for k = 7 and different values of ψ. The indices are
consistent between all ψ and were obtained by sorting the diagonal entries of h for
ψ = 0. Right: Spectrum of eigenvalues of the same matrices, individually sorted by
magnitude. For both plots, the h matrices were normalized such that max(|h|) = 1.

set of matrices {hm}Mm=1 defined as

rel-std(hm)αβ̄ =
1∣∣〈hαβ̄〉∣∣

√√√√ 1

M

M∑
m=1

∣∣∣hm
αβ̄

− 〈hαβ̄〉
∣∣∣2 , (3.6)

where the angle brackets denote the mean

〈hαβ̄〉 =
1

M

M∑
m=1

hmαβ̄ . (3.7)

Since it removes the dependence on the absolute scaling of elements of h, this is a good measure
for their fluctuation over the given set.

Figure 3.7 shows the relative standard deviation over iterations of Donaldson’s algorithm for
multiple values of k and ψ in relation to their absolute value. In other words, it shows how
much each entry fluctuates between applications of the T -operator, and how this relates to how
large the absolute value (on average over the iterations) of the entry is. Crucially, the standard
deviation is computed over a number of iterations of Donaldson’s algorithm after convergence
has already been reached. There are visibly two clusters of points, whose relative standard
deviations differ by about two orders of magnitude. The relative standard deviation of the
larger-fluctuation cluster (shown in blue) is of the order O(1), which means their fluctuation
is of about the same size as their magnitude, strongly suggesting they are noise. From the
perspective of the Monte Carlo approximation, the entries in the large fluctuation cluster may
therefore vanish if the integral was computed exactly, but due to the introduced randomness
fluctuate around that value. This defines a prescription for reducing the h matrices to only
those entries which are statistically significant. Figure 3.10 shows again a qualitative overview
of h matrices produced by Donaldson’s algorithm but only keeping the small-fluctuation entries.
Now a distinct pattern is visible, which seems to show some resemblance between different values

24

3.3. Numerical Pattern of h Matrices

2 4 6
k

10 3

10 2

re
la

tiv
e

de
cr

ea
se

 in

low-variance entries

0 100 200 300
eigenvalues kept

0

10

20

30

40

re
la

tiv
e

in
cr

ea
se

 in

eigenvalue clipping

2 4 6
k

0

2

4

6

re
la

tiv
e

in
cr

ea
se

 in

diagonal-only
= 0 = 5 = 10 = 100

Figure 3.6.: Left: Relative decrease of the σ-measure once h matrices produced by Donaldson’s
algorithm for various ψ and k values are reduced to the small-fluctuation entries.
Middle: Relative increase in σ-measures obtained for h matrices produced by Don-
aldson’s algorithm for k = 7 when keeping different numbers of eigenvalues and
setting the rest to 0. In total, h has 315 eigenvalues. Right: Relative increase
of the σ-measure obtained when setting all off-diagonal entries of the h matrices
produced by Donaldson’s algorithm to 0.

of k and ψ.

Another notable observation about Figure 3.7 is that the difference in fluctuation between the
large- and the small- fluctuation clusters do not change significantly depending on ψ or k. It
seems justified, at least for the quintic studied here, to set a threshold for the low-fluctuation
cluster at a relative standard deviation of 10−1. Since we seem to have established that the
large-fluctuation cluster corresponds to noise around zero values, one may suspect that elements
in the large-fluctuation cluster must be small and those in the small-fluctuation cluster large.
While the figure does show that small-fluctuation entries tend to have a larger magnitude, it is
not possible to separate the clusters based on magnitude alone. That is especially so for larger
values of ψ and k, for which the two clusters overlap in magnitude.

The reduction of the h matrices to the small-fluctuation elements can, through a purely numer-
ical analysis, only be justified if the σ-accuracies do not change significantly. Figure 3.6 shows
that by setting all large-fluctuation elements to 0, the σ measure changes by at most about 1%.
For all tested cases, the reduction in fact leads to a decrease in the σ-accuracy.

The number of elements in the low-fluctuation cluster increases with the value of ψ. In fact, the
elements of h kept for a smaller ψ is always a subset of those kept for a larger ψ. This seems to
show a reflection of the geometry in the h matrices, corresponding to the symmetry breaking
that happens with the introduction of ψ > 0. The discarded large-fluctuation elements for
ψ = 0 contain entries that are not required for the variety at ψ = 0, but become continuously
more significant as ψ increases and part of the symmetry of the homogeneous polynomial gets
broken. The number of entries in the low-fluctuation cluster in relation to the value of ψ can
seen in Figure C.3 in the appendix.

25

3. Numerical Analysis of Donaldson’s Algorithm

10 4 10 3 10 2 10 1 100

10 2

100

102

70

4, 830

= 0, k = 4

10 5 10 3 10 1 101

880

210, 720

= 0, k = 8

10 6 10 4 10 2 100

5, 900

2, 214, 200

= 0, k = 12

10 5 10 3 10 1

10 1

101

103

265

41, 760

= 0, k = 6

10 5 10 3 10 1 101

|h |

425

41, 600

= 10, k = 6

10 5 10 3 10 1 101 103

425

41, 600

= 100, k = 6

re
ls

td
(h

)
 o

ve
r i

te
ra

tio
ns

 o
f T

-o
pe

ra
to

r

Figure 3.7.: Relative standard deviation (3.6) of entries in h computed over iterations 10 to 25
of Donaldson’s algorithm for different values of ψ and k, in relation to the absolute
of their mean. The differently colored clusters correspond to a cut-off value for the
relative standard deviation of 10−1, shown as a dashed line. The small numbers
inside the plot indicate the number of entries in each cluster.

So far, the complex angle of entries in h have not been analyzed. Figure 3.8 shows the fluctuation
of elements of h over iterations of Donaldson’s algorithm in relation to their complex angle. It
is notable that for ψ = 0, all small-fluctuation entries are real. In the case of |ψ| > 0 there seem
to be only a few different complex angles in the small-variance cluster, whose value changes
depending on the complex angle of ψ. The mirror symmetry visible in both figures is due to
the Hermiticity of h, which requires that for every entry of h with complex angle α there is one
with angle −α.

3.3.1. Implications

In the above we have seen that, just based on an analysis of the numerical values produced by
Donaldson’s algorithm, it is possible to reduce the h matrices to only a few entries. One may
suspect that these entries are not only the significant ones for Donaldson’s balanced metric,
but for any approximation of the Ricci-flat metric at the given degree k of algebraic metrics.
Limiting oneself to only these few entries would speed up solving the minimization problem
introduced in the following section 4.

Since the Ricci-flat metric is unique, it has to respect the symmetries of the defining homo-
geneous polynomial. The defining equation Qψ of the quintic studied here displays a large
symmetry group (such as permutations of coordinates), making it possible to manually reduce
the number of parameters required to parametrize h. Neither the reduction of entries based on

26

3.3. Numerical Pattern of h Matrices

a numerical study of Donaldson’s algorithm, nor the manual reduction of parameters of h based
on symmetry leads to a reduction of the basis of OX(k). The middle plot of Figure 3.6 shows
the increase of the σ-measure that results from discarding eigenvalues of h. The σ-measure
immediately increases once eigenvalues are discarded, which indicates also numerically that one
cannot hope to find only a few homogeneous polynomials to which the construction of the
algebraic metric can be limited.

0

10 2

100

102

= 0, k = 4

0

= 0, k = 8

0

= 0, k = 12

0

10 1

101

103

= 10, k = 7

0

= 10 i, k = 7

0

= 10, k = 7

0

= 10 i, k = 7

re
ls

td
(h

)
 o

ve
r i

te
ra

tio
ns

 o
f T

-o
pe

ra
to

r

arg(h)

Figure 3.8.: Relative standard deviation of entries in h computed over iterations 10 to 25 of
Donaldson’s algorithm for different values of k and ψ, in relation to their complex
angle. Similarly to Figure 3.7, the cut-off line separating the two clusters is shown
as a dashed line.

27

3. Numerical Analysis of Donaldson’s Algorithm

0 10 20 30 40 50 60 70
= 0

0

10

20

30

40

50

60

70

k
=

4

0 20 40 60 80 100 120
0

20

40

60

80

100

120

k
=

5

0 50 100 150 200
0

25

50

75

100

125

150

175

200

k
=

6

0 50 100 150 200 250 300
0

50

100

150

200

250

300

k
=

7

0 10 20 30 40 50 60 70
= 10

0 20 40 60 80 100 120

0 50 100 150 200

0 50 100 150 200 250 300

0 10 20 30 40 50 60 70
= 100

0 20 40 60 80 100 120

0 50 100 150 200

0 50 100 150 200 250 300

10 5 10 3 10 1 101 103

Figure 3.9.: Qualitative overview of h matrices computed by 15 iterations of Donaldson’s algo-
rithm for different values of ψ and degrees k. The color corresponds to the absolute
value of entries of h, shown on a logarithmic scale.

28

3.3. Numerical Pattern of h Matrices

0 10 20 30 40 50 60 70
= 0

0

10

20

30

40

50

60

70

k
=

4

0 20 40 60 80 100 120
0

20

40

60

80

100

120

k
=

5

0 50 100 150 200
0

25

50

75

100

125

150

175

200

k
=

6

0 50 100 150 200 250 300
0

50

100

150

200

250

300

k
=

7

0 10 20 30 40 50 60 70
= 10

0 20 40 60 80 100 120

0 50 100 150 200

0 50 100 150 200 250 300

0 10 20 30 40 50 60 70
= 100

0 20 40 60 80 100 120

0 50 100 150 200

0 50 100 150 200 250 300

10 5 10 3 10 1 101 103

Figure 3.10.: The same as Figure 3.9, except with h matrices reduced to the entries with small
relative variance. The same color map was used.

29

4. Machine Learning Approach to Calabi-Yau
Metrics

In the previous section, we have seen how Donaldson’s algorithm can be used to approximate the
Ricci-flat metric on a Calabi-Yau manifold using the algebraic metrics represented by Hermitian
matrices h. The quality of these approximations was measured using one of the integral accuracy
measures introduced in section 2.4. Changing the perspective slightly, the problem of finding a
good approximation corresponds to finding a metric which makes these accuracy measures as
small as possible. This is justified in principle by the investigation of Headrick and Nassar [10],
which showed that the η-based energy functionals of equation (2.49) are convex in the Kähler
form and uniquely minimized by the Calabi-Yau metric. We are thus justified in claiming a
metric with a smaller accuracy measure is a better approximation.

Fully committing to this point of view, the problem can be put into the context of deep learn-
ing, in which one aims to find a parametrized set of functions, and optimize the parameters
by minimizing a specified loss (which will be chosen to correspond to the accuracy measures).
The results presented in section 4.6 will show that this approach is capable of producing ap-
proximations to the Ricci-flat metric of better accuracy than Donaldson’s algorithm. Not only
will a better accuracy than Donaldson’s algorithm be achieved in a similar amount of time, but
the approximate Calabi-Yau metrics are simultaneously found on a range of moduli space. The
metrics are present in functional form built on the algebraic potential, and can therefore be
differentiated and cheaply computed at different values of the moduli parameters.

Section 4.1 gives a basic overview of deep learning and the related vocabulary that is important
to understand the following approach. Before moving towards the final formulation of the
machine learning optimization scheme, section 4.2 outlines the different possible and previous
applications of machine learning to the problem at hand. After an overview of the loss functions
derived from the accuracy measures in section 4.4, and a more narrow definition of which deep
learning approach is taken here, in section 4.3, section 4.5 reproduces the results in [10] of
minimizing the energy functionals (2.49) for the algebraic metrics at a fixed point in moduli
space. This will be done in the context of machine learning and gradient descent, laying the
foundation for section 4.6 in which approximations for a range of complex moduli space are
found simultaneously.

30

4.1. Deep Learning

4.1. Deep Learning

Deep learning1 is a subfield of machine learning, roughly concerned with finding the optimal
parameters of a parameterized function which is defined by the composition of algebraic opera-
tions (“deep” refers to multiple chained layers of operations). Optimality is typically defined as
the minimum with respect to some loss function, mapping the output of the model and its input
to a real number, such that optimal parameters can be approximated using variants of gradient
descent2. The specific parametrized function is called a model, and the combination of algebraic
operations that define the mapping from parameters and inputs to the outputs is called its ar-
chitecture. Because the models in deep learning are usually defined by composition of layers of
multivariate linear and non-linear functions, they are also called networks, or neural networks.
Each dimension of the inputs and outputs of these intermediate multivariate functions can be
interpreted as a node in a graph, whose connections are given by the dependencies as defined
by the functions that map between them. In the case here, the output of one multivariate
function is the input to the next, before eventually giving the final output. For this reason they
are classified as so-called feed-forward neural networks. The process of approximating optimal
parameters using methods based on gradient descent is called training. The output of a model
is sometimes called a prediction, in analogy to the language used in regression.

To formulate a deep learning problem based on these definitions, one has to specify what the
inputs and outputs of the model are, and what loss function is to be minimized. Based on the
geometric setting summarized in section 2, one may try to find models predicting any of the
objects describing the Calabi-Yau manifold, such as the metric itself, its determinant or other
derived objects, or its Kähler potential. This could be done either as a function of the point on
the manifold, or as its values on a fixed set of points. Candidates for the input of the model are
therefore points on the manifold, and points in moduli space (e.g. the parameter ψ). The input
and output dimensions of a model do not typically depend on the value of inputs or parameters.
For a model that is based on algebraic metrics, the degree k is therefore not an input but rather
a hyperparameter. A hyperparameter is a parameter that is not changed in the optimization
process but rather parametrizes a set of models or aspects of the training procedure.3

To make the usage of models and losses in the following sections clearer, consider the following
example. Assume we are looking to fit a polynomial using gradient descent to reproduce data
that was generated using y = f(x) = 2x2 (the functional form would in practice not be known,
of course). Given a set of example inputs xi and example outputs yi, we can devise a model
fθ(x) = θ0 + θ1x+ θ2x

2 and minimize the mean-squared-error loss

MSE(yi, ŷi) =
1

N

∑
i=1

N(yi − ŷi)
2 . (4.1)

1For an extensive introduction to deep learning see for example [26].
2For the numerical results in the following, mostly the Adam optimization algorithm will be used [27].
3Sometimes hyperparameters only refer to parameters that change the optimization process (not the model),

but it will be used in this broader sense in the following.

31

4. Machine Learning Approach to Calabi-Yau Metrics

For a given set of values (xi, yi), called a batch, we can substitute ŷi = fθ(xi) to obtain the loss
as function of θ, by which one can differentiate and thus minimize via gradient descent. Because
both example inputs and outputs are available, this setting is called supervised learning. The
degree of the polynomial ansatz which defines the model constitutes a hyperparameter, and
defines how many scalar parameters θ contains. Assume now we have a functional F (f) =

∂f/∂x, which for the sought function has the form 4x. This may seem somewhat contrived,
but the language in this example is closely mirrored the following application. Given again a
model fθ, we can define a new model as f̃θ = F (fθ). We can then use gradient descent to find
the target function (of course not all polynomial coefficients will be fixed) as the minimum of

MSE(xi, ŷi) =
1

N

∑
i=1

N(4xi − ŷi) , (4.2)

where again to obtain a function of the parameters one substitutes ŷi = F (fθ)(xi). Note that
in this example no pairs of input and output values is given. Instead, one may generate sample
points xi freely to construct the loss function. This process of computationally deriving a new
model from a given one is not common in machine learning, but will turn out to be exactly
what is needed here. The ability to automatically compute the derivative of the model, and
still be able to differentiate the loss with respect to the parameter (thus effectively leading to
a second order derivative) was one of the main criteria for which machine learning framework
was used for the following approach. We will come back to this in the text below, and appendix
A and B detail this on the level of implementation.

