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Abstract

The thesis reviews the original proposal of Mimetic Dark Matter, a refor-
mulation of General Relativity, in which the physical metric is parametrized
in terms of an auxiliary metric and a scalar field. The equations of motion
result to be a modified Einstein equation and a continuity equation for the
scalar field, whose kinematical constraint leads to its identification with cos-
mological time in synchronous reference frame.
From the solution of the additional equation it is seen that the scalar field
can mimic Dark Matter also in absence of ordinary matter, from which the
adjective mimetic.
This extra degree of freedom is shown to be due to the singularity ot the
disformal transformation linking the physical and auxiliary metrics.
Then, a straightforward generalization of the original model is reviewed: a
potential is added to the Lagrangian and different cosmological scenarios
such as Inflation, Bouncing Universe and Quintessence are reproduced in
this context.
Further developments on mimetic cosmological phenomenology are also stud-
ied and an interlude on static spherically symmetric solutions in Mimetic
Gravity, permits to understand how the rotational curves of galaxies, one
of the most important evidences for Dark Matter, can be described through
the mimetic scalar field subject to potential.
As a next step, the Hamiltonian analysis of the theory is pursued proving in
a more formal way the presence of one more degree of freedom and showing
the absence of Ostrogradski instability under certain conditions. Finally,
Mimetic Dark Matter is identified with the Dust Field formalism at the
classical level and the quantization of the latter is pursued and the results
are compared with the well known Gauge-fixed picture.
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Chapter 1

Introduction

General Relativity (GR) is a well established theory which describes well
our Solar System and all low energy gravitational phenomena. Despite of
its successes in experimental predictions such as the perihelion precession of
Mercury and gravitational waves, singularities point out regimes in which it
fails, inside black holes and at the beginning of the Universe.
Furthermore, the current phase of accelerated expansion of the Universe can
be obtained only by putting an extra term, the cosmological constant Λ or
Dark Energy, into the Einstein equations for a Universe described by the
the FLRW metric.
Besides to this component in the widely accepted model describing our Uni-
verse, the so called Λ-CDM, there is also Cold Dark Matter introduced to
explain some well established astrophysical evidences such as the flatness
of galaxies rotation curves, bullet clusters and gravitational lensing, whose
direct detection is still missing.
Still, in this model there are some problems such as the homogeneity problem
and the flatness problem, which can be solved by conjecturing the existence
of a phase in which the Universe goes through an accelerated expansion,
called Inflation.
Finally, more importantly GR describes gravity at the classical level and the
attempts to find a consistent theory of Quantum Gravity valid at Planck
scales have led to, among others, two theories, Loop Quantum Gravity and
String Theory which, so far, have not produced any experimental prediction
at energies currently available in particle accelerators. Because of this un-
happy situation, in the last decades many physicists start to study theories
generalizing the Einstein-Hilbert action at the classical level, with different
approaches:

1. by considering functions of the Ricci scalar as in StarobinskyR2 theory,
the ancestor of F (R) theories;

2. by adding scalars as in Brans-Dicke theory, which is the protoype of the
more general Horndeski theory, the most general theory of gravity in
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four dimensions whose Lagrangian contains as fields the metric tensor
and a scalar field and leads to second order equations of motion;

3. by considering large extra dimensions as in Randall-Sundrum, ADD
and DGP models.

Among the many ensembles of theories of modified gravity appeared so far,
a very promising one is represented by Mimetic Gravity.
The first proposal of a model in Mimetic Gravity is due to V. Mukhanov
and A. Chamseddine in 2013 [1].
The original paper starts with the Einstein-Hilbert action with the physical
metric reparametrized through a singular disformal transformation in terms
of an auxiliary metric and a scalar field, called mimetic, providing a theory in
which a new degree of freedom can mimic the Cold Dark Matter component
even in the absence of ordinary matter. Since the first work, many papers
have appeared expanding the new idea [2] and showing an increasing interest
in the field: a list of the many different mimetic modified theories of gravity
that have appeared so far includes

1. mimetic F (R) gravity [3];

2. Lorentz violating Galileon theory [4];

3. mimetic Randall-Sundrum II model [5];

4. mimetic Horndeski gravity [6,7];

5. modified Gauss-Bonnet gravity [8].

The aim of this work is to present a review of some important cosmological
results in Mimetic Gravity.
Two of the most relevant things studied in the thesis regard the Hamil-
tonian analysis of the original model, showing in a formal way that there
is one more degree of freedom than in General Relativity and solving un-
der certain conditions the problem of the Ostrogradsky instability, and the
identification at the classical level of Mimetic Dark Matter (MDM) with the
Dust Field formalism, with its quantization in Mini-superspace. The use
of Mini-superspace formalism in Quantum Cosmology, in which the Ricci
scalar of the usual Einstein gravity is written in terms of the scale factor of
a FLRW metric and the lapse function, before fixing the gauge, is justified
by the fact that there are finite degrees of freedom and other mathematical
and physical complications arising from considering the full gravitational
Hamiltonian are removed in the attempt to apply quantum physics to the
whole universe. The Dust Field formalism offers a way to solve the problem
of time in doing Quantum Cosmology due to its different roles in Quantum
Mechanics (a parameter) and in General Relativity (a coordinate on the
same foot of the spatial coordinates): it is precisely the mimetic scalar field
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to supply time as a parameter for the wave function of the whole Universe.
The results for the expectation values for the relevant physical quantities
such as scale factor, Hubble constant and energy density in Many Worlds
Interpretation and in Bohmian Mechanics obtained in Dust Field formalism
are then compared with those of Gauge-fixed picture, where the Hamiltonian
in Mini-superspace, after the gauge-fixing procedure, evolves in time. The
comparison reveals that, modulo numerical factors with some arbitrariness
entailed, the Dust Field formalism and hence, MDM represents, as expected,
a particular case of the other approach.
Future attempts will be done in quantization of the MDM model supple-
mented by a potential for the mimetic scalar field with the same procedure.
This work is structured in this way:

- in Chapter 2, some basics of Cosmology, the history of the Universe and
some aspects of Inflation, Dark Energy and Dark Matter are reviewed;

- in Chapter 3, the original MDM model is reviewed, pointing out the
reason of its difference with GR through a discussion of general disfor-
mal transformations and describing the Lagrange multiplier equivalent
formulation;

- in Chapter 4, a straightforward generalization of MDM with a non-
vanishing potential for the mimetic scalar field is reviewed, reproducing
different cosmological scenarios, such as Inflation, Quintessence and
Bouncing Universe. Cosmological perturbations in this setting and
direct coupling of the mimetic field with ordinary matter, giving a
model of gravitational baryogenesis, are also studied;

- in Chapter 5, static spherically symmetric solutions in Mimetic Gravity
are reviewed and the rotational curves of spiral galaxies, which is one
of the most important astrophysical evidences for Dark Matter, are
obtained.

- in Chapter 6, the Hamiltonian analysis of the original proposal is re-
viewed, proving in a formal way the presence of a more degree of free-
dom than in GR and solving the problem of Ostrogradsky instability
inside the theory;

- in Chapter 7, the classical Mini-superspace is introduced and the quan-
tization in Gauge-fixed picture is pursued. Then the identification
of the Lagrange multiplier formulation of the MDM model with the
Dust Field formalism is made, the quantization of the latter in Mini-
superspace is performed and the expectation values of the relevant
physical quantities are compared with those of Gauge-fixed picture,
showing that they coincide for dust as expected.
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Chapter 2

Cosmology

The Big Bang theory is the prevailing cosmological model for the Universe
from the earliest periods through its large-scale evolution. The observations,
made so far, establish the ingredients of the Big Bang theory, known also as
Cosmological Standard Model [9,10]:

1. at sufficiently large scales, the universe is isotropic: its properties are
independent of the direction of observation.

2. Copernican principle: our location is not special. As a consequence,
if the Universe is observed as isotropic from everywhere, it is also
homogeneous;

3. the Universe is composed of radiation and baryonic as well as non-
baryonic matter;

4. the Universe expands and at late times, the expansion is accelerated.

The first two points are summarized in the Cosmological Principle.
The latest version of the Cosmological Standard Model, called the Λ-CDM
model, where Λ is the cosmological constant and CDM stands for Cold
Dark Matter, accounts for the last two points, describing a Universe that
contains usual luminous matter of the Standard Model of Particle Physics,
Dark Matter (DM) and Dark Energy (DE), as required from cosmological
and astrophysical data available [11].

2.1 General Relativity and Cosmology

The above ingredients can be formalized in GR: the spacetime is assumed
to be a globally hyperbolic Lorentzian manifold endowed with a metric gµν
[12].
The action, which describes the dynamics of a generic spacetime with the
metric gµν , is a sum of the Einstein-Hilbert action SEH , describing gravity,
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Figure 2.1: Relative abundacies of the matter components of the Universe
at the present [11]

and of the matter component action SM with a generic Lagrangian LM ,
given by

S = SEH + SM = − 1

16πG

∫
d4x
√
−gR+

∫
d4x
√
−gLM , (2.1)

where G is the Newton gravitational constant, R = gµνR
µν is the Ricci

scalar with Rµν , the Ricci tensor, g is the determinant of the metric and the
speed of light c = 1.
From the variation with respect to the metric gµν , the Einstein field equa-
tions yield, which relate the spacetime evolution to the energy of the matter
content

Gµν = 8πGTµν , (2.2)

with

Gµν ≡ Rµν −
1

2
gµνR, (2.3)

and

Tµν ≡ −
2√
−g

δ(
√
−gLM )

δgµν
(2.4)

where Gµν is the Einstein tensor and Tµν is the energy-momentum tensor
of the matter component.
A homogeneous and isotropic Universe is described by the Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (2.5)
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where a(t) is the scale factor with t being the cosmic time and k is the spatial
curvature constant, whose value can be +1, 0 or −1 describing closed, flat,
and open Universes, respectively.
The dynamics of the FLRW Universe is described by the first Friedmann
equation

H2 =
8πG

3
ρ+

k

a2
, (2.6)

being the tt component of Einstein equation (2.2), and by the second Fried-
mann equation

ä

a
= −4πG

3
(ρ+ 3p), (2.7)

being the rr component of Einstein equation (2.2). The Hubble constant H
is defined as

H ≡ ȧ

a
. (2.8)

and the matter content of the Universe is described by the energy-momentum
tensor of a perfect fluid given by

Tµν = (ρ+ p)uµuν − pgµν , (2.9)

where ρ(t) and p(t) are respectively its energy density and its isotropic pres-
sure.
Furthermore, the conservation of the energy-momentum tensor ∇νTµν = 0
leads to the continuity equation

ρ̇+ 3H(ρ+ p) = 0. (2.10)

Since the Friedmann equations (2.6) and (2.7) and the continuity equation
(2.10) are not independent, an extra equation is needed to complete the set
of equations to specify all the three unknown variables ρ, p and a.
For the matter described by a perfect fluid, the extra equation is given by
the equation of state

p = ωρ (2.11)

where ω is a constant.
From the continuity equation (2.10), the relation between ρ and the scale
factor a follows

ρ ∝ a−3(1+ω). (2.12)

The most important examples of fluids are:

- dust matter, ω = 0
a ∝ t2/3 ρ ∝ a−3 (2.13)

- radiation, ω = 1/3
a ∝ t1/2 ρ ∝ a−4 (2.14)

11



- dark energy1, ω = −1

a ∝ e
√

8πG
3
ρt

ρ ∝ const. (2.15)

The first Friedmann equation (2.6) can also be rewritten as

Ω− 1 =
k

a2H2
(2.16)

where

Ω ≡ ρ

ρc
, with ρc ≡

3H2

8πG
, (2.17)

where the density parameter Ω is the ratio of the energy density to the crit-
ical density ρc, for which the Universe results to be flat (k = 0).
The data available today show that the present value of the density param-
eter is Ω = 1 and the Universe is flat: the presence of DM and DE is also
needed for this reason due to the fact that ordinary matter represents only
a small percentage of the critical density ρc (Figure 2.1) [11].

2.2 Brief thermal history of the Universe

After having discussed some elements of Cosmology, here a brief description
of the thermal history of the Universe is given [9].

- Big Bang
The starting point of the Universe is assumed to be the Big Bang
which occurs at zero time, but not much is known about this state.

- Planck scale ∼ 10−43 s (1019 GeV)
After 10−43 s, the radius of the Universe is 10−35 m, called the Planck
length and the Universe has cooled to a temperature of about 1032 K.
Near the Planckian scale, nonperturbative quantum gravity dominates
and GR fails: gravity is unified with the other three forces.

- Grand Unification scale ∼ 10−14 − 10−43 s (10 TeV . E . 1019

GeV)
There is no reason to expect that non-perturbative Quantum Gravity
plays any significant role below 1019 GeV.
After 10−38 s, in fact, gravity has decoupled from the other forces
and classical spacetime makes sense to describe the dynamics of the
Universe but electromagnetic, weak and strong forces remain unified
as one single force with a single coupling constant, up to T ' 1029 K.
Quarks and leptons exist in a plasma state at energy scale E ∼ 1016

GeV. At these energy scales, there is some uncertainty regarding the

1A more detailed discussion in a later section.
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matter content.
It might be that there are many more particle species than those found
in the particle accelerators so far and many theories of Physics Beyond
the Standard Model are supposed to try to describe the matter content
in this regime.

- Electroweak scale ∼ 10−10 − 10−14 s (E ∼ 100 GeV - 10 TeV)
In this time interval, strong interactions decouple from electromag-
netic and weak interactions.
The Higgs field condenses and acquires a spontaneous vacuum expecta-
tion value, endowing masses to the quarks, leptons and weak bosons.
The typical energy of particles in the Universe is given by the elec-
troweak scale, EEW ∼ 1 TeV, with the Higgs phase transition temper-
ature given by TH = 1016 K.

- Quark-Gluon transition, Baryogenesis ∼ 10−6 s (E ∼ 1 GeV)
The quark-gluon transition takes place: free quarks and gluons become
confined within baryons and mesons.
The matter/antimatter symmetry is also broken and matter becomes
dominant. This process is called Baryogenesis.

- Neutrino decoupling ∼ 0.2 s (E ∼ 1− 2 MeV)
The primordial neutrinos decouple from other particles and propagate
without scatterings and the ratio of neutrons to protons freezes out
because the interactions that keep neutrons and protons in chemical
equilibrium become inefficient.

- Electron-positron asymmetry ∼ 1 s (E ∼ 0.5 MeV)
The typical energy at this time is of the order ofthe electron mass.
Electron- positron pairs begin to annihilate when the temperature
drops below their rest mass and only a small excess of electrons over
positrons, roughly one per billion photons, survives after annihilation.

- Nucleosynthesis 102 s ' 3 min (E ∼ 0.05 MeV)
Nuclear reactions become efficient at this temperature: helium and
other light elements start to form in the process of Nucleosynthesis.

- Cosmic Microwave Background ∼ 1013 s ' 380000 years (E ∼
eV)
Matter-radiation equality occurs: the radiation-dominated epoch ends
and the matter-dominated epoch starts, with the Universe cooling to
the temperature T ' 3000 K.
At this temperature, atoms form, and the absence of free charges
makes the Universe transparent to radiation which decouples from
matter.
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The Cosmic Microwave Backgroung (CMB) radiation is the relic radi-
ation, travelling freely after this Recombination epoch.
The CMB temperature fluctuations, induced by the slightly inhomo-
geneous matter distribution in this epoch, survive to the present and
carry information about the state of the Universe at the last scattering
surface.

- Large structures ∼ 1016 − 1017 s
Galaxies and their clusters have formed from small initial inhomo-
geneities due to gravitational instability.
The CMB radiation has further cooled to the temperature of 2.7 K.
The main unresolved fundamental issue regarding this period is the
nature of DM and DE.

2.3 Problems of the Standard Big-Bang model

Here, are briefly summarized the main issues that affect the Standard Big-
Bang model, which lead to the need to introduce the inflationary scenario
[9,10,13,14].

1. Flatness problem
In the Cosmological Standard Model, for the Universe it is valid that
ä < 0 for all time, i.e. it is decelerating, so a2H2 decreases: this indi-
cates that Ω tends to shift away from unity with the expansion of the
Universe.
However, present observations indicate that Ω is very close to one.
From this follows that in the past it should have been closer to one.
For instance, it is required |Ω− 1| < O(10−20) at the epoch of Nucle-
osynthesis, leading to a huge fine-tuning.

2. Horizon problem
CMB photons, which are propagating freely since they decoupled from
matter at the epoch of last scattering, appear to be in thermal equilib-
rium at almost the same temperature. To explain this, it is supposed
that the Universe has reached a state of thermal equilibrium through
interactions among different regions before the last scattering: the cos-
mological scales that can be seen must have been casually connected
before the decoupling of radiation from matter. But this is not possi-
ble for the regions that became casually connected recently to interact
before this event, because of the finite speed of light.
The new regions of the Universe that appear from the cosmological
horizon scale should not be in causal connection if their angular dis-
tance is of order 1◦. However, photons are seen to have almost the
same temperature with anisotropies of the order ∆T/T ' 10−5 in all
the CMB sky.
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3. Monopole problem
Particle physics predicts that spontaneous symmetry breakings occur
in the primordial Universe, with high temperatures and high densi-
ties. These events could have produced many unwanted relics such as
monopoles, cosmic strings, and topological defects. If these particles
existed in the early stage of the Universe, their energy densities would
decrease as a matter component and these massive relics would be the
dominant matter, differently from what is measured today.

