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Abstract: The Schwarzschild metric is a well known solution to the Einstein field equations,
when considering a spherically symmetric mass, with no charge or angular momentum.

In this thesis we consider two quantum field theory approaches for computing the vacuum ex-
pectation value of the graviton, in the presence of the source of the Schwarzschild model.

The first one is the straightforward calculation of the S-matrix element, which requires com-
puting the 3-vertex function.

The second one avoids this inconvenient calculation, by going directly to the equations of mo-
tion and solving them iteratively. Each iteration corresponds to considering a new diagram
contribution to the vacuum expectation value.
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1 Introduction

Since the time of Newton, scientists have always thought of gravity as a force acting between
two bodies. The acceleration of a mass was seen as the result of the action of a gravitational
field on it and, on the other hand, the gravitational field was expressed as a consequence of the
mass configuration present in the universe.

This has changed dramatically with the development of Einstein’s theory of General Relativ-
ity, which treats gravity as the curvature of spacetime in the following sense: matter curves
spacetime and a curved spacetime tells the matter how to move. This is similar to Newton’s
theory, in the sense that we have the double role of matter, that is both a source of gravity and
is acted upon by it, but it is also fundamentally different, because gravity is no longer treated
as a force and it becomes part of the very fabric of our universe.

Although FEinstein’s field equations look very simple, they are indeed extremely non-linear. The
solution of Einstein’s field equations is known only for some particular mass configurations, one
of which will be discussed in this thesis.

In order to apply General Relativity to the physical world, it is useful to look at one of the
simplest examples that can approximate a physical system, namely that of a perfectly static
star. To make the model as simple as possible, the star is assumed to be a perfect fluid, i.e.
without any shear stresses. The reasonable prediction is that the metric tensor should then
be independent of time, that it should be spherically symmetric and that it should be asymp-
totically flat, at large distances from the star. The first part of this thesis computes precisely
this solution, introducing at the same time the notation and the conventions that will be used
throughout the whole work.

Also at the beginning of the 20th century, another groundbreaking theory was developed: Quan-
tum Mechanics.

What started as a theory of a fixed amount of particles described by wave equations was then
developed into a theory of fields, where particles are described by the modes of the fields and
can be created or annihilated.

This is of course the Quantum Field Theory, which unites Quantum Mechanics and Special
Relativity. From Quantum Mechanics it takes the quantization procedure and the whole for-
malism of observables, while it inherits causality from Relativity.

Quantum Field Theory has obtained many successes, the biggest of them being probably Quan-
tum Electrodynamics, which is the best fundamental physical theory that we have at the mo-
ment. It also paved the way for the Electroweak Theory and for Quantumchromodynamics.
But gravity still can’t be included in these conceptual schemes.

The focus of the second part of my work is to show, following [1], that it is indeed possible
to reconstruct the Schwarzschild solution perturbatively, at least up to order G?, using the
Feynman-Dyson expansion known from Quantum Field Theory.

The usual gravitational potential of the Schwarzschild problem is recovered as the vacuum ex-
pectation value of the graviton in the presence of an appropriate external source.

The computations involved using this method are quite lengthy: among other things, the 3-
point-vertex function of the graviton, which consists of 171 terms, needs to be determined.
A more compact method, which is also more easily extendable to higher orders, is the core of
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the third part of this thesis. In it the Einstein field equations are derived in such a way that
they can be solved iteratively to get higher orders of perturbation. This yields once more the
well known result.



2 The Schwarzschild solution and mass renormalization

The first part of the thesis focuses on a detailed derivation of the Schwarzschild solution, fol-
lowing the usual approach of general relativity.

We introduce the most generic spherically symmetric metric tensor in both spherical and carte-
sian coordinates. This ansatz contains unknown functions that can be determined by consid-
ering the 00-component of the Einstein field equations.

The method of curvature 2-forms proves to be the quickest to compute the 00-component of
the Einstein tensor.

Then we can make a particular choice for the energy-momentum tensor, corresponding to a
spherically symmetric mass density of radius r = ¢.

At this point we can define two different radii that will turn out to be relevant for the final
solution: one is obtained from the length of a circumference on the equatorial plane and is
denoted by e, and the other is the proper invariant radial distance, which will be called &,..

As the concept of mass is not well defined in general relativity, we need to be careful with
it. The bare mass mg is defined as the integral along the proper radius of the mass density,
while the renormalized mass m is just the mass density, that we are assuming to be constant,
multiplied by the volume of a sphere of radius ..

The problem with the bare mass my is that then the gravitational potential expressed in these
terms is divergent for ¢ — 0. Introducing the renormalized mass m, which is indeed what an
observer would measure using Kepler’s third law, cures the divergency.

The result obtained in this way does not depend on whether the ansatz for the energy-
momentum tensor has vanishing pressure or not.

In order to determine the last unfixed parts of the metric, we need to choose a gauge. By
imposing the de Donder gauge condition we finally arrive at the Schwarzschild solution and can
expand it in orders of Newton’s constant GG for later comparison.

We will use the ( - + + + ) convention for the Minkowski metric and the following index
labels for the metric tensor in spherical coordinates: 0 =¢, 1 =17, 2 =6 and 3 = ¢.

2.1 Generic classical solution
2.1.1 The generic spherically symmetric metric tensor
The goal of this first section is to find a generic classical solution to Einstein’s equations

v 1 2 v
G, = —RT,", (2.1)

where k% = 167G.

We can make the following ansatz for a generic spherically symmetric line element
ds* = F?dr? + H?dQ? — N%dt?, (2.2)

where dQ? = df? + sin? dp?.
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We can rewrite it in rectangular coordinates using the following relations:

dr? = (2* + y* + 2°) (zdz + ydy + zdz)? (2.3)
de* = 11 [ZQdexQ + 222 dy? + (xZ + y2)2 dz?
a2 4 g2
+22xydrdy + Prydyde — zx (xZ + y2) dxdz
—zx (2° + y°) dedz — 2y (2% + y°) dydz — 2y (2% + y*) dzdy] (2.4)
1

sin? 0dp? = yida? + 2idy? — rydady — a:ydyd:c) . (2.5)

@

This yields an expression for the line element ds? with respect to the cartesian coordinates w,

yﬂ?:f tzfie spatial components of the metric can be immediately read off:
Gow = i[—;nm + <F2 - f—j) f—z (2.6)
Iyy = [:_;nyy + (F2 - [:_22) 73{_2 (2.7)
9 = Ij—;mz + (F2 — f—j) i—z (2.8)
Joy = Gyz = % <F2 - f—j) (2.9)
Goz = oz = % (F2 — f—j) (2.10)
Gyz = Goy = j—i’ <F2 — f—;) (2.11)

These can be written in the more compact way

H? H?\ z;z;
9ij = 3 i+ <F2 - —) ’ (2.12)

where 7 and j indicate the cartesian coordinates x, y and z in this case.

The 00-component of the metric can be read off immediately: goo = —N2.
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2.1.2 The Einstein tensor

Our goal is now to use this generic form of the metric to compute the 00-component of the
Einstein tensor.

This allows us to write down the 00-component of the Einstein field equations and then solve
it to obtain ¢g"”.

To this purpose we use the method of curvature 2-forms.

Let us briefly outline the idea of this method, before starting the explicit computations.
Given a linear connection V, its corresponding curvature tensor is defined by

R(X,Y)Z = |Vx,Vy|Z - VixyZ, (2.13)

for some vector fields X, Y, Z € T' (T M).
Let {e,} be a coordinate frame. We usually represent the curvature tensor with the curvature
matrix R*,, which satisfies

R(X,Y) ey = R”Me,,. (2.14)
The curvature matrix is the usual Ricci tensor in which we are interested.

After defining w”, as the matrix of one-forms satisfying Vxe, = w*, (X)e,, Cartan’s equation
tells us that

RF, =dw”, + Wi AW, (2.15)
Thus all we need to do, in order to compute the Ricci tensor, is determine w”,.

This can be done in the following way.
We consider the ( ! )—tensor dP = e, w", where {w"} is the basis of one-forms, corresponding

to {e,}. Since we know that d*P = 0, we immediately have
0 = de, Nw" + e dw”
= e, (W', AW+ dw”),

where we have used de, = wt e,.
This means that the condition needed to determine w*, is

wh, Aw” 4+ dw” = 0. (2.16)

At this point an appropriate choice of the one-forms w* is necessary, to make the computations
as easy as possible.

The line element in spherical coordinates can be explicitly written as
ds* = F2dr? + H?d0? + H?sin® (0) dp® — N*dt*. (2.17)
We can then define the 1-forms:

wt = Ndt
w' = Fdr

(2.18)
Wl = HdH

w? = Hsinfdyp
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With this notation: ,
ds? = — ()" + (W) + (W) + (w?)? (2.19)
Recalling that the exterior derivative can be computed by

d <Z’dea;j1 /\...Adxﬂ’k> Z Z&"de Ada?t A LA dadk, (2.20)
J

we can write down the following two-forms:

dwt:%w A wt

dw" = LWt Aw”

NR
| (2.21)
dw? = Hwt Aw? + Lwr AW’
dw? = # w/\w“"—l— w A w? + £ cot Buw? A w?.
We can then find the connection forms w,, satlsfymg (2.16) by choosing
1
W = 5 (Cuva + Cpav — CVCW) w. (2'22)
¢, are the commutation coefficients of the basis and are defined by [eq, e5] = ¢, 5"e,.
Note that this implies that c,;” = —cg,”.
Capy a0d ¢, 5" are related by: c,5, = gyuc,g"
Using the definition of the commutation relation coefficients and (do,u Av) = 09, {(a,u) —
Oy {a,u) — (v, [u, v]) for a one-form « and two vectors u and v, one can show that
dw® = —¢p, [ W AW (2.23)
From this we see that w,, defined as in (2.22) satisfies dw" 4+ w#, A w” = 0.
We can use (2.23) to read the non-vanishing c,,*’s directly off of (2.21):
_ N _ __F 0 _ _ _H 60 _ _ o
Ctrt_ NF Ctrr__ﬁ Cip — T HN Cro — T HN
Crcp(p = _I?F C@pr = _% cot (0)
With these we can calculate w,,,:
o == = e’
wio = — g’
wip = — gy w?
(2.24)
Wreg = —II{{}/,LUG
H/
Wrp = —pw”

wyy = — 7 cot (0) w?



2.1 QGeneric classical solution 7

From the definition of the Einstein tensor via the double dual of the Riemann tensor G 5=

ER“BM(S = %e“ﬂ’“"lRmmWW%emywé it is easy to see that G, = — (R}, + R®,; + R3,)).

In order to proceed, we must compute these components of the Riemann tensor. They are
obtained from R = R" _w* Aw” and R*, = dw”, + wh, A w®,.
The result is

||

» 1 (FH H" HF

1 H2 Hl2
b0 — 2 T H2N2 22 (2.26)

H' HF FH

F F? N2

R

, (2.27)

which means that for G’ we can write
o 1 (FH H” LHE
° FH\ N2 F  F? H?

H? H'? 1 (H" HF FH
)

+H2N2 H?F? FH

We are interested in the solution corresponding to a spherically symmetric mass density. This
solution wil be in general time dependent, since the mass might be expanding and then recollaps-
ing. At the turning point, however, we expect the metric to be locally static, i.e. = H = 0.
This will become true at all times once we assume a static mass distribution by allowing a
non-vanishing pressure.

Under these conditions the final result for the 00-component of the Einstein tensor is:

0 1 H/2 H// H/F/
Gl =— (ﬁ ~+nm 2 T 2F3H) (2.29)

2.1.3 Energy-momentum tensor and mass renormalization

Now we can pick an explicit energy-momentum tensor. We know: T*, = putu,.
At the turning point we have: ut = ( 10 00 )

Thus from g, u*u” = —1 follows: uug = —1 and
ST = p(r) = ph (e~ 1), (2.30)
. . . 1 e=7r>0
where p is the density of the cloud of dust and 6 is as usual 6 (¢ —r) = { 0 e—r<0

Inserting this in (2.1) with the help of (2.29), we get

) H'2 /
2 H [H (1 ~ )] = 167Gpl (¢ — ). (2.31)
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After defining K = %, we can rewrite the equation as

[H (1 - K%)]' = JH*H167Gof (= 1)

(2.32)

We can now integrate over r and get two solutions K_ and K, inside and outside of the dust

cloud respectively.

Inside of the dust cloud, i.e. for x < e, we get

H(z)(1-K?(2)) —H(0)(1-K?(0) = /O ’ H?H'87Gpdr,

which means, since H (0) = 0,

. 2_ 3
with R = &Cp-

Outside of the dust cloud, i.e. for = > ¢,

H(z)(1- K7 (z)) = / H*H'87Gpdr = 8%6;'01‘[3 (),
0
which means Sr G | e
K2 = 1 j— Tr—pH3 — 1 _ m
+ 1) 5 O H(r)

with m = 2Z2H3 (e).

We can now define two different radii:

1. The first one is derived from the invariant circumference

/;dS:AQW@d@:AQWH(E)deQFH(€).

This is the path length of a maximal cicumference, i.e. one with 6 =
We see that H (¢) is the radius of this invariant circumference.
We denote it by

e.=H(e).

