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Abstract

The Einstein-Skyrme system admits black hole solutions. These black holes with classical
Skyrme hair were the first stable black hole solutions that could pose as counterexamples
to the no-hair conjecture. We reproduce these solutions numerically, focusing on the static
and spherically symmetric case. Then two different probes are used in order to further
study them, photons and scalar fields. Initially we examine their photon spheres as a
measure of how the near horizon geometry is affected due to the presence of the skyrmion
hair. We find out that they remain practically unaffected. We then turn our attention
towards gravitational lensing phenomena, so as to investigate if they could be used in order
to distinguish between a Skyrme and a Schwarzschild black hole of the same ADM mass.
As it turns out, they cannot be considered prominent for a physical scenario. Finally, we
study classical scattering and absorption cross sections of a minimally coupled massless
probe scalar field and compare our results with those obtained for a Schwarzschild black
hole. We observe that the characteristic peaks in the differential scattering cross section
are moved towards smaller angles, while in the absorption cross section towards higher
frequencies. Both scattering and absorption are also investigated for a massive probe
scalar field, where we discover that in a certain limit the skyrmion and Schwarzschild
black holes are indistinguishable through scattering experiments.

iii





Contents

List of Figures III

List of Tables VII

Conventions and notation IX

1 Introduction 1
1.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Skyrmion Black Holes 3
2.1 The Skyrme model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Lagrangian and stability of static configurations . . . . . . . . . . . 3
2.1.2 Topological properties . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Coupling to Einstein gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 No-hair Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Einstein-Skyrme model . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Numerical approach . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Solution space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Photon orbits 19
3.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Schwarzschild recap: Null geodesics . . . . . . . . . . . . . . . . . . 24
3.2.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Skyrme black holes as Gravitational lenses . . . . . . . . . . . . . . . . . . 31
3.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Scalar field scattering and absorption 41
4.1 Probe field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Lagrangian and DE . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Scattering theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3 Numerical approach . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.3.1 Way 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.3.2 Way 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.3.3 Glory scattering . . . . . . . . . . . . . . . . . . . . . . . 48

I



CONTENTS

4.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1 Massless case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Effect of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Conclusions 63

A Circular orbits in Skyrme black hole spacetime 65

Bibliography 71

II



List of Figures

2.1 Fh vs xh diagram for α = 0, 0.05, 0.1 and β = 0. Solid lines are used for
the upper stable branch, while dotted lines for the lower unstable branch.
It is evident that for given (α, β, xh) one can find two different solutions.
At the same time, there exists a maximum value of xh, different for each
combination of (α, β), beyond which there are no solutions. The figure is
adopted from [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 m(x) vs x diagram for β = 0 and α, xh as they appear in the legend. All
three models have mADM = 0.065, thus proving that mass does not single-
handedly characterize a static and spherically symmetric Skyrmion black
hole solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 F (x) vs x diagram for β = 0 and α, xh as they appear in the legend. . . . . 14
2.4 m(x) vs x diagram for α = 0.005 and β, xh as they appear in the legend.

All three models have mADM = 0.065, aligning with the fact that mass
does not single-handedly characterize a static and spherically symmetric
Skyrmion black hole solution and showing that β induces more freedom in
finding solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 F (x) vs x diagram for α = 0.005 and β, xh as they appear in the legend. . 15
2.6 m(x) vs x diagram for β = 0, xh = 0.07445 and α as they appear in the

legend. This highlights that as we increase the coupling constant α, more
massive models emerge, as more energy is stored in (self-)interactions. . . . 16

3.1 gt̃t̃ vs x diagram for β = 0 and α, xh as they appear in the legend. All
three models have mADM = 0.065. The deviations from the Schwarzschild
solution are evident. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 gxx vs x diagram for β = 0 and α, xh as they appear in the legend. . . . . . 20
3.3 The hypothetical potential for the (α, β, xh) = (0, 0, 0.13) case as the blue

line. At the maximum of the potential lies the circular orbit. The green
dashed line can correspond to either an incoming photon getting swallowed
by the black hole, or an outcoming photon which escapes. The orange
dashed line is an incoming photon getting scattered back at infinity. Finally,
the red dashed line is an outcoming photon captured by the black hole. . . 25

3.4 Photon orbits with the same impact parameters in the background of (a)
a Schwarzschild black hole with chiral hair and (b) a Skyrme black hole.
Evidently, the orbits differ. The parameters characterizing these black holes
can be found in the respective subcaptions. . . . . . . . . . . . . . . . . . . 26

III



LIST OF FIGURES

3.5 Deflection angle ∆φ(rad) vs closest approach 1/xmin diagram for many
black hole configurations of the same ADM mass. Different horizon radii
and the fact that all models have the same total mass determine the be-
haviour at large and small 1/xmin respectively. . . . . . . . . . . . . . . . 27