2.4 Inflation

To solve these problems, it is claimed that, besides the series of the events
described above, the Universe underwent a period of exponential expansion
lasted from 10−36 s to 10−32 s, after the Big Bang. To have such exponential
expansion, a necessary condition to occur is the violation of the Strong
Energy Condition (SEC)

ρ+ 3p ≥ 0, (2.18)

for whatever matter component of the Universe present during this phase,
as can be seen from the second Friedmann equation (2.7).
In one of the simplest models of Inflation, the dominating matter compo-
nent is a minimally coupled scalar field ϕ, called the inflaton, to drive the
accelerated expansion in a FLRW Universe

S =
1

2

∫
d4x
√
−g[gµν∂µϕ∂νϕ− V (ϕ)]. (2.19)

The energy-momentum tensor is obtained by using the definition (2.4) and
has the form

Tµν = ∂µϕ∂νϕ− gµν
(1

2
gρσ∂ρϕ∂σϕ− V (ϕ)

)
. (2.20)

By comparing this expression with the energy-momentum tensor of a perfect
fluid (2.9) and taking into account that the scalar field must respect the
symmetries of the FLRW Universe, the following expression for the energy
density and the pressure yield

ρ =
1

2
ϕ̇2 + V (ϕ), (2.21)

p =
1

2
ϕ̇2 − V (ϕ). (2.22)

The Friedmann equations (2.6) and (2.7) take the form

3H2 = V (ϕ) +
1

2
ϕ̇2, (2.23)
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ϕ̈+ 3Hϕ̇ = −∂ϕV (ϕ). (2.24)

where the second equation coincides with the equation of motion for ϕ.
To violate the SEC (2.18) it must be valid that the kinetic energy is domi-
nated by the potential energy

ϕ̇2 < V (ϕ). (2.25)

In order for Inflation to end, it is required that a stable point where such
condition is violated, must exist. Furthermore, the model must provide a
graceful exit to a radiation dominated epoch.
To solve the equations (2.23) and (2.24), one usually uses the so-called slow-
roll approximation

ϕ̇2 << V (ϕ). (2.26)

In this approximation the equations (2.23) and (2.24) become

3H2 ' V (ϕ), (2.27)

3Hϕ̇ ' −∂ϕV (ϕ). (2.28)

If the scalar field satisfies the slow-roll conditions, then Inflation is guaran-
teed.
The shape of the potential is often characterized by slow-roll parameters
defined as

ε(ϕ) ≡ 1

2

(∂ϕV
V

)2
, η(ϕ) ≡

∂2
ϕV

V
, (2.29)

where ε measures the slope of the potential, and η measures the curvature.
Necessary conditions for the slow-roll approximation are

ε << 1, |η| << 1. (2.30)

Inflation has to last long enough in order to bring Ω sufficiently close to 1.
A standard measure of the expansion during Inflation is the number of e-
foldings, which is given by

N = log
a(tend)

a(tin)
, (2.31)

where a(tin) and a(tend) are the values of the scale factor at the initial and
at the end time of the inflationary epoch.
By using the slow-roll approximation, this number can be expressed without
solving the equations of motion

N = −
∫ ϕend

ϕin

V

∂ϕV
dϕ (2.32)

Thanks to the features of Inflation, the problems discussed above result to
be solved in inflationary scenario.
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For the flatness problem, since the a2H2 term in (2.16) decreases during
inflation, Ω rapidly approaches unity. When the inflationary period ends,
the evolution of the Universe is followed by the decelerated expansion and
|Ω− 1| begins to increase in the radiation and matter dominated epochs.
However, if the inflationary expansion occurs for a sufficiently long period,
Ω remains of order unity even at the present epoch.
Regarding the horizon problem, during Inflation one has ä > 0 and this
implies that the comoving Hubble radius rH is decreasing. So the physical
wavelength ∼ a grows faster than the Hubble radius during the inflationary
epoch. This means that regions that are causally connected were stretched
on scales larger than the Hubble radius.
In order to solve the horizon problem, it is thus required that

rH(t0) < rH(ti). (2.33)

The horizon and flatness problems can be solved if the Universe expands
about e70 times during the inflationary period, thus N ' 70.
For the last problem, the accelerated expansion dilutes unwanted relics den-
sity since it is proportional to a−3 and this fits the experimantal observations
that show that the contribution of these particles to the Universe density is
completely negligible today.
For further discussions on models of Inflation, see [10].

2.5 Dark Energy and Quintessence

Besides to adding a perfect fluid with equation of state p = −ρ as done in
section 2.1, a way to model DE is adding a positive cosmological constant
Λ to the Einstein-Hilbert action (2.1)

SΛ = −
∫
d4x
√
−gΛ. (2.34)

Variation with respect to the metric gives the Einstein equation

Gµν = 8πGTµν + Λgµν (2.35)

which has one more term with respect to equation (2.2).
The associated Friedmann equations read

ȧ2

a2
=

8πG

3
ρ+

Λ

3
+

k

a2
(2.36)

and
ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (2.37)
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So, from equation (2.36) for a flat Universe dominated by the cosmological
constant, the scale factor

a(t) ∝ exp
(√Λ

3
t
)
. (2.38)

This solution gives rise to a late-time accelerated expansion because Λ re-
mains constant for all time, while dust decays as seen in (2.13) and as time
grows, Λ starts to compete and then overcomes dust.
An alternative way to model the late-time acceleration is to consider DE
varying with time, through an additional scalar field.
As seen above, a scalar field can naturally provide a cosmic fluid with neg-
ative pressure that can drive accelerated expansion.
One can consider the same mechanism to give account for the late-time ob-
served phenomenology.
Such models are usually called Quintessence. Many models with non-trivial
kinetic terms have been proposed so far but in this section a basic one with
standard kinetic term is discussed. For a review of these models, see [15].
The scalar field χ is described by the following action

S =

∫
d4x
√
−g
[

1

2
gµν∂µχ∂νχ− V (χ)

]
. (2.39)

Similarly to the Inflation the non-trivial behavior stems from the choice of
the shape of the potential.
In a flat FLRW Universe the equation of motion for the field χ is

χ̈+ 3Hχ̇ = −∂χV (χ), (2.40)

where the spatial derivatives as in the case of the inflaton, are not taken into
account, since χ is assumed to be homogeneous because it has to respect
the symmetries of the metric describing the Universe.
The energy-momentum tensor takes the same form as for the inflaton (2.20)
and the energy density and the pressure for this field is the same as (2.21)
and (2.22).
The ratio of the pressure over the energy density is given by

ωχ =
p

ρ
=
χ̇2 − 2V (χ)

χ̇2 + 2V (χ)
, (2.41)

with ωχ ∈ [−1, 1]. The lower bound corresponds to the slow-roll approxi-
mation. The solution of the continuity equation (2.10) for time-dependent
equation of state reads

ρ = ρ0 exp
(∫

3(1 + ωχ)
da

a

)
, (2.42)
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where ρ0 is a constant of integration.
By using the last expression for the scale factor a, the condition that the
potential has to satisfy such that accelerated expansion can be produced,
can be derived.
The border between accelerated and decelerated expansion is

a(t) ∝ t. (2.43)

The potential can be found with no extra effort if the scale factor obeys a
power law

a(t) ∝ tp. (2.44)

From Friedmann equations (2.6) and (2.7), it is obtained the following rela-
tion

Ḣ = −4πGχ̇2. (2.45)

By using the last equation and the expressions for ρ and p (2.21) and (2.22)
in the second Friedmann equation (2.7), the potential V and the field χ are
expressed in terms of H and Ḣ

V =
3H2

8πG

(
1 +

Ḣ

3H2

)
, (2.46)

χ =

∫
dt(−2Ḣ)1/2. (2.47)

By substituting into these formulas the scale factor (2.44), and by using the
definition of the Hubble constant (2.8), equations (2.46) and (2.47) become

V =
p(3p− 1)

8πGt2
, (2.48)

χ = ±
( p

4πG

)1/2
log(t). (2.49)

By expressing t from the positive branch of the last equation and plugging
it in (2.48), it is obtained

V (χ) =
p(3p− 1)

8πG
exp

(
−
(16πG

p

)1/2
χ
)
. (2.50)

The major difference with the Inflation is that the potential is chosen to
achieve accelerated expansion at late time, instead of the early Universe.

2.6 Dark Matter

The main features of DM are naively summarized as follows [11]:

1. DM is a nonluminous matter component which has no electromagnetic
interaction. So, it should consist of chargeless neutral particles;
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2. DM should be composed by stable particles which do not decay to
known particles, pervades the Universe and helps the formation of
large-scale structure;

3. The interaction of DM with Standard Model particles is very weak
and only of gravitational type.

The major evidence for the existence of DM is given by spiral galaxies ro-
tation curves.
The stars in a galaxy orbit around the center of the galaxy. These orbits
around the galactic center are roughly circular but oscillate in their bound
closed paths due to the gravitational influence of other objects in the galaxy,
such as other stars and planets.
So each star has also a back-and-forth motion along the radial direction
along its orbit. Studies of the radial motion are performed by the spectro-
scopic method, measuring the shift of the light coming from the star, due to
the Doppler effect. However, the average motion of a star in a spiral galaxy
is circular with great approximation. Thus, the velocity of this circular mo-
tion is such that it balances the gravitational force on the star toward the
galactic center to keep it in the circular motion.
A rotational curve of a galaxy is the orbital speed of the stars in a galaxy as
a function of the radial distance of the stars from the galactic center. For a

Figure 2.2: An observed rotation curve data of a spiral galaxy [2]

spiral galaxy there is a central bulge where most of the mass is concentrated
and the spiral arms are spread over a disk.
For a star in such a galaxy at a distance r from the galactic center moving
with a circular velocity v(r), the balance between the gravitational force and
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the centrifugal force is given by

mv(r)2

r
=
GmM<r

r2
, (2.51)

where M<r is the mass in the sphere of radius r. If the star is in the bulge
of the galaxy with average density ρ, then M<r = 4

3πr
3ρ. Then, for a star

in the central bulge from equation (2.50) it is expected

v(r) ∼ r. (2.52)

But for a star outside this dense center, the mass M<r can be assumed
constant and coincides approximately with the mass of the central bulge.
Then from equation (2.51) it follows that

v(r) ∼ 1√
r
. (2.53)

Thus the variation of v(r) with r for a spiral galaxy should initially increase
and then decrease.
However, observational data of rotation curves for several spiral galaxies
show v(r) = constant for large r, as can be seen in the Figure 2.2. Then one
gets from equation (2.51) that M<r ∼ r, suggesting the presence of a huge
quantity of nonluminous only gravitationally interacting mass in the galaxy.
This is one of the astrophysical evidence for the DM hypothesis and DM is
believed to form a halo in which the galaxy is embedded.
The different forms of DM that have been conjectured to fill the Universe
are distinguished on the basis of the mechanism of their production, particle
types and their masses and speed.
First of all, DM can be classified on the basis of whether it was produced
thermally or non-thermally in the early Universe.
In the case of thermal production, DM is produced via the collision of cosmic
plasma in radiation-dominated era, while the non-thermal DM particles are
produced by other mechanisms, such as the decay of some massive particles.
The particle nature of DM can be of two types, baryonic or non-baryonic.
DM can not be made of known particles, as already said, but the visible Uni-
verse can not account for the baryon density in the Universe: at least some
DM must be baryonic in order to account for the astrophysical data avail-
able. The baryonic DM can be inside Massive AstrophysiCal Halo Objects
(MACHOs). Other suggestions for baryonic DM are, for instance, brown
dwarfs and primordial black holes.
The baryonic contribution to DM is negligible, so the DM should be mostly
non-baryonic. Non-baryonic DM particles have very weak interactions with
ordinary matter and hence they are hard to detect. Some of possible non-
baryonic DM candidates can be massive enough to account for DM relic
density of the Universe.
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The relic particles comoving density becomes constant when the interaction
rate of DM particles falls below the expansion rate of the Universe.
The mass of DM particles and the temperature of the Universe at the time
of their decoupling determine whether DM particles were relativistic or non-
relativistic at that time. One can distinguishes between Hot Dark Matter
(HDM) and Cold Dark Matter (CDM).
HDM is characterized by relativistic speeds and at the time of freeze-out,
was extremely relativistic with masses less than kinetic energies.
More precisely, given a HDM species, let m be the mass of the particles and
Tf its freeze-out temperature, it holds

xf . 3 with xf =
m

Tf
. (2.54)

On the other hand, for CDM it holds

xf & 3 (2.55)

and at the freeze-out, this type of DM particles were non-relativistic and
heavier than HDM particles.
In the Λ-CDM model, HDM is negligible with respect to CDM.
No DM particle candidates have been detected so far. Therefore, many
attempts to explain phenomenology of galaxies by modifying Gravity have
been made. One is represented by Mimetic Gravity, reviewed in this work.
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Chapter 3

Mimetic Dark Matter

In this chapter, the features of the original model of Mimetic Gravity, called
Mimetic Dark Matter (MDM) [1], will be presented, pointing out its relation
with general disformal transformations.
An equivalent formulation will be introduced and will be used in the next
chapters for further developments.

3.1 The original proposal

The physical metric gµν is reparametrized in terms of a scalar field φ and
an auxiliary metric lµν

gµν = lµν(lαβ∂αφ∂βφ) ≡ wlµν (3.1)

such that the physical metric gµν results to be invariant under the conformal
transformation of the auxiliary metric lµν → Ω2lµν .
While the Einstein equations are obtained by varying the Einstein-Hilbert
action and the matter action (2.1) with respect to the metric gµν , here the
fundamental fields describing gravity are taken to be the auxiliary metric
lµν and the scalar field φ and the new equations are found by varying with
respect to these two fields.
For this reason, the usual general relativistic Einstein-Hilbert action can be
written in terms of the physical metric gµν , considered as a function of the
auxiliary metric lµν and on the scalar field φ.
Hence, the full action of the theory is

S =

∫
d4x
√
−g(lµν , φ)

[
− 1

2κ
R(gµν(lµν , φ)) + LM

]
(3.2)

where κ ≡ 8πG and c = 1 and the form of the matter Lagrangian LM is not
specified.
The variation with respect to the physical metric gµν as usual, leads to

δS = −1

2

∫
d4x
√
−g(Gαβ − κTαβ)δgαβ. (3.3)
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Now, the variation δgαβ can be recasted in terms of the variation of the
auxiliary metric δlαβ and the variation of the scalar field δφ

δgαβ = wδlαβ + lαβδw =

= wδlµν(δµαδ
ν
β − gαβgκµgλν∂κφ∂λφ) + 2gαβg

κλ∂κδφ∂λφ (3.4)

By plugging this expression in (3.3), the following equations of motion are
obtained

(Gµν − κTµν)− (G− κT )gµαgνβ∂αφ∂βφ = 0, (3.5)

and

1√
−g

∂κ(
√
−g(G− κT )gκλ∂λφ) = ∇κ((G− κT )∂κφ) = 0, (3.6)

where (3.5) are modified Einstein field equations and (3.6) takes the form
of a continuity equation for the scalar field φ.
To go further in the analysis of the model, it is worth noticing that from
(3.1), the inverse physical metric gµν can be written in terms of the inverse
auxiliary metric lµν as

gµν =
1

w
lµν , (3.7)

and for consistency, the scalar field satisfies the constraint equation

gµν∂µφ∂νφ = 1. (3.8)

The trace of (3.5) is given by

(G− κT )(1− gµν∂µφ∂νφ) = 0 (3.9)

which is identically satisfied even for G− κT 6= 0.
In fact, the trace G−κT is determined from (3.6) and (3.8) and even in the
absence of matter, the equations for the gravitational field have non-trivial
solutions for the conformal mode.
As will be shown explicitly later in this section, solving equation (3.6) for φ,
it determines G− κT . Hence, in addition to two transverse degrees of free-
dom, already present in GR and describing gravitons, an extra longitudinal
degree of freedom shared by the scalar field φ and a conformal factor of the
physical metric becomes dynamical.
Now it is easy to show what this extra degree of freedom describes, by
rewriting (3.5) in the form

Gµν = κTµν + T̃µν , (3.10)

where
T̃µν = (G− κT )gµαgνβ∂αφ∂βφ, (3.11)

24



By comparison with the energy-momentum tensor of a perfect fluid (2.9),
the energy density ε̃ and the four-velocity uµ are given by

ε̃ ≡ G− κT, uµ ≡ gµα∂αφ. (3.12)

Hence, the energy-momentum tensor T̃µν describes pressureless dust with
energy density ε̃ = G − κT and the scalar field plays the role of a velocity
potential, whose normalization condition is given by the kinematical con-
straint (3.8).
Furthermore, an interesting property of T̃µν is that from its conservation
law, the equation for the scalar field φ (3.6) is recovered.
To find a general explicit solution for equation (3.6), it is convenient to
consider a synchronous coordinate system where the metric takes the form

ds2 = dt2 − γijdxidxj , (3.13)

where γij is a 3-dimensional metric.
Moreover, by assuming that the scalar field φ is spatially homogeneous, the
constraint (3.8) reduces to g00(∂tφ)2 = 1, whose general solution is given by

φ = ±t+ C. (3.14)

So the scalar field φ can be identified with time in a synchronous back-
ground.
By using this identification, equation (3.6) in a synchronous coordinate sys-
tem, simplifies to

∂t

(√
−γ(G− κT )

)
= 0, (3.15)

with γ = det γij .
The solution of this equation is given by

G− κT =
C(xi)√
−γ

, (3.16)

where C(xi) is a constant of integration depending only on spatial coordi-
nates.
In flat FLRW universe, where γij = a2(t)δij , the solution can be rewritten
as

G− κT =
C(xi)

a3
, (3.17)

that is, the energy density of the extra scalar degree of freedom is propor-
tional to a−3 and imitates pressureless dust, whose amount is determined
by the time-independent constant of integration C(xi).
The presence of ordinary matter matter modifies only the amount of energy
density but not how it scales with the scale factor.
This is the reason why this model has been called Mimetic Dark Matter
(MDM) and to the scalar field is added the adjective mimetic.
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3.2 Disformal transformations

3.2.1 General disformal transformations

Now the question regarding MDM model introduced in the previous section,
is: why the seemingly innocous reparametrization of the physical metric de-
scribed above leads to such dramatic change for the GR equations of motion.
The answer is that this is a particular singular disformal transformation [16].
To analyse this important issue, instead of the physical metric reparametriza-
tion adopted in (3.1), here a more general one, called disformation or dis-
formal transformation is taken into account

gµν = F (φ,w)lµν +H(φ,w)∂µφ∂νφ, (3.18)

where F and H are a priori arbitrary functions of the field φ and of the
conformal factor w, defined above.
It can be easily noticed that the reparametrization leading to the MDM
model is just a special case: F = w and H = 0.
By following the same steps as in the previous section, the following equa-
tions of motion are obtained

F (Gµν − κTµν) =

(
A
∂F

∂w
+B

∂H

∂w

)
(lµρ∂ρφ)(lνσ∂σφ), (3.19)

2√
−g

∂ρ

{√
−g∂σφ

[
H(Gρσ−κT ρσ)+

(
A
∂F

∂w
+B

∂H

∂w

)
lρσ
]}

= A
∂F

∂φ
+B

∂H

∂φ
.