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

2. The second radius that we can define is the invariant one. It is defined as the distance

from the origin to a point at » = . Since the path length is ds

eT:/OEF('r)d'r.

/ Gudridry =

V/Grrdr = F () dr in this case, the invariant radius can be computed from

(2.39)

Of course one should be careful and take the interior solution F_ (r) for F, since we are

integrating inside the dust cloud.
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Figure 1: An embedding diagram of the equatorial plane of a spherically
symmetric star with constant mass density.

Represented are also the invariant circumference of length 27e. and the
invariant radius of length ¢,.

These two definitions of radii are represented in Figure 1.

From F_ = Kii we have
HI
F = Ril (2.40)
(72— )}
The invariant radius is then
H(e) 1
g = / ﬁdH (2.41)
H2\ 3
o (1-%)
€
—  Rarcsi (_> 2.42
arcsin | — (2.42)

with e. = H (¢).

Let us now define 3¢ to be the determinant of the spatial part of the metric. Then after long
computations using (2.12) we get

H? H2\ zigd FI2\?

r

Analogous to the two definitions of radii, we can consider two different masses as well.

On the one hand we can define the bare mass, which is simply the volume integral over the

mass density
€
my = / (%9)
0

|

d°r. (2.44)
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We define the renormalized mass as the integral over the radius obtained from the invariant
circumferences, i.e. H, of the mass density:

H(e)
m = / pd*H. (2.45)
0

There are various reasons why we call this the renormalized mass. This is the mass that we
would measure if we were to use Kepler’s third law. The adjective renormalized refers to the
fact that it allows us to write the gravitational potential in a form that is no longer divergent
for e — 0.

Let us now compute the bare mass explicitly:

dP*H
Mo = | H
ge dH
= 4 H?>—
W/O 1 I
/sc H2dH
= dmp — 1
H2\3
0 (1-4)°
2\ 3
= 27pR? |arcsin <%) — % (1 — %) ,

where we have used [ 2l 1 (arcsin (z) — 2v/1 — 2?).

(1-22)2

Using the Taylor expansions of arcsin (%ﬁ)

. (Ec e, 1é& 3 el
arcsin (E) E + 6@ + Eﬁ + @) ( ) (246)
2\ 2
and of <1 - %)
1
(1_ﬁ) :1_232_8—34+0(50)’ (2.47)
it is possible to write down a polynomial expression for my:
4 3 &2
- 14 = ¢ 2.48
mo 37rp5 [+10R2+(’)( - (2.48)
Using m = —ﬁpg and R? = = G we can finally find a relation between m and my:
3 _,m? )
m0:m+gG€——|—(’)(G). (2.49)

Inverting this we get the following mass renormalization formula up to order G:

2
m = mq — gamo +0(G?). (2.50)

[
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2.1.4 Mass renormalization for a generic energy-momentum tensor

It is possible to generalize this result for a spherically symmetric energy-momentum tensor of
the form T%, = (u + p) u"u, + poL.

We are of course assuming a constant mass density, i.e. g = 0.

The mass renormalization formula remains unchanged, beacuse

T% = (p+p)ulug +pdy = —p —p+p=—p. (2.51)

2.2 Solution in the de Donder gauge
2.2.1 De Donder gauge condition

We now pick a specific gauge, in order to solve the Einstein equations completely. The one that
we choose is the de Donder gauge, which can be expressed by imposing the condition

[(—g)% g“”} =0 (2.52)

In our case we have g% = 0 and a static metric, such that
1 1
[(—9)2 s ] = [(—9)2 9 J} =0 (2.53)

Using the determinant computed in (2.43) we can easily calculate the determinant for the whole
metric:

NFH?\?
det (9) = —N?det (°g) = — ( - ) ) (2.54)
which means
1 NFH?
(=9 =—35— (2.55)
Furthermore we need to compute the inverse of g;.
After some calculations we find
r? 1 r2\ xiad
9 = " + (ﬁ - m) R (2.56)
This allows us to rewrite
1 . NFH? (1 r?\ zla’
(=9)* 9" = NFn" + — <ﬁ_ﬁ) o (2.57)
Using % = % and %%4 = —‘%j we can compute the derivative with respect to a spatial
coordinate of the above expression.
The derivative of the first term with respect to 27 is
— (NFnV)=— (NF)n” =— (NF) . 2.58
o (NFr) = ST (NEY o = = (NF) (2.59)
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The derivative of the second term is

o [z'z7 (NH?* o (NH*\' o ) )

Thus, the de Donder gauge condition can be rewritten as

x , ' (NH? "oog x ,
— (NF — — NF ——(NF) =0 2.60
Sy + 5 (N ) - e - Sy —o, (2.60)
which reduces to the compact expression
NH\'
( 7 ) =2rNF. (2.61)

2.2.2 Solution
A solution of this differential equation outside of the dust cloud is given by

1+ Gm NQ_T—Gm
B ’ T or 4+ Gm’

H.=r+Gm , F? (2.62)

r—Gm

Indeed, if we insert this in the right hand side of (2.61) we get

2N, F, = j:2r\/ E: j_L gzg E: J_r g:; S (2.63)

and on the left hand side of (2.61)

N, H? 2N HLH N HXF,  (r+Gm)*d [r—Gm
Fy F. F? B riam dr\ r+Gm
r—Gm

r—Gm [r—Gm
2
+\/T+Gm 'r—l—Gm(TjLGm)

B /T—Gm< e )2 r—Gm i r+ Gm
7’+Gmr " r+Gm /) drV r—Gm
2
_ 2Gm  (r+Gm)” |r Gm+2(r—Gm)

(T —+ Gm)2 ) r;gm r+ Gm

2Gm 1 o [T —Gm
+ 2 (r+Gm)
(T — Gm) 2 r+Gm r+Gm

r—Gm

= Gm+2r —2Gm + Gm
— 2 (2.64)

With this solution the invariant size of the sphere becomes

. =H, () =+ Gm. (2.65)
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We can use this result to reexpress (2.50).
Indeed we obtain

3 Gm?
= e 2.66
me=m 5e+ Gmyg ( )
The Taylor expansion of Efgﬁno is
Gmg my 2
——=—G+0 (G 2.67
e+ Gmy € + ( ) (2.67)
and thus 5 o2

Note that, since the final result is going to be proportional to positive powers of m, it would
be divergent for ¢ — 0 if we were to express it in terms of the bare mass my.

We can now look at the interior solutions.
They are to lowest order

3r 1r® 31 172
H =r (52 — §§) Gm , F.=1+ (ég - §§) Gm (2.69)
3 Gm 1 Gmr? 1
N.=—-|1—-—]—= — = —x?p (e —1r? —7r). 2.
e e o B S LI B D

2.2.3 Final result

We can finally insert these results in the metric to obtain the Schwarzschild solution up to order
G>.

For r > ¢ the 00-component of the metric is

g = _NL?L (2.71)
_ _: : gg (2.72)
1 Qim . QT—”ZQGZ +0(GY). (2.73)
The 7j5-component is ) ) o

We can calculate the following Taylor expansions, which will allow us to write g% as a polynomial
in G:

H—i_(T+Gm)2_ﬁ r3
1 r—Gm o2omG  2m2*G?
_ -1y +

1 1 1 2 2
_m 3T—”1G2 +0 (6% (2.75)

- = 3
F?2  r4+Gm r 72 O (G ) (2.76)
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Thus we obtain

.. 2 232 .. 2?2
g”:(l_ Gm+3mG)"Z]——mffﬂ+@(@3)-

r r2 r

For r < ¢ the 00-component of the metric is

1
00
=
B 1
- 3 (Gm 1 Gmr2\12 '
(-1 +5(1-955)] +0(&?)
After a Taylor expansion we obtain the final result
1
00
g = - P)
3Gm 1 Gmr?
[-1+ 3 — 298]
1

= -1 0 (G?).
G o (@)
The 4j-component is o
i r? ij 1 r?\ ata’
Semt T\ E o) e
Again computing the analogous Taylor expansions
1 1 1 3Gm Gm
H? 3r 113 2T 2 o2 +?+O(G2)
=+ (35— 35)Gm)
1 1 3mG  mGr? r?
FZ 31 _ 172 7 =1- - - 23 +O(G2)ZW+O(G2)
= [P+ (52— 55) Gm -
we obtain
r2 . .. 3Gm .. Gmr2

g7 = g =0 = == + =" + 0 (G?).

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)
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3 Field theory approach to gravity

In this section we will treat gravity using the quantum field theory approach and try to repro-
duce the solution for the spacetime metric obtained in section 2.

In order to do this, we will consider the field given by the metric ¢ and compute its vacuum
expectation value in the presence of a source J, that represents the mass density of section 2.

As in any field theory, we will start with a Lagrangian density. This will consist of the usual
Einstein-Hilbert term, another term that ensures that we are working in the harmonic gauge,
and a source term, which describes the coupling of the gravitational field to the spherical and
homogeneous mass density.

Once we have written the Lagrangian, we can define g"* = n*¥ + k¢"” for some symmetric ¢H”.
This will allow us to expand the Lagrangian in orders of perturbation from the flat spacetime.
With this expedient we obtain the Lagrangian written as a kinetic part plus some interaction
terms. The kinetic part gives the free propagator for the field ¢*”. The first interaction term
gives us the 3-point ineteraction represented in Figure 2.

Since the computations for the 3-point interaction are already quite involved, we will not con-
sider interactions of higher order.

A big part of the computations involves calculating the 3-point vertex function, because it
requires variating the action three times.

This will be done by introducing an auxiliary field ¢ = % (v/—gg" —n*) and using [2] and
[3] for the actual computations. This implies some technicalities that will be explained better
in this section and in the appendix C.

Once we have obtained the 3-point vertex function, we can insert everything in the expression
for the vacuum expectation value, including the explicit form of the external source. After
solving some integrals and going back from ¢ to g"”, we will be able to compare the result
with the one obtained in section 2.

Figure 2: The three graviton interaction that will be con-
sidered for the vacuum expectation value of the gravita-
tional field.
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3.1 Lagrangian and gauge implementation

As anticipated in the introduction, we will be using the following action:
A:/d4x(£G+£¢+£J):AG+A¢,+AJ (3.1)
L is the usual Einstein-Hilbert Lagrangian
Lo=— (-9 R, (3.2)

L, is the gauge fixing term and £ describes the coupling to the external source.

In this section we will focus on expressing the Einstein-Hilbert action in a nicer way and on
picking the correct gauge.

Since the source term is not important at this stage, we will temporarily leave it aside.

3.1.1 Einstein-Hilbert action

Let us first focus on the Einstein-Hilbert part of the Lagrangian.
We start by defining

L v
g =(=9)* 9" (3-3)
Then its inverse must satisfy g"’g,, = 6", and thus must be given by
9w = (=9) 2 G- (3.4)

Note that this implies the following relation between the determinant of g,, and the one of g,

g = det(gaﬁ)
= det ((_9)_%9015)
= (—9) g
= gL (3.5)

We can now express the Einstein-Hilbert Lagrangian with respect to the newly defined g"”.
To this purpose we use Goldberg’s expression [4]

1 1
Aqg = /d"az; (—9)2 ¢"" R,

1
= I / d"z [g”"gmgmg““,ngﬂ — 50" 800" 0" — 200-0™" 07| (3.6)

where n is the dimensionality of the spacetime.
More details on this relation can be found in the appendix A.

In our case, for n = 4, we get
Lo = 5 (207000:8" 07, — 07 0ar@rr8"" 0" ; — 400-8™ 077 )

82
1
= 53 207008 — 0700x — 407.0%,0,1) 87,87, (3.7)
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We can now write gt as the flat spacetime metric plus a perturbation from it,
gl“’ = nl“/ + H(Z;HV (38)
for some symmetric gzNS“”.

We would like to rewrite the Lagrangian through this new perturbation field qg‘“’.

First of all we need to express the inverse of g via <;~5W as well.
g, must satisfy
Gap0” =0, (3.9)

We can make the ansatz g,p = A(l) A(2 + mzAaﬁ + O (k?) and thus get the equation

(Aaﬁ +rAZ) op T KJQA(?’) + 0 (k )) (7757 + /{QEBO =4,”. (3.10)
To order k° we obtain
Aln™ =6,7, (3.11)
ie.
1
ALY = nas. (3.12)
To order x we obtain 3
Napkd”? + /{A((fﬁ)nm =0 (3.13)
= AU = —nsd?, (3.14)
ie.
AR = = fan. (3.15)
Amd finally to order x? we obtain
—k2as + KA =0 (3.16)
= AR = 650 . (3.17)
Thus, up to order £?, g,z is given by
Gas = Nap — KPap + K1,50ard™ + O (k%) . (3.18)

We furthermore note that go‘ﬁﬂ = HQBO‘BN and thus
1 LK T

8 (207 gx0rr — 077 s Orr — 407,0°\ 007 ‘b (b (3.19)
After eliminating g"” from this relation, we can write the Lagrangian as a sum of terms with
increasing powers of K

Lg=

Lo=LY + kLl + 222 + . (3.20)

where the EG s have no x dependence.
Then we see that E(G is obtained by taking the O-th order of both g** and g,z. Thus:

E(C?) = — (20N Ter — N Nusnr — 407,07\ 117 Qﬁ“’“ (b T (3.21)

o =
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In order to compute Zg) we insert gos = Nag — Kdas and g* = n® + k¢*® in Lg and then
take all the terms of order k.