4.2. Overview of Machine Learning Approaches

Before laying out the approach taken here to approximate the Calabi-Yau metric, the following
gives an overview of approaches that have been taken in previous studies, and possible other di-
rections. For each, some basic advantages and disadvantages are noted. The various approaches
differ in multiple ways, most importantly by which object the models aim to predict. A second
difference mirrors the distinction between the two kinds of approximation schemes outlined in
the introduction. The models may either take the point on the manifold as input and predict
the corresponding local object, or the points on the manifold may be fixed such that the model
predicts the desired objects on the chosen points simultaneously.

Extrapolating to Larger Degrees of the Balanced Metrics

Donaldson’s algorithm as discussed previously gives a convergent algorithm approximating the
Calabi-Yau metric. However, to achieve higher accuracies the degree k has to be increased,
which quickly makes Donaldson’s algorithm prohibitively expensive. It would, therefore, be
useful if one could predict the balanced metric at k + 1 based on the results from Donaldson’s
algorithm at k. One approach may be to find a model that maps from one h matrix produced

32

4.2. Overview of Machine Learning Approaches

by Donaldson’s algorithm to one at a higher degree, as a function also of ψ. This falls under
the category of supervised learning, where Donaldson’s algorithm would be used to compute h
for multiple values of ψ, and the loss would be a function of the difference between h at k + 1

and the output of the model given h at k and ψ. An immediate disadvantage is that the input
and output sizes depend on k so that a model that maps from k to k+1 cannot be used to map
from k+1 to k+2. Additionally, to train the model one has to evaluate Donaldson’s algorithm
for both k and k + 1. This approach could therefore only be justified if the model somehow
generalizes very well to values of ψ outside the set on which it was trained. Otherwise, nothing
would be gained over Donaldson’s algorithm.

A related approach is to predict not h of Donaldson’s algorithm but rather the corresponding
values of the metric or derived objects at a fixed number of points on the manifold. These do not
scale in k, since they are defined as geometric objects independent of the algebraic ansatz. A first
step in this direction was taken in [11], where decision trees are used to predict the determinant
of the metric at larger k based on results from Donaldson’s algorithm at smaller k. For some
fixed Kähler manifold (e.g. fixed ψ), Donaldson’s algorithm is evaluated for several small values
of k which is then extrapolated with the help of machine learning to higher values of k. Even
if extended to the full metric on each point, this approach has several drawbacks. Firstly, if
the output of the model is the metric, Kählerity is no longer guaranteed. Instead one could
predict the Kähler potential on a set of points, however then the metric has to be computed
using a finite elements approximation. Consequently, in order to achieve higher accuracies the
number of points has to be increased, which reverses the advantage that the model does not
grow quickly in k. In addition to this, just as in the previous approach, it has to be trained with
results from Donaldson’s algorithm at larger values of k, which makes it questionable whether
any meaningful improvement over it would be achieved.

Predicting Balanced Metrics at a Fixed Degree

Instead of a model that extrapolates from some k to k + 1, one may try to find a model
that predicts the balanced metric as a function of the point z and potentially ψ for a fixed
k. If the model has an arbitrary form, one has to introduce multiple patches on the ambient
projective space over which the metric has a well defined numerical value. It is in general still
not guaranteed that the learned metric (which is now present in functional form in z) would be
Kähler. Since the local functions representing the metric are not globally defined, a different
model has to be trained for each patch, and on each overlap a compatibility condition has to be
satisfied (namely that after a coordinate transformation the predicted metrics are the same).
The first issue can be addressed by using a model that predicts the local Kähler potential,
but one still has to enforce boundary conditions. Both issues can be avoided by using the
approach of algebraic metrics. Since they are defined by a Kähler potential, the derived metrics
are guaranteed to be Kähler. As discussed in section 2.2.1, a given matrix h implicitly defines
Kähler potentials in each patch whose metrics are automatically compatible.

33

4. Machine Learning Approach to Calabi-Yau Metrics

Predicting The Optimal Algebraic Metric

So far, all formulated deep learning approaches are based on some kind of supervised learning
with the results from Donaldson’s algorithm. It will prove useful, however, to remember that the
problem is not fundamentally to approximate Donaldson’s algorithm, but rather to approximate
the Ricci-flat metric. Stepping away from Donaldson’s algorithm and searching for another loss
function makes the deep learning approach a lot more ambitious, as it no longer falls under
classic supervised learning. At the same time, however, it leads to a whole class of approaches
that can be used in place of Donaldson’s algorithm, and that hold the potential for many future
improvements.

As was already noted by Donaldson [7], the balanced metrics are not the best possible ap-
proximation given by the algebraic metrics to the Ricci-flat metric for a given k. Instead, as
demonstrated in [10], a better approach is to find the optimal algebraic metric defined as the
minimum of the energy functional introduced in equation (2.49). Possible loss functions based
on these functionals are explored in the next section. Since the algebraic metrics for a given k

can be interpreted as a truncated spectral expansion, in analogy to Fourier expansions one would
expect exponential convergence in k, much faster than what can be observed for Donaldson’s
balanced metrics.

We thus arrive at a very powerful formulation of the problem. Using the algebraic metrics as
basis for the architectures of models, the predicted metrics are guaranteed to be Kähler and
are automatically compatible between patches. Using loss functions inspired by Headrick and
Nassar they can be trained to approximate the Calabi-Yau metric in functional form to poten-
tially higher accuracy than Donaldson’s algorithm at a given degree k. Even more ambitiously,
the network may take ψ (or more moduli parameters) as input and thus simultaneously predict
Calabi-Yau metrics on a subset of moduli space.

Predicting the Metric Using an Arbitrary Parametrization

A possible disadvantage of using the spectral expansion of algebraic metrics as basis for machine
learning models is that they may not perform well on manifolds that are not geometrically
uniform, since large values of k are required to describe localized areas of high curvature [10].
It may still be possible to use a similar approach as outlined here using a different expansion of
the Kähler potential, since the energy functionals of [10] are still applicable.

One may generally use an arbitrary network predicting either the metric, or the Kähler po-
tential in functional form, depending on the point on the manifold, and optimize it using the
energy functionals. There are, however, two issues which make this approach potentially harder.
One has to manually enforce overlap conditions between the local networks, since neither the
potential nor the metric is globally well-defined. If the model predicts the metric directly, one
additionally has to worry about whether or not the outputs are actually Kähler (unless one
is not interested in the metric being Kähler). At the cost of additional complexity, it may be

34

4.3. Algebraic Networks

possible to address both issues by adding more terms to the loss.

4.3. Algebraic Networks

Motivated by the advantages of the algebraic ansatz for the Kähler potential, the following
outlines an approach to using its mathematical structure to define models for deep learning.

The algebraic potential can be split into two components, the Hermitian matrix h, and the basis
Sα(z) (which in the definition is given by the full monomial basis sα(z)). This leads to two
possible candidates of models, one kind that outputs a Hermitian matrix h, and another kind
that parametrizes polynomials defining Sα(z). We have seen that in general it is not possible
to reduce the number of elements in the polynomial basis. Models that output a polynomial
basis must therefore in general amount to a linear superposition of all elements of the monomial
basis. This can be absorbed, however, into a redefinition of the Hermitian matrix h. It thus
seems that we can limit ourselves to models that produce Hermitian matrices h. A further
investigation into models that compute superpositions may still be of interest in the future, as
it is possible that this approach leads to better convergence behavior and stability in gradient
descent.

The primary difference that is left between models (besides their specific architecture) is whether
or not they take moduli parameters as input or not. Since the structure of the algebraic metrics
already defines the dependence on the point z on the manifold, models that do not take moduli
parameters as input are just parametrizations of the h matrix. Models that do depend on
moduli can make use of the same basic parametrization, and can be seen as a generalization.

There are multiple objects of eventual interest, including the h matrices themselves, the metric,
and derived geometric objects. A unifying way to think of the different models collectively is
using the concept of model composition and transformation. If eventually we are interested
in geometric objects, any model defining a part of the algebraic potential can be composed
with a function that computes the Kähler potential or one of its derivatives. For example, a
model that outputs an h matrix can be thought of as part of a second model that additionally
takes the coordinate z and outputs the algebraic metric at the given points. Similarly, a model
that predicts a basis Sα(z) can be combined with a (potentially constant) model that outputs
a matrix h into a model that computes the the algebraic metric. The output of these final
composite models can be used to compute the accuracy measures. The models described in the
following replace parts of the algebraic Kähler potential, which thus inherit its properties. No
matter what the input and output of a specific model itself is, it can always be extended to
take a point on the manifold as input, and return the algebraic metric, the Kähler potential,
or the Ricci curvature as output. The key principle is that a model, or even multiple models,
composed with a function is again a model.

In order to understand how that works and how the models in the following are defined in

35

4. Machine Learning Approach to Calabi-Yau Metrics

practice (i.e. in the implementation), it is important to appreciate the versatility of automatic
differentiation that is provided by machine learning frameworks. Given any function, defined
programmatically by the composition of algebraic operations, automatic differentiation can
produced a new function that defines its derivative up to numerical accuracy. This derivative
function can in turn be composed into a new function which can, again, be automatically
differentiated, and so on. Given the setting of differentiable manifolds, it is clear that the ability
to differentiate algebraically defined functions is a very useful one. Indeed, one could define a
Kähler potential of any form and derive functions describing the metric, its determinant, and
the Ricci curvature purely using automatic differentiation. Since here we consider the special
form of algebraic potentials it is, however, slightly more efficient to implement parts of the
derivative from Kähler potential to metric and Ricci curvature by hand, as detailed in appendix
B (by using a manual implementation some repeated calculations can be avoided that automatic
differentiation cannot possibly recognize as such). A description of how complex functions can
be dealt with using automatic differentiation is given in section A.1 of the appendix. Automatic
differentiation is still used to compute the holomorphic derivative (locally in each patch) of the
sections sα(z), which would therefore allow them to be substituted by an arbitrary model.

The most significant and most powerful use of automatic differentiation, however, appears for
the training of the model. A loss function which takes the output of a model as input can,
by composition, instead be considered as a function that takes the parameters of the model as
input. Good parameters are then found by taking the gradient of the loss function with respect
to the model parameters and minimizing it by gradient descent. The fact that this gradient
can be automatically derived in a sufficiently efficient manner is the reason that the algebraic
metric can be extended to more complex machine learning models, such as ones that take as
an input a point in moduli space (in the case here the parameter ψ). It is also crucial that
derivatives can be chained, since the loss function itself contains derivatives. Lastly, a model
that takes moduli as input could in turn be differentiated with respect to moduli space, which
may be useful in a future, physically motivated exploration of moduli space.

4.3.1. Models Predicting the Hermitian Matrix h

The most basic model is one that outputs the Hermitian matrix h with respect to the fixed
monomial basis sα on X. We can start by fixing the moduli (i.e. ψ), leading to a classical
optimization problem. The model can be defined as input-free and just returns its parameters
as the Hermitian matrix. Because no complexity is added to the algebraic metric, and because
the energy functionals that describe the loss function is convex in the Kähler form (although not
necessarily with respect to the parameters), one can expect good convergence in this case. The
only thing left to the model architecture is how exactly the Hermitian matrix is parametrized.
Although formulated in a different way, the resulting problem is effectively the same as was
studied in [10]. This approach will serve as a starting point for understanding the use of
gradient descent methods in the present geometric setting.

36

4.4. Calabi-Yau Losses

Instead of solving the problem for a single point in moduli space, one can attempt to train a
model that returns h as a function of a point in moduli space. As opposed to the optimization
problem for a fixed point in moduli space, many possible network architectures may be used
to predict h given the values of the moduli. Finding a good network, which converges on some
selected subset of moduli space, is the central difficulty. The advantage of this approach is that
if a good architecture for the network is found and trained, approximations for the Calabi-Yau
metric are defined in functional form on a continuous range of moduli space. A schematic
overview of the setup can be found in Figure 4.1 below.

model

algebraic
potential

gαβ
Rαβ
η

ψ h

Xψ z
sample

Figure 4.1.: Schematic overview of how models predicting the Hermitian matrix h are used.
Since the Hermitian matrix parametrizes the algebraic metric, the output of the
model implicitly defines geometric objects for each point on the manifold.

4.4. Calabi-Yau Losses

The basic idea for constructing loss functions is to take an integral accuracy measure that defines
how close a given metric is to Ricci-flat, and approximate it using Monte Carlo integration on
a batch of points. The way a machine learning model is then trained is as follows:

1. If the model depends on moduli parameters, sample them randomly from some predefined
set.

2. Randomly generate a set of points {za}Ma=1 on the manifold X using the line-intersection
algorithm outlined in section 2.3.

3. Compute the loss function.

a) Evaluate the model at the sampled values (moduli, point z).

b) Construct the geometric objects required for the loss using the output of the model,
the point z, and the value of the moduli parameters.

c) Evaluate the Monte Carlo approximation defining the loss over the set of points
{za}Ma=1 and the geometric objects computed in the previous step.

4. Differentiate through step 3 with respect to the model parameters and update them via
gradient descent. This is done using automatic differentiation.

One could cycle through a set of precomputed points on the manifold, however the majority of

37

4. Machine Learning Approach to Calabi-Yau Metrics

the computational cost (by orders of magnitude) is needed to compute the geometric objects
based on the output from the model, and to compute the derivative with respect to the param-
eters. In the following, randomly sampled points are thus used in each step. It is also possible
to replace the sampling algorithm, even with one where the random measure is not explicitly
known (the Monte Carlo approximations are then with respect to some implicit random mea-
sure). In how far this impacts the convergence of gradient descent has to be analyzed in each
case.

The basis for a variety of loss functions that are minimized by the Ricci-flat Calabi-Yau metric
is given by the energy functionals of Headrick and Nassar as defined in equation (2.49). Using
as convex bounded function the square, the functional is

E =

∫
X
dVolCY (η − 1)2 . (4.3)

Recall from section 2.4 that η is normalized with respect to the volumes

η = η̂
VolK
VolCY

. (4.4)

Unfortunately the volume VolK depends on the Kähler potential which is determined by the
parameters of the model and thus changes in each step. A first loss can be derived using the
fact that the sought Kähler potential leads to an η̂ with vanishing variance:

E1 =
1

M

M∑
a=1

(
η̂(za)

〈η̂〉
− 1

)2

, (4.5)

where η̂ is normalized using the batch mean

〈η̂〉 = 1

M

M∑
a=1

η̂(za) . (4.6)

The loss E1 is clearly just the normalized variance of η̂. One can get a step closer to the energy
functional by weighing the deviation of the normalized measure with the Monte Carlo weights
w(z),

E2 =
1

M

M∑
a=1

w(za)

(
η̂(za)

〈η̂〉
− 1

)2

. (4.7)

Finally, a third loss is obtained by normalizing with the mean computed using the Monte Carlo
weights

〈η̂〉w =
1
M

∑M
a=1w(za) η̂(za)

1
M

∑M
a=1w(za)

≈ 1

VolCY

∫
X
dVolCY η̂ =

VolK
VolCY

(4.8)

38

4.4. Calabi-Yau Losses

which is just the Monte Carlo approximation of (4.3):

E3 =
1

M

M∑
a=1

w(za)

(
η̂(za)

〈η̂〉w
− 1

)2

=

〈(
η̂

〈η̂〉w
− 1

)2
〉
w

. (4.9)

The computational cost of adding Monte Carlo weights is negligible compared to the rest of the
loss function.