3.6 Difference in deflection angles ∆φrel(rad) between two black holes with
(α, β, xh)1 = (0, 0, 0.07445) and (α, β, xh)2 = (0.003, 0, 0.07445) vs closest
approach 1/xmin diagram. The models have the same horizon radius and
thus black hole mass, but their ADM masses are mADM,1 = 0.0372 and
mADM,2 = 0.0533 respectively. . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 The geometry of a gravitational lens system. This is the general case where
the source (S), the center of the lens (L) and observer (O) are not taken to
be collinear. The distances are as seen in the figure, while SS and Sd are
spheres centered at O on which S and L lie. The line through O and L is the
optical axis. The undisturbed angular position of the source with respect
to the optical axis is denoted by βββ. A light ray emitted by S crosses Sd at
I ′, while I is where the tangent to the geodesic of the ray at S crosses Sd.
Due to the smallness of the angles involved they can be taken to coincide as
a very accurate approximation. Due to the same reasoning one can think of
the spheres Sd, SS in terms of their tangent planes. The presence of L causes
the ray to be deflected by α̂̂α̂α, so that an image of the source is observed
at position θθθ. Finally, N is the point where the optical axis intersects the
sphere SS and S0 is a sphere representing the apparent sky of the observer.
Note that the position of the source (S) and the observer (O) could be
interchanged with the appropriate modifications in the relevant equations.
The figure is adopted from [64] . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Einstein angular radii θE vs lens-source distance xs for 4 different observer-
lens distances xobs. Those have been produced for two black hole models
characterized by (α, β, xh) = (0, 0, 0.13) and (α, β, xh) = (0.005, 0, 0.077).
They are denoted as Schwarzschild and Skyrme respectively and both have
mass mADM = 0.065. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 θα̂̂α̂α(θθθ),−θα̂̂α̂α(θθθ) vs θθθ diagram for the 2 models under consideration. The
parameters here are taken as Dds = 1010 mADM and Dd = 5× 102 mADM .
We have also plotted the function θθθ and θθθ + 0.4. The points where those
functions intersect θα̂̂α̂α(θθθ) and −θα̂̂α̂α(θθθ) are the solutions to the lens equation.
Angles are in rad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.10 θα̂̂α̂α(θθθ),−θα̂̂α̂α(θθθ) vs θθθ diagram for the 2 models under consideration. The
parameters here are taken as Dds = 1010 mADM and Dd = 6157 mADM . We
have also plotted the function θθθ. The points where this function intersects
θα̂̂α̂α(θθθ) and −θα̂̂α̂α(θθθ) are the solutions to the lens equation. Angles are in rad. 38

4.1 Differential scattering cross section of a scalar field with frequency w =
15. The scatterers are a Schwarzschild (α, β, xh) = (0, 0, 0.2166) and two
Skyrmion black holes named CASE I (α, β, xh) = (0.01, 0, 0.119) and CASE
II (α, β, xh) = (0.01, 0.5, 0.116). All have mADM = 0.1083. . . . . . . . . . . 49

IV



LIST OF FIGURES

4.2 Differential scattering cross section of a scalar field with frequency w =
15. The scatterers are two Schwarzschild black holes of masses mADM,1 =
0.1083 and mADM,2 = 0.0783. The peaks for the smaller Schwarzschild
black holes are moved towards smaller angles. . . . . . . . . . . . . . . . . 50

4.3 Differential scattering cross section of a scalar field with frequency w =
8. The scatterers are a Schwarzschild (α, β, xh) = (0, 0, 0.2166) and two
Skyrmion black holes named CASE I (α, β, xh) = (0.01, 0, 0.119) and CASE
II (α, β, xh) = (0.01, 0.5, 0.116). All have mADM = 0.1083. . . . . . . . . . . 51

4.4 Differential scattering cross section of a scalar field with frequency w = 15
as obtained through a full partial wave analysis and the glory approxima-
tion. Clearly, the peaks near θ ≈ π are in good agreement. The scatterer
is a Schwarzschild black hole (α, β, xh) = (0, 0, 0.2166). . . . . . . . . . . . 51

4.5 Null geodesics in the black hole spacetime. The black hole is denoted
by the black circle. On the left, we have the symmetric case of rays being
backscattered at the initial direction they came from. Due to the symmetry
of the spacetime the two trajectories are symmetric. On the right, we show
two rays with different impact parameters being scattered at the same
direction. All rays are coming from infinity and we use arrows to indicate
the direction along which they initially move. . . . . . . . . . . . . . . . . 52

4.6 Partial and total absorption cross section of a scalar field with respect to
its frequency. The absorber is a Schwarzschild (α, β, xh) = (0, 0, 0.2166)
black hole of mADM = 0.1083. . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Partial and total absorption cross section of a scalar field with respect to
its frequency. The absorber is the CASE II (α, β, xh) = (0.01, 0.5, 0.116)
Skyrmion black hole with mADM = 0.1083. . . . . . . . . . . . . . . . . . 54

4.8 Total absorption cross section of a scalar field with respect to its fre-
quency. The absorbers are a Schwarzschild (α, β, xh) = (0, 0, 0.2166) and
two Skyrmion black holes named CASE I (α, β, xh) = (0.01, 0, 0.119) and
CASE II (α, β, xh) = (0.01, 0.5, 0.116). All have mADM = 0.1083. . . . . . . 54