Lo = L (2(w+53) (= 50 (e — 5er) = (177 4 57°)

X <77m - m%) (nAT - fii%) —46°%,.0%, (nw - m;w)) " LM, (3.22)

Then
KLY = % (—2?7” TINEOA — 20 N 5Or, + 2K DTy + 0P NP+ 17 e KD
P ar + 487 ) 5,5
= g (=207 \katts — 207 NerMratus + 207407 03 Ner + 07 Nuxrallpr
A0 Dl — 070 g Mntor + 407,08\ Thaur5) 929 G,
= g (=477 Nrmanrs + 207 Nura e + 207007 50a ke — 07007 3Thnrr
+487,. 6\ T 1) 909, . (3.23)
Thus, to summarize, we can write the Lagrangian as L5 = EZC?) + /<;£~(Gl) + ... with
g = é (207 1ther — 07 Tciing — 407,8"3117) 6,07, (3.24)
Ly = % (=47 \Tkates + 207 Nistra Tl + 207407 gMerine — 07007 s
+46",0% iattes) GG 6N . (3.25)

3.1.2 Gauge fixing

We want to work in the harmonic gauge, i.e.

g, =0, (3.26)
which in our case means .
o, =0. (3.27)
The equations of motion for the free field are
oLy 1
80:7? = _80 {(277[)077&77/17 - ﬁpo’fhn?hr - 450/@5/))\77”)
o(00m)

a Tl AT a TAT LK
X (5 pIB“ﬁb o+ 015“/¢ p)}

1 a TLE AT
= 10a {(277”"mmm — 0P Nuetiae — 467,67\ 1u7) 0%, 1550 0}

4
1 o o o LK AT
= 3 {(277” Ml — 07 Nutixe — 467,07\ 1,) 15507 ap}
1 IAT IT LK AT
= 3 {WWDW — Ny a0 } — LN
1 IAT IAT 1 AT IAT
= 1 {7},\577775¢A - 776777/\75¢A } T 5 <7757<Z5A s 7777<Z5A 75,\) . (3-28)
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In order to get rid of the last two terms we then must introduce the following gauge fixing term

1 o v 1 ~ o v
‘C¢> = 2—1%277;11/9“ 7049 ﬁ,ﬁ = 577;111(;5“ ,a(b 675- (329)
Indeed:
oL, 1 . .
Ou - = 37 v0a |:[ﬂa¢yao + [Va(b“p ]
9 <3a<b5’7) 9 H By ; By P
1 o Juo
B 577“”Ig'y¢ oo
1 Tvo Tvo
= 5 [Uﬁu‘b oY + ?7"/V¢ ,06] : (330>

This cancels the unwanted terms in (3.28).

3.2 The free propagator

We now compute the free propagator of this theory. This can be obtained with the usual
generating functional method, which will be outlined here for the case of gravity. Some more
detailed computations can be found in the appendix.

The free propagator is usually defined as

<0 ’T{qgalm (z) §°2°2 (y)}’ 0> = Zlm (-iwa:; (x)) (—irm(; (y)) Z1J] R (3.31)
where the generating functional is
7] = / D exp {iSO M +iSee [&, J} } (3.32)

J is the auxiliary source that will be then set to 0 in this prescription.

The action for the free theory is
- 1 -
So M = / d493§ (20" aier — 0 Nntine — 46°,.8°\ 0y + 41,007,067 ) ¢ 07, (3.33)

Note how we are considering only the kinetic part of the Lagrangian and its gauge fixing term.

On the other hand, the action for the coupling of ¢** to the auxiliary source Ju 18

Sare [¢3, J] - / &'z, () P (z) . (3.34)

After following the usual procedure, we find the following expression for the generating func-
tional

7 [J] = exp {—% / d*zd yJ, (—iG*" (2 — y)) Jas (x)} Z 0], (3.35)
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where —iG*8 solves the equation

207 MxNr — 07 Nuetne — 407,.0° 1 + 41,007,067 )

ol =

0 (—IGM (2= y)) = =3 1", (x =) (3.36)

and has the symmetries G = Grved = Qo — qebra,

A quick computation, which can be found in the appendix B.1, shows
(o] {amo @) g @) f|0) = —iGm (2 ), (337

i.e. Go2A22181 ig indeed the propagator, for which we werte looking.
It is easy to check that the propagator defined by (3.36) in momentum space is given by

vVpo vo v loa v lo} 1
G (K%)= (fn” + 0™ 0" =" nf7) 5. (3.38)
A proof of this can be found in appendix B.2.
For simplicity, let us define
d™PT =" + " — e (3.39)
and then write the propagator as
vpo 2 vpo 1
GHr (k: ) = d"r° —. (3.40)

kQ

3.3 3-graviton interaction

In order to compute the vacuum expectation value for the gravitational field, we will consider
the interaction between 3 gravitons.

To this purpose, we compute in this section the 1-particle irreducible 3-point vertex, represented
in Figure 3.

The 3-graviton vertex function can be computed from

53 A
1,2 .3\ _
Palﬁl@é2ﬁ20¢3ﬁ3 (l‘ 7‘/'17 7‘/E ) - 590’161 (l’l) 5ga2ﬁ2 (1‘2) 5ga3ﬁ3 (xg)

(3.41)

gHY =nHtv

There are various possibilities to tackle the task of computing these three variations.
We will first follow the method suggested in [1]. Then we will try to do the variations directly
on a computer. Finally we will consider the result for the vertex given in [5].
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Figure 3: The 1-particle irreducible 3-point vertex

3.3.1 First method

We will start by computing an easier variation

~ 53A
| a2 2?) = 3.42
18102820383 (SL’ y L, T ) Sgah (x1)5ga252 (:cQ) dgashs (:c3) o ( )
Since A4 depends only quadratically on g"”, we have 5ge TP 69;5235;‘“(;2) 5P @) 0 and thus
~ BAg
o, 800800 Va2 2%) = 3.43
1810282033 (SL’ T X ) 5904151 (l‘l) 5904252 (:L‘Q) 5904353 (xS) I ( )

Since doing the three variations by hand is quite demanding, we can do them on a computer
to get the following result in momentum space:

K
Lo pranprasss (b1, ko, k3) = _Sympﬁg (_4na3a2nﬁga1nﬁsﬁ1 ko - k3 + 2nas8,Nagen ko - k3

“NasBaTlasBs k2al k351 + 2770!30!2 18285 k2al k351
+477042041 1831 k2a3 k352) ) (344)

where sym means that we have to symmetrize over ay, 81, ag, 82 and ag, 3 and Ps means
that we have to sum over all permutations (cyclic and anticyclic) of aq, 1, k1, a2, 52, k2 and
as, B3, k3. There are then 78 terms in the explicit expression for fal BravaBaciafs -

A sketch of the idea behind the computation can be found in the appendix C.1.

Then, in order to get the complete 3-graviton vertex, we can use the following trick:
& (Ag + Ay)
g (a1 597 (a7) 6 ()
BAq
g (1) g (22) b (a9)
53 A,
+
g (1) bgese (a7) b (a9)

1 2 3
Fa15102520¢353 (.T y L, X ) =

ghv =nHrv

gl“’ :77/»"”

(3.45)

ghv =nhtv
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Now note that

(3.46)

0Aq / . 0Ag  agh(y')
sgni () ) s (yh) sg i ()
We need to vary this two more times and use the Leibniz rule before inserting it in the expression
for the vertex function. I.e. the expression to be computed is
53AG /d4~ 53gu1V1 (.i’l) 5AG
= z
09383 (23) 0g°*F* () 0g™1P1 (21) 1597555 (3) g7 (15) 6P (1) 6grav (i)
L Y g )
d*i,d*%
+/ T g () 6P (1) 095 (o)

2 Aq / g (7))
X R — + [ d*FdE
ogHe2 (Io) oght (1) 6909 () 5g1P ()
dgh22 (1) 6 Ag 4o u 0gMT(Z1)
d*Td Ty ———=
X Sgeats dgiava (Ty) ogh (1) +/ 25 B (1)
(529M2y2 (i’z) 52AG
0g23Ps (x3) 0g°2P2 (19) dgHavz (Ty) dgr (I)
s s 0gM(2y) 0gh? (2p) g (73)
+ [ d*3d*3.d
/ F T 5 gab (1)) §go2Pe (15) 0gosPs ()
" M Aq
dgHavs (Tg) Oghav2 (Zg) oghvt (I1)

This is a quite lengthy expression, but it contains only variations of As with respect to g, which
we have already computed.

We also need to determine (Sgl;ﬁ( ) We'll do this by first ﬁndlng Sgr (( and then inverting it.
We can write

09" () n 097
T R T
, 5((—9)79“5)
= §(x,z Sg
11 5(—g)?
= §(x,a) [(— )77 3 (0%,6%, +6%,0°,) + 0‘5(597?” : (3.48)

We have to write the last term in a better form.

Remembering that g = ¢~!, we can write

0(=g) 2 =0(-g). (3.49)
Using the following relation

oVh = —%\/Ehaﬁéhaﬁ , (3.50)

which is known for example from [6], we get

5(~g)"" =6(—g)

NI

1 1 y
= _5 <_9)2 guu(sgu . (3'51)

(3.47)
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Thus )
0(—g)® 1 1
ogHv ~ 5 (=9)"? g (3.52)
Inserting this in (3.48) we obtain the final result:
W = 5 (—g) 2 (5 M(;BV +46 V(;BM — w9 ﬁ) ) (IL‘,l’,) . (353)
For g;;((:i )) we only need to compute the inverse of (3.53):
gt (a2 1 1 Y y Y
A =5 O} (P8 5, — ) ) (3.54)
It is also useful to know that:
59041ﬁ1 . d (gua’lgVﬁlg“V)
5904252 o 5904252

v v 5gl/6 v 5g 167
= [ﬂ a2ﬁ2gﬂalg’/51 + gﬂ gﬂal 5ga2612 gﬂ g”ﬁl 5952[312

v 6ga 5
= I* o 8o Ina1 Jups + Z%T;B;

which implies:

590{ B v 1
%T:ﬁl =-I" oo Ipar Jvpr = _5 (gawflgﬁQﬁl + gﬁ2a1ga251) (355>

We can analogously compute the second and third variation ot g with respect to g, but this is
best done on a computer.

Unfortunately, after doing so, we obtain a result that differs from the one given in [1]. The
latter is explicitly given by:

ldﬂll/lalﬁl dﬂ2V20252dﬂ3V30353F f‘ﬂlV1H2V2H3V3 _ EPB (5#11/1#21/27]%1’3 _ 5#31/3#11/177;121/2

a1frazBaasfs T

_gHavas pravL g %nmmnﬂzuznu:aw)) kg (3_56)

where Pj indicates a sum over all cyclic permutations of {1, v, k1 }, {2, vo, ko } and {pus, vs, ks}.
Furthermore 0#1*1#2"2 ig defined as:

HPIBY = = (i ave 4 pive i) (3.57)

DO | =

3.3.2 Second method

We will now attempt to compute the three variations of A(Gl) and Ay directly with respect to g
using [2] and [3].
This is done in position space and then Fourier transformed, for later comparison with the
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result given in section 3.3.1.

We start by defining the following variation rule: ‘;ﬁlﬁ(g; =1 0!151MV1 0 (2 — x).

a1 81 /
We also need to define the variation of the derivative as: (%59“17”73((;)) =1 O‘lﬁlum 0,6 (¢' — ).

We will later get rid of the derivative on the delta function via integration by parts.

After variating three times, we can perform the integration over d*z included in the action to
get rid of one of the delta functions. We choose to eliminate the one that is not acted upon by
a partial derivative.

At this point we are ready to Fourier transform. This is done by substituting for example:

80, [5 (.Tl — 1’2)] 85 [(5 (SL’g — .’171)] — — kzakgﬁ (358)
Unfortunately, the final result does not coincide with the one found in [1].
The crucial points of the code used for the calculations can be found in the appendix C.2.
3.3.3 Result from the literature

Finally, we quote the result known from [5]:

1 1 1
Lot = Sym —Zps (lﬁ : kzn“”n”n’“) - ZP(S (kfpin“”n“) + ZP?’ (lﬁ : kzn’”n”ﬁ’“)

1 1 1
+5Ps (k- ko n"n™) + Py (K k™ n™) — 5 Ps (KTKS n"n™) + 5 s (k1 kanon’T)
Py (KT 0?) + Py (KSR — Py (ks - k"7 (3.50)

It is important to note, that this expression for the vertex function is different from one given
in [1], but this doesn’t make any difference in the end, because the final results obtained for
the vacuum expectation value coincide anyways.