As can be seen in Figure 4.2, the above measures are all well correlated with the σ-measures
when computed using a batch of size M = 1000. The fact that E1 seems to show the same
correlation for all shown values of ψ should not be confused to mean it is superior, as the σ
measure uses an absolute value while the losses approximate an integral of the squared term
(4.3). For the models analyzed in section 4.5 all three losses were tested and no difference in
convergence could be ascertained. The η-based loss function used in the following is E3, since
it most closely resembles the well-defined energy functional. If not otherwise stated, the batch
size is M = 1000.

10 1

-measure

10 2

10 1

E 1
 lo

ss

10 1

-measure

10 3

10 2

10 1

E 2
 lo

ss

10 3 10 2 10 1

E3 loss

10 3

10 2

10 1
E 2

 lo
ss

= 0 = 10 = 100

Figure 4.2.: Scatter plot relating the losses E1 and E2 computed on 1 000 sample points to the
σ-measures computed on 10 000 sample points for balanced metrics at a range of
values for k and multiple values of ψ. The plot on the right shows the correlation
of the E2 and E3 loss. All losses are compatible with each other and with the
σ-accuracy.

The η loss functions defined above depend on the second derivative of the Kähler potential. This
was possible because of the simple form the Ricci curvature takes for Kähler metrics, which also
led to the energy functionals. More obvious than the σ-measure is the ||R||-measure, which is
the integral of the absolute of the Ricci scalar over the manifold. One can similarly define a loss

R0 =
1

M

M∑
a=1

w(za) |R(za)|2 . (4.10)

The main disadvantage in the Calabi-Yau case is that it is significantly more expensive to
evaluate than the losses before, since it depends on the fourth derivative of the Kähler potential.
However, it has the advantage that it can be extended to the case of constant Ricci scalar, which

39

4. Machine Learning Approach to Calabi-Yau Metrics

is not further investigated here,

Rc =
1

M

M∑
a=1

w(za) |R(za)− c|2 . (4.11)

4.5. Optimizing h for Fixed Moduli

The most basic application of gradient descent is to find a matrix h such that the corresponding
algebraic metric minimizes the losses defined in section 4.4 for a fixed value of ψ. This will serve
as the starting point for the deep learning approaches, from the perspective of which it can be
interpreted as an input-free model which parametrizes a Hermitian matrix.

Formulated as a classical minimization problem, one fixes a number of points on the manifold
and minimizes the loss E3 by changing the value of h. This has been done in [10] outside the
context of deep learning. There are two significant differences that make the gradient descent
approach different to merely replicating previous results. As opposed to [10], the symmetry of
the defining polynomial will not be manually exploited to reduce the monomial basis on X.
This means that the computational complexity will not increase significantly if more than one
complex structure modulus is introduced, and one may expect the results here to generalize.
Indeed, the implementation used for all following numerical studies does not require much mod-
ification in order to work for any defining homogeneous polynomial. Secondly, the formulation
in terms of gradient descent provides a starting point for many possible deep learning exten-
sions that go beyond the classical optimization problem. The advantage of gradient descent,
and the reason for its predominant use in deep learning, is its relative robustness with respect
to an expansion of the dimensionality of parameter space. After the following initial study,
summarized in section 4.5.4, the parameters defining the single matrix h will be replaced with
ones that parametrize a function mapping from moduli space to matrices h.

4.5.1. Parametrization

The analysis of Donaldson’s algorithm, specifically the patterns of the h matrices explored
in section 3.3, seem to suggest only a few entries are non-zero for good approximations to
the Calabi-Yau metric. Because of random fluctuations in the loss function (due to the random
sample of points over which they are computed), gradient descent sometimes has trouble setting
values to zero. One effectively needs a mechanism for networks to learn to “turn off” some of
the entries of h.

This can be done using the so-called sigmoid function (unfortunately colliding with the notation
for the σ-measure; it should be clear from context which one is meant), defined as

σ(x) =
ex

1 + ex
. (4.12)

40

4.5. Optimizing h for Fixed Moduli

If it is applied to a vector or matrix, it is calculated element-wise. Consider a value y which
may be zero. Replacing the value with y = σ(ỹ)ŷ using two auxiliary variables, it is easier to set
it to zero by gradient descent. Whereas for the raw parameter y gradient descent may oscillate
around zero, the re-parametrization can be arbitrarily suppressed by making ỹ smaller.

There are two simple ways to parametrize the Hermitian matrix h using real values. One
method, which is used for the fixed-moduli optimization in the next section, is just in terms of
the real and imaginary parts:

h =


hd
1 hr + ihi

. . .
hr − ihi hd

Nk

 . (4.13)

Here, hd represents the real entries on the diagonal, while hr and hi respectively represent the
real and imaginary entries on the upper and lower diagonals.

Since the h matrix represents a metric on the line bundle, it is a positive definite Hermitian
matrix. A second possibility is therefore to parametrize it using the Cholesky decomposition,
with the same base variables:

L =


hd
1 hr + ihi

. . .
0 hd

Nk

 , h = LL† , (4.14)

where now the diagonal entries are positive. This prevents negative or zero eigenvalues, which
may lead to non-definite metrics on the manifold X.

The parametrization used in the following fixed-ψ optimization combines the former complex
decomposition of h with sigmoid-suppression:

hd = σ(h̃d) ĥd, hr = σ(h̃r) ĥr, hi = σ(h̃i) ĥi . (4.15)

4.5.2. Minimizing the η-Variance

The value of the matrix h for multiple fixed points ψ and degrees 1 ≤ k < 7 were optimized
using gradient descent with the E3 loss, and again using the minimization algorithm BFGS-L
[28] (an abbreviation for limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm) which
uses an approximation to the inverse of the Hessian matrix. Figure 4.3 shows the σ-accuracies
achieved using either method after convergence was reached, and also the accuracies produced
by Donaldson’s algorithm at each k for ψ = 0. The first notable thing is that both methods
consistently produce metrics that are significantly closer to Ricci-flat than Donaldson’s algo-
rithm, in a similar amount of time at each value of k. Indeed, the accuracies achieved using
gradient descent for ψ = 0 for values k > 4, produced in minutes, are better than the one pro-

41

4. Machine Learning Approach to Calabi-Yau Metrics

duced by Donaldson’s algorithm for k = 12 in days (both implementations may be subject to
optimization so the comparison should be taken as relative order of magnitude). Furthermore,
the convergence in k is faster than that of Donaldson’s algorithm. The results achieved by both
optimization algorithm are similar to those produced in [10], where it was demonstrated that
the convergence is exponential up to even larger values of k except around the singular point
ψ = −5.4 The fact that gradient descent seems to converge to similarly small values as the
minimal values found by BFGS (in some cases even outperforming it) shows that it is a valid
method for minimizing the loss functions and approximating the Ricci-flat metric.

1 2 3 4 5 6
k

10 2

10 1

-m
ea

su
re

gradient descent
Donaldson, = 0

1 2 3 4 5 6
k

L-BFGS
Donaldson, = 0

= 0 = 5 = 5 = 15

Figure 4.3.: σ-accuracies achieved by algebraic metrics where the h matrix was found using
gradient descent in one case and the BFGS-L minimization algorithm in the other
to minimize the E3 loss, for multiple values of ψ and over a range of degrees k.
The shown σ-measures were computed using the same set of sample points for both
instances. Training using gradient descent was done using a batch size of 1 000,
while the BFGS-L minimization was done over a set of 10 000 points. Accuracies
achieved by Donaldson’s algorithm are shown as a reference.

Hyperparameter Tuning

Another reason for studying this basic application of gradient descent, besides as proof of
concept, is to find a good optimization algorithm and associated hyperparameters that can be
reused later, where no direct comparison of the convergence with other optimization algorithms
(from outside the field of deep learning) is available. The gradient descent optimization was tried
using all three η losses defined in section 4.4 and different variations of optimization algorithms.
All produced a similar convergence behavior and no significant difference in computational cost
could be observed. Since it is closest to the integral energy functional, the η based loss used
in the following is the E3 loss of equation (4.9). The best gradient descent algorithm found,
which is the one used to produce Figure 4.3, is Adam [27] with an initial learning rate of 0.01
that has to be decreased close to the point of convergence depending on the batch size. Batch
sizes between 500 and 10 000 all led to a similar accuracy in the limit, with 1 000 points being

4Figure C.1 in the appendix reproduces Figure 4.3 using the same accuracy measure as was used in [10].

42

4.5. Optimizing h for Fixed Moduli

a good compromise between speed of convergence and computational cost.

As mentioned before, new random points on the manifold are sampled for each step of gradient
descent. This does not lead to a significant increase in time, since it is fast in comparison to
computing the loss function and its derivative. It additionally allows for smaller batch sizes
to be used, since it avoids biasing the optimization with respect to the specific points used for
training. If a fixed set of 10 000 points are used for each step of gradient descent, the accuracy
as determined on the same set can be decreased to several orders of magnitude below the values
reported above. However, when measured on a different set of points the accuracy is significantly
worse. This is a well known observation in machine learning called over-fitting, with the former
value known as training loss and the latter as validation loss. In many applications limited data
makes a discrepancy between training and validation loss inevitable, however a nice property of
geometric applications, such as this one, is that the amount of independent training data (here
points on the manifold) can be freely generated as needed. The fact that using new samples
in each step prevents over-fitting is also an explanation for the slightly better values achieved
by gradient descent compared to BFGS, which uses a fixed set of points. The difference is
more notable as k gets larger since then the specific set of 10 000 points become increasingly
insufficient to determine all entries of h.

Comparison of Optimal and Balanced h Matrices

A direct comparison of the h matrices produced using the above optimization with the ones
produced by Donaldson’s algorithm previously shows a close similarity. In both cases, the ma-
trix is dominated by the diagonal entries, with a few off-diagonal terms of similar magnitude.
An example of this can be found in Figure C.5 in the appendix. In fact, reducing the optimal
matrices to the small-fluctuation cluster as found using Donaldson’s algorithm does not signif-
icantly change the σ-accuracies in any of the tested cases. This suggests that one could have
limited the parameters of the optimization scheme to the small-fluctuation entries, if they are
available. A comparison of the accuracies achieved by reducing the optimized h matrices to the
low-fluctuation entries can be found in Figure C.4 in the appendix.

4.5.3. Minimizing the Ricci-Scalar

The second type of loss introduced in section 4.4 is one based on minimizing the absolute value
of the Ricci scalar. Because it depends on the Kähler potential in its fourth derivative, it is
significantly more expensive to compute than the η based loss studied above. Where the h
matrix converged within minutes for the η based loss with k ≤ 6, the Ricci based loss converged
within tens of minutes.

Figure 4.4 shows the σ accuracies achieved by a similar gradient descent setup as in the previous
section, using instead the Ricci scalar loss defined in equation (4.10). Convergence is similar to
the one achieved using the η loss. This shows that gradient descent is in principle also possible

43

4. Machine Learning Approach to Calabi-Yau Metrics

1 2 3 4 5 6
k

10 2

10 1

-m
ea

su
re

Donaldson, = 0

= 0 = 5 = 5 = 15

Figure 4.4.: σ-accuracies achieved by an optimization of the h matrix using gradient descent
with respect to the Ricci loss of equation (4.10).

for more complicated loss functions, depending on higher derivatives of the Kähler potential.
Due to its higher complexity, the Ricci loss will, however, not be used for the more advanced
models studied in the following.

4.5.4. Summary

The results outlined here have shown that a deep learning approach using gradient descent is
in principle possible. Convergence for larger values of k than shown Figure 4.3 and Figure 4.4
requires a more careful tuning of the learning rate, as well as a larger batch size to achieve
convergence. A study of that, and an optimization of the hyperparameters to achieve conver-
gence most quickly, requires a further scan of the hyperparameters and possibly exploring more
variations of gradient descent and training schemes. Optimization could also be improved if the
polynomial basis is reduced manually given each defining equation. The goal here, although an
interesting one, is not to find an algorithm that produces the best possible approximation to
the Ricci-flat metric for a given point in moduli space as fast as possible. Rather, the goal is a
broad exploration of the application of deep learning models to the problem. In the following
the models will be maps from moduli space to algebraic metrics, which is fundamentally a dif-
ferent approach. If one is interested in multiple points of moduli space, simultaneously training
a model over a range of moduli space may prove advantageous with respect to computation
time. More than that, the map from moduli space to Kähler potential will be available as a
continuous and differentiable function which may outperform simple interpolation.

44

4.6. Moduli Dependent Learning of the Hermitian Matrix h

4.6. Moduli Dependent Learning of the Hermitian Matrix h

The full potential of the machine learning perspective on finding the Calabi-Yau metric only
becomes clear once moduli-dependent networks are considered. We will use the single parameter
ψ of equation (2.22) as an example for moduli parameters, and the implementation will not have
to be modified significantly for a future study that expands the number of complex structure
parameters considered. As a first proof of concept, section 4.6.2 investigates how networks can
be trained to reproduce h matrices previously computed using Donaldson’s algorithm at a fixed
degree k. This effectively produces an interpolation between the ψ values of the training set,
and serves as a first test for networks that map from ψ to h. As a compromise between accuracy
and speed of running the optimizations, the degree will be fixed to k = 6 in the following.

As a next step, the networks trained to approximate the balanced metrics are further optimized
with respect to the loss functions introduced above, which is outlined in the first part of section
4.6.3. We will see that this leads to better accuracies than Donaldson’s algorithm in the range
of ψ it is trained on. Computing Donaldson’s algorithm for many values of ψ needed to train
the network is expensive. In the final step of this initial analysis, detailed in the second part of
section 4.6.3, networks are trained directly using the loss functions without previously learning
the balanced metrics. Once again, accuracies below Donaldson’s algorithm are reached on the
range of training values, in a similar time as a single computation of Donaldson’s algorithm.
This amounts to a significant advancement, as approximations are simultaneously found for a
range of the moduli space, to a better accuracy than previous algorithms.

In the remaining subsection 4.6.4, the optimization scheme using just the loss functions is repro-
duced with different network architectures. The following analysis presents a first exploration
into moduli-dependent networks to approximate Calabi-Yau metrics. The final conclusion in
section 5 reviews what the implications of the following results are, and what they mean for
possible future improvements.

4.6.1. Architecture of Dense Layers

The main question for networks of the kind we are interested in now is how to map from ψ to
the matrix h. One of the most common architectures of networks in machine learning is a linear
superposition of a set of input variables to a set of output variables by matrix multiplication.
This is typically followed by an element-wise non-linear function, called activation function,
such as the sigmoid function introduced before. Since multiple of these transformations can be
chained, and each input value is connected through the matrix multiplication to each output
value, they are called dense layers. In the limit of arbitrarily large intermediate output spaces,
one can show that any function can be approximated in this manner. A schematic overview of
model architecture based on dense layers outlined below can be found in Figure 4.5.