(3.20)
The first equation is the modified Einstein equation and the second equa-
tion is the continuity equation for the mimetic scalar field φ, in which the
following definitions are used

A ≡ (Gρσ − κT ρσ)lρσ, B ≡ (Gρσ − κT ρσ)∂ρφ∂σφ. (3.21)

3.2.2 Veiled General Relativity

Contractions of the modified Einstein equation (3.19) with lµν and ∂µφ∂νφ
yield

A

(
F − w∂F

∂w

)
−Bw∂H

∂w
= 0,

and

Aw2∂F

∂w
−B

(
F − w2∂H

∂w

)
= 0, (3.22)

respectively. This is a system of two algebraic equations in the variables A
and B and its determinant is given by

det = w2F
∂

∂w

(
H +

F

w

)
. (3.23)
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For det 6= 0, the unique solution of the system (3.22) is A = B = 0 and the
equations (3.19) and (3.20) reduce to

F (Gµν − κTµν) = 0, ∂ρ[
√
−g∂σφH(Gρσ − κT ρσ)] = 0 (3.24)

where F 6= 0.
The first equation is the usual Einstein equation and, as a consequence, the
second one is identically zero.
Thus, in the generic case, the variation of the Einstein-Hilbert action with
respect to the disformed metric gµν or with respect to lµν and φ, are com-
pletely equivalent.
An easy proof of a general theorem in classical field theory stating that, for
a general non-singular transformation, connecting two different sets of fields
describing the same theory, the number of degrees of freedom in the theory,
i.e. the number of initial configurations needed to specify the time evolution
of the fields, remains the same, is given in [17].
This is valid in particular for non-singular disformal transformations.

3.2.3 Mimetic Gravity

The theorem in [17] is not in general true for a singular disformal trans-
formation: in this case the number of degrees of freedom can decrease or
increase.
A singular disformal transformation (3.1) connects the physical metric gµν
with the auxiliary metric lµν and the mimetic scalar field φ: when GR is
rewritten in terms of this new variables is not guaranteed that the number
of degrees of freedom remains the same as when it is written in terms of the
physical metric and, indeed, there is one more degree of freedom.
The Hamiltonian analysis in Chapter 6 will be crucial for convincing oneself
of the truth of the last statement.
Hovever, here is interesting to see what happens in a general situation, of
which (3.1) is a particular case.
By turning to the case when the determinant (3.23) is zero, a very different
situation is found.
For F 6= 0, the function H(w, φ) takes the form

H(w, φ) = −F (w, φ)

w
+ h(φ). (3.25)

The solution of the system (3.22) is B = wA and the equations of motion
(3.19) and (3.20) become

Gµν − κTµν =
A

w
(lµρ∂ρφ)(lνσ∂σφ),

2√
−g

∂ρ(
√
−ghAlρσ∂σΨ) = Aw

dh

dφ
(3.26)
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For h(φ) 6= 0, these equations of motion can be written in terms of the
disformed metric gµν only

Gµν − κTµν = (G− κT )h∂µφ∂νφ, 2∇ρ[(G− κT )h∂ρφ] = (G− κT )
1

h

dh

dφ
,

(3.27)
where it is used that the disformed metric (3.18) can be expressed, by using
equation (3.25), as

gµν = F (w, φ)lµν + ∂µφ∂νφ
(
− F (w, φ)

w
+ h(φ)

)
. (3.28)

and the inverse metric gµν is given by1

gµν =
lµν

F
+
F − wh
Fhw2

(lµρ∂ρφ)(lνσ∂σφ). (3.29)

By using the last equation, one has that A = (G− κT )/(hw) and lµρ∂ρφ =
hw∂µφ, where G− κT ≡ gρσ(Gρσ − κT ρσ) and ∂µφ ≡ gµρ∂ρφ.
Finally, by means of a field redefinition, the function h(φ) can be eliminated,
by introducing the field Φ such that dΦ

dφ =
√
|h|, yielding

Gµν − κTµν = ε(G− κT )∂µΦ∂νΦ, 2∇ρ[(G− κT )∂ρΦ] = 0, (3.30)

where ε = ±1 depending on the sign of the norm of ∂µφ: gµν∂µΦ∂νΦ = ε,
which depends on the choice of the metric signature.
For ε = +1, these equations are exactly the same as the original equations
of motion for MDM (3.5) and (3.6).
So, for a general non-singular disformal transformation, MDM is recovered
by means of a field redefinition.

3.3 Lagrange multiplier formulation

Besides of the original formulation of MDM model, an equivalent formula-
tion by using a Lagrange multiplier can be derived [18]. For an alternative
derivation, see [19].
For this purpose, a set of Lagrange multipliers λµν is introduced to impose
the reparametrization of the physical metric gµν in terms of the auxiliary
one lµν and the mimetic field φ. The action, ignoring the matter Lagrangian,
reads

S =

∫
d4x
√
−g
[
− 1

2κ
R(gµν) + λµν

(
gµν − lµν(lαβ∂αφ∂βφ)

)]
(3.31)

By varying with respect to φ one has

∇µ(λ∂µφ) = 0, (3.32)

1The assumption h 6= 0 is crucial for the invertibility of the metric.
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where λ ≡ λµµ = gµνλ
µν .

By comparing this equation with (3.6), it is obtained that λ = G − κT or
λ = G in absence of ordinary matter.
Variation with respect to the physical metric gµν yields the Einstein equation

Gµν − λµν = 0. (3.33)

Finally, by varying with respect to lµν one obtains

λµν(lαβ∂αφ∂βφ− λρσlρσlµα∂αφlνβ∂βφ = 0, (3.34)

which, by using equation (3.1), gives

λµν = λ∂µφ∂νφ. (3.35)

By using λ = G and substituting the last equation in (3.33), the general-
ized Einstein equation of mimetic DM model above with vanishing energy-
momentum tensor is recovered.
So, the theory described by the action (3.31) is equivalent to the original
action (3.2).
Moreover, the new action can be further simplified: λµν is fully determined
by its trace and only the trace part of the constraint-fixing term can be left
in the action, leading to

S =

∫
d4x
√
−g
(
− 1

2κ
R(gµν) + λ(gµν∂µφ∂νφ− 1)

)
(3.36)

This Langrange multiplier formulation of the MDM action will be used in the
following chapters for reviewing further developments in Mimetic Gravity.
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Chapter 4

Mimetic Gravity Cosmology

After having introduced the model and discussed some issues regarding it in
the previous chapter, it is particularly interesting to consider some exten-
sions.
In this chapter a potential for the mimetic scalar field is introduced, through
which it is possible to mimic many cosmological scenarios: this generalized
MDM model can provide Inflation and Quintessence and can also lead to a
bouncing non-singular Universe [20]. The role of the potential will be sim-
ilar to that seen for the models of Quintessence and Inflation discussed in
Chapter 2.
Motivated by the discussion regarding the known facts about the Universe
in Chapter 2, only the flat FLRW metric will be considered.
Then, a general method for resolving cosmological singularities [21], a direct
coupling between MDM and ordinary matter [22] and cosmological pertur-
bations in Mimetic Gravity setting [20] are discussed.

4.1 Potential for Mimetic Matter

The following action is considered

S =

∫
d4x
√
−g
[
− 1

2κ
R(gµν) + LM + λ(gµν∂µφ∂νφ− 1)− V (φ)

]
, (4.1)

where a potential term for the mimetic scalar field φ is added to the original
Lagrangian, and its form will be specified in the following and will depend
on which cosmological scenario has to be reproduced.
Variation with respect to λ gives obviously the kinematical constraint (3.8),
while varying with respect to gµν yields the modified Einstein equation

Gµν − 2λ∂µφ∂νφ− gµνκV (φ) = κTµν . (4.2)

By taking the trace of the last equation, the Lagrange multiplier can be
recasted as

λ =
1

2
(G− κT − 4κV ), (4.3)
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where the constraint (3.8) is already used.
Therefore, the equation (4.2) can be rewritten as

Gµν = (G− κT − 4κV )∂µφ∂νφ+ gµνκV (φ) + κTµν . (4.4)

The equation of motion for the mimetic field φ takes the form

∇ν((G− κT − 4κV )∂νφ) = −κV ′(φ), (4.5)

where the prime denotes derivative with respect to φ and it is the general-
ization of (3.6) in the case of non-vanishing potential.
By comparing the extra contribution to the modified Einstein equation (4.4)
with the perfect fluid energy-momentum tensor (2.9), the extra ideal fluid
is seen to have a pressure and an energy density given by

p̃ = −κV, and ε̃ = G− κT − 3κV (4.6)

respectively, where the mimetic scalar field φ plays the same role as in
Chapter 3.
Now, it is interesting to see how the presence of the potential V (φ) modifies
the solution for the MDM model found in Chapter 3.
By considering a flat FLRW Universe, the potential V (φ) does not spoil the
mimetic constraint (3.8) and as a consequence, the field φ can be identified
with cosmological time, as done in Chapter 3. Hence, the pressure and the
energy density associated with the scalar field φ, depend only on time and
consequently, equation (4.5) reads

1

a3

d

dt
(a3(ε̃− κV )) = −κV̇ . (4.7)

This equation, with the pressure given in (4.6), is the usual continuity equa-
tion

˙̃ε = −3H(ε̃+ p̃), (4.8)

where H is the Hubble constant (2.8).
Upon integration, equation (4.7) gives the energy density in terms of the
potential V

ε̃ = κV − κ

a3

∫
a3V̇ dt =

3κ

a3

∫
a2V da. (4.9)

A constant of integration in the last equation determines the amount of
MDM, which decays as a−3 as found in Chapter 3, but now there is an extra
contribution besides to that of MDM due to the non-vanishing potential V .
The first Friedmann equation, corrisponding to the tt component of the
Einstein equations (4.4), for vanishing or negligible ordinary matter, by
using the last equation, takes the form

H2 =
κ

3
ε̃ =

κ2

a3

∫
a2V da, (4.10)
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By multiplying the last equation by a3 and differentiating it with respect to
time one obtains the second Friedmann equation

2Ḣ + 3H2 = V (t), (4.11)

where, for simplicity, κ = 1.
The last equation can be simplified by introducing the new variable

y = a
3
2 . (4.12)

With this new variable, the Hubble constant and its first time derivative
become

H =
2

3

ẏ

y
, Ḣ =

2

3

(
ÿ

y
−
(
ÿ

y

)2
)
, (4.13)

and equation (4.11) becomes a linear differential equation

ÿ − 3

4
V (t)y = 0 (4.14)

This is the equation of a harmonic oscillator with sign reversed angular fre-
quency which depends on time. For a general procedure for solving this type
of differential equations, see [23].
Here, only some interesting potentials by the cosmological point of view and
the corresponding solutions for the equation (4.14) are considered.

4.1.1 Cosmological solutions

As a first example, the following potential is studied

V (t) =
α

t2
, (4.15)

where α is a constant.
The general solution of the equation

ÿ − 3α

4t2
y = 0, (4.16)

is given by

y =

{
C1t

1
2 cos

(
1
2

√
|1 + 3α| ln t+ C2

)
, for α < −1/3,

C1t
1
2

(1+
√

1+3α) + C2t
1
2

(1−
√

1+3α), for α ≥ −1/3,

where C1 and C2 are constants of integration.
The solution for α < −1

3 becomes negative in certain intervals of time, so it
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is unphysical.
Instead, the general solution for α ≥ −1/3 is physical and can be written as

a(t) = t
1
2

(1+
√

1+3α)
(

1 +At−
√

1+3α
)2/3

, (4.17)

where A = C2/C1, assuming C1 6= 0.
By substituting this solution in the first Friedmann equation (4.10), one
finds the energy density

ε̃ = 3H2 =
1

3t2

(
1 +
√

1 + 3α
1−At−

√
1+3α

1 +At−
√

1+3α

)2
(4.18)

and, taking into account that

p̃ = −κα
t2
, (4.19)

for the fluid associated with mimetic scalar field φ with equation of state
p̃ = ωε̃ one finds

ω =
p̃

ε̃
= −3α

(
1 +
√

1 + 3α
1−At−

√
1+3α

1 +At−
√

1+3α

)−2
(4.20)

In general, this equation of state depends on time but in the limit of small
and large t tends to a constant and, for different values of the parameter α,
one gets different behaviors for MDM

• α = −1/3: ultra-hard equation of state with p̃ = ε̃ and a ∝ t1/2;

• α = −1/4: ultra-relativistic fluid with p̃ = 1
3 ε̃ at large time and p̃ = 3ε̃

when t→ 0 if A 6= 0;

• positive α: the pressure is negative and if α >> 1 the equation of state
approaches the cosmological constant, p̃ = −ε̃.

4.1.2 Quintessence

If the same potential of the previous section is considered but the Universe
is dominated by ordinary matter with the equation of state (2.11), the scale

factor reads as a ∝ t
2

3(1+ω) and the energy density of MDM (4.9) takes the
form

ε̃ = − α

ωt2
. (4.21)

Because the pressure is p̃ = −κα/t2, MDM imitates the equation of state
of the dominant matter. However, since the total energy density from (2.6)
with κ = 1 and k = 0, is equal to

ρ = 3H2 =
4

3(1 + ω)2t2
, (4.22)

MDM can be subdominant only if α/ω << 1. The more general solution for
subdominant MDM, φ = t+ t0, first corresponds to a cosmological constant
for t < t0 and only at t > t0 starts to behave similar to a dominant matter.
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4.1.3 Inflation

Inflationary solutions can also be constructed in the framework of Mimetic
Gravity, provided that the potential satisfies the following limits:

• for t→ 0, V (t) ∼ t2

• for t→∞, V (t) ∼ t2e−t

By interpolation, one finds the potential also for intermediate values of t

V (t) =
αt2

exp(t) + 1
. (4.23)

With α > 0, this potential describes inflation with graceful exit to matter
dominating universe. In fact, the scale factor grows as

• a ∝ exp
(√

α
12 t
)

as t→ 0;

• a ∝ t2/3 for positive t.

For t → 0 it can be easily shown that the Strong Energy Condition (SEC)
ε̃+ 3p̃ ≥ 0 is violated.

4.1.4 Bouncing Universe

A potential which provides a non-singular bounce in a contracting flat Uni-
verse is

V (t) =
4

3

1

(1 + t2)2
. (4.24)

The general exact solution of the equation (4.14) with this potential is given
by

y(t) =
√
t2 + 1(C1 + C2 arctan t), (4.25)

and correspondingly the scale factor is

a(t) =
(√

t2 + 1(1 +A arctan t)
)2/3

, (4.26)

where A = C2/C1, assuming C1 6= 0. The constant of integration A can be
put equal to zero, and the scale factor

a(t) = (t2 + 1)1/3 (4.27)

yields the following energy density and pressure

ε̃ = 3H2 =
4

3

t2

(1 + t2)2
, p̃ = −4

3

1

(1 + t2)2
. (4.28)
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The interesting property of this solution is that for |t| < 1

ε̃+ p̃ =
4

3

t2 − 1

(1 + t2)2
(4.29)

becomes negative, violating the Null Energy Condition (NEC)

ε̃+ p̃ ≥ 0 (4.30)

Therefore, the null version of the Penrose-Hawking singularity theorem does
not apply and a non-singular bounce is possible [24].
This process is the so-called Big Bounce, as an alternative to the Big Bang:
for a review of different models, see [25].
For large negative t the universe is dominated by dust with negligible pres-
sure and it contracts, the energy density first growing as a−3. Then, during
the time interval |t| < 1 the NEC (4.30) is violated, the energy density first
increases reaching the Planck energy at time t = 0, and finally, starts to
decrease.
Correspondigly, the Universe stops its contraction and starts to expand. Af-
ter the Planck time, the expansion proceeds as in dust dominated Universe.
In the model considered so far, the bounce happens at Planck scales, where
the quantum effects should be relevant but the potential V can be modified
in such a way that the bounce will be longer than the Planck time scale.
For this purpose, the potential can be chosen as

V (φ) =
4

3

α

(t20 + t2)2
(4.31)

For this potential, the equation (4.19) becomes

d2y

dt̃2
− αt−2

0

(1 + t̃2)2
y = 0, (4.32)

where t̃ = t/t0, and its general solution is

a(t) =
[√

t̃2 + 1
(

cos(β arctan(t̃)) +A sin(β arctan(t̃))
)] 2

3
, (4.33)

where β =
√

1− αt−2
0 . In this case the bounce happens at scales about

αt−2
0 during the time interval t0.

4.2 Resolving Cosmological Singularities

A more general method than that presented in the previous section for
resolving cosmological singularities, is presented in [21]. For this purpose,
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the following action is considered

S = −
∫
d4x
√
−g
(
− 1

2κ
R+ λ(gµν∂µφ∂νφ− 1) + f(χ) + LM

)
(4.34)

where χ = 2φ and f is an arbitrary function of χ for the moment.
The mimetic scalar field φ satisfies the constraint (3.8) and therefore the
term f(χ) does not lead to the appearance of higher derivatives.
Variation of the above action with respect to the metric gives the following
equations

Gµν = T̃µν + κTµν (4.35)

as in the previously considered models, but with a more complex energy-
momentum tensor associated with the mimetic scalar field φ, given by

T̃µν = 2λ∂µφ∂νφ+ gµν(χf ′ − f + gρσ∂ρf
′∂σφ)− ∂(µf

′∂ν)φ, (4.36)

with f ′ = df/dχ. It is easy to notice that for f = 0 this energy-momentum
tensor reduces to the one of the original proposal, discussed in Chapter 3.
By considering the synchronous frame, as in Chapter 3, the mimetic scalar
field can be identified with the time and then χ = γ

2γ̇ .
In this discussion, the components of the metric γik will be considered only
function of time and in this case the components of the Ricci tensor are
given by

R0
0 = −1

2
κ̇ − 1

4
κki κik, Rik = − 1

2
√
γ

d(
√
γκik)
dt

, (4.37)

where κik = γimγ̇mk, κ = κii = γ̇
γ .