3.4 Preliminary considerations on the vacuum expectation value
3.4.1 External source

Let us now consider the source term of the action.
We begin by defining:

J;u/ - (—9)5 T;u/ (360)
Remember that we have in the rest frame:
w 0 0 0
0O p 0O
w
T 00 p 0 (3.61)
000 p
If we multiply the Einstein equations by (—g)% we get:
1 1 Juw

K2 2
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. 5A 1 1 .
Now, since $2€ = =5 (—9)? G, we are left with:
0A; 1
=—J, 3.63
5guy 2‘]# ( )
Taking
1
Ay = 5 /d%g’“’ () Jw () (3.64)
is then the correct choice, since then
0A; 1 1
= 5P 8T = = 3.65
5ga5 9~ «a B 2J B ( )

3.4.2 Generic expression for the vacuum expectation value

We can then compute the S-matrix using the Feynman-Dyson expression:

S;=T {exp (z / d*x [Line + L (x)]) } (3.66)

Since we are only considering the 3 graviton interaction, the interaction part of the Lagrangian
is in our case L;,; = Hﬁg).

The coupling with the external source J is described by (3.64).

We can expand up to order % the part of exp (z [ d*zL J) that contains a ¢*” dependence in
the following way:

e (5 [ a0 @ (@) = 147 [atas (@) 0

1
—gr [ dadtye (067 (1) Ju () T (6) (367
On the other hand, the expansion of exp (i [ d'zL;n) gives:
eXp (l/d4x£znt) = 1+ i/{/d4xfa151a252a353¢a161 (l‘) ¢a262 (l‘) ¢a3ﬁ3 (ZL‘) (368)

where we have defined T, 5,00 8058 = %Tal BiaspaaspBs, SO that the dependence on x is clear and
only in front of the integral.
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The product of the two up to order &2 is then:

exp (Z / Az [Line + EJ]) = 141k / d4xfa151a252a353¢04151 (z) $2P2 (z) ¢33 (2)
+5 [ dwd™ (@) Ju (@)
2

[ AT a6 ()67 (2) 675 () 6 (9) S (0

gt [ g ()6 0) Jus (@) Joa ()

_g d4xd4yd4zfa161a252a3ﬁ3¢a151 (.T) ¢a252 (SL’) (bagﬁg) (SL’) (bﬂy (y)
X(baﬁ (z) JAW (y) Jaﬁ (Z) (369>

Mutiplying this by ¢* (x) yields:

gblw (ZL‘) SJ = QZSMV (l‘) + Z'Klqblw (l‘) /d4yfa151a262a353¢a161 (y) ¢04262 (y) ¢o¢353 (y)

S0 @) [ a6 () Jas 0

2
~5 o (@) / Aty Ty prasprosss ™7 (1) 0% (1) 7% () 67 (2) Ju (2)

/{2

ST ) [t )67 (2) Jas (0) T (2)

Z.’%g v Nl a a for for o
S (1) [ T 6 () 0775 ()65 () 6 (2 0 ()
X Jag (2) Jpe (W) (3.70)
We can then use Wick’s theorem to compute the expectation value of 7" {¢" (z) S, }.
The only non-vanishing terms are the ones containing an even number of ¢’s.

Furthermore, we want to consider only tree diagrams. This means that we must neglect any
terms involving contractions between two fields evaluated at the same point, e.g. no contraction

1
1P (y) 2272 (y) is allowed in the second term of ¢** (x) S}.

The only non-vanishing terms remaining are then:

OIT (6 @) SHO) = 5 [ d'e (26 (1) Jua )

k3 I 1
_? /d4yd42d4w¢uy (l‘) Fa151a252a353¢a161 (y)

X725 () 951 () 68 (2) % (w) S (2) Jpo () (3.71)
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pHev2

—0
PV prvL

¢N3V3

Figure 4: The expansion in tree-level diagrams of the
vacuum expectation value.

Then the vacuum expectation value can be written in momentum space as:

1 1

/{<¢M1u1 (k1)>J — 5I,<U2Gfu1u1oz151 (k‘%) Ja1ﬁ1 (kl) _ §K4/d4k32d4k33Gmylalﬁl (k?%)
XGﬂ2u2a252 (k?g) Gﬂ3l/3a353 (kg) 54 (kl 4 ky + k3>fa161a262a363 (lﬁ’ ]{72, k3)
XSy (K2) Jpavs (K3) (3.72)

where dk = %.

A diagrammtical representation of this can be found in Figure 4.

Remembering (3.38), we can write:

1 1 d'kyd’k
K <¢M1V1 (k1)>J _ §K2Guwla151 (k?%) ‘]04161 (kl) _ §H4/ k222k23du1ula151
123
Xdﬂ2V2a252dﬂ3V3&35354 (kl 4 ko + k3) Fmﬁlagﬁgagﬁg (kh ko, k3)
XJM2V2 (kQ) ‘]M3V3 (k3) (3-73)

The explicit form for the contraction of the vertex with %d’“”lo‘lﬁl X dr2v2e2fz o drsvaesfs g
known from (3.56).

3.4.3 Explicit form of the external gravitational potential

Let us now abandon briefly these computations for some considerations on the source.

We can define:
4
A= gﬂ'p&?g (3.74)
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Remember the following relations from section 2:

4 4
m=—apH?(s) = §7Tp€3 + 4mp*Gm + O (GQ)

3
H() = ¢+Gm
3 Gm? )
m = MMy — g - + O (G )
Thus:
4
A = §7Tp€3
= m— dnpe’ Gm+(’)(G2)
——
—37+O(G)
3Gm?
= m-" 4 0(6?)
Using (3.77) we obtain:
3Gm? 3G
A= me— o0 T2 4 0 (G?)
5 ¢
18 Gm} )
= Moy — E - O (G )

Let us now define:

where p (k) is the Fourier transform of u (), i.e.
p) = [ dee @

= / e Hox" / dre T (7)

— (2m)5 (k) / Bre 7y (7)

= (2m)6 (¥°) e (F)

Thus we can rewrite V (z) as:

—

V(z) = i/@? / ARk (K0) e — (F)

_k02+;§2u
_ 1 ) 3—»6“;f .
— /dk:EQ;L(k:)

We can directly read off from this expression the Fourier transform of V' (z):

V(k;):iu(];)

K2 2

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)
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Furthermore we should remember that:

1 (%) = 1 (|17) = (r) = pb (e — 1) (3.84)

i.e. p(Z) depends only on the absolute value of 7.
This implies:

1 k@

- e - 1 LR
V(x)=V(Zz|) = 152/(1% —— |1 (k) = Z,<;2/d3/r{; =k (k) (3.85)

kZ

An explicit calculation of the integral, which can be found in the appendix E.1, yields:
1 1 12
V(') = (—G\) {0 (e —1") (5— - —T—) +0(r'—¢) —} (3.86)

3.4.4 Some integrals

Let us now state three relations that will prove to be useful when computing the vacuum ex-
pectation value of ¢"”.

_ d3 / p ($) — — )
/ Cmip—7 v @ (387)

i4 37. 437, 437, ik1-Z53 (12 7 7 kéké 7 7 _l i )
—r /d bk hge ™ 6% (B 4 o+ F ) P (&) (k) = 5 (voov)  (3.89)
1

T / A d ko kg™ 70" (R + B + ) ;Z—kgiﬂ (F2) n (Fs) = Lovev) (389

The first one is equivalent to
=
p (%) =— / N e . @) (3.90)
and is clear, since we know that

A 5 (% — 7). (3.91)

i -]

A proof of the other two relations can be found in the appendix E.2.

3.5 Explicit computation of the vacuum expectation value

With (3.87), (3.88) and (3.89) we are now in a position to compute the vacuum expectation
value from (3.73).
We will rely again on a computer for some particularly long calculations.
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3.5.1 (00-component

Let us first consider the 00-component.
We have:

R <¢00 (kfl)>J - %/{QGOOMBI (k%) Ja1ﬁ1 (kl) + %/{4 / d4k‘2d4k‘3G0004151 (k%) GM2V204252 (k‘%)

XGHSVSQSﬁS (k%) 54 <k1 + ko + k3) Falﬁlazﬁzasﬁs (klv k27 k3)
><‘]M2V2 (kQ) JM3V3 (k?’) (392)

We begin with the first term. Using (3.38) it can be written as:

%HQGOOM C(E) Jarp (Rr) = ; (™ 4 Prler — POty ,%Jalm (k1)
= HQHOOTIOO%OT%]M - ; 2" ]:277a151J 16y (K1)
— HQM]il;l) 1 %/@2 ;QnOOJOO (k1) + 1/<; anJJU (k1)
_ ,.@2%?) _ %F;?ki%u (k1) + %HQ%%ﬁijnijp (k1)
— 352% gfiQki%p(/ﬁ)
e, o
where we used that V (k) = 1k 2“k2 . Joo (k) = p (k) and J;; (k) = nip (k).

Next we note that the second term in (3.92) contains the expression that we computed explicitly
n (3.56). Thus we can rewrite the second term as:

1 -
i / d*had"ks 27.2 254 (k1 + ko + k3) Ty (ko) Jogus (k) TOOH221V8
k?kZk3

1 1
_1“4 / Atkod ks ETETE 6% (k1 + ko + k3) Jyugwn (K2) Jyugus Py (8704272178
1v2™v3
1
_5u31130077u2u2 _ 5#2!/2#3!/37700 4 57]0077;1211277#3113) (3_94)

All of the terms involved can be calculated by using the relations found in section 3.4.4.

Some more details on how this was done can be found in the appendix D.

Here we can show just two examples explicitly that should give an idea of how the procedure
works.

The first example that we consider is the following term from (3.94):
1
K / d4k264k3k%T%k§54 (ky + ko 4 k3) Jupuy (ko) Jougus 0001272035 2 (3.95)

Note that:

500;@ v2 (TIOMQ nOVQ nOVQ 770”2) — nOug nOVQ (396)

DO | =
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Thus our example can be rewritten as:

/ At heod ks = k:25 (ky + Ky + k3)

1
X Jyugv (K2) Jugwy (k) n2n™2nters = 1" /d4k?2d4k3 6 (k1 + ko + k3) p (ko) 0" T (K3)

k;2/<;2

1
=+ / d*kyd* ks kg B O (ky + ky + k) o (k)
X [_JOO <k3) + Jzz <k3>] (397)

We consider now only the part proportional to Jyo, because we are interested in the dependence
on V.

Using Joo (k3) = u (k3) we then have:

1 1
—Z/{4/d4k’2d4k33k%k%
1 ;
X0 (k4 b+ ko) p (ko) o (k) = =7 4/d4k:2d4k:3k2k254(k1+k2+k3)( )5(163)#(1@2)
x (2m) 0 (K9) o (Fs
_ 14 3 3 3 1. I
= —gn /dkzdk3ga5<k1+kz+k3) (%) u (R
_ Bhod®k30° (k1 + ko + k LT k
- _Z ’ (1+2+3>;‘€’2;§2;§2“<2>“(3>
1,161

where we used (3.89) in the last step.

As a second example we would like to find a term that leads to a proportionality to %6iV8jV.
In (3.94) the first term looks like:

/d4k d4k3 F00M2V2M3u3%54 (kl + k:2 + k’g) (399)
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Let us consider as an example just one term in T00%2v2#3% namely —4nOHsprsr2pOv2fog . k|
Thus we get:

V32 123 kjg : kl
—4&4/d4k2d4k3n0“37) stzp0 EyEre
4 4 3 3 00, 00 00E3'k?1 7 7.
X0 (b byt k) = —dn® [ @bt (k:2> “ (kg)
1RaR3

x 3 (El + ko + l%},)

N 5\ 2 5 = 5\ 2

(k?, + k1> R (k2 + kg) )
- / B lyd®hy - " <k2>
kiksks

(k:
B2 F2 g2 k2 ok . . .
— 2/{4/d3k2d3k3 k2 kg ]{_;,2 = _]?3 k2 ksu (k)g) ,u <k’3>
k2k2k2

><($3 (El + ];2 + kg
4.4 3, 237 N3
— 4kt [ Bhydks T u(kzw(kg)
X53 (E1+E2+E3>

16 16
— 4 =VA 2oV 1
(Av Vot g 0 vav) (3.100)

where we have used again (3.88) and (3.89).
After doing this repeatedly (see appendix D), we obtain the following final result:

3k2 1 4 8
00\ _ kAl

/<;<<b >J =2V + 5 AP A (nkla Vo V) N (VAV) (3.101)
Note that doing the same calculations with the vertex given in [5] yields the same expression.

Doing this with the expression calculated explicitly as described in 3.3.2 gives instead:
3k2 1 8 16
0\ _ 9 _ kvoly) — —=
k() , =2V + 5 AP~ R (mdVoV) — <

l.e. there is a difference of a factor of 2.