The input to the network in our case is a single complex number ψ. Typically, deep learning

45

4. Machine Learning Approach to Calabi-Yau Metrics

ψ

ld	dense	layers

2Nk ... h

np	powers:
Re{ψp},	Im{ψp}
or		|ψ|p,	arg(ψ)

Cholesky	or
Re	+	Im	parts

Figure 4.5.: Schematic overview of the dense layer architecture which maps from the single
moduli parameter ψ to the Hermitian matrix h.

models take multiple values as input. As a first step of the network, on may thus try to generate
multiple input values by taking powers of ψ5,

Pi = ψpi , (4.16)

where pi is some vector of real parameters, which may be fixed or trainable. The number of
powers np, i = 1, . . . , np, can be adjusted. The dense layer architecture is designed for real
parameters, which means the values of the first layer will be split into real and imaginary parts

R =
[
Re{Pi}, Im{Pi}

]
, (4.17)

where the notation in brackets represents concatenation.

Alternatively to taking powers of ψ directly, one may first separate it into absolute value and
angle:

R =
[
|ψ|pi , argψ

]
. (4.18)

Let the number of values in R be denoted as nR. One can now chain an arbitrary number of
hidden dense layers (so called, because their outputs are intermediate), represented by matrices
M t ∈ Mat(R, nt−1, nt) with t = 1, . . . , ld. ld is the number of these dense layers, and n0 = nR.
In general all layers may have different sizes. Motivated by the sparseness of h matrices found
in the analysis of Donaldson’s algorithm, and to reduce the number of hyperparameters, they
will now be fixed to nt = 2Nk. The heuristic for this choice is that Nk is the number of diagonal
entries of h, and since most off-diagonal entries effectively vanished, there are likely much fewer

5In practice the networks are built to compute the output for multiple inputs, called a batch, simultaneously.
This additional batch index is suppressed for the sake of simplicity.

46

4.6. Moduli Dependent Learning of the Hermitian Matrix h

independent values than the maximal N2
k real parameters6. If each dense layer was just a linear

transformation, they could be collapsed into a single linear transformation. They are therefore
followed by an element-wise non-linear activation function, in our case the sigmoid function.
Concretely, the layers are computed as follows:

Dt
i = σ

∑
j

M t
ij D

t−1
j +Bt

i

 . (4.19)

The real vector Bt
i is called bias, and the index t is the number of the layer ranging from t = 1

to t = ld. The initial input is given by the real array of numbers constructed in the beginning,
D0 = R.

So far, the layers of the model produce an array of nld = 2Nk real numbers. In order construct
a Hermitian matrix h as output, the last dense layer Dld is followed by another dense layer
with N2

k number of outputs. This is exactly the number of real parameters of the h matrix,
which means that either of the parametrization schemes introduced in section 4.5.1 can be used
to produce the final Hermitian matrix. The magnitude of h matrix entries is not constrained,
which means the final dense layer that produces the real parameters of h is not followed by a
sigmoid activation function (whose output would be in [0, 1]).

The set of hyperparameters that have to be chosen are the number np of initial powers of ψ,
the number of dense layers ld, whether the angle and absolute values of ψ are separated, if
the powers are fixed or trainable, and how the final real outputs are used to reconstruct the h
matrix.

To a person unfamiliar with machine learning, this construction of functions, meant to bet fitted
to predict h(ψ), may seem arbitrary. In fact it is arbitrary, in the sense that it differs from
a classical statistical approach where the model is carefully chosen such that its parameters
have a concrete interpretation. The premise of machine learning is that one is less interested
in the precise form of the sought function, than in the ability to predict, approximately, its
value. The basic problem of finding a good network architecture is therefore to expand the
range functions included in the parametrization enough such that good approximations are
contained, but keep it as simple as possible so gradient descent converges. Combinations of
linear and element-wise non-linear transformations have proven to be capable of representing
a wide range of unknown target functions, when optimized using gradient descent. This is the
motivation for using the above construction as a first approach. Further, more mathematically
motivated network architectures will be presented in later sections.

4.6.2. Supervised Learning of Balanced Metrics

For a first study of the feasibility of predicting h depending on the value of ψ, the aim in this
section is to learn the h matrices produced by Donaldson’s algorithm. This kind of application

6The number of real parameters of a Hermitian N ×N matrix is N2.

47

4. Machine Learning Approach to Calabi-Yau Metrics

is called supervised learning, referring to the fact that the network is trained to reproduce a
known set of inputs ψ and outputs h produced by Donaldson’s algorithm.

To produce the training data, Donaldson’s algorithm was run for 20 equally spaced values in
0 < |ψ| ≤ 10, and in each case 4 random complex angles, as well as for ψ = 0. If only
the h matrix of the last iteration is taken, one gets 81 examples to train with. This number
can be increased by using the h matrices of the last few iterations, after the T -operator has
already converged. Since the h matrices mostly vary in the zero-value entries between iterations
(see section 3.3), no systematic difference would be expected. However, by computing the loss
function over a subset of all target h matrices simultaneously7, the two choices of training values
may lead to different stochasticity in gradient descent.

Loss Between h Matrices

We want to train a model to reproduce some known set of h matrices over a range of values of
ψ. A commonly used loss for this kind of situation is the mean-squared error

Lnaive(h, h
target) =

1

N2
k

∑
αβ̄

∣∣∣hαβ̄ − htarget
αβ̄

∣∣∣2 . (4.20)

The potential problem of this loss is that it restricts the value of the learned matrices h more
than necessary. As was discussed in section 3.3, the final metric on X is invariant under re-
scalings of h, h ∼ λh. Restricting the networks to reproduce the exact numerical value of htarget

given by Donaldson’s algorithm may therefore make it harder for the network to converge, as
it additionally has to learn the arbitrary scaling. The following loss function takes the scaling
ambiguity into account, letting the model reach minimal loss by attaining the value of any h

matrix in the equivalence class:

Linv(h, h
target) =

1

N2
k

∑
αβ̄

∣∣∣∣∣∣ hαβ̄〈|h|〉
−

htarget
αβ̄

〈|htarget|〉

∣∣∣∣∣∣
2

, (4.21)

where

〈|h|〉 = 1

N2
k

∑
αβ̄

∣∣∣hαβ̄∣∣∣ . (4.22)

Numerical Results

The model hyperparameters with the largest number of possible values are the number of
dense layers ld and the number of initial powers np. To make the possible model space to be
explored manageable, in this section we only consider models which take powers of ψ directly
(no decomposition into angle and magnitude), trainable powers, and using the composition of

7In the machine learning literature this is called stochastic gradient descent with mini-batches.

48

4.6. Moduli Dependent Learning of the Hermitian Matrix h

h via real and imaginary parts. The choices left are then which of the above losses are used in
training, whether the last 5 iterations (after convergence was reached) of Donaldson’s algorithm
are used for training or just the last, and the hyperparameters np and ld. The results of a scan
over both possible choices of training data, np = 2, 5, 10, Nk, and ld = 0, 1, 2 can be found in
Figure 4.6 and Figure 4.7 using the naive and the invariant loss for training, respectively. They
show in both cases the invariant loss that is reached over the training data (with respect to
only the last h matrix produced by Donaldson’s algorithm in each case). The reason is that
we are in the end not interested in the scaling of h, although using it for the comparison does
potentially favor the models for which it was used as loss during training.

The figures indicate that adding more powers that are initially taken of ψ does not lead to
better results, suggesting that this first step may even be superfluous. Making the network
deeper, that is adding more layers and increasing ld, does tend increase the ability to learn the
balanced metrics.

It is always better to compare the performance of models using an independent loss over values
not seen during training, rather than using the loss over the training data itself. The reason to
compute the loss over unseen inputs, as was mentioned in section 4.5.2, is that the network may
over-fit and perform well on data used in training, while generalizing poorly to other values.
Taking a step back, we are ultimately not interested in numerically approximating the outputs
of Donaldson’s algorithm as closely as possible. Rather, the aim is to approximate the Calabi-
Yau metrics. Figure 4.8 and Figure 4.9 show the σ-accuracies achieved by the trained models
(trained with the naive and invariant loss, respectively) over a range of real values of ψ. This
comparison addresses both of the above issues. The real values of ψ are not the ones seen during
training, and the σ-measure favors neither of the losses used during training. Furthermore, by
comparing larger values of ψ than used for training, one can compare how well the models
extrapolate.

The comparison of the different architectures in Figure 4.8 and Figure 4.9 confirms that the
invariant loss in general leads to better results. It also strengthens both of the previous observa-
tions for the network architectures, suggesting that more hidden dense layers and fewer initial
powers lead to better results. Interestingly, while the comparison of the losses on the training
data indicated that training with a single h matrix for each value of ψ leads to better results,
the overall best σ-measures were obtained by training with the last 5 matrices.

Summary

The most important conclusion that can be drawn from the above results is that it is in principle
possible to find moduli-dependent networks, and train them using gradient descent to approx-
imate Calabi-Yau metrics. The focus in the following is to train models without previously
computing Donaldson’s algorithm. Since the optimal and balanced h matrices are relatively
similar, as noted in section 4.5.2, insights into which models perform well to predict Donald-
son’s balanced metrics are likely to generalize. The above results suggest that deep networks of

49

4. Machine Learning Approach to Calabi-Yau Metrics

multiple dense layers with few, or maybe no, initial powers are a good approach.

Even without moving on to minimizing the accuracy measures, one may want to use this ap-
proach of machine learning Donaldson’s balanced metrics to extrapolate and interpolate between
available data. The performance for interpolation within the range of ψ of the training data
already looks promising. Looking at the results for the architectures that have achieved the
best accuracies in Figure 4.9, however, it seems that they show no better extrapolation than
maintaining the last value of h matrix at ψ = 10 for larger values ψ > 10. One may achieve
better results by modifying the network architecture, possibly with theoretical insights into how
the ψ dependence may look.

4.6.3. Training with η-Loss

Having established some preliminary results for moduli dependent networks approximating bal-
anced metrics, the remainder of this section will present the final and most powerful application
of machine learning. Instead of building on top of Donaldson’s algorithm, the networks will be
directly trained using the η-based loss defined in equation (4.9). The results will show that this
approach can replace Donaldson’s algorithm, as it produces better accuracies during similar
amounts of time, simultaneously over a range of ψ values. Some technical details, specific to
training ψ-dependent networks is discussed in section B.5 of the appendix.

Starting with a Pre-Trained Network

Before making the optimization scheme wholly independent of Donaldson’s algorithm, we can
take the network trained using data from Donaldson’s algorithm, and continue training with
respect to the η-loss of equation (4.9).

Figure 4.10 shows the σ-accuracy achieved by a network with ld = 2 and np = 2, that was
previously trained using the balanced metrics. This is the architecture that performed best in
approximating the balanced metrics. One can see a visible improvement in the σ accuracies after
training with the η-loss, compared to the previous accuracy when the network was only trained
with data from Donaldson’s algorithm. The figure shows the accuracy achieved by Donaldson’s
algorithm at ψ = 0 and k = 12 as a reference, which is notably the same order of magnitude
as the accuracies achieved by the network here for a much smaller degree k = 6. Assuming the
σ-measures are in fact a good measure for Ricci-flatness, this means that the machine learning
approach can simultaneously predict very good approximations over a range of moduli space, in
significantly less time than Donaldson’s algorithm. The optimization with respect to the η-loss
at k = 6 took only a time on the order of minutes, whereas Donaldson’s algorithm at k = 12

takes a time on the order of days.

Before claiming that this machine learning approach can in fact produce better results than
Donaldson’s algorithm in smaller time, we have to confirm the initial training with balanced

50

4.6. Moduli Dependent Learning of the Hermitian Matrix h

100

102

np = 2, ld = 0 np = 5, ld = 0 np = 10, ld = 0 np = 205, ld = 0

100

102

np = 2, ld = 1 np = 5, ld = 1 np = 10, ld = 1 np = 205, ld = 1

2.5 5.0 7.5 10.0

100

102

np = 2, ld = 2

2.5 5.0 7.5 10.0

np = 5, ld = 2

2.5 5.0 7.5 10.0

np = 10, ld = 2

2.5 5.0 7.5 10.0

np = 205, ld = 2

in
va

ria
nt

 lo
ss

| |

last h matrix last 5 h matrices

Figure 4.6.: Invariant loss of equation (4.21) computed over all last h-matrices produced by
Donaldson’s algorithm for different networks as specified in section 4.6.2, trained
using the naive loss of equation (4.20). The loss shown is with respect to the same
target values of h as were used for training, so one cannot see whether over-fitting
has occurred. See Figure 4.8 for a validation loss.

100

102

np = 2, ld = 0 np = 5, ld = 0 np = 10, ld = 0 np = 205, ld = 0

100

102

np = 2, ld = 1 np = 5, ld = 1 np = 10, ld = 1 np = 205, ld = 1

2.5 5.0 7.5 10.0

100

102

np = 2, ld = 2

2.5 5.0 7.5 10.0

np = 5, ld = 2

2.5 5.0 7.5 10.0

np = 10, ld = 2

2.5 5.0 7.5 10.0

np = 205, ld = 2

in
va

ria
nt

 lo
ss

| |

last h matrix last 5 h matrices

Figure 4.7.: Same as Figure 4.6, except the models were trained using the invariant loss of
equation (4.21). For a validation loss, see Figure 4.9.

51

4. Machine Learning Approach to Calabi-Yau Metrics

100

102
np = 2, ld = 0 np = 5, ld = 0 np = 10, ld = 0 np = 205, ld = 0

100

102
np = 2, ld = 1 np = 5, ld = 1 np = 10, ld = 1 np = 205, ld = 1

0 5 10 15 20

100

102
np = 2, ld = 2

0 5 10 15 20

np = 5, ld = 2

0 5 10 15 20

np = 10, ld = 2

0 5 10 15 20

np = 205, ld = 2

in
va

ria
nt

 lo
ss

Net (one h) Net (all h) hFS h(= 0) h(= 10) balanced h

Figure 4.8.: σ-accuracy over a range of real values of ψ not seen during training for the same
models as in Figure 4.6. The figure therefore shows a validation loss, and how well
the models extrapolate. Additionally, the figure shows accuracies attained by using
the h matrices of Donaldson’s algorithm for ψ = 0 and ψ = 10 over the whole range,
as well as for the respective values, and the Fubini-Study metric. This serves as a
reference, to assess the quality of the model accuracies.

10 1

100

101

np = 2, ld = 0 np = 5, ld = 0 np = 10, ld = 0 np = 205, ld = 0

10 1

100

101

np = 2, ld = 1 np = 5, ld = 1 np = 10, ld = 1 np = 205, ld = 1

0 5 10 15 20

10 1

100

101

np = 2, ld = 2

0 5 10 15 20

np = 5, ld = 2

0 5 10 15 20

np = 10, ld = 2

0 5 10 15 20

np = 205, ld = 2

in
va

ria
nt

 lo
ss

Net (one h) Net (all h) hFS h(= 0) h(= 10) balanced h

Figure 4.9.: Same as Figure 4.8, except the models were trained using the invariant loss. Close
to ideal performance can be seen in the case np = 2, ld = 2, trained using all last h
matrices.