4.9 Effective potential for the Schwarzschild black hole (α, β, xh) = (0, 0, 0.2166).
The first three values of l are drawn for βφ = 0 and βφ = βφ,crit,1. . . . . . . 56

4.10 Re(e2iδl), Im(e2iδl) and |e2iδl | vs l diagram for the Schwarzschild black hole.
The first l’s are absorbed, while for larger l, Sl admits oscillatory behaviour.
Here we have chosen w = 15 and βφ = 0. . . . . . . . . . . . . . . . . . . . 56

4.11 Total absorption cross sections for the Schwarzschild black hole (α, β, xh) =
(0, 0, 0.2166) for three different values of the mass of the scalar field. They
are taken to be βφ = 0, βφ = 0.4 and βφ = βφ,crit,1 = 1.778. . . . . . . . . . 57

4.12 Total absorption cross section of a scalar field with mass βφ = 0.4 with
respect to its frequency. The absorbers are a Schwarzschild (α, β, xh) =
(0, 0, 0.2166) and two Skyrmion black holes named CASE I (α, β, xh) =
(0.01, 0, 0.119) and CASE II (α, β, xh) = (0.01, 0.5, 0.116). All havemADM =
0.1083. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.13 Differential scattering cross section of a scalar field with frequency w = 15.
The scatterer is a Schwarzschild black hole (α, β, xh) = (0, 0, 0.2166). Three
different masses for the scalar are considered and they are labelled by their
respective velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

V



LIST OF FIGURES

4.14 Differential scattering cross section of a scalar field with frequency w = 15.
The scatterer is the CASE II Skyrmion black hole (α, β, xh) = (0.01, 0.5, 0.116).
Three different masses for the scalar are considered and they are labelled
by their respective velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.15 Differential scattering cross section of a massive scalar field with frequency
w = 15 and velocity υ = 0.115. The scatterers are a Schwarzschild
(α, β, xh) = (0, 0, 0.2166) and two Skyrmion black holes named CASE I
(α, β, xh) = (0.01, 0, 0.119) and CASE II (α, β, xh) = (0.01, 0.5, 0.116). All
have mADM = 0.1083. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

VI



List of Tables

3.1 Photonspheres for many models and their relative difference from xphot,nh. . 28
3.2 Impact parameters corresponding to photon spheres and deviation from

the corresponding Schwarzschild result. . . . . . . . . . . . . . . . . . . . . 29
3.3 Angular separations for the images produced by both models and geomet-

rical parameters Dds = 1010 mADM , Dd = 6157 mADM for the collinear and
a non-collinear case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

VII





Conventions and notation

Throughout this thesis we use units in which the speed of light c and the Boltzmann
constant kB are set to be equal to one

c = kB = 1,

but at the same time both the Planck constant ~ and Newton’s constant GN retain their
values. Furthermore, we adopt the signature (+,−,−,−) for the metric. We should also
note that in our tensor presentation, Greek indices α, β, ... run over (0, 1, 2, 3), while Latin
indices i, j, ... run over (1, 2, 3).

IX





Chapter 1

Introduction

1.1 General description

In the 1980s and 1990s, it was found out that coupling (non-linear) matter models to
gravity can lead to both black hole and particle-like solutions. Characteristic examples are
the solutions that emerge from the Einstein-Yang-Mills and the Einstein-Skyrme system.
What is rather interesting is that these black hole solutions asymptotically approach the
pure gravity solutions of the same symmetry. Thus, they were the first counterexamples
to the no-hair conjecture that black holes can be characterized by their mass, their electric
charge and their angular momentum.

The question of stability of those solutions was automatically raised. Not all the
solutions turned out to be stable, but those who did shared a particular property. The
corresponding particle-like solutions were stable due to topological reasons. The particle-
like solutions of the Einstein-Skyrme system, also called gravitating skyrmions, indeed
exhibit such stability. Thus skyrmion black holes are rather interesting from a physical
point of view, as one can very well expect to encounter them in nature.

At the same time, the Skyrme model can be considered as a low energy effective theory
of QCD, whose topological Chern-Simons current can be mapped to the baryon number
current of QCD. Namely, the winding number in the context of the Skyrme model can be
mapped to the baryon number of QCD. Consequently, there is a correspondence between
the skyrmion black holes and baryonic black holes. Thus the study of Skyrmion black
holes can lead to interesting results regarding what happens to a baryon being swallowed
by a black hole. It may well turn that the baryon number is conserved after all.

Based on this mapping it was recently found out [1] that the baryon charge can be
written as a surface integral over a boundary surface enclosing the skyrmion. This can
be taken to be a two-sphere at infinity. This shows that after all the skyrmion charge can
be represented in the form of a boundary surface integral. In that sense, there is a way
to distinguish a Schwarzschild black hole from a skyrmion black hole at infinity, which is
solely based on topological considerations.