(VAV) | (3.102)

3.5.2 ij-component
Let us now consider the 7j-components of the vacuum expectation value:
. 1 . 1 -
K <¢z] (k1)>J _ 51%2szoz1[31 (k‘%) Jonss (k'l) + §K4/d4kjgd4k:3GUalﬁl (k:%) GHaveazfe (kfg)

XGMSVSO{E‘BS (kg) 54 (kl + ko + k3) Fa151a252a353 (kla kQ? k3)
XJHQVQ <k2) JMSVS <k3) (3103>
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We can again compute immediately the first term to get:

1 1] 1 1) 1
5KQ@J 181 (k:%) Ja1ﬁ1 _ 2 K21 lﬁleJalﬁl (k:)
1 1
K2 AT Jog (k) + <20 A9 () (3.104)
2 k3 k
Now:
1700 — 050 | pi0pi0 _ pij )00 _ pig 3.105
n "+ 0t —n i] : U (3.105)
dijab ’T]w?]]b 4 nibnja o ,nij,nOO — 2nza77]b nij,nab (3106)
where we used the fact that J,, is symmetric with respect to a and b.
Thus:
1 i 1 1 1 1 ia 0J 0@
SR G (KT) Jop, = kw #(k’l) 5" kz (20" n’® — ™) nawp (k1)
:2‘/772]
i, 12l ij ij
= 2VnY + =k (207 = 3n7) p (k1)
i 1 1 i
= 2Vnp¥ — 5/@2 L (k1) n
1
—
=—Zp(k1)
_ i (v 4 Ll (3.107)

Next we will use again the relations from section 3.4.4 to simplify the second term in (3.103).
We show here just two examples, but a more complete discussion can be found in the appendix
D.

For the first example we note that Ty, B1asfas8s CONtains a term of the form: — %%2 By Mg Bs K201 K3 8y -
This means that s (¢") includes a term of the form:

4 4
_1 4/d de k3nu2y2 MSVSICZIC]J

8/{ k2/€2k2 pave (kQ) JM3V3 (k?:) 54 (kfl + k2 + k’g) (3108)

Again we are only interested in the V' proportionalities, so we consider s = vy = gz = v3 = 0.
This leaves us with:

1, [ d*hedhs ;o . 1 FPhod®ks -
_gﬁ; /Wkagﬂ(k2)ﬂ<k3)5 (/{71+/{72+/{73) = —gli /W]%k (kg)/i(kg)

><53 (/{71 + ];2 + Eg)
= (azvaﬂ' V) (3.109)

where we have used (3.89) in the last step.
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As a second example we consider now the case ¢ = j.

We know that Fa o Boaaga CONtains the term —=14.8.a:0 ks - k3 and its permutations.
18102820383 47] 2B2aza1T]B361 p

In particular it contains the term: —inalﬁlnawm&mkl ks.

So we focus on:

d4k d4k3 9%, 342 V32 4
—_— k2k2k2 k?g?’/ n n JM2V2 (k’g) JM3V3 (k’g) 5 (k?l + k’g -+ k’g) (3110)

After setting o = v = ug = v3 = 0, this leads us to:

n4/d4k2d4k3 )
—— | =k - ks (2m)° 6 (K9) 6 (kS
4 ) KRNV (k2) & (ks)

i () 1 () 6° (F + ot o) = ___/*i;§;@1 Fore () 0 ()

8 <k1 Ykt kg)

- (B R ) ()

M%%+%+%)

_ %4 / %g;’;(@ Fot 2) e (2) e ()

x &3 (151 + kg + Eg)

1
= 4| — (VAV) + —n;;0'VIV 3.111
SVav s gmovov| )
All these computations can be implemented on a computer and the final result that we get is:
i K 1 4 k [ ) ave j
k{¢7), =2V — SAPt X (V') ) ' + — (a Vov) (3.112)

Again the result obtained using the vertex from [5] coincides with this one, while the one
calculated in 3.3.2 yields:

(o, = (27 = o= R V) g VoY) L

i.e. the only difference is in the third term, where there is a factor of —8 instead of a factor of

4.

3.5.3 Final reformulation of the result

In order to write our results in a better form we need to insert the expression for V' that is
known from (3.86).
We will make use of the following relations:

1 6 15 3% 34
—VAV = — 2\20 (r — —_—— 4+ —— 2\20 (e — 114
AV Vv <5ra) G (r—e)+ (852 121 + 0 56) G (e—r1) (3.114)
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Lo ovar = (- S )i - _3 " Y e —
Anm@ Vav_< 5T€)GA0(T )+ + G*N0 (e —r) (3.115)

22 4e?2  20eS
K2 1 1 ) 3?3
LIPS (R 20 (r — 4 — = ) G*N (e — 11
4 Ap ( 5r5) G (r=e)+ ( Q2 + 4et 4056> ¢ (e=7) (3.116)

A proof of these relations can be found in the appendix E.

Using these relations, we have for r > e:

3k? 1 4 8
00 kv 7 Al
I{<¢) >J = 2V + 5 V2p_ 2 (ﬁkla Vo'V ) V2 (VAV)
2G A 1 919 1 6 6 919
= —— - A 4| ——-—) —8— A
r 0 < 5r5) GIATF [ (27’2 5r5) 857’8] ¢
2 2
_ 26 + (——2 - E) G?)\? (3.117)
r r re
and for r < e:
3k? 1 4 8
00 iy 7 Al
I<J<¢) >J = 2V + 7@]9 ﬁ (ﬁkla Vo V) V2 (VAV)

3 r? 3 r? 3r
— )\ Y T o 2)\2
¢ ( * ) 0 ( 82 * 4et 4056) ¢

12 4t 15 2472 37
G5 - — = - ——
i (452 206 g2 N 4et 556)
3 r? 57 15r% 57
- a2+ ot 2T 0T ) g2y 3.118
( 5+53)+< 452+254 456) ( )

Now we can do the same for & (¢*) ;, but we first need one more relation:

IVIV =A Ki — l) nv —

4r2  Bre

ZL‘ZL‘

yo } G?)\* forr>e (3.119)

A proof of this relation can be found in the appendix E.6.
With this we obtain:

id i /‘4/2 1 4 ii 4 i .
/{<¢]>J = 2V — _ﬁ ﬁ (ﬁklakV6l) n + v2 (6 V@JV)
2G\ 1 6 g
s % 2 2)\2 i 4 2)\2 . ij
r ( Sre 5l )n 4G (27’2 57’8) g
1 2 o xlad
ov2 | (L 2 )
G {(47“2 5T5> K 4rt ]
| 2G'\ 2)2 J
= (—i L3 6c ) et Lo (G¥) (3.120)
r r re rd

for r > e.
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Inserting now (3.78) in the expression for k (¢™); for r > & we obtain finally:

g0 = —1+ke"™
2 2 2 2
_ o, (m—3Gm +0(G2)) + (——2—2) <m—3Gm +O(G2)) G2
r £ r re g
2 92 2,2
= —-1- Cim — GT;” +0(G%)  forr>e¢ (3.121)

And doing the same for r < ¢ the result is:

3 r? 57  15r%  5rd
0 - 1 — 4+ — )G —— ) GPN? 3
g +( + )G +< PR 456> + O (G?)

3 r? 3Gm? ) 57 1502 5rt\ , )
= —1+<—E+Q)G(m— . +O(G))+<—4—€2+2—54—4—€6>Gm +0(G?)

= -1

_ 3Gm N r?Gm LGP < 21 9% 5t

_ - o 3
=t o 4€6> +0(G°) (3.122)

€ g3

And finally the exterior solution for the spatial part of the metric is:

3 3 2G\ 2)\2 ‘o
B b ) e o

72 re r4
2,2 2,2 2,2 2,02 ]
_ 1_2Gm+6Gm+3Gm_6Gm _Gmme+O(G3)
r re 72 re r
i 2Gm  3G*m? G*m*rix 5
_ na(l_ 3 )- LI o) (3.123)

These results coincide with the ones obtained in section 2.



37

4 ¢" as the iterative solution to the equations of motion

In this section, we consider a different approach to the same problem.

We start by rewriting the Einstein-Hilbert action a bit differently. We split it into a part relevant
for the equations of motion S°™ and a boundary term S?, which vanishes upon variation. S°™
can then be written as a Taylor expansion around the perturbation from flat spacetime ¢**.
After carefully variating S°°™, we can define the coupling of the gravitational field to an external
source. The external source will of course be chosen to be the same as the one described in
sections 2 and 3.

We will then obtain a final equation of motion that can be solved iteratively. We will first find
a solution of order x. Then we will use this solution to find further contributions, this time of
order k3.

The main difference with respect to section 3 is that we are solving directly the equations of
motion and not using the S-matrix formalism.

This will allow us to find a final expression for ¢*” that can be compared to the ones already
obtained.

4.1 Reformulation of the Einstein-Hilbert action

One of the crucial parts of this different approach is to rewrite the Einstein-Hilbert action in a
more compact way.

To this purpose we first of all split it into a boundary part, that will not contribute to the
equations of motion, and an inner part, that will be relevant for the further computations.

Indeed the Einstein-Hilbert action SP# [g] can be rewritten as:

SH [g) = 5 [g] + 57 [g] (4.1)

with
Sem [g] = % / d'z (—g)% g (1%, 1", — T, T, (4.2)

and
S?g] = %/d‘lxﬁ)\TA (4.3)

We can see this with a straightforward computation:

1 )
Pyl = — [ dz(—9)° R
K
1 1 v v
= = d'z (—g)2 g" {0\, — 9,1y + T, 1, — T, T 0
1 L v v
) d'z(-g)* g (FA/\VF pp F/\pvF u/\)
—seomlg]
1 1
+ K2 /d% (=9)* 9" (8)‘F>\MP - 8,)1“’\“)\) (4.4)

=59[g]
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We can rewrite T)‘ In a more Compact form as:
A 1 A v
T = (_g)2 (gﬂ I uv —-4g HT ;u/)
1 1/1 (e} 1 va
= (_9)2 (gM ég)\ (gau,u + gozu,u - guu,a) - g/\uag (gau,u + gau,u - guu,a)>
1

[QQWQMQW,V o g,uug)\ag“y,a o g)\“gyaga,u,y o g)\,uguagcw’ﬂ + g)\ﬂgyagpu,a}

2
= (=92 [¢"9* — 0" 9] gapw
= (=9)2 M () Dy gpa (4.5)

where we defined:
M (g) = gt g™ — g g™ (4.6)

A bit more computations are needed to write S®™ in a more compact form, but, using a
computer, they are straightforward too.
The result is:

geom _ /d4xﬁag5,yM°‘5w”p (9) 0ugup (4.7)
with
1

Z [gwMﬁvw + gauMVBm + ngwMﬁwu + QQMVMMPBOC} (—g)% (4.8)

MePruvp (Q) — 2

Now we can expand g around the flat metric, i.e. set ¢g" = n*” + k¢*”. As seen in section 3,
for the inverse we have g, = N, — K@ + O (K?).

Note that 0,95y = —KOaPp-

Furthermore we can introduce a directional functional derivative:

)
5gaﬁ

Dylgl == [ ds6us 2)
With this notation we can write down the Taylor expansion of M (g) around ¢:

M (g)=M(n+rp) = exp{Dylgl} M(g)|,_,

= M(n)—k /d%gf)w (x) 5%;5 (x)M(g) ) +0 (hz) (4.10)

This allows us to obtain our final form for S¢™ [g]:

semlg) = [ d @udan) (2) M (14 86) () (Guoy) (o)

= [ 0 (@a05) () [exp (D ) M (9)],_, () Duh) (0) (411
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4.2 Variation of S?

Now that we have obtained this very compact form of writing S°™, we can vary it with respect
to the perturbation ¢ from flat spacetime. l.e. the goal of this section is to compute ﬁSeom (@]

Using the product rule we can immediately obtain:

) )

T = s L @0 ) [ D M W] ) @) )

= [t on) {ew 0ala M 1,]™ 1) @000 1)

+ [ty {@um) ) [exw (s ) 1 | ()} )

+ [ a0 0 {50 [ew Da b 2 01, 0} @)

0P (z)
ors (y)

::_/#%%RE%{F@U%MMNW%J

- [0, { @5 [exo 1l 2 0,

+ [ty @) ) {555 [0 (Ds a0 0,
= <0 { e (Dl M), (Onter)} @)

-0,{@.00) [ (2 21 01, ) )

+ [ aty @) {555 [ tala M, ) 0
< (04607) 0) (4.12)

] apypor

apypor

0,61} 0

0¢or (y)
0P (z)

e <y>} 060 (1)

where we also used integration by parts.

Let us now make a couple of considerations.
First of all we note that:

5 5 \ 5
o @ = S [‘“ [ 46 ) 5gms (0)

- 4 5¢a6 (y> 0
= / Y S bu (2) 590 ()

1
= —m/d4y§ (6%,0%5 +8"30",) 6 (y — )
O (x)

0
59045 <y>

(4.13)
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Secondly we can use this to vary exp {Dy [g]}:

5 b & D)
o (@) P D = 5T 2

= n(Ds[g)"" 6D, [g]
N nz% d)n! 5¢Mj(x)

)
- Z n—l 39, ()

)
0Gu ()

mM (9) (y) = aa]\g—:ug)é (y — ) to go on with the variation of S*™:
(9p607) | (2)

afs v
-0,{0.0:) [exw (. 121 0, )

= —rexp{Dy|g]}

(4.14)

We may now use this and

aurpoT

5¢j 5l = 0 {{ex0 (Do g} M (),

[ 000) [exp (D]} %Mgff)a (v )

aBypoT
] (1Y) (0p00r) (y)

g:
aurpoT

{|eop Dl M (9)l,| T (@)} (@)
o, {@%) [ (Ds 21 @)l -)) "

aM()

apypor
] (%) (Fpor) ()

auy

09,
= -2 <aa [exp{D¢[g]}M 9)| rwpm) () (0por) ()
z[exp{DA]}M(gng*n] " (@) udy6r) (2)

—k (Oathpy) (2) [eXp {Ds lal} 8g/[gu(yg)

aBypor
] () (Gp07) () (4.15)

g=n
where we have relabeled some indices and used the symmetry property MeSvHve — \frveaBy,

We are now going to expand this first variation in orders of ¢. This corresponds to an expansion
in powers of k, since each ¢ comes with such a factor.