The components of the mimetic energy-momentum tensor (4.36) are

T̃ 0
0 = 2λ+ χf ′ − f − χ̇f ′′, (4.38)

and
T̃ ik = (χf ′ − f + χ̇f ′′)δik. (4.39)

respectively.
Hence, the tt and the i− j components of the Einstein equations read

1

8
(κ2 − κki κik) = 2λ+ χf ′ − f − χ̇f ′′ + T 0

0 , (4.40)

and
1

2
√
γ

∂(
√
γκik)

∂t
= (λ+ χf ′ − f)δik − T ik +

1

2
Tδik. (4.41)

From the variation of the action (4.34) with respect to φ, the equation for
the mimetic scalar field φ reads

1
√
γ
∂t(2
√
γλ) = 2f ′ =

1
√
γ
∂t(
√
γf ′′χ̇), (4.42)
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where in the last identity the action of the Laplacian on a function f ′ de-
pending implicitly on time t through χ, becomes evident.
From the integration of equation (4.42), the expression for the Lagrange
multiplier λ is found

λ =
C

2
√
γ

+
1

2
f ′′χ̇, (4.43)

where C is a constant of integration corresponding to mimetic cold matter.
For the usual matter, T ik = −pδik is valid. With this assumption, by sub-
tracting from equation (4.41) one third of its trace, the equation

∂t

(√
γ
(
κik −

1

3
κδik

))
= 0, (4.44)

follows and its solution is given by

κik =
1

3
κδik +

λik√
γ

(4.45)

where λik are traceless constants of integration.
By taking into account that κ = 2χ = γ̇/γ and substituting the last equation
together with the expression for the Lagrange multiplier (4.43) into the tt
component of the Einstein equations (4.40) one gets

1

3
χ2 + f − χf ′ =

λikλ
k
i

8γ
+

C
√
γ

+ T 0
0 . (4.46)

One can solve this equation for γ and substitute the result in (4.45) in order
to determine all components of the metric, given the function f . The classes
of functions f of interest are those which lead to singularity free solutions.
One requires curvature invariants to be bounded by some limiting maximal
values determined by χm which is smaller than the Planck value in order to
ignore any quantum effect.
A suitable function for this purpose is of the Born-Infeld type

f(χ) = 1 +
1

2
χ2 − χ arcsinχ−

√
1− χ2. (4.47)

This function has the desirable property that at χ2 << χ2
m the corrections

to GR are negligible because its expansion at small χ starts at order χ4.

After scaling χ→
√

2
3
χ
χm

and f → χ2
mf , the function f takes the form

f(χ) = χ2
m

[
1 +

1

3

χ2

χ2
m

−
√

2

3

χ

χm
arcsin

(√
2

3

χ

χm

)
−

√
1− 2

3

χ2

χ2
m

]
, (4.48)

and substituting in (4.46), leads to the equation

ε = χ2
m

(
1−

√
1− 2

3

χ2

χ2
m

)
, (4.49)
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where ε =
λikλ

k
i

8γ + C√
γ + T 0

0 , i.e. it is the sum of all the contributions to the

energy density present in this setting.
By squaring the last equation and recalling that χ = γ̇

2γ , the following
equation is obtained

1

12

( γ̇
γ

)2
= ε
(

1− ε

εm

)
, (4.50)

where εm = 2χ2
m.

In the FLRW Universe this equation becomes

3
( ȧ
a

)2
=
εm
a3

(
1− 1

a3

)
, (4.51)

where only the contribution to ε due to MDM is considered and the scale
factor a is normalized in order to have ε = εm at a = 1.
The solution of the modified first Friedmann equation reads

a(t) =
(

1 +
3

4
εmt

2
)1/3

, (4.52)

For t < −1/
√
εm, it describes a cold matter dominated contracting Universe,

then it passes through the regular bounce during time interval −1/
√
εm <

t < 1/
√
εm, and after the bounce for t > 1/

√
εm the universe is expanding

as the normal dust dominated FLRW Universe.
For the same procedure in the case of Kasner Universe, see [21]. For black
holes, the same analysis can be repeated as done in [26].

4.3 Direct coupling of Mimetic Dark Matter with
matter

In this section a direct interaction of MDM with ordinary matter at a rele-
vant energy scale, is considered [22].
To study what happens in this situation, the physical metric gµν in terms
of the auxiliary metric lµν and the mimetic scalar field φ is given by

gµν = lµν l
αβ ∂αφ∂βφ

M4
1

(4.53)

where a mass scale M1 is introduced to give the correct mass dimension to
the mimetic scalar field.
A requirement that will be clear later is that the action should be invariant
under the shift symmetry φ → φ + C, where C is a constant, so a non-
vanishing potential V (φ) is excluded.
Hence, the action is given by

S =

∫
d4x
√
−g
[M2

p

2
R+ λ(gµν∂µφ∂νφ−M4

1 )
]

+ Sm, (4.54)
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where for the importance in the following discussion, the reduced Planck
mass M2

p = 1/(8πG) = 1/κ is taken into account.
Now, the interaction term that accounts for coupling of MDM with the
ordinary matter is added to the above action. The simplest form for the
interacting action is

Sint =

∫
d4x
√
−g 1

M2
∇µφJµ, (4.55)

which is invariant under the shift symmetry and Jµ is the matter current
associated with a certain quantum number, and M2 is a cutoff scale.
For a system of particles, the current is defined as

Jµ =
1√
−g
∑
n

qn

∫
dxµnδ

4(x− xn), (4.56)

where qn is the charge associated with the n-th particle, xnµ is its coordinate,
and δ4(x− xn) is the Dirac delta function.
The coupling term in the action is independent of the metric, so the total
energy-momentum tensor will be the same as that of the original MDM
model,

T̂µν = 2λ∂µφ∂νφ+ Tµν , (4.57)

so the gravitational field equation is

Gµν =
1

M2
p

T̂µν (4.58)

with the Lagrange multiplier given by

λ =
1

2

M2
pG+ T

M4
1

, (4.59)

where M1 represents a cut off scale for the contribution of the mimetic scalar
field to the Einstein equations. By combining equations (4.57), (4.58) and
(4.59), one can easily see that the energy-momentum tensor associated with
the mimetic field is

T̃µν = (G+
T

M2
p

)uµuν (4.60)

which describes a dust-like component with vanishing pressure, energy den-
sity ε̃ = G+ T

M2
p

and 4-velocity uµ = ∂µφ
M2

1
which is normalized thanks to the

mimetic constraint that can be derived by the action (4.54) by varying with
respect to the Lagrange multiplier λ, as usual.
The presence of the derivative coupling term (4.55) modifies the equation of
motion of the mimetic field

2λ2φ+ 2∇µλ∇µφ+
1

M2
∇µJµ = 0. (4.61)
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If the current is conserved, the last term vanishes and the original equation
for the mimetic field (3.6) is recovered. However, when coupled to a non-
conserved current, the above equation is equivalent to

∇µTµν =
1

M2
∇ρJρ∇νφ. (4.62)

Hence, in this case there is exchange of energy and momenta between MDM
and ordinary matter and this effect is suppressed by the cut off M2.
As an example of the physical consequences of the coupling between these
different matter components, the baryon current, JµB current can be consid-
ered.
In the Standard Model of Particle Physics, the baryon number is conserved
at low energy scales, but it is violated at high energy scales achieved in the
early Universe.
In a FLRW Universe, the coupling ∇µφJµB/M2 reduces to

φ̇

M2
J0
B =

M2
1

M2
nB, (4.63)

here nB = nb − nb̄ is the net baryon number density.
In such a background with non-vanishing φ̇, the Lorentz symmetry is broken
and correspondingly the CPT symmetry in the baryon sector is violated and
so a difference between baryons and anti-baryons is introduced.
This is an example of gravitational baryogenesis. Another model of gravita-
tional baryogenesis is studied in [27] and for a more usual approach to this
cosmological event, see [28].
In the early Universe when the baryon number violating processes were in
thermal equilibrium, the derivative coupling can have induced an effective
chemical potential for baryons and an opposite one for anti-baryon

µb =
φ̇

M2
=
M2

1

M2
= −µb̄. (4.64)

This implies that baryons and antibaryons had different thermal distribu-
tions and so there was a temperature dependent baryon number density,

nB = nb − nb̄ =
gbµbT

2

6
, (4.65)

where gb = 2 is the number of degree of freedom of the baryon and T is
the temperature. On the other hand, the entropy density of the universe is
given by [28]

s =
2π2

45
g∗sT

3 (4.66)

where g∗s is the number of the effective degrees of freedom of the species
which contribute to the entropy of the universe.
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From the equations (4.65) and (4.66) the baryon-to-entropy ratio is obtained

nB
s

=
15gb
4π2

µb
g∗sT

∼ 10−2 M
2
1

M2T
, (4.67)

where g∗s ∼ 100 during the radiation dominated epoch.
This provides a way of producing the baryon number asymmetry thermally,
in which the key point is the CPT violation, due to the presence of the
mimetic field.
The quantity nB

s became larger at later time with the decreasing of the
temperature and then this asymmetry froze out at the temperature TD when
the baryon number violating interactions decoupled from the thermal bath,(nB

s

)
D
∼ 10−2 M2

1

M2TD
. (4.68)

Below the temperature TD the baryon number is conserved and the direct
coupling between MDM and ordinary matter has no effect on baryons.
The baryon number asymmetry in the Universe is (nB/s)D ∼ 10−10, as
required by the Big Bang Nucleosynthesis [28] and the observational data
from CMB radiation.
The decoupling temperature of the baryon number non-conservation is TD '
100 GeV known from the SM, so the relation

M1 ∼ 10−3
√
M2GeV. (4.69)

is found by using equation (4.68). This implies that the scale M1 can not
be too large: even if M2 ∼Mp ∼ 1018 GeV, it is obtained M1 ∼ 106 GeV.

4.4 Cosmological perturbations

In this section, cosmological scalar perturbations in the Universe dominated
by MDM are studied [20]. For a general introduction to cosmological per-
turbations, see [9].
The metric of perturbed Universe in Newtonian gauge can be written as

ds2 = (1 + 2Φ(xi, t))dt2 − (1− 2Φ(xi, t))a2δikdx
idxk, (4.70)

where Φ is the Newtonian gravitational potential.
By considering perturbations of the mimetic scalar field φ,

φ = t+ δφ, (4.71)

the mimetic constraint (3.8) at the linear order, gives

Φ = δφ̇. (4.72)

41



The equation for perturbations which follows from the linearized 0− i com-
ponents of Einstein equations reads [9](

Φ̇ +HΦ
)
,i

=
1

2
(ε̃+ p̃)δφ,i. (4.73)

The sum of the energy density and pressure of the mimetic field can be
recasted as

ε̃+ p̃ = −2Ḣ, (4.74)

by combining the Friedmann equations (4.10) and (4.11), and by substitut-
ing the last expression in equation (4.73), the following equation for δφ

δφ̈+Hδφ̇+ Ḣδφ = 0 (4.75)

is obtained whose general solution is given by

δφ = A
1

a

∫
adt, (4.76)

where A is a constant of integration depending only on the spatial coordi-
nates.
The corresponding gravitational potential is

Φ = δφ̇ = A
d

dt

(1

a

∫
adt
)

= A
(

1− H

a

∫
adt
)
. (4.77)

This solution is valid for all perturbations irrespective of their wavelength.
Normally, one can neglect the spatial derivative terms, multiplied by the
speed of sound cs, for hydrodynamical fluid only for high wavelengths. Here,
due to the vanishing of the speed of sound even for non-vanishing pressure
at all wavelengths, one cannot define quantum fluctuations as usual, so In-
flation realized with the mimetic scalar field, discussed in section 4.1, fails in
explaining the large scale structure as originated from quantum fluctuations
[29].
A way to make mimetic Inflation viable is considering the following action

S =

∫
d4x
√
−g
[
− 1

2κ
R(gµν)+λ(gµν∂µφ∂νφ−1)−V (φ)+

1

2
γ(2φ)2

]
(4.78)

where γ is a constant and the Lagrangian of ordinary matter is neglected.
Because of the mimetic constraint (3.8), by adding this higher derivative
term the total number of degrees of freedom does not change.
By varying the action with respect to the metric the Einstein equation (3.10)
is found.
However, the contribution to the energy-momentum tensor due to the mimetic
field φ is different and is given by

T̃µν =
(
V + γ

(
∂αφ∂αχ+

1

2
χ2
))
gµν + 2λ∂µφ∂νφ− γ∂(µφ∂ν)χ, (4.79)
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where χ ≡ 2φ.
The general solution (3.14) of the mimetic constraint (3.8) in the FLRW
Universe remains the same despite the new term in the action (4.78) and
hence

χ = 2φ = φ̈+ 3Hφ̇ = 3H. (4.80)

By taking this into account, the first Friedmann equation (4.10) and the
second Friedmann equation (4.11) become

H2 =
1

3
V + γ

(3

2
H2 − Ḣ

)
+

2

3
λ, (4.81)

2Ḣ + 3H2 =
2

2− 3γ
V, (4.82)

respectively. The last equation differs from equation (4.11) only for a nor-
malization factor of the potential V .
Therefore, the presence of the extra term in (4.78) does not modify the cos-
mological solutions derived in section 4.1 for homogeneous universe up to a
numerical factor of order unity.
However, this term dramatically changes the behavior of the short wave cos-
mological perturbations.
The linear perturbation of 0− i component of the energy-momentum tensor
is [9]

δT 0
i = 2λδφ,i − 3γḢδφ,i − γδχ,i. (4.83)

By taking into account that, at the linear order, the perturbation of χ is
given by

δχ = −3δφ̈− 3Hδφ̇− ∆

a2
δφ (4.84)

and from equations (4.81) and (4.82), one has

λ = (3γ − 1)Ḣ. (4.85)

It follows that the perturbed 0− i Einstein equation reduces to

δφ̈+Hδφ̇− c2
s

a2
∆δφ+ Ḣδφ = 0 (4.86)

This equation differs from equation (4.75) precisely by the presence of the
gradient term, with the speed of sound cs given by

c2
s =

γ

2− 3γ
. (4.87)

By Fourier transforming δφ, the equation (4.86) for its Fourier components
becomes

δφ′′k +

(
c2
sk

2 +
a′′

a
− 2
(a′
a

)2
)
δφk = 0. (4.88)
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where the prime denotes the derivative with respect to the conformal time
η =

∫
dt/a, which is used here for convenience.

For short wavelength perturbations with cskη >> 1 (λph = a/k << csH
−1)

the conformal time derivative terms inside the bracket can be neglected and
the solution is

δφk ∝ e±cskη. (4.89)

For long wavelength perturbations with cskη << 1 (λph = a/k >> csH
−1)

the c2
sk

2-term can be neglected and the solution (4.76) is recovered.
For more discussions on the action (4.78) and further modifications to the
same action, leading to the so-called Imperfect DM, see [30].
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Chapter 5

Spherically symmetric
solutions in Mimetic Gravity

After having discussed some cosmological aspects of Mimetic Gravity in the
previous chapters, as an interlude this chapter is devoted to solutions in
Mimetic Gravity that can address the most important phenomenological
evidence for Dark Matter discussed in Chapter 2: the form of the rotation
curves of galaxies. In order to do so, pseudo-static spherically symmetric
(SSS) spacetimes in Mimetic Gravity are considered and a reconstruction
technique to find the forms of thepotential for the mimetic scalar field φ that
can reproduce such phenomenology, is described in details, following [31].
The metric of these general spacetimes is given by

ds2 = a(r)2b(r)dt2 − dr2

b(r)
− r2(dθ2 + sin2 θdφ2), (5.1)

where a(r), b(r) are at the moment arbitrary functions of the radial coor-
dinate r that will be specified later. The action that is considered here is
the same as in Chapter 4 (4.1), i.e. the sum of the Einstein-Hilbert action
and the mimetic field action subjected to a potential V (φ) and the Einstein
equations are given by (4.2).
The difference with the previous discussion is that the symmetries of the
equations of motion derived with the metric (5.1) require the mimetic field
to be a function of r, only instead of the time t, and from the kinematical
contraint (3.8), by considering the metric (5.1), one has

φ′(r) =

√
− 1

b(r)
, (5.2)

leading to a pure imaginary expression for the field, which is to be expected
from a time-like vector ∂µφ with temporal component equal to zero.
The tt and rr-components of the Einstein equations (4.2) with the metric
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(5.1) read

1− b′(r)r − b(r) =
V (φ)r2

2
, (5.3)(

b′(r)r + 2rb(r)
a′(r)

a(r)
+ b(r)− 1

)
=
λ

2
b(r)r2φ′(r)2 − V (φ)r2

2
, (5.4)

where κ = 1.
By using equations (5.2) and (5.3), the last equation can be rewritten as

4a′(r)b(r) = −λa(r)r. (5.5)

From the continuity equation for the mimetic field in the presence of a
potential (4.5), the following equation is found

d

dr
(a(r)b(r)λr2φ′) = a(r)r2dV (φ)

dφ
, (5.6)

where the prime denotes derivative with respect to r.
By integrating equation (5.2), the mimetic field φ is found

φ(r) = ±i
∫

dr√
b(r)

(5.7)

and the continuity equation (5.6) becomes

4
d

dr
(a′(r)b(r)3/2r) = a(r)r2

√
b(r)

dV (r)

dr
(5.8)

where λ is given by equation (4.3) and its expression in terms of the functions
appearing in the metric (5.1) is obtained from the associated Ricci scalar

R = 3
b′(r)a′(r)

a(r)
+b′′(r)+2

b(r)a′′(r)

a(r)
+4

b′(r)

r
+4

b(r)a′(r)

a(r)r
+2

b(r)

r2
− 2

r2
(5.9)

5.1 Solutions

5.1.1 Vacuum solutions

From equation (5.3), it can be immediately seen that for the choice of b(r)
as in Schwarzschild metric

b(r) = 1− rs
r
, (5.10)

where rs is the Schwarzschild radius, V (r) = 0 while the rr Einstein equation
(5.4), by using the expression for the Ricci scalar (5.9) and its relation with
the Lagrange multiplier (4.3) leads to:

a(r) = a1 +
a2√

1− rs
r

[(√
1− rs

r

)
log

[√
r

r0

(
1 +

√
1− rs

r

)]
− 1

]
, (5.11)
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where a1, a2 are dimensionless constants and r0 is a length scale.
If a2 = 0 and a1 = 1, this solution corresponds to the Schwarzschild solution
of GR.
When a2 6= 0, a1 can be set equal to zero and the metric is

ds2 = −a2
2

[(√
1− rs

r

)
log

[√
r

r0

(
1+

√
1− rs

r

)]
−1

]2

dt2+
dr2(

1− rs
r

)+r2dΩ2.