Other probes can also be used in order to distinguish between those two solutions.
Especially interesting is to investigate how the hair manifests itself, as the conservation
of baryon number could leave an imprint on how the black hole interacts with different
probes. The typical candidate for a probe would be fields of different spins. Each one
of them admits a different scattering and absorption behaviour from a black hole. As a

1



1. Introduction

result, the way they are scattered and absorbed by skyrmion black holes and how this
differs from the behaviour they exhibit in the presence of a Schwarzschild black hole can
offer a great deal of information on the existence and nature of the hair. In our work we
focus on those questions and try to provide an answer. At the same time, we look into
photons and how they behave around skyrmion black holes as well. Let us highlight that
we only take gravitational interactions into account.

Note that the hair discussed in this work are different from the quantum baryonic hair
suggested in [2]. These ideas are consistent with each other and they could very well turn
out to be complementary.

Finally, let us comment that the study of skyrmion black holes is expected to have
astrophysical consequences. In an astrophysical scenario a large number of baryons will
have been swallowed by the black hole. Yet, in the absence of skyrme black hole solutions
for arbitrarily large winding numbers, one is confined to tackle this problem at the small
winding number level.

1.2 Outline

Chapter 2 is an introduction to the Skyrme model, its coupling to General Relativity
and a discussion on the solution space. In Chapter 3 we focus on photons as probes.
Results on how photon spheres are altered due to the presence of the skyrme hair and
gravitational lensing phenomena as means of distinguishing skyrmion from Schwarzschild
black holes are discussed there. In Chapter 4 we switch to another probe, a minimally
coupled scalar field, in order to see how the hair manifests itself. We compute classical
differential scattering cross sections and absorption cross sections for a massless and a
massive scalar field scattered by a Skyrmion black hole. All results are compared to the
respective results obtained for a Schwarzschild black hole of the same ADM mass. The
conclusions of our work can be found in Chapter 5. Finally, we devote Appendix A to a
proof of the existence of photon spheres in static and spherically symmetric spacetimes.
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Chapter 2

Skyrmion Black Holes

In this chapter we present the Skyrme model, which we then couple to Einstein gravity
to obtain hairy black hole solutions. We give an exposition of the methodology used to
obtain these solutions, as well as describe their main characteristics. A short review of no-
hair theorems can also be found here. This is a mere discussion of results that have been
obtained during the past decades, where appropriate references are provided in place.

2.1 The Skyrme model

The Skyrme model was proposed by T.H.R. Skyrme [3, 4] as an effective theory of baryons.
Its importance is closely related to Quantum Chromodynamics (QCD), the SU(3) gauge
theory describing the strong interaction. In order to solve QCD an approximation method
is needed. However, the perturbative approach, which proved to be very convenient in
the case of Quantum Electrodynamics (QED), is inefficient. The underlying reason for
that is that the coupling constant is large at low energy scales. Consequently, it cannot
be used as an expansion parameter. This has led people to pursue some effective theory
to study the low energy processes of QCD and the Skyrme model can serve as such.

An extensive review of the model can be found in [5].

2.1.1 Lagrangian and stability of static configurations

The Skyrme model is a non-linear meson theory, which proved to be a powerful effective
theory of pions in the low energy scale of QCD. The Skyrme Lagrangian reads

LS = L2 + L4 + Lm, (2.1)

where

L2 =
F 2
π

4
Tr(∂µU∂

µU †), (2.2)

L4 =
1

32e2
Tr
([
U †∂µU,U

†∂νU
]2)

, (2.3)

Lm =
1

2

m2
π

~2
F 2
π Tr(U − 2). (2.4)

3



2. Skyrmion Black Holes

Here Fπ can be interpreted as the pion decay constant, e is a parameter indicative of the
magnitude of solitons of the system, mπ is the pion mass and U ∈ SU(2).

The L2 term is a non-linear sigma model kinetic term and forms the basis of the model.
However, such a term leads to an energy

E =
F 2
π

4

∫
d3x Tr(∂iU∂

iU †) (2.5)

for a static configuration. A simple rescaling (e.g. [6, 7]) can however reveal that such
configurations are not energetically stable according to Derrick’s theorem [8]. Physically,
this tests whether the solutions are stable under a uniform stretch. Specifically, let us
rescale the space coordinate as

U(x)→ U(λx) (2.6)

and at the same time take the dimension of space to be arbitrary and equal to D. Then,
the energy of the static configuration reads

E(λ) =
F 2
π

4

∫
dDx Tr

(
∂iU(λx)∂iU †(λx)

)
=
F 2
π

4

∫
dD(λx)λ2−D Tr

(
ηij∂λi U(λx)∂λj U

†(λx)
)

(2.7)

= λ2−DE,

where ∂λi = ∂/∂(λxi).
In our case, namely D = 3, it is evident that

E(λ) =
1

λ
E, (2.8)

which shows that as we increase the space scale, the energy of the static configuration
decreases. We can thus draw the conclusion that in the D = 3 case the configuration
U(x) is not stable.