Note that every term in the expansion has at least one power of ¢, and the last term in (4.15)
has at least two.

There are of course no 0-th order terms, since we haven’t coupled the field to an external source
yet.

We can summarize the expansion as:

§5°m [g)

= S+ 65" + O (¢°) (4.16)
5
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Taking only the terms containing one power of ¢, we get:

OSM" = =2(0a M7 (1)) () (Bpor) (x) — 2M 7T (1) (0aOptor) ()

-
=0

= —2M™777 () (0a0ptor) (x) (4.17)

Analogously, but remembering this time to take into account the last term in (4.15), we can
compute:

o5 = =2(0 [Dalg M @)],,) ") @) 00000 @)
—2 [D¢ lg] M (g)lg:n} T () (0a0pbp) ()

apypor
005 (2) gD @00r) (@) (419

In order to simplify further this expression, we need to know that:

J
5ga5 <y>
oM
= —k [ dyoda 0(y—=
[ duns ) 5 =)
oM
6ga5

Dulgl M (9)(x) = & [ d'ysua(v)

= —fap (7) () (4.19)

Then 5S(e§)m can be written as:

OMmvpoT OMHvpoT
S = 2k aoz ¢o¢ —a. ]) (:E) (a ¢OT) (:E) + 2"“2504 —a. (:E) (8046 ¢UT) (:E)
2) 181 181
< [ agalﬁl g=n g 8904151 g=n g
M BrpoT
—£ (0atpy) (T) T 0. (8p¢ar) (z) (4.20)
G g=n

4.3 Coupling to an external source and corresponding equations of
motion

Let us now introduce the coupling to an external source:
Seewree lgl = K / d*xdas (2) TP (2) (4.21)
Note that since J*? represents an external source, its variation with respect to ¢ vanishes.

Thus the first variation of S is:

5 Ssource [ (b]

5o (2) = rkJ" () (4.22)
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After imposing the coupling to an external source, the equations of motion coming from im-
posing § (5™ + S%°W) = (0 are then:

5Seom
= —rJ" (x 4.23
5o () () (4.23)
We already know the expression for % from (4.15), so that we obtain:

=2(0 [exp (D [} M (@), ] ) () Opir) (2)

2 [exp {Da o} M ()|, | (Ba0h) (2)
—£ (Oatpy) (7) [exp {Dy 9]} agi(yg ) g:n] o (Dptor) (x) = —kJ™(z)  (4.24)
We can now write down the following expansion of exp {Dy [g]} M (g)],
e (DAL 0y = )+ Dl 0, > Pl o) (a2

and use it to rewrite (4.24) up to O (¢*):
<20 [Dalg M (@), ) (@) (Byer) (@)

— 9 \JHvPaT (

~2[Dylgl M (9)l,, ]

afypor
86;\4 (0p0or) () + K™ (z) = O (h?) (4.26)

—£ (0adpy) (x)

g=n

where we used that 9, M (1) = 0. This corresponds to setting dSF" + 0SEH™ + kJM (x) = 0.
We can further reformulate this expression by first noting that:

Dola M (@)l (0) = = [ duons () 25w =)

oM
8ga5

g=n

C by (@) (4.27)

g=n

This means that we can finally write the equations of motion including the coupling to the
external source as:

OM oot

258&@)151 (x) 8g P

(OpPar) (x) = 2MP7T (1) (0a0per) ()

g=n
8Ma,u,1/p07'
+2K¢a,p () —/—
161 89a1ﬁ1

(0a0por) ()

g=n

(0por) (z) + KJM () = O (¢°) (4.28)

g=n

M BrpoT
09

—£ (Gatpy) (7)
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4.4 TIterative solution of the equations of motion

It is now possible to solve the equations of motion iteratively.

Let us start by considering the following expansion of ¢:

=0 + oM 4@ 4 (4.29)
where ¢ is proportional to x, M) is proportional to x%, and so on.
Each iteration step corresponds to taking new diagrams into account. As we will see soon, ¢©

takes into account just one coupling with the external source, ¢! considers two of them and
so on. This is represented in Figure 5.

Figure 5: Each iteration step corresponds to taking new
diagrams into account.

The differential equation to determine ¢(°) must then be:

—2MT () (Du0,0) (2) = k™ () (4.30)
MO () (0a0,6) () = S () (4.31)

Using the method of Green’s function we see that the solution must be:
/{/ vV
o0 (e) =5 [ a6, (e -2 (2 (432)

where GC(TOT)W satisfies:

M7 (1) 0a0,Glg 5, (2 = 1) = 0

oTa1f1

d(x—y) (4.33)

a1
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Now we consider the equation of motion of the next order, that is:

2006, (1) 2L (0,69) () — 20097 () (8,001 ()

a904161 g=n
aMQ’MVpO'T
+2/-€gz5a1 (2) 0a0,0%) ()
g agalﬁl g=n ( 8 )
MBPoT
— (0a0)) (1) T——|  (,08) (@) = 0 (4.34)
Guv

g=n

where we have already used the fact that —2M P77 () <8 0, JT) () = 5J" (x) = 0.

Solving this for M**r°T (n) 8a6p¢((,17) gives us:

aMa,ul/poT
MO (1) 0,0,¢5) (2) = KOudl s (z) T (0,6%)) ()
o161 g=n
HM ot
+“¢§?ﬁl (2) g (0a0,0%) ()
aifi lg=n
1 ©0)) (o OM*77" 0
5% (080 (0) =5~ @@ @
Which leads to the following expression for <;5<(,1T):
aMa,ul/paQBQ
gbz(TlT) ("L‘) = /d4yGUTMV( ) ( agbalﬁl) ( ) T ( ¢a262) ( )
a1 g=n
aMauupagﬁg
d*yGO y _ 000,90,
/ Yy OT gbcuﬁl (y) 8904161 . ( P¢ 252) ( )
B 1 . B ) O M BrpazBe
o | 080 (0.09) ) F5 =] (3080) ) (436)

We can write this equation in Fourier space as:

aMa,uupagﬁg
o0 (k) = —x S / A kol i akis GO, (1) 60, () 6%, (ks) 8 (e + Ko + )
a1Pr lg=n
aMa,uupagﬁg
- T /d4k2d ks k3ak3p ‘TT“” ( )(bcnﬁl ( )(bo&ﬁg <k3> 0 (kl + ko + k3)
a1B1 g=n
Kk OMLrPa2B2
+§ 87 /d4k2d4k3 k2ak30G¢(7g-uu (kl) ¢(ﬁofy) (kQ) ¢a262 (k:?))
Guv g=n
X8 (ky + ky + ks) (437)

4.5 Comparison with the previous results
4.5.1 Gauge fixing

At this point, we can use part of what we did in section 3.2 to fix the gauge. We need to do
this in order to compute the explicit expressions for ¢(® and ¢().
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We already know the form of the free propagator in the harmonic gauge:

1 1% v o
oz W =) (4.38)

Its inverse gives us the kinetic part of the Lagrangian after fixing the gauge:

G(O)uupa (k,Q)

(GO () = %kQ (00" + 1" — 00" (4.39)

Thus instead of (4.31), our 0-th order equation of motion can be rewritten after gauge fixing
as:

M (n) (820,02) () = 51 (x) (440)
where

1 T VO o _ VT V_ _TO [0
— ("7 T — ) (4.41)

M (n) = 3

4.5.2 0-th order

Let us now proceed to solving the equation of motion (4.31) for ¢(¥)

We use the same external source and set thus J,, (x) = T, (z), where T}, is the energy-
momentum tensor defined in section 3.4.1.

This yields:

(b(O)aB (z) = g/d4zG(0)a5“” (z — 2) T (2) (4.42)
In Fourier space this is simply the product of the Fourier transforms:
K
$©oB () = 5@(0)04@1/ (k) T, (k) (4.43)

This is in perfect harmony with the first term in the formula (3.73) for the vacuum expectation
value obtained previously.

Thus the results will be the same, i.e.:

000 _ 9 g 4.44
K} V+ N (4.44)

and
ki = (o _ LY i (4.45)

4.5.3 1-st order

We now turn to the equation (4.37) and compute ¢ 7 explicitly.
We can rewrite (4.37)

O M CHvpa B2 O NP2 B2
Wom (k) = — [ @kod¥hy | -2 —F—|  kooks, —2 | ks k
¢ ( 1) / 2 3 8ga161 2av3p 8ga151 3av3p
= 9=
oM Brpaz B2 , y
G’ag— kQak3p G(O)UTW/ (kl) G(O)oqﬁlm 1 (k?g) G(O)Q@ﬁ;@ 2 (k‘g)
HJ/
g=n

XT,ulVl <k2> Hav2 (k3) 54 (k2 + k3 - kl) (4.46)
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This looks very similar to (3.73) and is in accordance with the diagrammatical representation
of Figure 5.

We can use the same integrals as the ones described in section 3.4.4 to compute the final result
as a function of V' and p.

We implement the same rules on a computer and obtain:

1 2
ROMW = — <@ VOV — TVAV (4.47)
and .
g n ij 1 i ]

4.5.4 Final result and comparison

Remembering that ¢ = ¢(® + ¢ + ... we obtain the following final result:

mboo _ 2V—i—§/{—2p _ iTl IV — 2VAV (4.49)
oA A Kl A ’
and 2 1 1
ii K nab a b 17 0 j
i— (o 2 Tab J_ = J 4.
ko (v 2Ap+A8V8V)7I ~ (OVOV) (4.50)

Some more details on these calculations can be found in appendix F.

These results have the same form as the ones obtained in (3.101) and (3.112), up to a factor of
4 and a sign in the term proportional to < (0'V V).

The origin of the problem is still unknown, but probably hides in the computer calculations.
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5 Conclusions

The goal of this thesis was to study a particular approach for the computation of the vacuum
expectation value of the gravitational potential.

The mass configuration considered was the one of a perfectly spherically symmetric homoge-
neous density.

We first derived the classical result using the standard procedure of general relativity.

Then we considered two different approaches, both based on the formulation of gravity as a
quantum field theory.

The first approach, following [1], requires the 3-vertex function , when writing the vacuum
expectation value as the sum of a diagram involving one coupling to the external source and
one involving two.

There are many options to calculate the 3-vertex function and even the results from the liter-
ature do not always agree.

We considered three different possibilities that led to results differing at most by a factor of 4.

Secondly, we computed the vacuum expectation value by means of writing the equations of
motion in a form that can be solved iteratively. This allows us to avoid the computation of
the 3-vertex function and requires only one partial derivative of a matrix with respect to the
metric.

The results obtained with this method differ only by a factor of 2 from the previous ones.
The reason behind this disagreement has most probably nothing to do with the method used,
but rather with some mistake in the calculations.
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A Computation of Goldberg’s expression for the Einstein-

Hilbert Lagrangian
We start with the usual form of the Einstein-Hilbert Lagrangian:
1 124
L=— (_9)2 gM R;w
We are using the following convention for the Ricci tensor:

R, =1% , =10 —I7 I +1° 17

1o,V Bv,p wt op T Loud

and for the Christoffel symbol:

[0 1 [0
5y = 5977 (8,95 + 059xy = Orgys)

Our goal is to reexpress this Lagrangian using the tensor density g°:

0= V=gg® = det(g°%) = det (v=g¢°°) = (v=g)" det (3*°)

where n is the dimensionality of our spacetime.