52

4.6. Moduli Dependent Learning of the Hermitian Matrix h

metrics is unnecessary. This would make it an independent approximation scheme. The next
section will explore other variants of the dense layer architecture introduced above, and skip
the initial training with data from Donaldson’s algorithm.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
10 2

10 1

-m
ea

su
re

Donaldson k = 12, = 0

best before optimization
best after optimization

Donaldson k = 6
Donaldson k = 6, = 0

Figure 4.10.: σ-accuracies at k = 6 achieved by the dense network with ld = 2, np = 2 before and
after optimization using the η-loss. The network was initially trained using the
last 5 iterations of Donaldson’s algorithm. The shaded area indicates the range of
|ψ| that was not used during training, and thus shows the extrapolation behavior
of the networks. For reference, the σ accuracy achieved by Donaldson’s algorithm
for each real value of ψ is shown, as well as the accuracy obtained by using h
computed at ψ = 0 for all values of ψ. The horizontal line shows the accuracy
achieved by Donaldson’s algorithm at k = 12 and ψ = 0.

Starting With Untrained Networks

A scan over the various network architectures outlined in section 4.6.1 has been conducted,
where the networks were directly trained using the η-loss of equation (4.9) and |ψ| ≤ 10. A
comprehensive overview of the results can be found in Figure C.6 in the appendix. Figure 4.11
shows the σ-accuracies of the best-performing networks, in comparison with the network of the
previous section, which was first trained with the balanced metrics. The figure shows that it
is not in principle necessary to pre-train the networks, as the networks directly trained with
the loss which measures how close the approximation is to Ricci-flat produce equally good, and
potentially better accuracies.

All networks were trained until gradient descent has converged (the loss no longer decreased
over several iterations). The comprehensive scan over the variations of the networks shows that,
as opposed to the supervised training with balanced metrics, increasing the number of layers
did not improve the performance. This may be a problem that can be addressed by changing

53

4. Machine Learning Approach to Calabi-Yau Metrics

the training scheme, for example by increasing the sample size in each batch or changing the
initialization of the network8. There is no obvious choice for the best network architecture, with
several combinations leading to similarly good results. Overall, the Cholesky decomposition
seems like a better choice than decomposition into real and imaginary parts.

It is notable that one network using a separation into the absolute value and angle of ψ, without
a following application of powers seems to show good extrapolation for values |ψ| > 10 outside
the training range. None of the networks reach an accuracy quite as good as the ones obtained
for the optimization procedure of section 4.5 at a fixed value of ψ, which is to be expected since
the fact that the network is moduli dependent introduces additional complexity (and depending
on the network a constraint on possible outputs). However, this does indicate that it may be
possible to improve the convergence of the networks further in the future.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
| |

10 2

10 1

-m
ea

su
re Donaldson k = 6

pre-trained (, np = 2, ld = 2, Re+Im)
, np = 4 fixed powers, ld = 1, Re+Im

| |, arg(), no powers, ld = 1, Cholesky
, no powers, ld = 1, Cholesky

Figure 4.11.: σ-accuracies at k = 6 achieved by the best network architecture of the kind intro-
duced in section 4.6.1 after optimization using the η-loss for |ψ| ≤ 10. In the case
where the powers are fixed and not parameters changed during gradient descent,
they were chosen to be 1/2, 1, 2, and 3. The accuracies shown are the mean over
four equally spaced complex angles at each absolute value of ψ. For reference, the
σ accuracy achieved by Donaldson’s algorithm for each real value of ψ is shown,
as well as the results for the network that was previously trained using balanced
metrics.

4.6.4. Other Network Architectures

So far, only a single basic kind of network (although multiple variants of it) has been explored
to produce h matrices depending on the parameter ψ. While the design using a stack of dense
layers has proven to be versatile, it has the disadvantage that one cannot immediately extract an
analytical expression that represents the network. To obtain an expression that can be worked

8It may also be possible to tune the learning rate, however a range of learning rates was already tested in
producing the present results.

54

4.6. Moduli Dependent Learning of the Hermitian Matrix h

with by hand (instead of the numerical representation given by the network), one would have
to fit the outputs of the network using appropriately chosen functions.

In the following sections, two more approaches to the network architecture are presented, which
can be directly translated into an analytical expression. This is motivated by an intuition
that algebraic expression may exist which give good approximations to the moduli dependence.
If this is true and the right parametrization is found, it may lead to a significantly better
extrapolation than was found for the networks using dense layers. The idea of the first kind of
network, referred to as “power networks” in the following, is to combine iterations of summation
and raising to a power. Using two layers, the network can for example learn to compute an
expression like

√
1 + x2. In the first layer, this network would compute the powers 0 and 2

of the input variable x and superpose them to 1 + x2. The next layer takes again a power,
which may be 1/2, leading to the final expression. It is here crucial that the input variables
are complex, which means that any real power is defined, including for negative values. The
powers have to be real because gradient descent requires continuous parameters. Depending on
the number of layers of this kind of network, arbitrarily complex nestings of sums and powers
can be represented.

Another approach to constructing networks that more closely resemble analytical expressions
is using the architecture introduced in [29] as NALU, which stands for “neural arithmetic logic
unit”, and is roughly a trainable superposition of adding and multiplying inputs. The aim of
this architecture is to make it easier for a network to learn the basic algebraic operations of
addition, subtraction, multiplication, and division. This is achieved by biasing the powers and
summation coefficients to −1, 0, 1. By chaining multiple layers of NALU, once again the network
can learn to represent expressions such as (x+ xy)2. The maximal power is now dependent on
the number of layers used, where this expression requires at least three layers: one to produce x
and xy from the inputs x and y, one to combine it into x+ xy, and a final one multiplying this
with itself. For the last step the second layer has to produce x + xy twice, which shows that
the final power is not solely determined by the number of layers but also by the intermediate
dimension of outputs.

Below, the mathematical definition of power networks is outlined, followed by a summary of the
NALU layer and the architecture of a network based thereon. Finally, the accuracy achieved
by variations of both architecture when trained using the η-based loss is shown. Note that it
has proved advantages to carefully choose the initialization of both networks, as explained in
appendix B.5.

Power Networks

The following outline of the architecture of power networks, based on iterations of dense linear
combinations and raising to a power, is schematically summarized in Figure 4.12. As the first

55

4. Machine Learning Approach to Calabi-Yau Metrics

step, once again powers of the variable ψ are taken,

P 0
i = ψp

0
i , (4.23)

where the number of powers is denoted as np, and each is a real, trainable parameter.

Afterwards, the following two steps are repeated l times. First, take a linear superposition of
the previous outputs (the initial one being P 0

i),

Dk
i = σ

∑
j

Mk
ijP

k−1
j +Bk

i

 , (4.24)

which is now a dense layer with complex parameters Mk
ij , B

k
i ∈ C. The number of values in the

vector P ki is chosen to be 2Nk, as in section 4.6.1. Next, each output value is raised to a real
power pki ,

P ki =
(
Dk
i

)pki
. (4.25)

The real values of the diagonal are computed using

hdiag
i =

∑
j

∣∣∣Mdiag
ij P lj +Bdiag

i

∣∣∣2 . (4.26)

The complex values for the upper triangle are computed using another dense layer

hupper
i =

∑
j

Mupper
ij P lj +Bupper

i . (4.27)

Finally, the Hermitian matrix is reconstructed using the Cholesky decomposition introduced in
section 4.5.1.

ψ

linear

raise	to	power

repeat	l	times

... h

linear	to	upper
triangle	&	diagonal

Choleskynp	powers

2Nk

Figure 4.12.: Schematic overview of the power network architecture, based on iterations of linear
combination and rasing to a power.

56

4.6. Moduli Dependent Learning of the Hermitian Matrix h

The NALU Layer

The idea behind NALU is that traditional network architecture, such as the dense layers with
sigmoid activation, do not generalize well for functions that have an unknown but simple analytic
expression. A slightly modified version of the NALU layer will now be described.

The NALU layer is composed of two parts, one for addition/subtraction and one for multipli-
cation/division. The addition and subtraction part would ideally amount to a binary choice of
exclusion and inclusion in a sum (and the respective sign). However, a binary choice between
including or excluding an input value cannot be learned using gradient descent which requires
continuous parameters. Instead, the network will be formulated in a way that biases the factors
to values close to 1,−1, or 0. Given the input xj , the first part of NALU is computed as

Ai =
∑
j

Wijxj , (4.28)

where Wij is a real value parametrized as

Wij = σ(W̃ij) tanh
(
Ŵij

)
. (4.29)

This parametrization achieves the bias in favor of values 1,−1, and 0. In the two limits of real
space (±∞), the sigmoid function assumes values 0 and 1 respectively, while tanh becomes −1

and +1.

The second part of the layer is multiplication. Again, gradient descent requires the parametriza-
tion to be continuous. We will therefore need powers whose values are biased to 1,−1, and 0.
This can be done using the same parameters Wij as

Mi = exp

∑
j

Wij log
(
xj
) . (4.30)

In the original paper, the input variable is real which means the logarithm has to be restricted
to the absolute value of the inputs. For the application here, the inputs will be complex, which
means no such restrictions needs to be made9.

The two parts are finally combined to a single output by introducing a parameter Ci that
“chooses” between the additive and multiplicative operations:

Ni = Ai σ(Ci) +Mi

(
1− σ(Ci)

)
. (4.31)

In summary, the NALU layer chooses between a learned expression of addition/subtraction or
multiplication/division of the input variables for each output dimension independently. Because
this choice again has to be parametrized by a continuous parameter, the output is actually a

9Infinite values can be represented as flaot values and reproduce the desired behavior, so that in fact numerically
exp(log 0) = exp(−∞) = 0.

57

4. Machine Learning Approach to Calabi-Yau Metrics

superposition of the additive and multiplicative operation, although the sigmoid activation
function is chosen to bias towards a binary choice.

NALU Networks

If the input dimension to the NALU layer is one, the outputs correspond to superpositions of ψ
and powers of it. This means NALU can be taken as the first layer, and it is not necessary to
manually construct a multi-variate input. The NALU networks analyzed in the following are l
layers of repeated applications of the NALU layer, each with a dimension of 2Nk.

The construction of the Hermitian matrix h from the complex outputs of the last layer is the
same as was introduced for the power networks above.

Numerical Results

Figure 4.13 shows an overview of σ-accuracies achieved after reaching convergence in gradient
descent with the η-loss of equation (4.9). As for the previous analysis, the degree is fixed
to k = 6. It shows that both architecture seem to be feasible, in principle, reaching similar
accuracies as Donaldson’s algorithm at the same degree within the training range of ψ. The
results are, however, not quite as good as the ones achieved using the dense layer architecture.
Overall, the results seem to suggest that shallower networks (fewer number of layers l) do better.
This may be due to a general difficulty in gradient descent that is present for networks that
include taking powers10.

In neither case do the networks display a good extrapolation behavior for values of |ψ| > 10. This
means that while the two alternative approaches introduced here seem like possible directions of
further exploration, they do not presently capture the parameter dependence of the h matrices
better than the dense layers.

10The difficulty can be illustrated by considering a loss |xp − x4|2. In the parameter p, xp traces a spiral
in the complex plain around the origin, which means that starting from p = 1 the required continuous
transformation of the parameter p includes sections in which the network value xp moves farther away from
the target. Depending on the loss function and its stochasticity, gradient descent may get stuck at local
minima at even values of p.

58

4.6. Moduli Dependent Learning of the Hermitian Matrix h

10 1

NALU Powers, np = 1

0 5 10 15 20

10 1

Powers, np = 2

0 5 10 15 20

Powers, np = 5-m
ea

su
re

| |

l = 1 l = 2 l = 4

Figure 4.13.: Comparison of σ-accuracies reached by models at k = 6 discussed in sections 4.6.4
and 4.6.4, computed over 4 angles for each value of |ψ|. The networks were trained
using the η-loss for |ψ| < 10. The gray dashed line are the σ-accuracies achieved
by Donaldson’s algorithm at k = 6.

59

5. Conclusion

In the above analysis we have seen that deep learning constitutes a viable approach that can
replace Donaldson’s algorithm, as measured by the σ-accuracies. This can be seen in Figure 5.1,
which gives an overview of the best accuracies achieved by models of the different kinds.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
| |

10 2

10 1

-m
ea

su
re

Donaldson k = 6

dense, powers of | |, arg()
dense, powers of
NALU

Figure 5.1.: Overview of the σ-accuracies achieved by the best network architectures devised
here. The measures are the average over four angles for each value of |ψ|, and the
gray shaded area indicates where the extrapolation of the networks can be seen.
Both dense layer architectures use ld = 1 layers. For the dense architecture using
powers of ψ directly, the powers were fixed to 1/2, 1, 2, 3, and the real and imaginary
decomposition was used to construct h. The other dense architecture using angle
and norm of ψ instead made use of the Cholesky decomposition, and the initial
taking of powers is skipped. The last architecture is composed of a single NALU
layer. In gray, the accuracy achieved by Donaldson’s algorithm for each real value
of ψ is shown. Both the models and Donaldson’s algorithm are computed at a
degree k = 6.

After an initial study of Donaldson’s algorithm whose accuracies provide a benchmark for the
deep learning approach, several deep learning models mapping from moduli space (here limited
to the single parameter ψ) to the Hermitian matrix h, which defines an algebraic metric, have
been explored. The dense layer architecture studied in section 4.6.1 has been seen to be able to
simultaneously approximate the Calabi-Yau metric on a range of moduli space to a significantly
better accuracy than Donaldson’s algorithm. This can be achieved in a similar amount of time as

60

it takes to compute Donaldson’s algorithm for a single point in moduli space at the same degree
k. It thus seems like no overstatement to say that the machine learning approach developed here
presents a full replacement of Donaldson’s algorithm. In addition to that, the approximations
are present in functional form, which in future studies would allow one to explore the moduli
space of Calabi-Yau manifolds without having to run Donaldson’s algorithm multiple times.

The present investigation of the deep learning approach was specialized to k = 6 and a subset
of the quintics, defined as varieties parametrized by a single complex number ψ. A future study
may build on these results to extend to more than one complex structure parameter. Large
parts of the implementation may be reused for this, with only some small adjustments having to
be made to allow multiple parameters for the variety. The principle components that define the
optimization scheme are the network architecture and the specific gradient descent optimization
algorithm. Both, as is often the case in machine learning, have a large range of possible solutions,
only a small number of which were explored in the present analysis. In summary, the results
shown here should thus be seen as laying the groundwork for many possible improved algorithms
that can approximate the Calabi-Yau metrics.

The cost of producing samples on the manifold was not found to be the computational bottleneck
in the deep learning approach. It may still be advantageous to investigate more advanced
methods of sampling points, because they change the loss function and therefore the convergence
behavior of gradient descent. For the present analysis, the line sampling algorithm introduced
in section 2.3 was used, including a weighing of the loss using the Monte Carlo weights as
shown in section 4.4. It may lead to better convergence of the networks if relatively more
samples are generated in regions of large curvature. This could be achieved by temporarily
fixing an approximation to the true Ricci-flat metric, and using Markov Chain methods to
produce the desired samples. Gradient descent neither requires uncorrelated samples nor the
exact probability distribution to be known, which means a large range of algorithms could be
tested.

There are several steps that may be taken to improve and extend the initial machine learning
approached outlined and studied here. The preceding investigation was limited to the degree
k = 6 of the algebraic networks. This was sufficient to show that one can find moduli-dependent
approximations of better accuracy than Donaldson’s algorithm, however one can likely achieve
even better accuracies by going to larger values of k. The following are observations that may
be taken account for a future study.

• Preliminary experiments have shown that if the learning rate is chosen too small relative
to the batch size, gradient descent fails to minimize the parameters of the network.