The introduction of the L4 term solves the problem and allows for solitonic configu-
rations, which from now on will be referred to as Skyrmions. Specifically, the new static
energy reads

ESkyr = ESkyr,L2 + ESkyr,L4

= −
∫
d3x Tr

(
F 2
π

4
LiL

i +
1

32e2
[Li, Lj]

2

)
= −

∫
d3x Tr

(
F 2
π

4
LiL

i +
1

16e2
(εijkLiLj)

2

)
=
F 2
π

4

∫
d3x Tr

(
LiL

†
i +

1

4e2F 2
π

(εijkLiLj)(εijkL
†
iL
†
j)

)
≥ F 2

π

4

∫
d3x

∣∣∣∣Tr

(
1

eFπ
εijkLiLjLk

)∣∣∣∣
≥ 0,

(2.9)

4



2. Skyrmion Black Holes

proving that the static energy is positive and bounded from below. Here we introduced the
notation Lµ = U †∂µU , while at the penultimate line we made use of the Cauchy-Schwartz
inequality.

Let us now apply the same space rescaling as before in order to verify that in D = 3
the soliton is stable. By following the exact same steps we get

ESkyr(λ) = λ2−DESkyr,L2 + λ4−DESkyr,L4 . (2.10)

We wish to check stability against space rescaling so we are after the extrema. It is
straightforward to obtain

dESkyr(λ)

dλ

∣∣∣∣
λ=1,D=3

= −ESkyr,L2 + ESkyr,L4 , (2.11)

d2ESkyr(λ)

dλ2

∣∣∣∣
λ=1,D=3

= 2ESkyr,L2 . (2.12)

At the extremum we thus get ESkyr,L2 = ESkyr,L4 = ESkyr/2 ≥ 0. Taking this result into
account we obtain

d2ESkyr(λ)

dλ2

∣∣∣∣
λ=1,D=3

≥ 0, (2.13)

which shows that the extremum is a minimum, consequently proving that the static
configuration is indeed stable against space scaling.

The addition of the L4 term does stabilize the static energy as promised. One can now
find stable solutions to the equations of motion of our non-linear model. It is precisely
those stabilized solutions which are referred to as Skyrme solitons or skyrmions.

Furthermore, let us note that the Lagrangian is chiral before the introduction of the
Lm term. This is easy to check as both terms are invariant under chiral transformation,
since U transforms as

U(x)→ gLU(x)g†R, (2.14)

where gL ∈ SU(N)L and gR ∈ SU(N)R respectively.
In order to account for the small, yet non-vanishing, mass of the pion field, one has to

add an explicit chiral breaking term in the form of Lπ.
Finally, we should add that the values of the parameters Fπ, e,mπ of the model can be

fixed through experiment. To be precise, one of the parameters should be fixed by hand,
while the other two are then fixed by fitting to the experimental data. Such a work can
be found in [9]1.

2.1.2 Topological properties

Let us now take a step back and have a better look at the formulation of our model and
the consequences of topological nature that it bears. At any fixed time, the unitary matrix
U defines a map from R3 to the manifold SU(2) ∼= S3. Furthermore, the requirement for
the energy to be finite leads to the boundary condition

U †∂iU → 0 as |x| → ∞, (2.15)
1Note that one should first look at the action as the parameters may differ by some multiplicative

factor in different works.
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2. Skyrmion Black Holes

which means that U approaches some constant matrix at infinity. Without loss of gener-
ality, this matrix can be taken to be the identity matrix

U(|x| → ∞) = I. (2.16)

An immediate consequence of this is that the 3-dimensional space is compactified into the
3-sphere S3. As a result, we have the nontrivial set of maps

U(x) : S3 → S3, (2.17)

which are topologically classified by the third homotopy group π3(S3) = Z. At the same
time, allowing for a change in the time coordinate can be seen as a homotopy and thus it
cannot move the field configuration between homotopically distinct classes. As a result,
the field configurations are classified by the integer number of times that S3 is covered by
U(x), also called the winding number.

The winding number B can be obtained as the integral over the topological charge,
namely

B =

∫
d3x J0, (2.18)

where the corresponding topological current is given by

Jµ = −εµναβ
24π2

Tr(U−1∂νUU−1∂αUU−1∂βU). (2.19)

Note that with respect to B, the lower bound to the static energy as computed for
L = L2 + L4 can be expressed as

ESkyr ≥ 6π2Fπ
e
|B|, (2.20)

which is the Bogomol’nyi bound. The inequality is saturated for a self-dual field, namely

Li =
1

2eFπ
εijkLjLk. (2.21)

It can be shown that the soliton solutions do not attain the lower bound of the energy2,
consequently they are not BPS states.

As the Skyrme model is non-linear, it also leads to highly non-linear equations of
motion. In order to solve them, Skyrme proposed the use of a hedgehog ansatz

U = eiF (r)nασα = cosF (r) I + inασα sinF (r), (2.22)

where nα is the unit vector along the radial direction and σα the Pauli matrices.
Boundary conditions should also be obtained for F (r). They can be found through

the following considerations:

• The origin of the 3-dimensional space must be mapped to a single point in S3. Thus,
one has to require that F (0) = B0π.