Note that:

2 n=2
= g=—(=g) = g=—(-9)°
Using the relation 9, (det (¢")) = gapg®” , det (¢"), we obtain:

apg = ap <_(_Q)T)

0
= 2 det (@) 9, det (g)
 on=2 ¢ ¢
2
= n_2(—det(g‘“’)) 27 gapg™  det (g")
2
= d t n—2
— U ev(g )" as8
=g
B 2
= n_299a59
Furthermore:
679046 = _guagyﬁ (879;”)

0vgap = —YuagupOrg"”
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We can use all of this information to rewrite the Christoffel symbol:

1
rs, = 59 X (Opgrny + 01978 — Orgsr)
1 1
= 5( g) égl‘“( — 900,089 — 9u7Gu50-9" + 9u59-009")
1 1 1 IR 1 1 IR
= 5 2 g ( )2 (—9)? GururOs ((—g) 2 gt ) —(—=9)2 (=9)2 8,28,50, ((—g) 2 gt )
+(=9)? (=9)* 94580 (( 9)* g“”))
1 l (07 71 v v v
= 5 )2 g™ ( 970,03 ( —g) 2 g" ) — 87800, ((— ) gt ) + 8,887,02 (( ) g ))
]‘ l a\ 1 -1 v v -1
= 5 9)2g ( guxgwg“ 05 (—9) 2 — 88y (—9) 2 089" — 8080390y (—g) 2

1 _1 5
0005 (—9) % 00" + 050,80 (—9) 7 + 850, (—9) 2 Org” )
In order to get rid of the derivatives of the determinant, we compute:
_1
Oa(—g) 2 =

2
n— 2

99,,9" 4

= 5 (9 0w

(A.10)

So we can finally compute an expression for the Christoffel symbol, that depends only on the

tensor density gH”:

2 n—2

4 1 -1 yixes -1 4
— 0 058" (—n — 2) (—=9)72 8708™ ., — Bx8up (—9) 2 8",

_1 o “1
+8597,8" (— ) (=9) "2 9r08™ 5 + 8488 (—9) 2 0" ,A)

n— 2
1 1 1
2 2

v 1 v o v
— 0 0upd"’ , — nfguﬁgwg“ 908" ) + 9us808" ,A)

2
. ]' ]' 50{ T 1 5 av
- 5 n—9 fygwog B guﬂ/g 5 + 59#09 — 9vpd ~
1 v
—fzgwg%mg”,x + 8500 0° 0" )
1 (0% ixea afL 1 (0% TOo ol
= 3 — 25ygmg 888" 5 = 05008+ 8us8™

1

+mgwg“gmg’”,x - gﬁugwg“g"”,A)

g (nfgwgwg“”gmg”ﬁ - QuAgngﬁ + n_ QQuAQVBgWgng v

o 1 1 1122 1 -1 o T
5 = (=92 | —omg, 0" | — (=9) 2 9708 5 — 8un0ury (—9) 28" 4

(A.11)
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After inserting the explicit form of the Christoffel symbol in the Ricci tensor and some compu-
tations that are too long even for the appendix, we obtain the following:

1 n v
SEH = @/d [L‘4g'u RMV

v afs «
g# gaﬁg N % + 49 p,ap

2

1 8 —2n 4
- = " uv af
22 T |: n—92 g gaﬁ,ug S + n —

Q’,B,
sV

8™ 0%, = 8" 80aBpr 877,87 ) + A8 B0 087

I
-2

a oo 4 «
+29aa’gp 7o'g N _'_ n — gpﬁnpgaﬁg B7'y (A12>

2

Integration by parts yields then the desired result:

1
) d"z |g" ao/
/ {g Goa 8 9 2

—2gaﬁg“”,gg ° ] (A.13)

T 297 or v

B Computations for the free propagator

1
B.1 ¢a161 (gj) ¢04252 (y)

S
We can now check that ¢®%1 (x) ¢22%2 () = —iGA12P2 (3 — y):

¢a151 (SL’) (bazﬁz <y) = —iGProzf2 (SL’ _ y) — <0 ‘T {(balﬁl ¢a252 (y)}D
1
B Z[J] ( 5J04151 ) < 5 04252 ) z [J] J=0

1
— d4 /d4 /[agﬁg 5 I
[J] 5‘]04151 :E [ ! (y y)
( Z) Gaﬁul/ (ZL‘ /) Jaﬁ )} }J .
— 1 4,0 yofosfBe (0 a1/
= ZZ[J] [/dazG (2" —y) I"7 4
x 6 (2" = 2)] Z ()2
= _Z'Ga151a2ﬁ2 (ZE _ y) (Bl)

B.2 Proof that G"*? satisfies (3.36)

We now show that G*7 (k%) = L (n"n*" + """ — n*'nP7) 5 satisfies (3.36).
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Indeed in momentum space we have:

1 o loa (o2 (o2
3 (20 Nater — 177 — 407,.6°\ .7 + 407,07 1,5)
. TV T AU T v 1 —1
Xk (=i) (™0™ 40" =) 5 = (R = K.
_4klik>\nlﬂ' + 4knk777L)\>
1

% (n)\u,n’ru + nuTnAu . ,’7)\T,’7uu) ﬁ
_ _@Z (2K26%, 6", + 2k26" 8", — 2k 1™
—k?QT/L,QT]MV _ k,ZnLHnuu _ 4]{:277@‘@77“”
Ak k1Y, — ARTKY S+ Ak
Ak KV SR 4 Ak kMY )
= (" + 55
= 1", (B.2)

C 3-graviton interaction

C.1 Computation of T

We need to compute three variations of Ag with respect to g.
In order to do this, we will use the xTensor package from Mathematica, contained in the xAct
bundle. This package allows us to perform tensor calculus, inculding variations.

The desired expression can be rewritten as a function of ¢:

- 5% [ drarl
Fa1ﬁ1a252a353 (xl7$27 x3) - [ . (Cl)
5@5%51 (xl) 5¢a2ﬁ2 (va) 5¢a353 (1‘3) -
Remembering that
A(1) 1 po po p 5o b so
Lg' = 5 (A0 mantss + 207 ustinansr + 2000 g1nner = 07607 g
+450K5pA770£L?776) éaﬁéuﬁ,p(g)\io‘ (02)

we leave the contraction with the Minkowski metric aside for the moment and vary just
éaﬁéuﬁ Q;AT
P 0"

We define this as follows in Mathematica:

|#[£, bl yld, e, -al ¥lc, g, -b]

where ) is a shorthand for do.
After defining some variation rules, we are ready to do the actual computations:
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Y /: VarD[pertl[al, bl], PD] [¢¥[d , e , -a_], rest_] :=

moml|[-a] %-(metricg[d, -al] metricg[e, -bl] + metricg[e, -al] metricg[d, -bl]) rest;
Y /: VarD[pert2[a2, b2], PD] [¢¥[d_, e , -a_], rest_] :=

mom2 [ -a] i-(metricg[d, -a2] metricg[e, -b2] + metricg[e, -a2] metricg[d, -b2]) rest;
Y /: VarD[pert3[a3, b3], PD] [¢¥[d_, e , -a_], rest_] :=

mom3[-a] %-(metricg[d, -a3] metricg[e, -b3] + metricg[e, -a3] metricg[d, -b3]) rest;
¢ /: VarD[pertl[al, bl], PD][¢[f , h ], rest ] :=

%—(metricg[f, -al] metricg[h, -bl] + metricg[h, -al] metricg[f, -bl]) rest;
¢ /: VarD[pert2[a2, b2], PD][¢[f_, h_], rest_] :=

% (metricg[f, -a2] metricg[h, -b2] + metricg[h, -a2] metricg[f, -b2]) rest;
¢ /: VarD[pert3[a3, b3], PD][¢[f_, h_], rest_] :=

1
5 (metricg[f, -a3] metricg[h, -b3] + metricg[h, -a3] metricg[f, -b3]) * rest;

(*Compute the variations*)

resl = VarD[pertl[al, bl], PD] [¢[£, h] 4[4, e, -a] ¥[c, g, -b]];
(»first variationx)

res2 = VarD[pert2[a2, b2], PD] [resl]; (#second variations)

res3 = VarD[pert3[a3, b3], PD] [res2];

(*third variationx)

We can then multiply this by the prefactor that we had left away to obtain the result stated
in (3.44).

C.2 Computation of the vertex function in position space

The variation rules used to work in position space are:

metricg /: VarD[varl[ml, nl], PD] [metricg[m_, n_], rest_] :=
VarD[metricg[ml, nl], PD] [metricg[m, n]] *deltaXX1lx rest

metricg /: VarD[var2[m2, n2], PD] [metricg[m , n ], rest ] :=
VarD[metricg[m2, n2], PD] [metricg[m, n]] *»deltaXX2 * rest

metricg /: VarD[var3[m3, n3], PD] [metricg[m_, n_], rest_] :=
VarD[metricg[m3, n3], PD] [metricg[m, n]] *deltaXX3 % rest
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Q /: VarD[varl[ml, nl], PD][Q[a , b , -c_], rest_] :=

PD[-c] [VarD[metricg[ml, nl]] [metricg[a, b]] deltaXX1l] * rest
Q /: VarD[var2[m2, n2], PD][Q[a_, b_, -c_], rest_] :=

PD[-c] [VarD[metricg[m2, n2]] [metricg[a, b]] deltaXX2] % rest
Q /: VarD[var3[m3, n3], PD][Q[a_, b_, -c_], rest_] :=

PD[-c] [VarD[metricg[m3, n3]] [metricg[a, b]] deltaXX3] % rest

where Q‘J‘ﬁ7 is a shorthand for gaﬁﬂ and deltaXX1 stands for 0 (z — 1) and so on.

The rules for integrating over d*z are:

intX1l := deltaXX1*PD[a_] [deltaXX3] PD[b_] [deltaXX2] »
PD[a] [deltaX3X1] PD[b] [deltaX1X2]

intX2 := deltaXX2*PD[a ] [deltaXX1l] PD[b ] [deltaXX3] -
PD[a] [deltaX1X2] PD[b] [deltaX2X3]

intX3 := deltaXX3*PD[a_] [deltaXX2] PD[b_] [deltaXxX1l] -
PD[a] [deltaX2X3] PD[b] [deltaX3X1]

and the rules for performing the Fourier transformation are:

doubleXltoMom := PD[a_] [deltaX1X2] PD[b ] [deltaX3X1l] » -mom2[a] mom3[b];
doubleX2toMom := PD[a_] [deltaX2X3] PD[b_] [deltaX1X2] » -mom3[a] moml[b];
doubleX3toMom := PD[a_] [deltaX3X1l] PD[b_] [deltaX2X3] » -moml[a] mom2[b];

where mom2 [a] means k9, and so on.

D Explicit computation of the vacuum expectation value

The generic rules that we will need for computing the integrals in the vacuum expectation value
are



(*Here are first the definitions of the rules that I
will be using to compute the factors in front of VDV
and 4dvdv. )

metrictoscalar = metricg[a , b ] - -1;
mom2tovDv =mom2[a_] mom2[-a_] - 16 vDv;
mom3tovDv =mom3[a_] mom3[-a_] » 16 vDv;

mom32todvdv = mom3[a ] mom2[-a ] -» 16 dvdv;

mom23todvdv

mom2[a_]mom3[-a_] - 16 dvdv;

(*These are the rules for setting the momenta to 0,
when the indices are 0
(because of the delta in the mu(k) term).=x)

mom3mlto0 = mom3[ml] » 0;

mom3nlto0 = mom3[nl] - 0;
mom3m2to0 = mom3 [m2] -» 0;
mom3n2to0 = mom3 [n2] » 0;
mom3m3to0 = mom3[m3] - 0;
mom3n3to0 = mom3[n3] - 0;
mom2mlto0 = mom2[ml] » 0;
mom2nlto0 = mom2[nl] - 0;
mom2m2to0 = mom2 [m2] - 0;
mom2n2to0 = mom2[n2] » 0;
mom2m3to0 = mom2[m3] -» 0;
mom2n3to0 = mom2[n3] -» 0;

(#*This is for when ml#

nl and hence the metric has to be set to zero.x)
metricto0 = metricg[m1, n1] - 0;

(*When ml or nl are #0 and a_ is O,

the metric should also be set to 0.=%)
metricmlalphato0 = metricg[ml, a ] »0;
metricnlalphato0 = metricg[a_, nl] » 0;
metricalphamlto0 = metricg[a_, ml] - 0;
metricalphanlto0 = metricg[nl, a ] »0;

metrictol = metricg[ml, nl] » 1;
metrictolsymm = metricg[nl, ml] » 1;
metricgenerictol = metricg[a_, b_] » 1;

(#*This is the actual substitution into terms proportional
to divdjVv.x)

divdjvvl = mom2[ml] mom3[nl] » 16 4ivdjV;

divdjVvv2 = mom3[ml] mom2[nl] » 16 divdjV;

95
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D.1 00-component

The implementation of the rules for calculating the factors in front of VAV and £8,VO'V
is

vertexConstrained /. metrictoscalar;
% /. mom2tovDv;

% /. mom3tovDv;

% /. mom32todvdv;
% /. mom23todvdv;
% /. mom3mltoO;

% /. mom3nlto0;

% /. mom3m2to0;

% /. mom3n2to0;

% /. mom3m3to0;

% /. mom3n3to0;

% /. mom2m1ltoO0;

% /. mom2nlto0;

% /. mom2m2to0;

% /. mom2n2to0;

% /. mom2m3to0;

% /. mom2n3to0

D.2 ij-component

The implementation of the rules to determine the factors in front of %81'\/87 V are

resultdivdjV = vertexConstrained /. metricto0;
% /. metricmlalphatoO;

% /. metricnlalphatoO;

% /. metricalphamlto0;

% /. metricalphanltoO;

% /. divdjvvl;

% /. divdjvv2;

% /. metricgenerictol

and for the factors in front of 1 0¥V 9,V



E Proof of the relations stated in sections

3.9.3

vertexConstrained - resultdivdjVv /. metrictol;

% /.
% /.
% /.
% /.
% /.
% /.
% /.
% /.
% /.
% /.
% /.
% /.

metrictolsymm;
mom2m2to0;
mom2n2to0;
mom2m3to0;
mom2n3to0;
mom3m2to0;
mom3n2to0;
mom3m3to0;
mom3n3to0;
metricgenerictol;
mom23 todvdv;
mom32todvdv

E.1 Proof of (3.86)

We begin by noting that

V (z))

1

ik [@ — 1|

sin (k |2/ — 7))

d (COS (0)) eik(\f’fﬂ)cos(@)

TR o
|:6 ik|Z —Z| _ezk\m x\]