(5.12)

5.1.2 Non-vacuum solutions

In this section, the case V (φ) 6= 0 will be considered. It is easily seen that for
V (φ) = 2Λ with Λ a cosmological constant, one solution of the tt- and rr-
components of the Einstein equations (5.3) and (5.4) is the Schwarzschild-de
Sitter metric

b(r) = 1− rs
r
− Λr2

3
, a(r) = a1, (5.13)

where a1 is a constant.
If instead, a linear modification to the Schwarzschild metric, is considered

b(r) = 1− rs
r

+ γr, (5.14)

where γ is a positive constant, from equation (5.3) the potential results to
be

V (r) = −4γ

r
. (5.15)

The solution for the mimetic field, obtainable from equation (5.7) is an
elliptic function. Hence, a closed expression can only be given in limiting
cases:

- for r ≈ rs , one can neglect the linear correction to recover the vacuum
solution (5.10).
In this case, the mimetic field reads

φ(r <<
√
rs/γ) ' ±i

[
r

√
1− rs

r
+
rs
2

log

[
2r
(

1 +

√
1− rs

r

)
− rs

]]
.

(5.16)
and expanding the result around r = rs:

φ(r ' rs) ' φs ± 2i
√
rs(r − rs), r ' rs −

(φs − φ)2

4rs
(5.17)

with φs = ±(irs/2) log(rs).
The form of the potential, in this case, is

V (φ ' φs) ' −
4γ

rs
− γ(φs − φ)2

r3
s

. (5.18)
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- For large distances, the Newtonian term in (5.14) can be ignored and
from the equation (5.8) one has for the function a(r)

a(r >>
√
rs/γ) ' c1(4 + 6γr) + 3c2

√
1 + γr − c2(2 + 3γr) arctan[

√
1 + γr]√

1 + γr
(5.19)

with c1,2 constants.
By choosing the values c1 = 1/4 and c2 = 0, the metric reads

ds2(r >>
√
rs/γ) ' −

(
1 +

3γr

2

)2
dt2 +

dr2

1 + γr
+ r2dΩ2 (5.20)

and the corresponding expressions for the field and the potential are
given by

φ(r) ' ±2i
√

1 + γr

γ
, V (φ) ' 16γ2

4 + γ2φ(r)2
, (5.21)

Here, it is required 4/γ2 < |φ|2 to guarantee r > 0.

Hence, the metric reduces to the usual Schwarzschild space-time for short
distances, while at large distances its tt-component of the metric (5.20) and
the corresponding Newtonian potential

Φ(r) = −gtt(r) + 1

2
(5.22)

acquire linear and quadratic contributions.
The quadratic correction can be viewed as a negative cosmological constant
in the background and can be ignored if γ2r2 is sufficiently small while, the
linear term could help to explain the flatness of galactic rotation curves,
discussed in Chapter 2.
This issue will be addressed in the next section.

5.2 Rotation curves of galaxies

For convenience, the tt component of the metric (5.1) is redefined as

ã(r) ≡ a(r)2b(r), (5.23)

By inverting the last equation, the derivative with respect to r of the function
a(r) reads

a′(r) =
1

2
√
ã(r)b(r)

(
ã′(r)− ã(r)

b′(r)

b(r)

)
, (5.24)

and by using (5.3), equation (5.8) becomes

d

dr

[
(ã′(r)b(r)− ã(r)b′(r))

r

ã(r)

]
=
√
ã(r)

[
−b′′(r)r − 2

r
(1− b(r))

]
. (5.25)
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The following ansatz for ã(r) is made

ã(r) = 1− rs
r

+ γ0r − λ0r
2, (5.26)

where rs, λ0, γ0 are positive constants.

5.2.1 Qualitative analysis

Given the metric element gtt(r), the Newtonian potential given by equation
(5.22) has different behaviors, depending on which scales are considered:

1. at small distances, the metric leads to a classical Newtonian term rs/r;

2. at very large distances, the cosmological constant term λ0r
2 becomes

relevant and has a de Sitter-like form;

3. at intermediate distance the linear term γ0r dominates.

At intermediate galactic scales, the λ0r
2 term is negligible, hence the New-

tonian potential (5.22) reads

Φ(r) ' − rs
2r

(
1− γ0r

2

rs

)
(5.27)

and this gives rise to the rotational velocity profile

v2
rot ' v2

Newt +
γ0c

2r

2
(5.28)

where vNewt is the contribution expected from Newtonian mechanics. There-
fore, on sufficiently large scales, vrot does not fall-off as expected from Kepler
laws, i.e. vrot ∝ 1/

√
r, but increases as

√
r. This is valid for galaxies where

the Newtonian contribution can not compete with the rising γ0 term, which
occurs for small and medium sized low surface brightness (LSB) galaxies.
The situation is different for large high surface brightness (HSB) galaxies.
For these galaxies the Newtonian contribution might become equal with the
linear term, ∝ γ0r for some values of r. This leads to a region of approximate
flatness consistent with the data for such galaxies. However, the radius of
these galaxies can be sufficiently large that the de Sitter term ∝ r2 should
become relevant. Thus the rotational velocity profile for these galaxies reads

v2 ' v2
Newt +

γ0c
2r

2
− λ0c

2r2, (5.29)

where sufficiently far from the center of such galaxies, the quadratic term
dominates and eliminates the rising behavior due to the linear term. This
is in perfect agreement with data from those HSB galaxies that are large
enough to feel the effect of the de Sitter term. Moreover, since v2 can not
become negative, bound orbits are no longer possible on scales greater than
R ∼ γ0/2λ0. This could explain the maximum size of galaxies.
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5.2.2 Rotation curves in Mimetic Gravity

Finally, after having discussed qualitatively the effect of the linear and
quadratic terms added to the Newtonian potential on the galaxies rota-
tion curves, how such behaviors can be reproduced in Mimetic Gravity is
discussed.
In order to reconstruct the complete form of the metric (5.1) together with
the definition (5.23), by using equation (5.25) and by inserting the ansatz
(5.26) for ã(r), the following form for b(r) is found

b(r) =

(
1− rs

r + γ0r − λ0r
2
)(

1− 3rs
r + γ0r

3 + c0
r2

)
(

1− 3rs
2r + γ0r

2

)2 (5.30)

with c0 a constant.
From equation (5.3), as done in the previous section, one finds a quite in-
volved form for the mimetic potential

V (r) = − 2

3r2(2r − 3rs + γ0r2)3
[54r2

sr − 27r3
s + 171γ0r

2
sr

2 − 8γ2
0λ0r

7

+ r4(16γ0 + 7rsγ
2
0 + 324rsλ0) + 4rsr

3(−17γ0 − 108rsλ0)

+ r6(γ3
0 − 44γ0λ0) + 6r5(γ2

0 − 12λ0 + 12rsγ0λ0)

− 12c0[−rs + 2r(1 + rsγ0) + 2r3(γ2
0 + λ0)− γ0λ0r

4 + 3r2(γ0 − 3rsλ0)]].
(5.31)

By using equation (5.7), the mimetic scalar field φ can be found. However,
the integral in (5.7) can be done analitically only in some limiting cases:

- For small distances γ0 = λ0 = 0, one has

ã(r) ' 1− rs
r
, b(r) ' 4(c0 + r(r − 3rs))(r − rs)

r(2r − 3rs)2
(5.32)

By setting c0 = 9r2s
4 , the second equation becomes

b(r) = 1− rs
r
, (5.33)

recovering the vacuum Schwarzschild solution of GR. Correspondingly,
the mimetic field takes the form

φ(r ' rs) ' φs ± 2i
√
rs(r − rs), r ' rs −

(φs − φ)2

4rs
, (5.34)

and the potential behaves as

V (φ ' φs) ' −
32γ0

3rs
+

13γ0(φs − φ)2

r3
s

. (5.35)
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- For cosmological scales rs = γ0 = c0 = 0,

ã(r) = b(r) ' (1− λr2
0), (5.36)

corresponding to the static patch of the de Sitter solution.
In this case, the field has the form

φ ' ±iarcsin[
√
λ0r]√

λ0
, r ' ±sin[

√
λ0|φ|]√
λ0

. (5.37)

The positive values of r belong to the range ]0, 1/
√
λ0[, where H−1

0 =
1/
√
λ0 is the cosmological horizon of the de Sitter solution with posi-

tive cosmological constant.
The potential reads

V (φ) ' 6λ0 ∓
4γ

3

( √
λ0

sin[
√
λ0|φ|]

+ 4
√
λ0 sin[

√
λ0|φ|]

)
. (5.38)

- For galactic scales, rs = λ0 = c0 = 0 the function ã(r) and b(r) are
given by

ã(r) ' (1 + γ0r), and b(r) ' 4(1 + γ0r)(3 + γr)

3(2 + γ0r)2
(5.39)

In this case, the mimetic field is

φ ' ± i

2γ0

√
3(3 + 4γ0r + γ2

0r
2), r ' −6∓

√
9− 12γ2

0φ
2

3γ0
(5.40)

and the potential reads

V (r) ' −2γ0(16 + 6γ0r + γ2
0r

2)

3r(2 + γ0r)3
. (5.41)

The considered solution turns out to be the Schwarzschild solution at small
distances, the static patch of the de Sitter space-time at cosmological dis-
tance and, most intriguingly, presents a linear term at the galactic scales
which can explain the observed galactic rotation curves in Mimetic Gravity.
To complete the discussion, the data from rotation curves of galaxies are
needed to fix the values of the two free parameters γ0 and λ0. Here, it has
reproduced the conformal gravity potential in Mimetic Gravity, so the task
is greatly simplified by adopting the results in [32,33], where the same pa-
rameters were fitted to rotation curves.
The fit is done for 138 galaxies, including 25 dwarf galaxies and 21 galax-
ies in which the de Sitter-like term λ0r

2 becomes relevant. For the full list
of galaxies considered, including references to the galactic databases, see
[32,33] and references therein.
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By doing the same analysis of [32,33], the fit to the rotation curves through
the potential given by equation (5.29) is excellent, with χ2

red ' 1. Therefore,
the linear and quadratic corrections to the Newtonian potential capture the
features of the rotation curves not only qualitatively, but also quantitatively.
By using such analysis, the best-fit values to γ0 and λ0 parameters in
Mimetic Gravity to be [32,33]:

γ ' 3.06× 10−30 cm−1, λ0 ' 9.54× 10−54 cm−2. (5.42)

The analysis made here confirms the fact that the large-scale behavior of
MDM is only a geometrical effect: even the small-scale phenomenology of
rotation curves in Mimetic Gravity suggests that particle dark matter halos
in conventional Λ-CDM model might only be an attempt to describe such
global geometrical effects in local terms.
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Chapter 6

Hamiltonian analysis of
Mimetic Dark Matter

6.1 Hamiltonian analysis

The purpose of this chapter is to review the Hamiltonian analysis of the
original MDM model introduced in Chapter 3.
In this chapter some important features regarding this model such as the
number of degrees of freedom and the possible presence of instabilities and
ghosts are considered. A preliminary analysis of the problem of ghosts was
already pursued in [19] but here it is followed the more complete one given
in [34].
For a pedagogical review of constrained Hamiltonian systems, important for
the following discussion, see [35].
The Einstein-Hilbert action of Chapter 3 is recalled

S[gµν , φ] = − 1

2κ

∫
d4x
√
−g(lµν , φ)R(gµν(lµν , φ)). (6.1)

The physical metric has the same form as in Chapter 3,

gµν = (lαβ∂αφ∂βφ)lµν ≡ Φ2lµν (6.2)

where the conformal factor is denoted by Φ2, for later convenience.
As an initial step, the action can be expressed using the metric lµν instead
of the physical metric gµν . This can be easily done through the formula [36]

R(gµν) =
1

Φ2

(
R(lµν)− 6

lµν∇µ∇νΦ

Φ

)
, (6.3)

where the covariant derivative ∇µ is defined using the metric lµν , because
the two metrics are related by the conformal factor Φ2. By inserting (6.3)
into the action, the action reads as

S[lµν , φ] = − 1

2κ

∫
d4x
√
−l[Φ2R(lµν) + 6lµν∇µΦ∇νΦ]. (6.4)
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where the transformation of the determinant is taken into account and a
partial integration on the second term is performed.
This action contains second order derivatives of φ. This implies that an
Hamiltonian analysis is needed in order to exclude the presence of ghosts.
In order to obtain an action with first order derivatives only, the auxiliary
field λ is introduced and the action can be recasted into the form

S[lµν ,Φ, λ, φ] = − 1

2κ

∫
d4x
√
−l[Φ2R(lµν)+6lµν∇µΦ∇νΦ−λ(Φ2−lµν∇µφ∇νφ)],

(6.5)
where Φ and φ are treated as independent fields, and the auxiliary field λ
plays the role of a Lagrange multiplier enforcing the the constraint Φ2 =
lµν∇µφ∇νφ.
Now, in order to perform the Hamiltonian analysis, one rewrites the com-
ponents of the metric lµν by using the 3 + 1 decomposition due to Arnowitt,
Deser and Misner (ADM) [37]

l00 = −N2 +Nih
ijNj , l0i = Ni, lij = hij (6.6)

with inverse metric components given by

l00 = − 1

N2
, l0i =

N i

N2
, lij = hij − N iN j

N2
, (6.7)

where N is the lapse function, Ni are the components of the shift vector and
hij is the induced metric on the Cauchy surface Σt at each time t, with hij

is its inverse.
The 4-dimensional scalar curvature in 3+1 formalism has the form

R(lµν) = KijGijklKkl+
3R+

2√
−l
∂µ(
√
−lnµK)− 2√

hN
∂i(
√
hhij∂jN) (6.8)

where 3R is Ricci curvature associated with the hypersurface Σt and its
extrinsic curvature is defined as

Kij =
1

2N

(∂hij
∂t
−DiNj −DjNi

)
(6.9)

with Di being the covariant derivative determined by the metric hij , and
where

Gijkl =
1

2
(hikhjl + hilhjk)− hijhkl (6.10)

is the de Witt metric, the metric on the space of the metrics on compact
spaces, with inverse

Gijkl =
1

2
(hikhjl + hilhjk)−

1

2
hijhkl (6.11)

obeying the relation

GijklGklmn =
1

2
(δmi δ

n
j + δni δ

m
j ). (6.12)
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Furthermore, nµ is the future-pointing unit normal vector to the hypersur-
face Σt, which is written in terms of the ADM variables introduced above
as

n0 =
√
−l00 =

1

N
, ni = − l0i√

−l00
= −N

i

N
(6.13)

By substituting these expressions in the 3+1 formalism into the action (6.5),
the following form for the action is found

S[N,N i, hijΦ, λ, φ] =
1

2

∫
dtd3x

√
hN [KijGijklKklΦ

2 + 3RΦ2 − 4KΦ∇nΦ

− 2√
hN

∂i(
√
hhij∂jΦ

2)− 6(∇nΦ)2 + 6hij∂iΦ∂jΦ

− λΦ2 + λ(∇nφ)2 − λhij∂iφ∂jφ], (6.14)

where the derivative operator ∇n is defined as

∇n =
1

N
(∂t −N i∂i). (6.15)

The conjugate momenta to hij , Φ, λ and φ, derived from the action (6.14),
are given by

πij =
1

2

√
gGijklKklΦ

2 −
√
hhij∂nΦΦ, (6.16)

pΦ = −2KΦ
√
h− 6

√
h∇nΦ, (6.17)

pλ ≈ 0, (6.18)

and
pφ =

√
hλ∇nφ. (6.19)

By using these relations, the following primary constraint is obtained

D = pΦΦ− 2πijhij ≈ 0. (6.20)

By performing a Legendre transformation of the Lagrangian in the action
(6.14), the Hamitonian of the model is

H =

∫
d3x(NHT +N iHi + vDD + vNπN + viπi + vλpλ), (6.21)

where boundary terms are ignored because they contribute to the global
gravitational energy. For a detailed discussion of this point, see [34].
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6.1.1 Constraints and degrees of freedom

The Hamiltonian (6.21) results to be a sum of constraints that vanish for
any physical configuration on the constraint surface in the phase space of
the theory, where vλ and vD are Lagrange multipliers enforcing the primary
constraints (6.18) and (6.20) respectively, vN and vi are Lagrange multipliers
enforcing those primary constraints associated with the conjugate momenta
of the lapse function N and the shift vector N i

πN ≈ 0, πi ≈ 0, (6.22)

and the expression for HT and Hi are given by

HT =
2√
hΦ2

πijGijklπkl −
1

2

√
h 3RΦ2 +

1

2
√
hλ
p2
φ + ∂i(

√
hhij∂jΦ

2)

− 3
√
hhij∂iΦ∂jΦ +

1

2

√
hλ(Φ2 + hij∂iφ∂jφ) (6.23)

and
Hi = pΦ∂iΦ + pφ∂iφ− 2hijDkπ

jk, (6.24)

respectively.
The next step is the analysis of the preservation of the primary constraints
(6.18), (6.20) and (6.22).
As in GR, the requirement of preserving the constraints (6.22) implies the
secondary constraints

HT ≈ 0, Hi ≈ 0. (6.25)

To show that these constraints are first-class, their smeared form is intro-
duced

TT (N) =

∫
d3xNHT , (6.26)