2One way to see this is that the self-dual soliton does not satisfy the Maurer-Cartan equations.
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2. Skyrmion Black Holes

• The total energy of the system should be finite. We have seen that this is equivalent
to requiring U(x) to approach a real constant matrix as |x| → ∞. As a result, we
should impose F (∞) = B∞π, where B∞ ∈ Z.

Since the classification is based on the winding number B, only the difference B0−B∞
matters, as a result one is free to set

F (0) = Bπ, F (∞) = 0. (2.23)

Of course, the choice of B is directly related to the symmetry of the skyrmion. This
symmetry is present in the gravitating model as well.

2.2 Coupling to Einstein gravity

In this work we are interested in solutions of the Skyrme model in the presence of grav-
ity. The Einstein-Skyrme model, along with a number of other models such as e.g. the
Einstein-Yang-Mills and the Einstein-Yang-Mills-Higgs models, allows for two types of
solutions. The first one is particle-like solutions [10, 11, 12, 13, 14, 15, 16] and the latter
black holes (BHs) [17, 18, 19, 20, 21, 22, 23]. Both solutions are of high importance and
interest.

In the case of particle-like solutions their existence came as a surprise when first discov-
ered in the case of the Einstein-Yang-Mills model, since neither the Einstein equations nor
the Yang-Mills equations have non-trivial static globally regular solutions. As it seems,
the attractive nature of gravity and the repulsive nature of the Yang-Mills field are such
that they can cancel each other out. Subsequently, the gravitating solitons emerging as
solutions to these models, have drawn attention on to them. Their existence, classifica-
tion and relation to the flat spacetime solitons of the corresponding models were the first
questions to be asked about them.

On the other hand, we have BH solutions. What’s most important about those solu-
tions is that they are hairy, namely they contradict the no-hair conjecture formulated for
BHs. This is rather interesting for quite a few reasons. First of all, questions arise from
the existence of hair, as to what kind of information we can obtain about the matter that
the BH has swallowed. Also, the spacetime is altered by the presence of hair. It would
be rather interesting to find out what kind of observational traces this leaves, especially
now that we have scratched the surface of the field of direct BH observation [24]. Many
more questions can be asked, but we will mainly worry ourselves about the second one.

2.2.1 No-hair Theorems

The no-hair theorem is actually a conjecture on which parameters of the black hole can be
measured by an observer lying on the exterior of a black hole. The initial belief was that
all black holes can be characterized by their mass, electric charge and angular momentum.
Namely, that those are the only measurable parameters by an external observer, while
all other information about matter which lies inside the horizon of the black hole is lost.
Currently, this result has been reduced to stationary black hole solutions of the Einstein-
Maxwell theory and some types of non-Maxwellian matter. A historical review of how
the initial conjecture was proposed, how it evolved and the extent to which it is proven
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2. Skyrmion Black Holes

can be found in [25] by W. Israel or in many other works such as [26, 27, 28]. The first
use of the term “hair” can be found in [29].

Let us give a brief exposition of the building blocks of the theorem in the Einstein-
Maxwell case. At the very heart of the theorem lies the uniqueness theorem (see e.g.
[30]) for the asymptotically flat, stationary black hole solutions of the Einstein-Maxwell
equations. Essentially, this is a classification of the solutions into families. Then, by
looking at the parameters characterizing those families, one can conclude the no-hair
theorem. The uniqueness theorem is a mix of the following results:

1. S. Hawking showed in [31, 32] that a stationary black hole must have a horizon which
admits spherical topology. Furthermore, such a black hole can either be static or
axisymmetric.

2. In the case of static black holes W. Israel [33, 34] established that any static black
hole with event horizon of spherical topology can be uniquely characterized by its
mass and electric charge. Furthermore, he identified these static vacuum and elec-
trovac3 black holes with the Schwarzschild and the Reissner-Nordstrom solutions
respectively. 4

3. The result for stationary and axisymmetric black holes is based on the Ernst formu-
lation of the Einstein(-Maxwell) equations [36]. Based on this formulation, Carter
[37, 38] showed that all uncharged, stationary and axisymmetric black holes with
event horizon of spherical topology fall into disjoint families, which are not de-
formable to each other. Those are characterized by their mass and angular momen-
tum, the Kerr family being the prime example. In the case of vacuum solutions it
was Robinson [39] that proved that solutions with the same boundary and regular-
ity conditions are identical, thus restricting all possible solutions to the Kerr family.
The extension of the above to the electrovac case was carried out at some later point
independently by Mazur [40, 41] and Bunting [42].

Combining all the above we get that the most general stationary solution that one can
obtain in the context of the Einstein or Einstein-Maxwell theory is the Kerr-Newman
solution, characterized by its mass M, electric charge Q and angular momentum S. The
obvious sub-families of this solution are the Schwarzschild solution (Q = 0, S = 0), the
Kerr solution (Q = 0, S 6= 0) and the Reissner-Nordstrom solution (Q 6= 0, S = 0).