• This must be addressed not only by carefully choosing a batch size, but also how samples
are chosen on which the loss is computed, including the random moduli parameters.
Convergence seems more stable if multiple moduli parameters are considered in each step
of gradient descent, although enough points on the manifold for each are required so the
η-variance is well defined. This is discussed for the present application in appendix B.5.

61

5. Conclusion

If the number of complex structure parameters is increased beyond the single number ψ, it is
likely that more entries of the h matrix become relevant, and in general the choice of network
may become more critical.

• In the present case, the networks could be made more stable by including parameters
that suppress entries independent of the inputs (see section B.5 of the appendix). Once
several moduli are included in the range over which the network is supposed to predict, it
may become increasingly advantageous to both further study how the subset of significant
entries depends on them, and to make the suppression input-dependent.

• Another approach which could, unfortunately, not be further investigated here, is to use
high-dimensional splines (more specifically a network architecture based upon them) to
map from the set of moduli parameters to the Hermitian matrix h. The reason that this
may be a viable approach is that the space the matrices lie in is in general significantly
larger than the number of moduli parameters. We can thus interpret the networks as
parametrizing a hyper-surface in terms of the moduli in the space of matrices.

The mathematical structure of algebraic metrics has proven to be a useful basis for the design
of models, both as it solves the problem of overlap conditions, and as one knows of possible
approximations which converge for large degrees k. As noted previously, the approach of using
algebraic metrics may, however, not be the most advantageous one depending on what points
of moduli space one is interested in (specifically, it may not perform well for geometrically
inhomogeneous manifolds). Future studies may attempt to find other parametrizations of the
Kähler potentials, which may include giving up the automatic compatibility of the metric be-
tween the patches of projective space. In that case, one has to introduce overlap conditions to
the loss functions that assert they differ by a Kähler transformation. Because of the versatility
of automatic differentiation, these potentials (which would be be defined in affine coordinates
on each patch) can have an arbitrary differentiable form. Although encoding the potential has
the advantage that Kählerity is guaranteed, and potentially fewer parameters are needed, one
may also attempt to find networks that parametrize the metric in each patch directly.

62

A. JAX as Computational Framework

The following is a short overview of the main features of JAX [24] pertinent to the implemen-
tations used in the analysis above. The aim is not to give a thorough introduction to JAX,
but rather to highlight in more detail why it is a good fit for this application, and to mention
aspects in which its use is slightly different in the present geometric context than in a typical
machine learning setting. It may also be helpful for understanding the implementation details
laid out in the next section.

A.1. Complex Differentiation with JAX

Because of the rise in popularity of machine learning with gradient descent, many frameworks
have been developed to automatically differentiate algebraically defined functions. In almost
all cases, these frameworks primarily focus on differentiable real functions (at most containing
internal complex operations, such as Fourier transformations). It is clear that a general complex
function (C → C) does not have a well-defined derivative in the usual sense (it would in general
require a real 4×4 matrix). However, for the special class of holomorphic functions the derivative
can be defined as a single complex function. Any complex function f : C → C can be written
as

f(z) = f(x+ iy) = u(x, y) + v(x, y) . (A.1)

Holomorphic functions are complex functions that satisfy the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
and ∂u

∂y
= −∂v

∂x
. (A.2)

Its complex derivative can thus be computed by just looking at its real part

2
∂f

∂z
=
∂f

∂x
− i

∂f

∂y
=
∂u

∂x
+ i

∂v

∂x
− i

∂u

∂y
+
∂v

∂y

C.R.
= 2

(
∂u

∂x
− i

∂u

∂y

)
. (A.3)

This is exactly the derivative that JAX provides:

∇hol f(z) = ∇Re
{
f(z)

}
. (A.4)

It cannot detect whether or not a given function is in fact holomorphic, which means one has
to assure this in the implementation. The following is an example of how the holomorphic

63

A. JAX as Computational Framework

derivative is computed.

1 >>> def f(z):
2 >>> return z ** 2
3

4 >>> df = grad(f, holomorphic=True)
5 >>> z = 4.0 + 2.0j
6 >>> df(z)
7 8.0 + 4.0j
8

9 >>> ddf = grad(df, holomorphic=True)
10 >>> ddf(z)
11 2.0

Implementation A.1: An example of computing holomorphic derivatives with JAX.

The holomorphic and anti-holomorphic derivatives if defined as

∂

∂z
=

∂

∂x
− i

∂

∂y
,

∂

∂z̄
=

∂

∂x
+ i

∂

∂y
(A.5)

can be applied to any complex function. The condition for holomorphic functions can then be
rewritten as ∂z̄f = 0. The way to make holomorphic and anti-holomorphic derivatives com-
putable using automatic differentiation is to formally expand the input space to two independent
complex variables, z and z̄. As long as the the implementation is holomorphic in each variable,
the derivative generated by JAX when differentiated with respect to z and z̄ are respectively the
holomorphic and anti-holomorphic derivatives. These derivatives are exactly the ones required
for the geometric constructions introduced in section 2. For an example of how this can be
used to compute the metric from the Kähler potential, see section A.3 below. Note that in the
above, f and z scalar functions to simplify the notation, but just as for real derivatives no such
restriction exists for automatic differentiation with JAX.

Gradient descent is used to minimize a real loss function. In its most basic form this is done
by iteratively moving the parameters in the direction of steepest descent given by the gradient.
For a parameter θ and a loss function l(θ), a gradient descent step has the form

θi+1 = θi − α∇θl(θi) , (A.6)

with some learning rate 0 < α < 1. Assume now that θ = θr + iθi is a complex parameter.
Writing out the minimization step for the real parameters one naturally getsθr

θi

− α

∂θr l
∂θi l

 . (A.7)

64

A.2. Just-In-Time Compilation

As a complex expression this is

(θr + iθi)− α(∂θr l + i∂θi l) = θ − α∇θl . (A.8)

If the parameter is complex, gradient descent is thus in the direction given by the conjugate
of the gradient. Practically, in order avoid mistakes and to reuse algorithms written without
complex parameters in mind, it is useful to rewrite the complex parameters in terms of their
real components, and minimize with respect to them.

A.2. Just-In-Time Compilation

Just-in-time compilation compiles a Python function at the time it is first called. Afterwards,
if the function is called again, this faster compiled version is run. This has the usual benefits
of compilation. For example, any objects that do not explicitly depend on the function input
are statically computed at compilation time, speeding up the run time. While this simplifies
the implementation in many occasions, the most important benefit is is that it removes the
drawback of an interpreted language like Python by removing the large computational overhead
compared to compiled languages like C++. There are a few things one has to be careful about
for JIT to work, notably all arrays are immutable (the general programming style of JAX
is functional), and indices into an array cannot depend on the input values of the function
(see the documentation of JAX for more detail). The following is an example showing how
the monomials are calculated given a power matrix (more on this below), exemplifying how
functions are JIT compiled. Note that JIT compilation can also be arbitrarily composed with
computing the gradients.

1 def compute_monomials(z, patch, degree):
2 """Compute monomials sα for the affine coordinates z in the given patch."""
3 # Produce the power matrix defining the monomial basis.
4 # In general this would also depend on the defining equation.
5 # The point of including it here is to highlight that for each value
6 # of the degree, this matrix is only computed once at compile time.
7 # This can simplify the implementation, since one does not have to manually
8 # manage frequently used objects and pass them to each function that uses them.
9 pows = monomial_basis(degree) # indices: (α, affine coordinate index i)

10

11 # For a compiled function, indices to arrays cannot depend on input values.
12 # A workaround used here is to cyclically shift the arrays.
13 # The following is necessary because z are affine coordinates, while the
14 # power matrix is given with respect to holomorphic coordinates.
15 # This means that all powers referring to the coordinate z_patch = 1 have
16 # to be removed.
17 pows = roll(pows, -patch, axis=1)[:, 1:]
18 z = roll(z, -patch, axis=0)
19

20 return exp(pows @ log(z))

65

A. JAX as Computational Framework

21

22 # Now apply JIT. Note that the actual value and input shape dependent compilation
23 # only occurs once the function is called. The function here statically depends
24 # on the degree, which means for each value a new compiled version is produced.
25 compute_monomials_jit = jit(compute_monomials, static_argnums=(2,))

Implementation A.2: An example of applying JIT compilation to a Python function. This is
close to the code used to compute the monomial basis for the algebraic
metrics.

A.3. Computing the Metric from a Kähler Potential

In order to see how JAX is used specifically for the geometric context here, consider now the
Fubini-Study metric on projective space. Both the Kähler potential and the metric are known
in analytic form. This means we can compare the metric that is derived via JAX’s automatic
differentiation, both in time and in numerical accuracy, to a direct implementation of the
analytic expression. The following code outlines how this can be implemented in practice (here
and in the following the code is not literal python code; where appropriate simpler and more
obvious mathematical expressions replace the actual python functions).

1 @jit
2 def fs_potential(z, z̄):
3 # z and z̄ are affine coordinates
4 return log

(
1 +

∑
ziz̄ī

)
5

6 @jit
7 def fs_metric(z, z_c):
8 norm2 = 1 +

∑
zz̄

9 gi̄ =
(
δi̄ norm2 − z̄īzj

)
/
(
norm2

)2

10 return g

11

12 # The Kähler metric can be computed by applying the Jacobian twice
13 fs_metric_autodiff = jacfwd(jacrev(fs_potential, 0, holomorphic=True), 1,

holomorphic=True)
14 fs_metric_autodiff = jit(fs_metric_autodiff)

Implementation A.3: Analytic and generated functions for the Fubini-Study metric on projective
space.

Figure Figure A.1 shows the run time of computing the metric using the explicit expression and
using automatic differentiation, as well as their numerical difference. The values indicate that

66

A.3. Computing the Metric from a Kähler Potential

the metric using automatic differentiation is exact up to a small numerical error. Furthermore,
and this is a great advantage of JAX and its JIT feature, computing the gradient using automatic
differentiation takes insubstantially longer than using the analytic expression.

4 5 6 7 8
dimension of projective space

400

600

800

1000

1200

tim
e

[
s]

analytic
auto. diff.

1 2 3 4 5 6 7 8
dimension of projective space

10 15

10 13

10 11

10 9

10 7

m
ax

. a
bs

. d
iff

er
en

ce

32 bit mode
64 bit mode

Figure A.1.: Left: Run times of computing the Fubini-Study metric once with the analytic
expression and once using automatic differentiation of the potential, for 10 000
points each time. The mean value and standard deviations shown are computed
over 7 runs. Right: Maximal numerical difference between the metrics computed
with the explicit expression and automatic differentiation over 10 000 points. The
difference is shown once using 32- and once using 64-bit mode. All results presented
elsewhere are obtained in 64-bit mode.

67

B. Implementation Details

B.1. Constructing the Monomial Basis

When the basis of OCPn+1(k), given by all homogeneous monomials defined in the homogeneous
projective coordinates, is restricted to X, the basis has to be reduced for k ≥ n+2. The reason
is that on X the defining polynomial vanishes, Q|X = 0, which means that all polynomials
containing Q (a degree n + 2 polynomial) must be removed to obtain a basis. Formally, the
basis is defined, as in section 2.1.1, as

C[z0, . . . zn+1]k /
〈
Q(z)

〉
, (B.1)

where

〈
Q(z)

〉
= QC[z0, . . . zn+1]k−(n+2) . (B.2)

Another perspective on this is that each linearly independent polynomial in
〈
Q(z)

〉
can be

rewritten to express one of the constituent monomials in terms of the remaining monomials.
This leads to the number of basis elements on OX(k) given in equation (2.11): from Nk(CPn+1)

the number of basis elements of C[z0, . . . zn+1]k, which is the number of basis elements in 〈Q〉.

To make this clearer, consider k = 6, n = 3, and Qψ(z) =
∑

i

(
zi
)5

+ψ
∏
i z
i. A basis of 〈Q(z)〉

is then given by multiplying Q with the basis z0, z2, z2, z3, z4 of C[z0, . . . , z4]1. Since Q vanishes,
the following relations are generated

zj

∑
i

(
zi
)5

+ ψ
∏
i

zi

 = 0 ∀j . (B.3)

Each of these 5 equations can be used to eliminate one monomial. One choice is to remove all
monomials zj

(
z0
)5, j = 0, . . . , 4.

So far, the discussion of how the reduced monomial basis is obtained was on a mathematical
level. In practice, as was seen in the implementation example A.2 for evaluating the monomials,
the sections can be represented using a matrix of integers. For example, the monomial

s(z) = z0
(
z2
)3
z3 (B.4)

68

B.2. Computing Geometric Objects from the Algebraic Potential

of OCP3(4) corresponds to the row vector

[1, 0, 3, 1] . (B.5)

Going to patch U2 corresponds to setting z2 = 1, which means the vector reduces to

[1, 0, 1] , (B.6)

relative to the affine coordinates. The full basis of monomials of, for example, OCP1(2) can be
written as a matrix with each row representing a monomial:2 0

1 1

0 2

 . (B.7)

Given a defining equation such as Q(z) =
(
z0
)2

+
(
z1
)2, each summand corresponds to a row in

the matrix. Solving for either and removing it from the basis thus corresponds to deleting a row
in the matrix. For the current example, either of [0, 2] and [2, 0] could be removed to obtain a
basis on X. Both the generation of the monomial basis on projective space, and the reduction
given a defining polynomial can be done algorithmically. This allows the defining equation to
be replaced without adding significant implementation work.

B.2. Computing Geometric Objects from the Algebraic Potential

As mentioned in section 4.3, all holomorphic and anti-holomorphic derivatives can be done using
automatic differentiation. This means one could technically describe the Kähler potential using
any function and train it for Ricci-flatness using the schemes described above. For the specific
case of models based on the algeraic metric, a significant speed up can be achieved by manually
writing out the derivatives. The reason for this is that many derivatives occur multiple times
which is not detected by JAX. For example, the holomorphic derivative of S̄ᾱ(z̄) is the same
as the complex conjugate of the anti-holomorphic derivative of Sα(z) and doesn’t have to be
calculated again. Since z and z̄ have to practically be independent variables for the holomorphic
derivatives to be computable (see section A.1), automatic differentiation would compute all
derivatives twice. Using autodiff this way is not categorically unfeasible, however using the
analytic expressions for the derivatives outlined below leads to faster code and significantly
faster just-in-time compilation. In fact, the implementation of the equations below was tested
by comparing it with the derivatives computed using automatic differentiation. The geometric
objects of interest are the metric, its determinant, the Ricci-curvature, and the Ricci-scalar.