TS(N i) =

∫
d3x(N iHi + pλ∂iλ). (6.27)

The usual Dirac algebra of GR remains valid also for Mimetic Gravity as can
be seen from the following Poisson brackets between Hi and HT by using
their smeared form (6.26) and (6.27)

{TT (N),TT (M)} = TS((N∂iM −M∂iN)hij)

−
∫
d3x(∂iMN −N∂iM)hij

∂jΦ

Φ
D (6.28)

where the last term vanishes on the constraint surface because of (6.20);

{TS(N i),TS(M i)} = TS((N i∂iM
j −M i∂iN

j)); (6.29)

and
{TS(N i),TT (M)} = TT (N i∂iM) (6.30)
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Hence, the Hamiltonian and momentum constraints (6.25) are preserved
under time evolution and from the closure of the algebra it is inferred that
(6.25) are first-class constraints.
Now the new primary constraints, present in Mimetic Gravity but not in
GR, are considered.
The preservation requirement of the primary constraint (6.18) implies

1

N
∂tpλ =

1

N
{pλ, H} =

1

2
√
hλ2

p2
φ−

1

2

√
h(Φ2 + hij∂iφ∂jφ) ≡ Cλ ' 0. (6.31)

Hence, pλ ' 0 and Cλ ' 0 are second-class constraint and further constraints
are necessary for them to vanish.
In order to study the preservation in time of the primary constraint (6.20),
the following linear combination is used

D̃ = D + 2pλλ = pΦΦ− 2πijhij + 2pλλ. (6.32)

The last constraint has the following non-zero Poisson brackets:

{D̃(x), hij(y)} = 2hij(x)δ(x− y)

{D̃(x), πij(y)} = −2πij(x)δ(x− y)

{D̃(x),Φ(y)} = −Φ(x)δ(x− y)

{D̃(x), pΦ(y)} = pΦ(x)δ(x− y)

{D̃(x), λ(y)} = −2λ(x)δ(x− y)

{D̃(x), pλ(y)} = 2pλ(x)δ(x− y), (6.33)

which give the following Poisson brackets with (6.26) and (6.27)

{D̃,TT (N)} = −NHT . (6.34)

and
{D̃,TS(N i)} = ∂i(N

iD̃). (6.35)

By collecting all these results

∂tD̃ = {D̃, H} = −NHT + ∂i(N
iD̃) + 2vλpλ ≈ 0. (6.36)

Hence, D̃ is preserved without imposing any additional constraint, repre-
senting another first class constraint in the theory.
From the analysis of the constraints above, it follows that, besides to 20
degrees of freedom due to the 3-metric hij , its conjugate momenta πij , the
lapse function N , the shift vector N i and their conjugate momenta πN and
πi and the 8 first-class constraints (6.22) and (6.25) of GR, six extra canon-
ical variables (φ, pφ,Φ, pΦ, λ, pλ), one extra first class constraint D̃ ≈ 0 and

57



two extra second class constraints pλ ≈ 0, Cλ ≈ 0 are present.
So, by using the Dirac formula [34,35]

#canonical variables/2−#first class constraints−#second class constraints/2
(6.37)

it is seen that there exist one extra physical degree of freedom, with respect
to the two degrees of freedom of GR.

6.1.2 The Ostrogradski instability problem

A further step is noticing that the pair of canonical variables λ, pλ can be
eliminated from the formalism. In fact, pλ ≈ 0 and Cλ ≈ 0 are second-class
constraints that can be set to vanish strongly.
By solving the constraint Cλ = 0 with respect to λ

λ = ±
pφ√

h
√

Φ2 + hij∂iφ∂jφ
(6.38)

and inserting these solutions in (6.23), the Hamiltonian constraint becomes

HT =
2√
hΦ2

πijGijklπkl −
1

2

√
h 3RΦ2 + ∂i(

√
hhij∂jΦ

2)

− 3
√
hhij∂iΦ∂jΦ± pφ

√
Φ2 + hij∂iφ∂jφ (6.39)

The Hamiltonian dependence on pφ is linear and this can lead to negative
energies: this is the so-called Ostrogradski instability [38].
As shown in [34], the two alternative Hamiltonians given in the last ex-
pression actually describe the same physical system. Therefore it suffices to
consider the dynamics for one of the cases, and here the Hamiltonian with
positive sign in front of pφ is chosen.
This choice leads to interpret physically the momentum pφ as proportional
to the energy density of the mimetic dust on the spatial hypersurface Σt,
i.e. pφ is interpreted as the rest mass density of the mimetic dust per co-
ordinate volume element d3x as measured by the Eulerian observers with
four-velocity nµ.
Since pφ has the physical meaning of density of rest mass, its initial config-
uration must satisfy pφ ≥ 0 everywhere on the initial Cauchy surface Σ0 at
time t = 0. Moreover, the physical meaning of φ is that its gradient ∂µφ is
the direction of the rest mass current of the mimetic dust in spacetime.
The equation of motion for φ is given by

∂tφ = {φ,H} = N
√

Φ2 + hij∂iφ∂jφ+N i∂iφ, (6.40)

where the time evolution of φ is not driven by its canonical conjugate mo-
mentum pφ.
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By choosing a gauge where N = const. and Φ = const. both greater than
zero, and N i = 0, φ grows monotonically, increasing under time evolution.
The rate of growth has the minimal value ∂tφ = NΦ and then increases
when spatial gradient of φ contribute.
The equation of motion for the momentum pφ has the form

∂tpφ = {pφ, H} = ∂i

(
Npφh

ij∂jφ√
Φ2 + hij∂iφ∂jφ

+N ipφ

)
(6.41)

This continuity equation for the rest mass current of the mimetic dust en-
sures that the total rest mass on the spatial hypersurface Σt is conserved
under time evolution.
Firstly, the configuration of this system that can be interpreted as the ground
state such that the time derivative of pφ is equal to zero, has to be found.
The equation (6.41) can be rewritten as

∂tpφ = pφ∂i

(
Nhij∂jφ√

Φ2 + hij∂iφ∂jφ
+N i

)
+ ∂ipφ

(
Nhij∂jφ√

Φ2 + hij∂iφ∂jφ
+N i

)
,

(6.42)
by using simply the Leibniz rule of derivatives.
From the last equation, there exists a ground state where pφ = 0. If there
exists a region of space where pφ = 0, then inside that region pφ remains
zero, since the vanishing momentum pφ and their spatial derivatives imply
∂tpφ = 0.
If an initial configuration where in some region pφ > 0 holds, which corre-
sponds to the presence of mimetic dust, is considered, now, the fundamental
issue regards the fact pφ could evolve to pφ < 0, making the system unstable.
Negative pφ is not desirable because dust acquires negative rest mass and
this leads to the problem that an infinite amount of radiation, matter or
dust could be created without violating the conservation of energy in a de-
cay process.
The problem can be divided in two steps: whether pφ can evolve to zero or
not, and if it possible, if it can become negative.
By assuming the above mentioned gauge with N = const. and Φ = const.
both greater than zero, and N i = 0 the equation (6.42) reads

∂tpφ = Npφ∂i

(
hij∂jφ√

Φ2 + hij∂iφ∂jφ

)
+

Nhij∂ipφ∂jφ√
Φ2 + hij∂iφ∂jφ

. (6.43)

The equation of motion (6.43) is dominated by its second term, while the
first term is negligible in a region of space where the metric hij and the
gradient ∂iφ are nearly constant.
If the case in which the gradient ∂ipφ is such that hij∂ipφ∂jφ < 0 holds, is
taken into account, by considering that the given point is a local minimum
of pφ, ∂ipφ is pointing away from the given point. Hence, since ∂tpφ can be
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negative, pφ can evolve towards zero, regardless of how close is to zero and
since the time evolution of pφ does not necessarily change the direction of
the gradient ∂ipφ, nothing can avoid the evolution pφ to zero.
Now what happens assuming that pφ has evolved to zero is studied.
The equation of motion (6.43) simplifies to

∂tpφ =
Nhij∂ipφ∂jφ√
Φ2 + hij∂iφ∂jφ

(6.44)

When the directions of the gradients of pφ and φ are such that hij∂ipφ∂jφ <
0, one has ∂tpφ < 0 and consequently pφ becomes negative. Thus, the
argument shows that under certain circumstances, the energy density of the
mimetic dust can become negative, and consequently the system can become
unstable.
If, instead of the plus sign in (6.39), the negative sign in front of pφ is chosen,
−pφ is identified as the rest mass density of the mimetic dust: it is required
that initially pφ must be negative and the argument goes as above.
The equations of motion are

∂tφ = {φ,H} = −N
√

Φ2 + hij∂iφ∂jφ+N i∂iφ, (6.45)

and

∂tpφ = {pφ, H} = ∂i

(
−

Nhijpφ∂jφ√
Φ2 + hij∂iφ∂jφ

+N ipφ

)
(6.46)

and these equations are the mirror image, obtained via the transformation
(φ, pφ)→ (−φ,−pφ), of the equations (6.40) and (6.41), respectively.
If a potential term for the scalar field φ is added, the term

√
hΦ4V (φ) should

be included into the Hamiltonian constraintHT , and the term−N
√
hΦ4 dV (φ)

dφ
appears into the equation of motion (6.41). Even in the case this term is
positive, the system can still become unstable depending on its initial con-
figurations. In conclusion, the original theory of MDM remains stable and
can describe physical dust as long as one takes into account only those initial
configurations for which pφ > 0 at all times.
In the same paper [30], the same Hamiltonian analysis is done for a vector
field model of MDM, where the gradient of the mimetic scalar field ∂µφ is
replaced by a vector field uµ, satisfying the same kinematical constraint and
with a Maxwell kinetic term, and for this second model it is shown such in-
stabilities are not present because the corresponding HamiltonianHT results
to be in the conjugate momentum pi.

6.2 Alternative Hamiltonian analysis

A different Hamiltonian formulation of the original proposal of mimetic DM
is studied in [39]. The difference with the formulation reviewed in the previ-
ous section regards the fact that here the analysis is done in Einstein frame,
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starting directly with the constraint on the scalar field added to the Einstein-
Hilbert action. Despite of these differences, the same conclusions already
made in the previous section regarding the number of degrees of freedom in
the theory and the closure of the GR Dirac algebra.
First, the full action for MDM model is recalled

S =

∫
d4x
√
−g
(
− 1

2κ
R+

1

2
λ(gµν∂µφ∂νφ− 1) + LM

)
. (6.47)

To construct the canonical formalism of this theory, one can rewrite the
action in a 3 + 1 formalism, introduced in the previous section.
The part of the action for the scalar field φ in this formalism becomes

Sφ = −
∫
d4x

1

2
N
√
hλ
(

1− g00∂0φ∂0φ− 2g0i∂0φ∂iφ+ hij∂iφ∂jφ

− N iN j

N2
∂iφ∂jφ

)
+N
√
hV (φ) (6.48)

To find the Hamiltonian, the conjugate momenta have to be derived. The
momentum conjugate to φ is given by

p =
∂L

∂φ̇
= N
√
hλ(g00∂0φ+ g0i∂iφ), (6.49)

while the momentum conjugate to λ is obviously zero,

pλ =
∂L

∂λ̇
= 0. (6.50)

Hence, pλ = 0 is a primary constraint, and this implies a secondary con-
straint by requiring that it will be constant in time

ṗλ = {pλ, H} = 0. (6.51)

By inverting equation (6.49), φ̇ can be expressed in terms of its conjugate
momentum p, and then the Hamiltonian reads

H =
Np2

2
√
hλ

+
1

2
N
√
hλ[1 + hij∂iφ∂jφ] + pN i∂iφ+N

√
hV (φ). (6.52)

By solving the secondary constraint (6.51) one gets

λ =
p√

h
√

1 + hij∂iφ∂jφ
(6.53)

and substituting in (6.52), the dependence of the Hamiltonian on the La-
grange multiplier λ can be eliminated.
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Hence, by Legendre transforming back the Hamiltonian (6.52), the total
action takes the form

S =

∫
d4x
(
LADM+pφ̇−Np

√
1 + hij∂iφ∂jφ−pN i∂iφ−N

√
hV (φ)

)
(6.54)

where the Arnowitt-Deser-Misner Lagrangian of GR is given by [40]

LADM = ḣijπij −NR0 −N iRi. (6.55)

R0 and Ri are the intrinsic curvatures given by

R0 ≡ −
√
h
[

3R+ h−1
(1

2
π2 − πijπij

)]
(6.56)

Ri ≡ −2hikπ
kj
|j (6.57)

From the total action (6.55), the equations of motion of the theory can be
found by varying with respect to πij and hij respectively

ḣij = {hij , H} = 2Nh−1/2
(
πij − 1

2
hijπ

)
+N i|j +N j|i, (6.58)

π̇ij = {πij , H} = −N
√
h
(

3Rij −
1

2
hij

3R
)

+
1

2
Nh−1/2hij

(
πmnπmn −

1

2
π2
)

− 2Nh−1/2
(
πimπ

m
j −

1

2
ππij

)
+
√
h(N|ij − hijN

|m
|m ) + (πijN

m)|m

−N |mi πmj −N |mj πmi +
Np∂iφ∂jφ

2
√

1 + hkl∂kφ∂lφ
− 1

2
N
√
hV (φ)hij , (6.59)

where the notation |i stands for covariant derivative defined with respect to
the 3-metric hij .
The first equation is independent of the mimetic scalar field φ since the
action Sφ is independent of πij , while the second equation contains two
terms as a function of φ which are not present in GR.
By varyng with respect to N and N i one gets the four modified constraints

R0 + p
√

1 + hij∂iφ∂jφ+
√
hV (φ) = Hgrav +Hφ = 0 (6.60)

and
Ri + p∂iφ = Higrav +Hiφ = 0 (6.61)

Finally, the equations of motion for the phase variables (φ, p) are given by

φ̇−N
√

1 + hij∂iφ∂jφ−N i∂iφ = 0 (6.62)

and

ṗ− ∂k
( Nphkl∂lφ√

1 + hij∂iφ∂jφ
+Nkp

)
+N
√
h
dV (φ)

dφ
= 0 (6.63)
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Therefore, the number of equations of motion are those of GR plus two
more equations. The former equation is the mimetic kinematical constraint
(3.8) rewritten in terms of ADM variables, while the second equation is the
Bianchi identity ∇µTµi = 0 for the energy-momentum tensor associated
with the mimetic scalar field, as it is shown in [39]. The closedness of GR
Dirac algebra (6.28)-(6.30) in this equivalent Hamiltonian formulation is
also proven in the same paper, showing that the modified constraints (6.60)
and (6.61) are first class and the number of first class constraints of GR
is not changed in the Hamiltonian formulation of this section. However,
there are four extra degrees of freedom (λ, pλ, φ, p) and two extra second
class constraint pλ ≈ 0 and ṗλ ≈ 0 and this implies that, by using equation
(6.37), it is confirmed that there is one more degree of freedom in the theory.
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Chapter 7

Quantum Cosmology

As seen in Chapter 4, already at the classical level, Mimetic Gravity can
lead to resolution of cosmological singularities.
It is believed that it is possible to avoid the initial singularity, by taking into
account the quantum gravity effects at the Planck scale. However, since no
full theory of quantum gravity is still available, the cosmological singularity
can be resolved by using the quantum cosmological approach.
In this chapter the resolution of cosmological singularities is studied at
the quantum level in the Mimetic Gravity framework, identified with the
Dust Field formalism [41,42], and compared with the results obtained in the
Gauge-fixed picture [43], within the Quantum Cosmology framework.

7.1 Quantum Geometrodynamics

The Hamiltonian formulation of GR reviewed in the Hamiltonian analysis, in
the previous chapter, can be the starting pointing for the quantization of the
gravitational field dynamics performed following the usual Dirac procedure
in Quantum Field Theory [35].
The space of states is that of functionals of configuration variables N , N i,
hij

Ψ = Ψ[N,N i, hij ]. (7.1)

The configuration variables and the conjugate momenta are promoted to
operators that in configuration space representation, acting on the functional
Ψ, reads

hij(x)→ ĥij(x) ≡ hij(x), Πij(x)→ Π̂ij(x) ≡ −i~ δ

δhij(x)
, (7.2)

N(x)→ N̂(x) ≡ N(x), Π(x)→ Π̂(x) ≡ −i~ δ

δN(x)
, (7.3)

N i(x)→ N̂ i(x) ≡ N i(x), Πi(x)→ Π̂i(x) ≡ −i~ δ

δN i(x)
. (7.4)
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Then canonical commutation relations are established

[ĥij(x), Π̂kl] = i~
1

2
(δki δ

l
j + δkj δ

l
i)δ

(3)(x− y), (7.5)

[N̂(x), Π̂(y)] = i~δ(3)(x− y), (7.6)

[N̂ i(x), Π̂j(y)] = i~δijδ(3)(x− y) (7.7)

while the other commutators vanish.
The next steps of the Dirac prescription for the quantization of constrained
systems are quantizing the constraints present in the theory and defining the
physical states as those annihilated by the operators associated with these
constraints.
For the primary constraints at the quantum level one has

−i~ δ

δN
Ψ[N,N i, hij ] = 0, −i~ δ

δN i
Ψ[N,N i, hij ] = 0. (7.8)

These conditions implies that physical states are functionals of 3-metric only,
i.e.