Furthermore, let us note that the following point of view can also be adopted. Let
us refer to conserved charges associated with a massless gauge field as global charges.
One then notices that mass, angular momentum and electric/magnetic charges are such
global charges. Thus, one could state that electrovac solutions are described by global
charges. This statement cannot be generalised to all theories5. However, it stresses out
the connection of the observable quantities to Gauss law.

We should also note that other cases, involving non-Maxwellian matter, in which the
no-hair theorem can be extended have been studied [43, 44, 45, 46, 47, 48].

3The term refers to vacuum solutions of the Einstein-Maxwell theory.
4Note that another proof has been found by Bunting and Masood-ul-Alam [35].
5The Einstein-Yang-Mills theory is a counterexample.
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2. Skyrmion Black Holes

Again, let us remind the reader that the no-hair theorem is a theorem under certain
assumptions only, e.g. in the context of Einstein-Maxwell theory. It is the conjecture that
the theorem can be generalized to all cases that the Skyrmion black holes invalidate.

2.2.2 Einstein-Skyrme model

The Einstein-Skyrme model is defined by the action

S =

∫
d4x
√
−g
(
− 1

16πG
R + LS

)
, (2.24)

where R is the Ricci scalar and g the determinant of the metric tensor gµν .
Varying the action (2.24) with respect to the metric tensor gµν , one gets the Einstein

field equations

Gµν ≡ Rµν −
1

2
gµνR = 8πGT Sµν , (2.25)

where Gµν the Einstein tensor, Rµν , R the Ricci tensor and scalar respectively and the
energy momentum tensor T Sµν is present because of the Skyrme Lagrangian and can be
computed as

T Sµν =
2√
−g

δ(
√
−gLS)

δgµν
. (2.26)

This is precisely the way the Skyrme Lagrangian is coupled to gravity.
In order to obtain the differential equations describing the system, we have to use

an ansatz for the metric. In our case, we are interested in static, spherically symmetric
solutions, thus we use

ds2 = N2(r)

(
1− 2GM(r)

r

)
dt2 −

(
1− 2GM(r)

r

)−1
dr2 − r2dΩ2, (2.27)

where dΩ2 = dθ2 + sin2 dθdφ2 the standard metric on the 2-sphere.
At the same time, we need an ansatz for the Skyrme field. The hedgehog ansatz

described in Eq. (2.22) shall serve as such.
One can now make the following observation. The system contains three unknown

functions, namely N(r),M(r) and F (r). Solving for them would enable us to describe
the solutions up to the full extent. For this purpose, we wish to find the differential
equations involving them. Those shall be the temporal and radial field equations and the
equation of motion of the Skyrme field.

The Skyrme Lagrangian contains two parameters, Fπ and e whose dimensionality is

[Fπ] =

√
[Mass]
[Length]

, (2.28)

[e] =
1√

[Mass][Length]
, (2.29)

in the c = 1, kB = 1 system of units.
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2. Skyrmion Black Holes

They can be used to define better suited variables for our case. From now on, radial
dependence will be expressed in terms of x = eFπr and the mass function will be m(x) =
eFπGM(r). Furthermore, we introduce the notation

h(x) = 1− 2m(x)

x
, (2.30)

in order for the differential equations to have a simple form. Additionally, this function
will be crucial in the classification of the solutions as gravitating skyrmions or skyrmion
BHs.

In the same spirit, we introduce two dimensionless parameters

α = 4πGF 2
π , (2.31)

β =
mπ

e~Fπ
, (2.32)

which will prove useful in characterizing the solutions. Specifically, they will be used to
label the solutions, as, alongside the event horizon radius, they uniquely characterize all
BH solutions. Note that α is the coupling constant between the two models, while β is
proportional to the pion mass. Thus they are both indicative of the magnitude of the
mass that can be attributed to (self-)interactions and the pion itself.

Keeping this notation in mind and plugging the ansatzes for the metric and the
skyrmion field into the Skyrme Lagrangian, its terms obtain the following form

L2 = −
e2F 4

π

(
2 sin2 F (x) + x(x− 2m(x))(∂xF (x))2

)
2x2

, (2.33)

L4 = −
e2F 4

π sin2 F (x)
(
sin2 F (x) + 2x(x− 2m(x))(∂xF (x))2

)
2x4

, (2.34)

Lm =
1

2
β2e2F 4

π (2 cosF (x)− 2) . (2.35)

By varying the action (2.24) with respect to F (r) we obtain the equation of motion
for the Skyrme field F (x), which reads

∂x
(
(x2 + sin2 F (x))N(x)h(x)∂xF (x)

)
= N(x)

{
sin 2F (x)

(
1 + h(x)(∂xF (x))2 +

sin2 F (x)

x2

)
+ β2x2 sinF (x)

}
.