The Kähler potential is defined in terms of homogeneous coordinates on projective space which
are much easier to handle than local coordinates on X. Instead of defining local coordinates, it
is numerically simpler to compute the metric and Ricci curvature with coordinates on projective

69

B. Implementation Details

space and compute the pullback to X using the Jacobian. All geometrically defined objects do
not depend on the coordinates using which they were computed (the metric itself depends on it
is defined with respect to a coordinate system, but its determinant and the Ricci scalar do not).
For a given point z, the derivatives are therefore done in the numerically most advantageous
patch of projective space Uk given by

k = argmax
i

∣∣∣zi∣∣∣ . (B.8)

This leads to numerically bounded affine coordinates,∣∣∣zki∣∣∣ ≤ 1 ∀ i . (B.9)

All following derivatives are implicitly with respect to affine coordinates chosen this way. Given
a variety X defined by a homogeneous polynomial Q(z) = 0, the pullback is defined by the
Jacobian with respect to some local coordinates x

J i
a =

∂xi

∂xa
, J̄ ̄

b̄
=
∂x̄

∂xb̄
. (B.10)

If ĝ is the metric with respect to affine coordinates, computed by differentiating the Kähler
potential, the metric on X is

gab̄ = J i
a J̄

̄

b̄
ĝi̄ . (B.11)

Since on the manifold Q is constant, dQ|TX = 0, which implies the Jacobian can be computed
as

∂zi

∂xa
= −Ga

Gi
where Ga =

∂Q

∂xa
, Gi =

∂Q

∂zi
. (B.12)

Practically, coordinates on X are therefore defined by choosing a dependent affine coordinate
zδ for which the gradient is maximal,

δ = argmax
i

|Gi| . (B.13)

The local coordinates on X are then
{
zi
}
k 6=i 6=δ . This leads to all but one row of the Jacobian

being the identity. Auxiliary objects defined with respect to affine coordinates, as above for the
metric, will appear marked with a hat.

The reason for choosing the projective patch and the depending coordinate as in the above is to
avoid numerical divergences. If the patch was chosen at random, one may happen to choose Ur
with the corresponding coordinate zr ≈ 0. Since the affine coordinates are obtained via division
with zr, this may lead to arbitrarily large values. It has proven numerically advantageous to
avoid these situations in principle. Choosing δ such that the derivative is maximal similarly
avoids division by very small values.

70

B.2. Computing Geometric Objects from the Algebraic Potential

It is useful to introduce the z-dependent function

ψ = Sαhαβ̄S
β̄ , (B.14)

so the Kähler potential can be written as

K(z) =
1

kπ
log
(
ψ(z)

)
. (B.15)

Since the potential is the second derivative of the potential, we need the derivatives of ψ,

ψi =
∂ψ

∂zi
, ψij =

∂2ψ

∂zi∂zj
, ψijk̄ =

∂3ψ

∂zi∂zj∂z̄k̄
, ψijk̄l̄ =

∂4ψ

∂zi∂zj∂z̄k̄∂z̄ l̄
. (B.16)

Other combinations of holomorphic and anti-holomorphic derivatives are obtained by complex
conjugation, for example ψī = ψ̄i. Since the h matrix does not depend on z, these derivatives
depend only on the derivatives of Sα(z), which are computed using automatic differentiation.
There are at most two holomorphic or anti-holomorphic derivatives, so only the first and second
holomorphic derivatives of Sα need to be generated. This can be be achieved by two applications
of the holomorphic Jacobian computable using JAX.

In terms of the above derivatives, the metric and its derivatives,

ĝi̄ =
1

kπ

∂2 log
(
Sαhαβ̄S

β̄
)

∂zi∂z̄ ̄
(B.17)

ĝi̄,α =
∂ĝi̄
∂zα

(B.18)

ĝi̄,αβ̄ =
∂2ĝi̄

∂zα∂z̄β̄
, (B.19)

can be written as

kπ ĝi̄ =
ψi̄
ψ

−
ψiψ̄
ψ2

(B.20)

kπ ĝi̄,α =
1

ψ
ψαi̄ −

1

ψ2
(ψα ψi̄ + ψi ψα̄ + ψ̄ ψαi) +

2

ψ3
ψα ψi ψ̄ (B.21)

kπ ĝi̄,αβ̄ =
1

ψ
ψαiβ̄̄

− 1

ψ2

(
ψαi̄ ψβ̄ + ψi̄β̄ ψα + ψαβ̄ ψi̄ + ψiβ̄ ψα̄ + ψi ψαβ̄̄ + ψβ̄̄ ψαi + ψ̄ ψαiβ̄

)
+

2

ψ3

((
ψα ψi̄ + ψi ψα̄ + ψ̄ ψαi

)
ψβ̄ + ψαβ̄ ψi ψ̄ + ψα ψiβ̄ ψ̄ + ψα ψi ψβ̄̄

)
− 6

ψ4
ψα ψi ψβ̄ ψ̄ . (B.22)

Using the Jacobian, the metric in terms of local coordinates can be computed as defined in
equation (B.11). However, if one is only interested in the determinant of the metric, one can

71

B. Implementation Details

derive the following equation that does not explicitly involve the Jacobian:

det(g) = |G|2

|Gδ|2
det(ĝ) . (B.23)

Here two new objects were used, the derivative of the defining equation Gi = ∂iQ, and the
following contraction:

|G|2 = ĝ̄iGiḠ̄ = G†ĝ−1G . (B.24)

The Ricci curvature is a derivative of the logarithm of the determinant

R̂αβ̄ =
∂

∂zα
∂

∂z̄β̄
log det g =

∂

∂zα
∂

∂z̄β̄
log

(
|G|2

|Gδ|2
det ĝ

)
. (B.25)

To make the following explicit expression for the Ricci curvature more readable, it is written in
matrix notation, where the indices i and ̄ in ĝi̄ and Gi are suppressed. Objects with subscripts
following a comma denote the derivative, e.g. G,α = ∂αG. Using the definitions

Λ =
ĝ−1GG†ĝ−1

|G|2
and g̃ = ĝ−1 − Λ , (B.26)

the Ricci curvature can be computed as

Rαβ̄ = tr
(
g̃ĝ,αβ̄

)
−

(
G†ĝ−1G,α

|G|2
− trΛĝ,α

|G|2

)(
G,β̄

†ĝ−1G

|G|2
−

trΛĝ,β̄
|G|2

)
− tr

(
g̃ ĝ,α ĝ

−1 ĝ,β̄

)
+

1

|G|2

(
G,β̄

†ĝ−1G,α −G†ĝ−1g,β̄ ĝ
−1G,α −G,β̄

†ĝ−1ĝ,α ĝ
−1G+ tr

(
Λĝ,β̄ ĝ

−1ĝ,α

))
. (B.27)

This is the Ricci curvature with indices corresponding to all affine coordinates. The Ricci
curvature on X is obtained by contracting with the Jacobian,

Rab̄ = J i
a J̄

̄

b̄
R̂i̄ . (B.28)

From this, the Ricci scalar can be computed by contracting with the inverse of the local metric:

R = Rab̄g
ab̄ . (B.29)

B.3. Monte Carlo Integration and Sampling

The ability to sample points that lie on a given variety X, defined by a homogeneous polynomial
Q(z) as a subspace of projective space, is crucial for all numerical algorithms presented here.
When the probability distribution is known, random sampling can be used to approximate
integrals as a Monte Carlo sum. At the heart of Donaldson’s algorithm is the integral T -
operator, which means that an efficient sampling algorithm is required to achieve convergence

72

B.3. Monte Carlo Integration and Sampling

in a reasonable amount of time. The loss functions for machine learning can also be seen as
Monte Carlo approximations to some functional. Since the exact meaning of the loss function
(beside it being a loss function with respect to the desired target) is of less importance, it is not
as significant as for Donaldson’s algorithm to know the probability distribution.

Before a review of how the sampling methods are used for Monte Carlo integration, two sampling
algorithms are presented. The former is a relatively simpler algorithm, but has the drawback
that no probability density is, at present, available. Its advantage is that it can be used to
sample points that specifically lie on the overlap between two patches of projective space of a
predefined size, without discarding too many values. This is not presented here, although it
was implemented, since the networks analyzed in the previous sections automatically satisfy the
overlap conditions, such that no explicit training on the overlaps to enforce it is required.

B.3.1. Sampling by Solving for The Dependent Coordinate

The most basic approach to generate points on the n-dimensional variety X is to sample n
complex numbers representing coordinates on X, (z1, . . . , zn), and solve for zn+1 to obtain
affine coordinates on the ambient space CPn+1 using Q(z) = 0. This uniquely defines a point
on X. If the defining polynomial is not symmetric under coordinate permutation, one also has
to randomly choose a patch and assign a coordinate index to the missing dependent coordinate.
Depending on the manifold, one may have to restrict the sampling of the initial coordinates, so
that the equation Q(z) = 0 has a solution for the last coordinate.

For example, in the case of the Fermat quintic in the affine patch U0 (this is no restriction since
the Fermat quintic is invariant under coordinate permutations)

Q0(z0) =

4∑
i=1

(
zi0

)5
, (B.30)

one can solve for z40 given (z20 , . . . , z
3
0):

z40 = 5

√√√√ 3∑
i=1

(
zi0
)5
. (B.31)

Since there are in general five fifth roots, one gets for each choice of initial complex values five
points on X.

The crucial step is to find the solutions of the single-variable (all but one affine coordinate
fixed) complex polynomial equation Q(z) = 0. A fast method to do this is by computing the
eigenvalues of the polynomial. The starting point for this is the array of polynomial coefficients,
which represents the polynomial Q(z) with all but one coordinate fixed. The following algorithm
shows how this computation can be done1.

1The method was not yet available in JAX, and therefore had to be newly implemented for this application.

73

B. Implementation Details

1 def roots(p):
2 # p is an array of coefficients, must start with non-zero entry.
3 # p = [1, 2, 0] corresponds to x2 + 2x

4

5 # construct companion matrix
6 A = diag(ones((p.size - 2,), p.dtype), -1)
7 A = A[0, :] = -p[1:] / p[0]
8

9 # the roots are now given by the eigenvalues
10 roots = eigvals(A)
11 return roots

Implementation B.1: Simplified algorithm for finding roots of a polynomial.

A specific example of the difference between the two sampling algorithms defined above can be
found in Figure C.7.

B.3.2. Homogeneous Sampling in Projective Space

The way to sample points on the manifold X using intersections with a line is as follows.

1. Uniformly sample two a, b ∈ CPn+1, defining a complex line.

2. Compute the polynomial coefficients for the complex variable t that define the equation

Q(a+ tb) = 0 , (B.32)

where Q(z) is the defining homogeneous polynomial of X. This can either be done manu-
ally given a specific defining equation, or using a library for symbolic manipulations (this
was done for the implementation here using SymPy [30], making it more easily extendable
to other defining equations).

3. Solve the defining equation for t using the implementation of B.1.

4. Because of the multiplicity of roots, for each chosen line one finds n+ 2 points z = a+ tb

on the manifold.

One can uniformly sample points on CPn+1 by first sampling real numbers from S2(n+2) and
combining them into complex numbers representing homogeneous coordinates. There are mul-
tiple algorithms for sampling points on a real sphere, an efficient one is to independently sample
coordinates from a normal distribution and then divide by their norm. A simplified version of
the sampling algorithm is presented below.

The result has been contributed to the original project where it is now available in the main distribution as
jax.numpy.roots.

74

B.3. Monte Carlo Integration and Sampling

1 def sample_sphere(count, dim):
2 """Random points on the real unit sphere in Rdim+1."""
3 points = normal(shape=(count, dim))
4 return points / norm(points, axis=1)
5

6 def line_sample(variety, ψ):
7 """Sample points on the variety via line intersections."""
8 a, b = sample_sphere(2, 2 * (variety.dimension + 2))
9 a = a[0] + i a[1]

10 b = b[0] + i b[1]
11

12 coeffs = intersection_poly_coefficients(variety, a, b, ψ)
13 t = roots(coeffs)
14 # return the n + 2 solutions
15 return a.reshape(1, -1) + t * a.reshape(1, -1)

Implementation B.2: Simplified algorithm for sampling points on a variety using line
intersections.

Since the line is chosen uniformly in projective space, this sampling algorithm leads to points
on the manifold that are not uniform to its volume form, but on projective space with respect
to the Fubini-Study metric.

B.3.3. Monte Carlo

If one was able to directly sample according to the density given by the Calabi-Yau volume
form dVolCY , the integrals could be approximated as an unweighted mean:

∫
fdVolCY ≈ 1

M

M∑
m=1

f(zm) . (B.33)

Unfortunately, no such sampling algorithm is available. The next best solution, as it was
introduced in section 2.3, is to use a sampling algorithm with some known probability density
dA. One then obtains an approximation to the integral by computing the weighted mean of the
integrand.

∫
fdVolCY ≈ 1

M

M∑
m=1

f(zm)w(zm) . (B.34)

The weights are defined by the ratio between the desired density and the actual density of the
sampling algorithm

w =
dVolCY
dA

. (B.35)

75

B. Implementation Details

For the homogeneous sampling algorithm outlined above, the sampling density is proportional
to the pull back of the Fubini-Study metric to the variety X, as defined in equation (2.43). The
approximations of integrals to a mean in equations (2.40) and (2.42) are only valid if dA is a
properly normalized probability distribution, which is not the case for the definition above. As
long as one is interested in scale independent objects (such as integrals divided by the volume),
the proportionality factor drops out, and one can directly use the determinant of the pullback
of the Fubini-Study metric. The unnormalized weights are then, using the explicit expression
for the holomorphic top form of the varieties defined in equation (2.38),

w̃(z) =
(−i)nΩ ∧ Ω̄(
i∗Q ω

FS
CPn+1

)n
∣∣∣∣∣∣∣
z

=
1∣∣∂δQ(z)

∣∣ 1

det gFSX
(B.36)

where δ is the index of the dependent coordinate defining a local coordinate system, as defined
in the previous section. The pullback of the Fubini-Study metric is computed as in equation
(B.11) above, given its definition in affine coordinates zk of projective space (in patch Uk)

ĝi̄ =

(
1 + |zk|2

)
δi̄ − z̄ īkz

j
k(

1 + |zk|2
)2 . (B.37)

The object |zk|2 denotes the norm
∑

i

∣∣zik∣∣2.
To obtain the correct numerical values for scale-dependent expressions, the weights w̃ have to
be multiplied by the mean of the densities dA,

w = w̃

M∑
m=1

det gFSX , (B.38)

which effectively normalizes the density.

B.4. Donaldson’s Algorithm

Using the method laid out in A.2 for computing the monomials, the power matrix forming a
basis of monomials from section B.1, the line sampling algorithm of section B.3.2, and Monte
Carlo integration introduced in the previous section, it is now straight-forward to implement
Donaldson’s algorithm. Below is simplified Python pseudo-code illustrating how a single itera-
tion of Donaldson’s algorithm is computed (just as in previous examples, the shown code differs
from the real implementation for performance reasons, non-central features, specific constraints
of JAX, and in some instances for the sake of readability).

76

B.5. Training Moduli Dependent Networks

1 def donaldson_step(variety, h, k, pows, ψ, vol_cy, count):
2 # Approximate the T operator for the `h`-matrix of degree `k` by a Monte Carlo
3 # sum over `count` sample points.
4

5 # accumulate the integral in this variable
6 T = zeros_like(h)
7

8 for i in range(count):
9 # pretend this returns a single point now, for simplicity

10 z = line_sample(variety, ψ)
11 z, patch = to_affine(z)
12

13 weight = mc_weight(variety, z, patch, ψ)
14 s = compute_monomials(z, patch, k)
15 s̄ = conj(s)
16

17 numerator = sαs̄β̄

18 denominator = sαhαβ̄s
β̄

19

20 dT = numerator / denominator * weight
21 T = T + dT / count
22

23 T = T * basis_size(variety, k) / vol_cy
24 new_h = invert(T).transpose()
25 return new_h

Implementation B.3: Simplified algorithm for computing a single iteration of Donaldson’s
algorithm.

B.5. Training Moduli Dependent Networks

B.5.1. Training Networks for Multiple Values of ψ Simultaneously

For networks that depend on an additional moduli parameter ψ, additional thought has to go
into how the batch sampling of points on the manifold is combined with sampling values for
ψ. In all cases discussed here, the values of ψ are uniformly sampled from the disk of complex
space given by |ψ| < ψmax.