Ψ = Ψ[hij ]. (7.9)

Then, the momentum and hamiltonian contraints are quantized. The mo-
mentum constraint (6.24) restricted only to the GR part, is imposed as
follows

ĤiΨ ≡ Dj

[
δΨ

δhij(x)

]
= 0 (7.10)

This condition implies that the wave functionals depend on the three-geometry
{hij} only, and not on one of its representation.
The Hamiltonian constraint (6.23) without the terms due to the addition of
the mimetic scalar field in the theory, gives the following equation

ĤTΨ ≡

[
− 1√

h
Gijkl[hmn]

δ2Ψ

δĥij(x)δĥkl(x)
−
√
h 3R(x)

]
Ψ = 0. (7.11)

This is the Wheeler-DeWitt equation, which is the fundamental equation
giving the quantum dynamics for the gravitational fields. Moreover, for the
first term a proper ordering must be chosen such that the Dirac algebra
(6.28)-(6.30) is preserved.
There are some problems in adopting this quantization scheme for GR.
First of all, a Hilbert space structure in the space of the solutions of the
constraints (7.10) and (7.11) has not been found. The difficulties are related
with finding a basis in the physical Hilbert space due to non linearities of
the Wheeler-DeWitt equation, and with defining a proper scalar product
on it. Secondly, a problem in dealing with these equations arises from the
functional nature of the theory, which complicates further its mathematical
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treatment.
Finally, the most relevant problem with this quantization procedure concerns
time.
The Hamiltonian is the generator of time displacements in phase-space but
the Hamiltonian of the gravitation field is a linear combination of constraints
(6.21) which, according to the Dirac prescription, annihilates physical states

ĤΨ = 0. (7.12)

The last equation can be seen as the Schrödinger equation for a quantum
state not depending on time. This means that quantum states do not evolve,
suggesting that there is no quantum dynamics. The problem arises from the
implicit attempt to identify two notions of time which are distinct: time in
Quantum Mechanics is a fixed external parameter, time in GR is a coordi-
nate.
A physical time can be chosen by fixing a particular foliation of the space-
time as fundamental and by labeling events on a manifold according to some
physical clock. This can be done either before or after the quantization, or
by some phenomenological considerations, in a model where time plays no
precise role. For a general in depth discussion of the several approaches to
solve the problem of time, see [44].

7.2 Mini-superspace

Given the shortcomings discussed above, instead of working with Quantum
Geometrodynamics dealing with infinite dimensions of the full space of the
3-geometries, also called superspace, it is preferable to work with a finite
number of degrees of freedom and construct a quantum model on a finite-
dimensional Mini-superspace [45-47].
The reduction of the number of degrees of freedom corresponds to a symme-
try reduction implemented at the classical level. This reduction can be done
for homogeneous geometries such as FLRW spacetimes and its quantization
is generally agreed to be only a toy model of a quantum theory of geometry.
To see how this works, in the next section the Mini-superspace of a mini-
mally coupled scalar field in the gravitational field described by the usual
Einstein-Hilbert action will be discussed, following the reasoning in [43].

7.2.1 Classical Mini-superspace model

The metric considered is a flat FLRW spacetime

ds2 = N2(t)dt2 − a2(t)(dx2 + dy2 + dz2) (7.13)

written in Cartesian coordinates, where N is an arbitrary function of time,
coinciding with the lapse function introduced in Chapter 6.
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The first part of the action is the usual Einstein-Hilbert action (2.1) without
the matter Lagrangian LM The Ricci scalar R can be written in terms of
the scale factor a and the lapse function N

R = −6
[ Ṅ ȧ
N3a

− ȧ2

a2N2
− ä

aN2

]
. (7.14)

So the Einstein-Hilbert action reads

S[N, a] = −3

κ

∫
d4x
[Ṅ ȧa2

N2
− ȧ2a

N
− äa2

N

]
(7.15)

where it is used
√
−g = Na3.

By performing an integration by parts in the last term and assuming that
the total derivative term vanishes at the boundaries, the action simplifies to

S[N, a] = −3

κ

∫
d4x

ȧ2a

N
. (7.16)

This is the classical Mini-superspace model action for the gravitational part.
GR is a diffeomorphism Diff(M)-invariant theory implying that the equa-
tions of the theory transform covariantly under spacetime coordinate trans-
formations. However, the only symmetry left in classical Mini-superspace
is given by invariance of the action (7.16) under time re-parametrizations
t = f(τ).
The action for a scalar field minimally coupled to gravity, in a potential V
is given by

SM =
1

2

∫
d4x[gµν∂µΦ∂νΦ− V (Φ)] (7.17)

which is invariant under time re-parametrizations because the field Φ is a
scalar under time transformations, i.e. Φ̃(τ, x) = Φ(τ, x).
By using the definition of the energy-momentum tensor (2.4), it is easy to
find that it is

Tµν = ∂µΦ∂νΦ− 1

2
(gαβ∂αΦ∂βΦ− V (Φ))gµν , (7.18)

and by comparing with the energy-momentum tensor of a perfect fluid (2.9),
the pressure, the normalized 4-velocity and the energy density read

p =
1

2
∂αΦ∂αΦ− V (Φ), (7.19)

uµ =
∂µΦ

|∂µΦ|
, (7.20)

and

ε =
1

2
∂αΦ∂αΦ + V (Φ), (7.21)
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respectively. In the comoving coordinate system, the 4-velocity of the fluid
is uµ = δµ0 /N .
Then, the pressure p and the energy density ε simplify to

p =
1

2
Φ̇2N−2 − V (Φ), (7.22)

and

ε =
1

2
Φ̇2N−2 + V (Φ), (7.23)

analogously to what happens for Inflation and Quintessence in Chapter 2.
In summary, the total action of this classical mini-superspace model is given
by

S = V0

∫
dt
[
− 3

Nκ
ȧ2a+

1

2N
Φ̇2a3 − V (Φ)Na3

]
, (7.24)

where V0 =
∫
d3x is the comoving volume and it is a multiplicative constant

that can be ignored. So the Lagrangian of the system is

L = − 3

Nκ
ȧ2a+

1

2N
Φ̇2a3 − V (Φ)Na3, (7.25)

As usual, the Euler-Lagrange equations for a system with a finite number
of degrees of freedom, read

∂L
∂qi
− d

dt

(∂L
∂q̇i

)
= 0. (7.26)

where qi are the dynamical variables of our system, i.e., a, N and Φ.
The Lagrangian (7.25) is independent of the time derivative of the lapse
function N . This means that the lapse function plays the role of a gauge,
and its choice has no physical consequences for the system. Two choices are
usually done: N = 1, called the physical time gauge, used in Chapter 2, and
N = a, called the conformal time gauge.
The equation of motion for the lapse function N is

ȧ2

a2
=
κ

3
N2ε. (7.27)

This equation gives the correct first Friedmann equation (2.6), whatever
gauge is chosen.
The equation of motion for the scale factor a reads

2
ä

a
+
ȧ2

a2
+ κN2p = 2

Ṅ

N

ȧ

a
(7.28)

which, by using equation (7.27) is the second Friedmann equation (2.7) in
both gauges.
The last equation of motion for the scalar field Φ is given by

Φ̈ +
(

3
ȧ

a
− Ṅ

N

)
Φ̇ + V ′(Φ)N2 = 0 (7.29)
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where V ′(Φ) is the derivative of the potential with respect to the field Φ.
By combining this equation with the Friedmann equations (7.27) and (7.28)
gives the continuity equation (2.10) independent of the gauge chosen. A
Legendre transformation gives the Hamiltonian

H = ȧpa + Φ̇pΦ − L = N
(
− κp2

a

12a
+
p2

Φ

2a3
+ V (Φ)a3

)
≡ NH. (7.30)

where pa and pΦ are the conjugate momenta of a and Φ, respectively.
As pointed out previously, the Lagrangian (7.25) does not depend on the
time derivative of N , so pN = 0 is the primary constraint of the theory. So
the total Hamiltonian is given by

HT = H+ cpN (7.31)

where c is a Lagrange multiplier.
By ensuring that the primary constraint is a constraint for all time, i.e.
ṗN = 0, the Poisson brackets is computed

ṗN ≈ {pN ,HT } = −H = 0 (7.32)

and the secondary constraint

H = −κp
2
a

12a
+
p2

Φ

2a3
+ V (Φ)a3 = 0, (7.33)

is found. The equation Ḣ = 0 is identically satisfied, so there are no more
secondary constraints.
Moreover, the dynamical variable N is a Lagrange multiplier so the whole
Hamiltonian, HT = cpN + NH ≈ 0, is a constraint. This fact causes diffi-
culties in quantizing the theory, as already seen in the discussion regarding
the full superspace.
The two constraints H and pN are first class because their Poisson bracket
vanishes and the Hamiltonian, besides generating time translations, is also
the generator of time re-parametrizations.
The equations of motion in the Hamiltonian formalism are the Poisson brack-
ets of the dynamical variables and their conjugate momenta with the Hamil-
tonian

ġ = {g,H}, (7.34)

for g = a, pa, Φ and pΦ.
Of course, the Hamiltonian should give the same equations of motion given
by the Lagrangian to be consistent with it and this can be easily verified,
by suitable linear combinations of equations (7.34), supplemented by the
Hamiltonian constraint (7.33).
In this case, for the Hamiltonian being generator of time re-parametrizations,
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a dynamical variable should have vanishing Poisson brackets with this gen-
erator in order to be a physical observable.
However, the Poisson brackets of a, pa, Φ and pΦ do not vanish, so it is nec-
essary to fix the gauge before quantizing the system to be able to calculate
the quantum values of these quantities.
From this need, this model is called Gauge-fixed picture.

7.2.2 Quantum Mini-superspace model

In this section, the quantization of the system presented in the previous
section is described.
The Lagrangian found in the previous section is recalled

L = − 3

N
ȧ2a+

1

2N
Φ̇2a3 − V (Φ)Na3. (7.35)

By combining the Friedmann equations (7.27) and (7.28) written in physical
time gauge with the equation of state (2.11), the following equation of motion
is found

ä

a
= −3ω + 1

2

ȧ2

a2
. (7.36)

The Lagrangian (7.35) can be rewritten as a Lagrangian describing a particle
with variable mass M(a) moving in a potential V , of the form

L =
1

2
M(a)ȧ2 − V (a) (7.37)

that gives the following equation of motion

ä

a
= −1

2

∂ lnM(a)

∂ ln a

ȧ2

a2
− 1

M(a)a
V ′(a). (7.38)

By demanding the equality between the last equation and equation (7.36),
the form for the mass M and the potential V are found

M = a3ω+1, V (a) = 0, (7.39)

such that the dynamics produced by the two Lagrangians is the same.
Then the Lagrangian (7.37) becomes

L = a3ω+1ȧ2 (7.40)

and substitutes the previous Lagrangian (7.35). Instead of two equations of
motion (7.27) and (7.28) and the continuity equation (7.29), in the physical
time gauge, a not time re-parametrization invariant Lagrangian (7.40) which
has only an equation of motion (7.36) is used: the gauge freedom has been
removed and the system is written in terms of its true degrees of freedom.
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Hence, this Lagrangian can be used to quantize the system.
The conjugate momentum of the scale factor is

pa = 2a3ω+1ȧ (7.41)

and the Hamiltonian, after a Legendre transformation, is given by

H =
p2
a

4a3ω+1
. (7.42)

Now, the dynamical variables are promoted to operators and the following
operator ordering in the Hamiltonian, upon quantizing, is chosen

p2
a

4a3ω+1
=

1

8
[â−3ω−1p̂2

a + p̂aâ
−3ω−1p̂a]. (7.43)

After the gauge-fixing procedure, the Hamiltonian evolves in time, so the
Schrödinger equation in this setting is given by

HΨ(a, t) = i∂tΨ(a, t), (7.44)

with ~ = 1. By substituting in it the operator ordered Hamiltonian (7.43)
and writing the operator p̂a in the position representation, the Schrödinger
equation takes the form

1

4

(3ω + 1

2
a−3ω−2∂a − a−3ω−1∂2

a

)
Ψ(a, t) = i∂tΨ(a, t). (7.45)

To solve the Schrödinger equation, the following ansatz for the wavefunction
is made

Ψ(a, t) = f(a)e−iEt, (7.46)

leading to a second order differential equation for f

a−3ω−1f ′′(a)− 3ω + 1

2
a−3ω−2f ′(a) + 4Ef(a) = 0. (7.47)

The solution to this equation is

f(a) = c1 sin
[ 4
√
E

3(ω + 1)
a

3(ω+1)
2

]
+ c2 cos

[ 4
√
E

3(ω + 1)
a

3(ω+1)
2

]
(7.48)

where c1 and c2 are constants of integration.
By imposing the boundary condition f(a = 0) = 0, c2 = 0 and the eigen-
functions of the Schrödinger equation in the energy level E are

ΨE(a, t) = sin
[ 4
√
E

3(ω + 1)
a

3(ω+1)
2

]
e−iEt. (7.49)

The eigenfunctions are not normalizable and so they are unphysical states.
Hence a wave packet is needed to obtain a physical sensible wave function

71



of the Universe.
In order to construct the wave packet, one takes a superposition of all the
eigenfunctions using a suitable weight function A(E)

Ψ(a, t) =

∫ ∞
0

A(E)ΨE(a, t)dE (7.50)

The choice of the weight function A(E) is nearly arbitrary and, to make the
integrals duable here, the weight function is chosen to be a quasi-Gaussian
function A(E) = e−γE , with γ > 0.
Therefore, the wave packet is given by

Ψ(a, t) = N a
3(ω+1)

2

(ω + 1)(γ + it)3/2
exp

[
− 4a3(ω+1)

9(ω + 1)2(γ + it)

]
(7.51)

with N a normalization constant.

7.2.3 Interlude: interpretations of Quantum Mechanics

The wave function (7.51) describing the Universe as a whole has been ob-
tained and to try to grasp its physical significance, a short discussion about
which interpretation of Quantum Mechanics (QM) has to be used in this
context is necessary. A way to interpret the wave function of the Universe
is the most widely accepted interpretation: the Copenhagen interpretation.
However, in the context of Quantum Cosmology, the Copenhagen interpre-
tation is not suitable because of the problems arising from interpretation of
the measurement procedure.
In fact, in the Copenhagen interpretation the measurement of an observable
of a system is made by an external classical observer, an observer in the clas-
sical domain, outside the system under investigation. If the whole Universe
is considered, there is no place for such an observer to make a measure-
ment on the system. This makes Copenhagen interpretation inapplicable to
Quantum Cosmology.
An alternative interpretation is the Many Worlds Interpretation (MWI) due
to Everett [48,49].
The Hilbert space structure and the self-adjoint operators are the same as
those of Copenhagen interpretation and in particular, the expectation value
of a dynamical variable in MWI is given by

< q̂ >=
< Ψ|q̂|Ψ >

< Ψ|Ψ >
=

∫∞
0 Ψ∗(a, t)q(a, ∂a)Ψ(a, t)da∫∞

0 Ψ∗(a, t)Ψ(a, t)da
. (7.52)

as in Copenhagen interpretation, but what changes is the interpretation of
the physical reality. The collapse of the wave function is avoided because
when an observer inside the system, makes a measurement of an observable
then every eigenvalue and the corresponding eigenstate is actually realized
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by creating new Universes that do not interact with each other, describing
independent worlds. Allowing the coexistence of the eigenvalues which do
not play any role in our world, does not cause any trouble and therefore the
problem is solved.
An alternative interpretation which differs from both Copenhagen interpre-
tation and MWI is Bohmian Mechanics [50-52], also known as the causal
or ontological interpretation of QM. In this theory one tries to solve the
1-dimensional Schrödinger equation

i~
∂Ψ(x, t)

∂t
=

[
− ~2

2m
∇2 + V (x)

]
Ψ(x, t). (7.53)

by using the ansatz
Ψ(x, t) = R(x, t)eiS(x,t)/~, (7.54)

where R(x, t) and S(x, t) are two real functions of time t and coordinates x.
By considering separately the real and the imaginary parts of the Schrödinger
equation one gets two independent equations

∂R2

∂t
+∇

(
R2∇S

m

)
= 0, (7.55)

and
∂S

∂t
+

(∇S)2

2m
+ V (x)− ~2

2m

∇2R

R
= 0. (7.56)

The first equation is a continuity equation for R2 interpreted as the prob-
ability density of an ensemble of particles, if the velocity of the particles is
defined as

ẋ =
∇S(x, t)

m
. (7.57)

By exploiting the same definition, the second equation is a Hamilton-Jacobi
equation with an extra term

Q = − ~2

2m

∇2R

R
, (7.58)

which is called the quantum potential and vanishes in the classical limit
~→ 0, being responsible for all the quantum effects in this theory.
An important difference with Copenhagen interpretation is that the notion
of particle trajectory survives. Having defined the velocity in (7.57), the
guidance equation

p = mẋ = ∇S(x, t), (7.59)

is found. The name is due to the fact that the wave function, satisfying the
Schrödinger equation, through its phase S(x, t), guides the particles in its
path, which follow trajectories independent of observations: The integration

73



of the guidance equation (7.59) gives the trajectory of the particle depend-
ing only on the initial position of the particle. This unknown variable is
what distinguishes the particles in the ensemble and the reason why it is
considered the hidden variable of the theory.
As already pointed out, from equation (7.55) R2 can be seen as the proba-
bility density of the position of the ensemble of particles: one only needs to
postulate that the initial distribution of the particles is equal to R2. How-
ever, even if this is not the case, from equations (7.55) and (7.59), R2 will
rapidly tend to the position probability density distribution P .
Hence, depending on the initial position distribution one can make statisti-
cal predictions of the position of the particles and calculate the expectation
values for the position or the momenta of the ensemble of particles, whose
mean values agree with the calculations of the Copenhagen interpretation.
However, differently from what happens in the Copenhagen interpretation,
the ignorance of the position of one of the particles in the ensemble is not
real, but it is only due to the ignorance of the initial position of the particle.
Once the initial position is determined then one can obtain accurately the
path of the particle.
Therefore, the probability that Bohmian Mechanics provides is the proba-
bility of the particle to be in a position, not just to measure it there: the
position of the particle is independent of whether one does a measurement
or not. For further discussions, see [52].

7.2.4 Many Worlds Interpretation (MWI)

The dynamical variables, which are physically interesting for the theory, are
the scale factor a, the Hubble constant H and the energy density ε. These
three variables are promoted to operators and the last two physical variables,
in the position representation, read

Ĥ = − i
4

[∂aa
−3ω−2 + a−3ω−2∂a] (7.60)

and
ε̂ = ε0a

−3(ω+1) (7.61)

respectively, where the last expression is the solution of the continuity equa-
tion (2.10) and ε0 is a constant.
Their expectation values, by using equation (7.52), are found to be

< â > (t) = B(ω)(γ2 + t2)
1

3(1+ω) (7.62)

with

B(ω) =
(9

8

(ω + 1)2

γ

) 1
3(1+ω)

Γ
(

5+3ω
3(1+ω)

)
Γ
(

4+3ω
3(1+ω)

) , (7.63)
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< Ĥ >=
2t

3(ω + 1)(γ2 + t2)
, (7.64)

and

< ε̂ >=
8ε0γ

3(ω + 1)(γ2 + t2)
, (7.65)

respectively.