J/

( k|2 — |
:2|z'ﬁ—£|
K> 1
dPap (T
(271')2/ xﬂ( ) |fl - f
K> 0(c—r)
drdfder? sin (0) ———
(27?)2p/ rdfdpr sin (9) 77

o7

3.4.3, 3.4.4 and
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We can insert |7 — 2| = 1/(# —&)° = \/r'2+ 12— 2rr' cos () in the above expression to
obtain:
0
Vi) = = d'r de " sin (6) (E.2)
4( '2+T — 2r7" cos (6)
:if(e)
(E.3)

Noticing that df = 277’ sin (A) we can go on with the calculations:

T K2 © 1 2df 1
V) = ——— dr— dor?
(*) 4(27T)p/0 TQT’/‘// do [ (9)]%
- Tk E/ drr [\/r’2+7“2+2r7“ \/r’2+7“2—2r7“’]
4 (2m)r" J,
2
= —% E/ drr {\/(r’+r)2 \/(T’—T)2:|
2m)r' Jo
TR p T K p [* 2
= — = — d ! — — d r — E.4
o s [ane e Lot [amfe - e

T 52 p €
L = — = d !
! 4(27r)r//0 rr(r )
T k2 p (e &3
_ T p e E.5
4(27?)7“’( 2 +3> (E5)
and
L, = = i B/Ed'r’r (r’—r)2
S 4 (2m)r" Jo
T 52 p 5 €
= Lo - drr (' — O(c—71") | d )
4(27?)7”{ (r 5)/0 rr(r'—r)+0(e T)/O rra/ (r r)}
2 2.1 3 r/ €
— Z(;ﬁ)g{&(r'—e) <€2T —%)Jr@(s—r') [/0 drr(r'—r)Jr// drr(r—r')]}
T 52 p , E2,,,/ 83 , 7"3 7,/3 83 827“/ 7“/3 13
_Z@ﬂﬁ&v_@(2_E)W@_”L?_?+§___—?+7”
T K p , g2’ &3 e 2e e el
- IEr _ _Z _ _ < E
4(2ﬂ)r'{9(r 8)(2 3)+9(€ T){T 3 3 2” (E-6)
Rewriting [, as
T Kk? op[[re? &3 r'e? g3
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we obtain the final result:

4 (2m)r! 4e 4¢3 2
167G
o 4(2m)
2G )\ , 3r’  1r'3 ,
- e (s is) 209
N (31 172 , 1
where we used p = %%53 and k% = 167G.
E.2 Proof of (3.88) and (3.89)
(3.88) is the same as
Lo [ @, dhydky A 757 (12 4 Ey o+ K ) ki (12 ) (E) = (VOoV)  (B9)
16 14 R R 1 2 3 /5%/23123” 2| K3 .

In order to show this, we note that:

Aeifrd — _Efez‘lé’l-f (E.10)
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Indeed:
e / By B hey B3 kes AeiFr @
kik? . 1 kik?
x5 (k1 FE ot kg) =22 (k2> (k;g) - ——& / &y ey ke 75 (k FE ot kg)
K23k 16 3k3

(E)o )
- gt [ Pk e () (1)

_ L, 3 e T ] 2 3 4132-33’]‘3%% -
- - ¥ /dkg e u(k;?,)zm /dkze E—%u(/@)

-~

=V(z)

1 kik /-
- v (x)iﬁ/d?’k —ika @ L M(kg)

2

- 1
_ XAV 3 —zkga:
- V(:E)(?@ /dke kgﬂ(kg)

(.

J/

=V (&)
= VooV (E.11)

(3.89) is equivalent to

e / By Byl kg A 1763 (/%’1 Ykt i%},) %u (/52> " (Eg) —JVOV.  (E12)

Again using (E.10) we have indeed:

- R 5 5 kzk] 5 .
! / By @ hyd® g A e 763 <k1 Ykt kg) o (k: ) u <k3>

L /d?’k; g T kam (k;)k:]u (k;)
= —7ZKk 2 3 2 2 3 3
16 k2 ks

1 / az —zkg T . 1 aje—iE3~£ .
- ks u (1@) Z 2 / SPr Ty (k:3>
4 k% 4 k2

3

(. 7\ J

:E)?V =07V
= VIV (E.13)

E.3 Proof of (3.114)

The Laplacian in spherical coordinates is given by:

19 (,0f 10 (. . 0f 1 &
Af = 2 or ( 87’) * r2sin (6) 00 (Sm (©) @) * r2sin? (6) 062 (E-14)
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In our case the computations are made easier by the fact that %—‘9/ = g—:: = 0.
The first partial derivative with respect to r is given by:
oV 1 10 r 31 1r
— = —GXN|—=0(r— ——0(r—e)——0(c — —— - ——
or ¢ r2 (r E)+T8T£,—EZ el (¢ T)+(2€ 2¢3
=0(r—e)
1 1 r 31 11
= —G>\ _—ﬁe(r—€)+ga(r—€)—50(5—7“)— (55—55) 5(5—7‘):|
[ 1 r
Then 9V 5
9 B r
v = -G\ [—9(6—7’)—;9(8—7“)}
Differentiating this once more with respect to r» we obtain:
o [ L0V 0 3r? r3 0
— — ) = GXN|=—0(r— —0 (e — ——0 (e —
or (T or ) {8’/’ (r=e)+ g3 (e=r)+ e3 or (e T)}
3r? rs
= G’)\{5(r—5)+?9(8—7’)—§5(5—7’)]
312
= G’)\g—g@ (5 — T)

and finally

Then I can write down:

3

VAV = —G2\? (—9 (c— 7’)) {;9 (r—e)+ (55 - %Z_z) 0(c — T)]

83
B 22 9 372 0
= OGN g g 0ET)

We can now compute the Laplacian of the right hand side of (3.114).
The Laplacian of the first term is:

6 10,06
A {5—m0(r—5)] 2 3rr or |:5T€9(7‘—€):|
19 ,] 6 6
= ﬁar {—%90“—8)—'—5—%5(7“—8)}
1 0 6 67
1 6
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(E.17)

(E.18)

(E.19)

(E.20)
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The Laplacian of the second term is:

Or | \ 82

15 3r2 34 10
(5o a0m) 0] = mg
10 [ 3r
28
3r2
(852'_ 454
0

3rd
454

1
72 254 10
12r3
e
3rt

or
Thus the Laplacian of the right hand side of (3.114) is:

22£1_ _E_Q 34 I (o
G“\ 5r55 (r—e) . 3r2det + —— ) 6 (e — 1)

This proves (3.114).

454_+ 40 6

QW(ii_éﬁ s
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- iz K 21 " 1056>9(€_r)

43556) ole- r)]

r w:)G(—M—

18r
4056) Ole =

S
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/ J—
 4et 4056) Yle—r }
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+ir)9@—m—

3r3

10e6

+-ﬁi)5@—r)

(E.21)
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E.4 Proof of (3.115)

The first term on the right hand side is:

A{(%z—%)ﬁ(r—e)] = %%7«2 K—T—z+%)0(r—s)+(2%2—%)5(7«—5)}

r3  ber? Ser?
(%—%) 5 (r <)
= %H(T—s)—r—ié(r—ew (2%—%) O(r—e) (E22)
The other term is:
3|(-rmm) 0] = Fara | (it ) 060
= %%TZ {;—;0(5 —7r)— (—4—; + %) (e —T):|
1

o [r° 3r2 r6

1 [rt 6r  6r° 7o
= — [—«9(5—7’)— (——+w)5(8—7’)—5—§5(5—r)

r? | b 4e?
_ (:1?;72“2 %) 5 — r)] (B.23)
= 2—39(5 —r)— <_F62r 13(;:6) de—r)— ;—;5@ — )
(oo
Now to compute the left hand side of (3.115) we can use 25 = x?l and 9 = 9.0,
Since
%—Z = G |50 =)+ 20 (r =€) — S0 (e —7) - (gé - %Z—i) 5(5—7«)} (E.25)
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we can write:

avov = G:;\Qxlxl {—%«9(r—5)+;5(7’—5)—é@(e—r)—(gé—%—%i—z)é( —r)]
<|-m0e-a+ 150 -9 -Soe-n- (31— -35) o)
_ Gw[49<r_g>+g5<r_e>+;_§e<e—r>+(gg_;g)%@—m
200 -astr-a+ Sl -0 -0+ (3 - 15) s -nor-2)
Eié(re)e@r)f@i;i)(sva)a(sm
+§—§ (2% - 27”—;) 6(c—r)b(c— 7’)] (F.26)

All that is now left is to compare the two sides:

:—49(7’—8)+i5(7’—5)

r2

—%9(r—5)5(r—5)+<%—;—3)5(6—7’)«9(7’—5)
—6335@—5)9(5—7»)—(%—E—g)a(r—g)é(g—r)
<§—T—Z>H(€—r)5(s—r) = %e(r—e)—%a(r—g)
+<$—%)5'(r—€)+£—20(5—r)
_(_Fir 13(;:36)5(E T)_5T_§65(€_T)
(e jreen
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The two sides are indeed equal as one can see from:

g2 4e2 42 2e2
—5—235(7“—5)9(7“—5)+<%—;—3)5(6—r)9(r—5)
—5—235(7“—6)6’(5—7“) _ <—;—3+%)5(r—5)—%5(r—5)
+(2i82—%)5'(5—7“)—%5(5—r)
—<—4£€3+%)5(6—T)
—(—4—32 ﬁ)é’(e—r)

E.5 Proof of (3.116)

We want to show:

3 r? 3rt

T8 T q0

el
4

1
= A|——G*\0(r—2e)+
D 5T€G (r—e) (

) G*\0 (e — r)] (E.27)

The left hand side can be rewritten as:

K> K21 , 9 M

__/i R

4 424 1672 &6
3 o2l (o o

= 50)\8—6(8 —r?)0(s—r) (E.29)

(=) b(s—r) (E.28)
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The right hand side requires a bit more computations:

A {(—5—;(}2)\2«9 (r — g))]

3 r? 3r# 219 9l 0 5,0 1

3r2+r 376 5( )
- -+ — - eE—r
2 4et  40e6

GQ)\ZI 212 31 2 2
= —5T€5(r—5)+G>\ {55—6(5 —r?)0(e—r)
12 11,
—ggd(E—T)‘Fgg(s (E—T‘):|
3 1
= §G2)\2§ (52 — TQ) 0 (E — T) (E30)

E.6 Proof of (3.119)

We now show (3.119).
We start with the left hand side of the equation:

IVIV = a@'vﬁar {—GA (%9(7’—8)4—(%1 11T2)9(e—r))]

o, 2: 33
or or [ 1 1 r 31 172 2
O Or 551
= aij N (E.31)

where we used the fact that we are only interested in r > €.

The derivative of the radius can be rewritten as:

or = i \% ﬁ“bﬂia%b

SL’i
r

(E.32)

Thus the left hand side of (3.119) is:

. i
FVoV =T g2y (E.33)
7»6
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Now we take care of the right hand side:

1 2 P nv o 1 2
2142 - = ij o — 220~ -
A [G A <<4r2 5T5) 1 Ard )} G r2 Or ( 2r * 55)
ab [y} J i ab %
n* 0! +0%at\ ™ 'l xy
4 a“( i 4 % (4 76

_ el ey (”_J _ ”J)

24 274 76
G2 \2xixd

—G?)\?

F Calculations leading to (4.49) and (4.50)

In order to determine the exact factors appearing in front of £9*"V9'V and £ VAV in (4.49)
and (4.50) we first need to compute the partial derivative of Mg, as one can see from (4.46),
and then can implement again the integration rules described in appendix D.

The derivative of Mg can be defined as



68

Then all we have to do is insert this in (4.46) and reapply the integration rules seen in appendix

F  CALCULATIONS LEADING TO (4.49) AND (4.50)

UndefTensor[derM] ;
DefTensor [derM[a, m, n, r, s, t, al, bl], M4];
derM[a , m , n_, r_, s_, t_, al_, bl_] :=

1

1
- (—metricg[al, bl] | metricgl[a, r]
2 (2

(metricg[m, t] metricg[n, s] +metricg[m, s] metricg[n, t] -
metricg[m, n] metricg[t, s]) +

1

2
-1 ) ]
— (metricg[r, al] metricg[a, b1] +
2

metricg[r, bl] metricgl[a, all)

(metricg[m, t] metricg[n, s] +metricg[m, s] metricg[n, t] -
metricg[m, n] metricg[t, s]) +

—metricg[a, r]
2

[_2—1 (metricg[m, al] metricg[t, b1] + metricg[m, b1] metricg[t, all])
metricg[n, s] -
i (metricg[n, al] metricg[s, bl] + metricg[n, b1] metricg[s, all)
metricg[m, t] -
; (metricg[m, al] metricg[s, bl] + metricg[m, b1] metricg[s, all)
metricg[n, t] -
i (metricg[n, al] metricg[t, b1] + metricg[n, bl] metricg[t, all)
metricg[m, s] +
i (metricg[m, al] metricg[n, bl1] + metricg[m, bl] metricg[n, all)
metricg[t, s] +

1
— (metricg[t, al] metricg[s, bl] +metricg[t, bl] metricg[s, al]l)
2

metricg[m, n]] // ContractMetric // Simplification // Expand

D to get the desired result.
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