Computing an η-based loss such as the one defined in (4.9) requires the batch mean over η̂
values. For this, it is important that all η̂ values the mean is computed over corresponds to the
same value of ψ. The most basic solution to this is to use a single, randomly sampled value of
ψ in each iteration of gradient descent. It has proven effective, however, to compute multiple
values of ψ in each step. This can be done by sampling enough points for each value of ψ
that a statistically stable enough mean of η̂ can be computed for each. Practically, sampling 4

77

B. Implementation Details

values of ψ and 500 points on the manifold for each has proven to be a good choice, although
no thorough search over different combinations has been conducted.

B.5.2. Better Convergence by Suppressing Entries

It has proven useful to introduce an additional set of parameters, the same number as real
parameters for h, to introduce an additional sigmoid suppression as in section 4.5.1. If the final
output of the network above is ĥreal, an additional set of parameters h̃real is introduced, so the
value passed to the reconstruction of the Hermitian matrix is

hreal = σ(h̃real) ĥreal . (B.39)

This is done for all models whose output is an h matrix. The suppression parameters are not
dependent on the input, which means this is more of a numerical trick for better convergence,
and is thus not included in the network architectures above. If more parameters than ψ are
introduced, it may become useful to make the suppression input-dependent.

B.5.3. Initialization

Convergence using gradient descent can be achieved significantly more quickly if the initial-
ization of the networks is close to the identity. This can be achieved in the above networks
by tuning the range of values the biases of the final dense layer are chosen from, and by tun-
ing the input-independent sigmoid suppression introduced in the above. If the initialization is
done poorly, and especially if the learning rate is large, the learned metric may become indef-
inite. This can be prevented to some extent by using the Cholesky decomposition, instead of
parametrizing the real and imaginary entries of h directly.

78

C. Additional Figures

This part of the appendix contains several figures with additional results that are not necessary
to follow the discussion of the main part of this document.

1 2 3 4 5 6
k

10 4

10 3

10 2

10 1

E 3

gradient descent

1 2 3 4 5 6
k

L-BFGS
= 0 = 5 = 5 = 15

Figure C.1.: Same as Figure 4.3, except the measure used to assess convergence is the loss E3

computed using 10 000 sample points which is the same as Figure 10 in [10]. The
convergence is qualitatively similar and of the same order of magnitude.

1 2 3 4 5 6 7
k

10 1

100

-m
ea

su
re

h =
T1(h =)
T15(h =)

Figure C.2.: Comparison of σ-measures achieved by Donaldson’s algorithm for ψ = 100 after 1
and 15 iterations (convergence) with those at the initial value h = 1. In contrast
to ψ = 0, the initial value does not give a good approximation to Ricci-flatness,
and the first iteration never yields better accuracies than the converged result.

79

C. Additional Figures

0 2 4 6 8 10 12 14

100

150

200

250

300

350

400

lo
w-

flu
ct

ua
tio

n
en

tri
es

k = 6
k = 5
k = 4

Figure C.3.: Number of entries of h in the small-fluctuation cluster as found in section 3.3 for
multiple real values of ψ. In all cases the line is continued towards the value at
ψ = 100, which is not included in the visible range to make the increase around
ψ = 0 more obvious. The number of entries at ψ = 100 was found to be the same
as that at ψ = 10.

1 2 3 4 5 6

10 2

10 1

-m
ea

su
re

Donaldson = 0
optimized = 0
reduced = 0
Donaldson = 5
optimized = 5
reduced = 5

Figure C.4.: Comparison between σ-accuracies achieved by the optimized h matrices of section
4.5 before and after they are reduced to the small-fluctuation entries as found
by analysing Donaldson’s algorithm in section 3.3. The accuracies achieved by
Donaldson’s algorithm are shown as a reference.

80

0

25

50

75

100

125

150

175

200
optimal Donaldson

0 50 100 150 200
0

25

50

75

100

125

150

175

200

0 50 100 150 200

10 1 100 101

Figure C.5.: Visual comparison of h matrices produced by Donaldson’s algorithm and by opti-
mizing the η-based loss of section 4.5, for k = 6 and ψ = 10. The lower two plots
show only the low-fluctuation entries as found in section 3.3.

81

C. Additional Figures

10 1

100

101
l = 1 l = 3 l = 5

0 5 10 15 20

10 1

100

101

0 5 10 15 20 0 5 10 15 20

-m
ea

su
re

| |

Re
al

-Im
ag

 d
ec

om
p.

Ch
ol

es
ky

 d
ec

om
p.

abs + arg, 4 powers
abs + arg, no powers

, 4 powers
, no powers

, 4 fixed powers
Donaldson, k = 6

Figure C.6.: σ-accuracies at k = 6 achieved by different variations of the dense-layer network
architecture introduced in section 4.6.1, after optimization using the η-loss. In
the case where the powers are fixed and not parameters changed during gradient
descent, they were chosen to be 1/2, 1, 2, and 3. The accuracies shown are the
mean over four equally spaced complex angles at each absolute value of ψ. For
reference, the σ accuracy achieved by Donaldson’s algorithm for each real value of
ψ is shown, as well as the results for the network that was previously trained using
balanced metrics.

1.0 0.5 0.0 0.5 1.0
z1

1.0

0.5

0.0

0.5

1.0

z2

solve for dependent coordinate
Real
Imag

1.0 0.5 0.0 0.5 1.0
z1

line intersection
Real
Imag

Figure C.7.: Scatter-plot comparing real and imaginary parts of the affine coordinates of the
variety in CP2 defined by (z0)3 + (z1)3 + (z2)3 + 10 z0z1z2 = 0, generated using
either sampling algorithm introduced in section B.3. The values all lie in the affine
patch Û0 defined by |z10 |, |z20 | ≤ 1.

82

Bibliography

[1] P. Candelas et al. “Vacuum Configurations for Superstrings”. In: Nucl. Phys. B 258 (1985),
pp. 46–74. doi: 10.1016/0550-3213(85)90602-9.

[2] Volker Braun, Yang-Hui He, and Burt A. Ovrut. “Yukawa couplings in heterotic standard
models”. In: JHEP 04 (2006), p. 019. doi: 10 .1088/1126 -6708/2006/04/019. arXiv:
hep-th/0601204.

[3] Daniel Baumann and Liam McAllister. Inflation and String Theory. Cambridge Mono-
graphs on Mathematical Physics. Cambridge University Press, May 2015. isbn: 978-1-107-
08969-3, 978-1-316-23718-2. doi: 10.1017/CBO9781316105733. arXiv: 1404.2601 [hep-th].

[4] Matthew Headrick and Toby Wiseman. “Numerical Ricci-flat metrics on K3”. In: Class.
Quant. Grav. 22 (2005), pp. 4931–4960. doi: 10 .1088/0264 -9381/22/23/002. arXiv:
hep-th/0506129.

[5] S.K. Donaldson. “Scalar Curvature and Projective Embeddings, I”. In: J. Differential
Geom. 59.3 (Nov. 2001), pp. 479–522. doi: 10.4310/jdg/1090349449.

[6] S. K. Donaldson. “Scalar curvature and projective embeddings, II”. In: The Quarterly
Journal of Mathematics 56.3 (Sept. 2005), pp. 345–356. issn: 0033-5606. doi: 10.1093/
qmath/hah044.

[7] S. K. Donaldson. Some numerical results in complex differential geometry. 2005. arXiv:
math/0512625 [math.DG].

[8] Volker Braun et al. “Calabi-Yau Metrics for Quotients and Complete Intersections”. In:
JHEP 05 (2008), p. 080. doi: 10.1088/1126-6708/2008/05/080. arXiv: 0712.3563 [hep-th].

[9] Michael R. Douglas et al. “Numerical solution to the Hermitian Yang-Mills equation on
the Fermat quintic”. In: JHEP 12 (2007), p. 083. doi: 10.1088/1126-6708/2007/12/083.
arXiv: hep-th/0606261.

[10] Matthew Headrick and Ali Nassar. “Energy functionals for Calabi-Yau metrics”. In: Adv.
Theor. Math. Phys. 17.5 (2013), pp. 867–902. doi: 10.4310/ATMP.2013.v17.n5.a1. arXiv:
0908.2635 [hep-th].

[11] Anthony Ashmore, Yang-Hui He, and Burt Ovrut. Machine learning Calabi-Yau metrics.
2019. arXiv: 1910.08605 [hep-th].

[12] Tristan Hubsch. Calabi-Yau manifolds: A Bestiary for physicists. Singapore: World Sci-
entific, 1994. isbn: 978-981-02-1927-7.

83

https://doi.org/10.1016/0550-3213(85)90602-9
https://doi.org/10.1088/1126-6708/2006/04/019
https://arxiv.org/abs/hep-th/0601204
https://doi.org/10.1017/CBO9781316105733
https://arxiv.org/abs/1404.2601
https://doi.org/10.1088/0264-9381/22/23/002
https://arxiv.org/abs/hep-th/0506129
https://doi.org/10.4310/jdg/1090349449
https://doi.org/10.1093/qmath/hah044
https://doi.org/10.1093/qmath/hah044
https://arxiv.org/abs/math/0512625
https://doi.org/10.1088/1126-6708/2008/05/080
https://arxiv.org/abs/0712.3563
https://doi.org/10.1088/1126-6708/2007/12/083
https://arxiv.org/abs/hep-th/0606261
https://doi.org/10.4310/ATMP.2013.v17.n5.a1
https://arxiv.org/abs/0908.2635
https://arxiv.org/abs/1910.08605

Bibliography

[13] Brian R. Greene. “String theory on Calabi-Yau manifolds”. In: Theoretical Advanced Study
Institute in Elementary Particle Physics (TASI 96): Fields, Strings, and Duality. June
1996, pp. 543–726. arXiv: hep-th/9702155.

[14] J.P. Demailly. Complex Analytic and Differential Geometry. Université de Grenoble I,
1997. url: https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf.

[15] Phillip Griffiths and Joseph Harris. Principles of algebraic geometry. John Wiley & Sons,
1994.

[16] Shing-Tung Yau. “Calabi’s Conjecture and some new results in algebraic geometry”. In:
Proc. Nat. Acad. Sci. 74 (1977), pp. 1798–1799. doi: 10.1073/pnas.74.5.1798.

[17] Eugenio Calabi. “On Kähler manifolds with vanishing canonical class”. In: Algebraic ge-
ometry and topology. A symposium in honor of S. Lefschetz. Vol. 12. 1957, pp. 78–89.

[18] Michael B. Green, John H. Schwarz, and Edward Witten. Superstring Theory Vol. 2:
25th Anniversary Edition. Cambridge Monographs on Mathematical Physics. Cambridge
University Press, Nov. 2012. isbn: 978-1-139-53478-9, 978-1-107-02913-2. doi: 10.1017/
CBO9781139248570.

[19] Tristan Hubsch. Calabi-Yau manifolds: A Bestiary for physicists. World Scientific, 1994.
isbn: 978-981-02-1927-7.

[20] Michael R. Douglas et al. “Numerical Calabi-Yau metrics”. In: J. Math. Phys. 49 (2008),
p. 032302. doi: 10.1063/1.2888403. arXiv: hep-th/0612075.

[21] Volker Braun et al. “Eigenvalues and Eigenfunctions of the Scalar Laplace Operator on
Calabi-Yau Manifolds”. In: JHEP 07 (2008), p. 120. doi: 10.1088/1126-6708/2008/07/120.
arXiv: 0805.3689 [hep-th].

[22] Stefan Weinzierl. “Introduction to Monte Carlo methods”. In: (June 2000). arXiv: hep-
ph/0006269.

[23] Lara B. Anderson et al. “Numerical Hermitian Yang-Mills Connections and Vector Bundle
Stability in Heterotic Theories”. In: JHEP 06 (2010), p. 107. doi: 10.1007/JHEP06(2010)
107. arXiv: 1004.4399 [hep-th].

[24] James Bradbury et al. JAX: composable transformations of Python+NumPy programs.
Version 0.1.72. 2020. url: http://github.com/google/jax.

[25] Gang Tian. “On a set of polarized Kähler metrics on algebraic manifolds”. In: J. Differ-
ential Geom. 32.1 (1990), pp. 99–130. doi: 10.4310/jdg/1214445039.

[26] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http : / / www .
deeplearningbook.org. MIT Press, 2016.

[27] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
(Dec. 2014). arXiv: 1412.6980 [cs.LG].

[28] Ciyou Zhu et al. “Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-
Constrained Optimization”. In: ACM Trans. Math. Softw. 23.4 (Dec. 1997), pp. 550–560.
issn: 0098-3500. doi: 10.1145/279232.279236. url: https://doi.org/10.1145/279232.
279236.

84

https://arxiv.org/abs/hep-th/9702155
https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
https://doi.org/10.1073/pnas.74.5.1798
https://doi.org/10.1017/CBO9781139248570
https://doi.org/10.1017/CBO9781139248570
https://doi.org/10.1063/1.2888403
https://arxiv.org/abs/hep-th/0612075
https://doi.org/10.1088/1126-6708/2008/07/120
https://arxiv.org/abs/0805.3689
https://arxiv.org/abs/hep-ph/0006269
https://arxiv.org/abs/hep-ph/0006269
https://doi.org/10.1007/JHEP06(2010)107
https://doi.org/10.1007/JHEP06(2010)107
https://arxiv.org/abs/1004.4399
http://github.com/google/jax
https://doi.org/10.4310/jdg/1214445039
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/279232.279236
https://doi.org/10.1145/279232.279236
https://doi.org/10.1145/279232.279236

Bibliography

[29] Andrew Trask et al. Neural Arithmetic Logic Units. 2018. arXiv: 1808.00508 [cs.NE].

[30] Aaron Meurer et al. “SymPy: symbolic computing in Python”. In: PeerJ Computer Science
3 (Jan. 2017), e103. issn: 2376-5992. doi: 10.7717/peerj-cs.103.

85

https://arxiv.org/abs/1808.00508
https://doi.org/10.7717/peerj-cs.103

Acknowledgements

I would like to express my deep gratitude to Dr. Sven Krippendorf for our many interesting
discussions, without which this thesis would not have been possible.

I thank Dr. Robert Helling for his extraordinarily engaged management of the TMP programme,
and Prof. Dr. Dieter Lüst for being my tutor.

I am grateful to the developers of the JAX library, for their quick response to suggestions and
software issues.

	Introduction
	Mathematical Prerequisites
	Calabi-Yau Manifolds
	Donaldson's Algorithm
	Monte Carlo Integration
	Accuracy Measures

	Numerical Analysis of Donaldson's Algorithm
	Implementation and Validation
	Moduli and Random Seed Dependence
	Numerical Pattern of h Matrices

	Machine Learning Approach to Calabi-Yau Metrics
	Deep Learning
	Overview of Machine Learning Approaches
	Algebraic Networks
	Calabi-Yau Losses
	Optimizing h for Fixed Moduli
	Moduli Dependent Learning of the Hermitian Matrix h

	Conclusion
	JAX as Computational Framework
	Complex Differentiation with JAX
	Just-In-Time Compilation
	Computing the Metric from a Kähler Potential

	Implementation Details
	Constructing the Monomial Basis
	Computing Geometric Objects from the Algebraic Potential
	Monte Carlo Integration and Sampling
	Donaldson's Algorithm
	Training Moduli Dependent Networks

	Additional Figures