7.2.5 Bohmian Mechanics

The same dynamical variables in the context of the causal interpretation
of QM can be computed. By using the ansatz (7.54) for the wavefunction
and substituting this expression in the Schrödinger equation one gets the
continuity equation

∂R

∂t
− 1

4

[3ω + 1

2
a−3ω−2R

∂S

∂a
− 2a−3ω−1∂S

∂a

∂R

∂a
− a−3ω−1∂

2S

∂a2

]
= 0 (7.66)

and the modified Hamilton-Jacobi equation

∂S

∂t
+

1

4
a−3ω−1

(∂S
∂a

)2
+Q = 0 (7.67)

with the quantum potential Q given by

Q =
1

4R

[3ω + 1

2
a−3ω−2∂R

∂a
− a−3ω−1∂

2R

∂a2

]
. (7.68)

The R and S functions can easily be found by using the wave packet (7.51)
and pa = ∂aS and get

Hb(t) =
2

3(ω + 1)

t

γ2 + t2
(7.69)

By integrating the last equation an expression for the scale factor is obtained

ab(t) = a0(γ2 + t2)
1

3(ω+1) , (7.70)

where a0 is an integration constant.
By using the last equation, the energy density, given by (7.61), reads

εb(t) =
ε0

a
3(ω+1)
0 (γ2 + t2)

(7.71)

Finally, the Quantum potential (7.68), by using the expression for ab (7.70)
and the wave packet (7.51), takes the form

Q(t) =
27γ(1 + ω)2 − 8γ2

18(1 + ω)2(γ2 + t2)
. (7.72)
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7.3 Dust Field formalism

The action of MDM was already introduced in a different context: the so
called Dust Field formalism proposed in [41,42] By following the notation
used in [42], the action reads

S = − 1

2κ

∫
d4x
√
−gR+

1

2

∫
d4x
√
−gM(gαβ∂αT∂βT − 1). (7.73)

which looks identical to that of MDM (3.36), where M is a Lagrange mul-
tiplier forcing the gradient of the field T to be timelike. By following the
same steps to obtain the Mini-superspace version of the previous model, the
Lagrangian becomes

L =
3aȧ2

N
+
a3M

2N
Ṫ 2 − Na3M

2
(7.74)

where κ = 1 for convenience.
From deriving the equations of motion from this Mini-superspace model
Lagrangian, it is easy to see that the scalar field T has precisely the same
features of the mimetic field φ of the original proposal, i.e.

1. pressureless,

2. identical to cosmological time in synchronous reference frame,

3. with energy density equal to the Lagrange multiplier M ,

4. satisfying a continuity equation.

1. The equation of motion for a is given by

ȧ2

a2
+ 2

ä

a
+
M

2
(Ṫ 2 −N2) = 2

Ṅ

N

ȧ

a
(7.75)

and by comparing it with the second Friedmann equation (7.28), the
pressure should be equal to p = M

2 (Ṫ 2/N2 − 1).
The equation of motion for the Lagrange multiplier M reads

3a2

2N
Ṫ 2 =

3a2N

2
=⇒ Ṫ 2 = N2 (7.76)

thus making the pressure vanish.

2. From the last equation, it is easy to see that time can be identified
with the dust field variable in the physical time gauge, N = 1, which
corresponds precisely to a synchronous reference frame.
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3. The equation of motion for the other Lagrange multiplier gives

ȧ2

a2
=
M

3

Ṫ 2 +N2

2
=
M

3
(7.77)

that is the first Friedmann equation (7.27) with the Lagrange multi-
plier playing the role of the energy density

4. The equation of motion for the field itself is

T̈ −
(

3
ȧ

a
+
Ṁ

M
− Ṅ

N

)
Ṫ = 0 (7.78)

which, for Ṫ = N and M = ε is the right continuity equation for the
pressure-less dust field.

The equations of motion (7.77)-(7.75)-(7.76)-(7.78) are precisely the tt com-
ponent and the rr component of the modified Einstein field equations, the
mimetic constraint and the continuity equation, respectively, found in Chap-
ter 3 for the mimetic scalar field.
From the Lagrangian, the corresponding Hamiltonian can be obtained in
the usual way.
The conjugate momenta read

pa =
∂L
∂ȧ

= −6ȧa (7.79)

pT =
∂L
∂Ṫ

= a3MṪ (7.80)

pM = 0, pN = 0 (7.81)

and the Hamiltonian

H = N
(
− p2

a

12a
+

p2
T

2a3M
+
a3M

2

)
. (7.82)

The Hamiltonian equation of motion for the conjugate momenta of T will
give ṗT = {pT ,H} = 0, which means that it is constant.
In the physical time gauge and using the fact that Ṫ = N , the Lagrange
multiplier M can be written as

M =
pT
a3

(7.83)

and the Hamiltonian

H = − p2
a

12a
+ pT = 0 (7.84)

that vanishes because it is still a constraint.
The dependence of the Hamiltonian (7.84) on the momentum conjugated to
T , pT is linear and T , already identified with the physical time t, plays this
role in the quantized theory.
The Hamiltonian equation of motion for pT gives ṗT = {pT , H} = 0, which
implies that pT = ε0, where ε0 is a constant, connected with the energy
density as can be easily seen from (7.83).
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7.3.1 Quantization

The solution to the Wheeler-De Witt equation for a Mini-superspace model

ĤΨ(a, t) = 0 (7.85)

with the Hamiltonian (7.84), can be found without operator ordering needed.
The starting point for the discussion is the canonical transformation

p̃ã =
pa√
12a

, ã =
4a3/2

√
3
, (7.86)

under which the Poisson brackets of the theory are preserved.
The Hamiltonian, rewritten in the new variables, takes the form

H̃ = −p̃2
ã + pT = 0 (7.87)

Then, the new variables are promoted to operators and the equation (7.84)
in position representation is given by

~2∂2
ãΨ̃(ã, t)− i~∂T Ψ̃(ã, t) = 0. (7.88)

Here, for later convenience, ~ is not set to one. By making a Fourier trans-
formation

Ψ̃(ã, t) =

∫ ∞
−∞

exp(ikã)Ψ̃k(t)dk, (7.89)

and by substituting the Fourier transform in (7.88), the following differential
equation for the mode Ψ̃k is found

˙̃Ψk(t)− i~k2Ψ̃k(t) = 0, (7.90)

which has to be satisfied for every k.
The solution to this equation is given by

Ψ̃k(t) = f̃(k)eik
2~t (7.91)

where f̃(k) is a completely arbitrary function of k. The function f̃(k) can
be assumed of the form

f̃(k) = ke−γ~
2k2 (7.92)

with γ > 0.
Then

Ψ̃(ã, t) = N ã

4(γ~2 − i~t)3/2
exp

[
− ã2

4(γ~2 − i~t)

]
. (7.93)

To obtain the expectation values of the physical relevant quantities operators
above, one has to rewrite them in terms of the new variables in position
representation as

â =

√
3

4
ã2/3, (7.94)
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ε̂ =

(
4√
3

)3

ε0ã
2 (7.95)

Ĥ =
8
√

2i~
33/4

(ã−1∂ã + ∂ãã
−1). (7.96)

In the framework of the MWI, the expectation values are given by

< â >=

√
3

π

Γ
(

11
6

)
(4γ)1/3

(γ2~2 + t2)1/3, (7.97)

< ε̂ >=
64ε0γ

3
√

3(γ2~2 + t2)
, (7.98)

and

< Ĥ >=
8
√

2

33/4

t

(γ2~2 + t2)
. (7.99)

The same expectation values, by using Bohmian Mechanics, read

ab(t) = a0(γ2~2 + t2)1/3, (7.100)

εb(t) =
ε0

a3
0(γ2~2 + t2)

, (7.101)

and

Hb(t) =
2

3

t

(γ2~2 + t2)
. (7.102)

Furthermore, the quantum potential Q in terms of the physical time t reads

Q(t) =
γ~2
(

3
2 −

4
3γa

3
0

)
γ2~2 + t2

. (7.103)

7.4 Comparison of the results

The tables 7.1 and 7.2 summarize the results found in the Gauge-fixed pic-
ture and in the Dust Field formalism in the previous sections for the scale
factor, the Hubble constant and the energy density of the Universe.
What can be seen is that the quantized version of the Dust Field formal-

ism, which at the classical level coincides with MDM, gives almost the same
results (modulo some numerical factors) as the Gauge-fixed picture in the
Mini-superspace formulation, in both interpretations studied.
More precisely, the scale factor in Gauge-fixed picture depends on ω, i.e.
the equation of state of the fluid that is the dominant matter component
of the Universe in a particular epoch and it coincides for dust ω = 0 with
the Dust Field formalism, where there is no potential for the mimetic field
and so the pressure is vanishing. Moreover, in the case of MWI there are
some numerical factors that distinguishes the results obtained in the two
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Table 7.1: Many Worlds Interpretation

Gauge-fixed picture Dust Formalism

< a > (t) = B(ω)(γ2~2 + t2)
1

3(1+ω) < a >=
√

3
π

Γ

(
11
6

)
(4γ)1/3

(γ2~2 + t2)1/3

< H >= 2t
3(ω+1)(γ2~2+t2)

< H >= 8
√

2
33/4

t
(γ2~2+t2)

< ε >= 8ε0γ
3(ω+1)(γ2~2+t2)

< ε >= 64ε0γ

3
√

3(γ2~2+t2)

Table 7.2: Bohmian Mechanics

Gauge-fixed picture Dust Formalism

ab(t) = a0(γ2~2 + t2)
1

3(ω+1) ab(t) = a0(γ2~2 + t2)1/3

Hb(t) = 2
3(ω+1)

t
γ2~2+t2

Hb(t) = 2
3

t
(γ2~2+t2)

εb(t) = ε0

a
3(ω+1)
0 (γ2~2+t2)

εb(t) = ε0
a30(γ2~2+t2)

approaches.
Therefore, the analysis can be restricted only to the Gauge-fixed picture.
As can be seen in the Figure 7.1, the scale factor has a minimum for t = 0,
remaining finite and connecting a contracting phase for t < 0 with an ex-
panding phase for t > 0. So, there is quantum bounce for the Universe
history, while the behavior of the scale factor for |t| >> 1 is the same as the

classical dust-dominated Universe a ∝ t
2
3 . The minimum of the scale factor

and so the comoving size of the Universe at time t = 0 will depend on the
parameter γ present in the wave function of the Universe.
In Figure 7.2, instead, three different scale factor evolutions are depicted:

Figure 7.1: The expectation value of the scale factor for a pressure-less dust
field ω = 0, with different values of the parameter γ (γ = 1, 2, 3).
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the steepest plot is the one corresponding to a dust-dominated Universe
ω = 0 for all time, the intermediate one represents a radiation-dominated
Universe with ω = 1/3 and the last one is the scale factor for a Universe
with ultra-stiff matter with ω = 1, appearing in some theories such as in
[53].
According to the known facts about the Universe, the actual scale factor
evolution should be a combination of the first two cases: the second plot
remains valid until the radiation-dust matter equality is reached and then
the first plot becomes more accurate in describing the rest of the history of
the Universe.

The Quantum Bounce scenario is confirmed by the change of sign of the

Figure 7.2: The expectation value of the scale factor for γ = 1 and for
different values of ω (ω = 0, 1/3, 1).

Hubble constant at t = 0 as can be seen in Figure 7.3 and in Figure 7.4.
In particular, in Figure 7.3, it is shown how the choice of the parameter γ
modulates the time dependence of the Hubble constant, displaying a growing
flatness for increasing γ. Instead, the form of the Hubble constant curves
remains quite the same for different values of ω and so the shape of the
curve is almost independent of the dominant matter component of the Uni-
verse, despite the inequality of the maxima and minima and consequently
the steepnesses for small and intermediate values of time t.
In Figure 7.5 and Figure 7.6, it can be seen what is expected in a Quan-

tum Bounce scenario: the finiteness of the expectation value of the energy
density when t = 0 resolving the problem of the initial singularity, at the
quantum level. The same observations made for the plots of the Hubble
constant apply here.
Furthermore, the Quantum potential in Bohmian Mechanics in the Gauge-
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Figure 7.3: The expectation value of the Hubble constant for a pressure-less
dust field ω = 0, with different values of the parameter γ (γ = 1, 2, 3).

Figure 7.4: The expectation value of the Hubble constant for γ = 1 and for
different values of ω (ω = 0, 1/3, 1).
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Figure 7.5: The expectation value of the energy density with ε0 = 1 for
a pressure-less dust field ω = 0, with different values of the parameter γ
(γ = 1, 2, 3).

Figure 7.6: The expectation value of the energy density with ε0 = 1 for
γ = 1 and for different values of ω (ω = 0, 1/3, 1).
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fixed picture (7.72) is recalled

Q(t) =
27γ(1 + ω)2 − 8γ2

18(1 + ω)2
(γ2 + t2)−1. (7.104)

In Figure 7.7, different plots of the Quantum potential for different values
of the wave function parameter γ, while in Figure 7.8 the three plots are
given for different dominant matter component equations of state. As it is
easy to see in the graphs, the Quantum potential is relevant only for time
scales near the Quantum Bounce and becomes negligible after an interval of
time modulated by γ. Moreover, the Quantum potential becomes more and
more negligible for all time as the parameter γ grows. For different values
of ω, for fixed γ, the form of the Quantum potential remains the same, but
the values of the maxima increase and as a consequence, its importance for
early time as ω increases, at fixed γ.
Finally, the Quantum potential in Bohmian Mechanics for the Dust Field

Figure 7.7: The Quantum potential for the Gauge-theory approach for a
pressure-less dust field ω = 0, with different values of the parameter γ
(γ = 1, 2, 3).

formalism

Q(t) =
γ~2
(

3
2 −

4
3γa

3
0

)
γ2~2 + t2

. (7.105)

is indendent of ω, as expected. However, the situation is different from
what happens in the previous case. For γ = 9

8a
−3
0 the Quantum potential

vanishes, for γ < 9
8a
−3
0 it is positive while it becomes negative for γ > 9

8a
−3
0 .
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Figure 7.8: The expectation value of the scale factor for γ = 1 and for
different values of ω (ω = 0, 1/3, 1).

Figure 7.9: The quantum potential with a0 = 1 for a pressure-less dust field
ω = 0 with different values of the parameter γ (γ = 1, 2, 3).
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Chapter 8

Conclusions

Mimetic Gravity has emerged as an interesting alternative to General Rel-
ativity and has attracted since its birth an increasing interest.
In this thesis, it has been reviewed how the conformal degree of freedom of
gravity has become dynamical through a singular disformal transformation,
leading to a new degree of freedom as an effective dark matter component
appearing on cosmological scales.
By addition of a potential it has been seen to give a well behaved early-
time and late-time phenomenology, offering a unified description of dark
components of the Universe, and present at the classical level a Big Bounce
scenario, for which it has been described a very general way to avoid cos-
mological singularities, inspired from non-commutative geometry.
Furthermore, cosmological perturbations in this setting have been studied,
evidencing the need for an extra term in order to have a nonvanishing speed
of sound, reconciling the theory with the study of the quantum fluctuations
in inflationary scenario and, from direct coupling of the mimetic scalar field
with ordinary matter, a way to address physical processes in the early Uni-
verse such as Baryogenesis has been described.
As an interlude, it has been reviewed how Mimetic Gravity can reproduce
the most important astrophysical evidence for Dark Matter: the galaxies
rotation curves. This is done by looking for static spherically symmetric so-
lutions associated with a mimetic scalar field potential via a reconstruction
procedure, without invoking particle matter nature for Dark Matter.
By doing the Hamiltonian analysis of the theory it has been shown in a
more formal way that one more degree of freedom is present in the theory,
how the constrained Hamiltonian dynamics of GR is modified because of the
mimetic degree of freedom and that Mimetic Gravity avoids Ostrogradski
instability under certain conditions.
Then, the identification at the classical level with Dust Field formalism has
been pursued and the associated quantized Mini-superspace model has been
described and its results compared with those of the Gauge-fixed picture
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case.
The results are the same, for the typical equation of state of dust, modulo
some constants but Mimetic Gravity has the important feature to introduce
a physical time in the Quantum Cosmology setting.
From the features presented in this thesis, the increasing appeal of this the-
ory as an alternative to the particle Dark Matter appears justified and many
developments appeared so far have to be analyzed further and still much has
to be discovered.
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[41] J. D. Brown, K. V. Kuchǎr, Dust as a standard of space and time
in canonical quantum gravity, Phys. Rev. D, 51:56005629, May 1995,
arXiv:gr-qc/9409001

[42] T. Pawlowski, V. Husain. Time and a physical hamiltonian for quantum
gravity, Phys. Rev. Lett. 108, 141301, arXiv:1108.1145

[43] A. Stylogiannis. Canonical Scale Factor Quantization in a Flat FRW
Universe, Master thesis, 2015, LMU Munich

[44] C. J. Isham, Canonical Quantum Gravity and the Problem of Time,
arXiv:gr-qc/9210011

90



[45] N. Pinto-Neto, J.C. Fabris, Class. Quantum Gravity 30 (2013) 143001

[46] N. Pinto-Neto, F.T. Falciano, R. Pereira, E.S. Santini, Phys. Rev. D 86
(2012) 063504

[47] S.P. Kim, Phys. Lett. A 236 (1997) 11

[48] H. Everett, Relative state formulation of quantum mechanics, Rev.
Mod. Phys., 29:454462, Jul 1957

[49] F. J. Tipler, Interpreting the wave function of the universe, Physics
Reports, 137(4):231 275, 1986

[50] D. Bohm, A suggested interpretation of the quantum theory in terms
of hidden variables. I, Phys. Rev., 85:166179, Jan 1952

[51] D. Bohm, A suggested interpretation of the quantum theory in terms
of hidden variables. II, Phys. Rev., 85:180193, Jan 1952
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