(2.36)

At the same time, the temporal and radial component of the field equations (2.25)
read

∂xm(x) = α

{
x2

2
h(x)(∂xF (x))2 + sin2 F (x)

+ sin2 F (x)

(
h(x)(∂xF (x))2 +

sin2 F (x)

2x2

)
− 1

2
β2x2(2 cosF (x)− 2)

}
,

(2.37)

∂xN(x) = α

(
x+

2

x
sin2 F (x)

)
N(x)(∂xF (x))2, (2.38)
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respectively.
The boundary conditions used for solving these differential equations are

N(∞) = 1, (2.39a)
F (∞) = 0, (2.39b)

where the first one follows from the demand that the spacetime is asymptotically Minkowksi,
while the second one we discussed when presenting the Skyrme model. In order for the
system to be solved two more boundary conditions are required. More details on the
matter will be given in the following subsection.

2.2.3 Numerical approach

The problem of finding solutions to the Einstein-Skyrme model, as discussed in the previ-
ous subsection is numerical. Skyrmion black hole solutions, alongside their stability and
the parameter space of the solutions were discussed in [7, 10, 17, 18, 49]. In these cases,
no mass term for the skyrmion was present. Furthermore, most of them employ a slightly
different notation, which makes direct comparison of the equations somehow difficult. In
[50] they accounted for the mass term as well. We adopt their notation.

We are interested in spherically symmetric and static BHs. The symmetry of the BH
is directly related to the symmetry of the corresponding flat skyrmion. Namely, since
we are looking for spherically symmetric BHs, the underlying flat space skyrmion should
also be spherically symmetric. Such a condition is related to the winding number B.
Specifically, we are interested in B = 1 skyrmion BHs for the aforementioned reason.

In order to obtain solutions, differential equations (2.36)-(2.38) should be numerically
integrated, using (2.39) as boundary conditions. However, we are dealing with two com-
plications now. First of all, we are missing two boundary conditions in order to solve the
aforementioned system of differential equations. Secondly, our system is not in the form
of an initial value problem, but rather in the form of a boundary value problem. The
solution to both problems comes by employing the shooting method. In order however for
the shooting method to be applied we need information on the derivative of the function
in order to avoid guessing.

To obtain the required information about the derivative, one can expand the fields
F (x),m(x) and N(x) around the event horizon xh up to first order. Taking into account
that the mass at the horizon should be that of a Schwarzschild BH we obtain

F (x) = Fh + F1 (x− xh) +O((x− xh)2), (2.40)

m(x) =
xh
2

+m1 (x− xh) +O((x− xh)2), (2.41)

N(x) = Nh +N1 (x− xh) +O((x− xh)2), (2.42)

where Fh = F (xh), Nh = N(xh) and F1,m1, N1 are parameters to be computed.
Plugging the expansion back into the system of differential equations (2.36)-(2.38), we
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obtain the following values for the parameters under investigation

F1 =
sin 2Fh (x2h + sin2 Fh) + β2x4h sinFh

xh(x2h + 2 sin2 Fh)(1− 2m1)
, (2.43)

m1 = α

(
sin2 Fh +

sin4 Fh
2x2h

− β2x2h(cosFh − 1)

)
, (2.44)

N1 = α

(
xh +

2 sin2 Fh
xh

)
NhF

2
1 . (2.45)

The expansions depend on Fh, xh andNh. Out of them, Fh andNh are used as shooting
parameters, determined so as to satisfy the boundary conditions (2.39). Of course, for
different values of xh, different values for Fh and Nh have to be picked.6

If we were after particle-like solutions, we would have expanded around x = 0. In
that case, different kind of information would be available. For example, we know that
F (0) = Bπ. In the case of B = 1, which is the one under investigation here, we get
F (0) = π. This indicates that we should expect to find 0 < Fh < π in our case. Actually,
it turns out that solutions can be found when π/2 < Fh < π [10].

An argument about the topological classification of our solutions is also in place here.
We have seen that the flat spacetime skyrmions are subjected to a topological classification
due to the fact that π3(S3) = Z. The same classification can be applied in the case of
gravitating skyrmions as well. However, when dealing with BHs the picture is different.
In the BH case, we do not have a mapping from R3 to the manifold S3 any more, as the
ball Bxh(0) is removed from R3. The condition F (∞) = 0 still holds though, so we have
a mapping

U(x) : S3 \Bxh(0)→ S3. (2.46)

However, the first space is now contractible and thus the aforementioned mapping is
topologically trivial. If one attempted to glue the hole in S3 by imposing some physically
relevant condition, he would soon find out that then F (x) = 0 ∀x, which strips the BH
of its hair and simply leads back to the Schwarzschild solution. Therefore all BH solutions
of the Einstein-Skyrme model are topologically trivial.

2.2.4 Solution space

As we have stated already, the Einstein-Skyrme model admits two types of solutions,
gravitating skyrmions and skyrmion BHs. They are distinguished by the existence of a
regular event horizon. This translates to the existence of a value xh such that

h(xh) = 0, h(x) > 0 ∀x > xh. (2.47)
6 As a different approach, one could also note that the boundary conditions are to be implemented at

infinity. As a numerical workaround, we could set up a new radial variable s as

s =
x− xh
x+ xh

.

Then, s = 0 at x = xh and s = 1 when x→∞. With respect to this new variable, boundary conditions at
infinity can be implemented. Of course integration would be performed backwards all the way to s = 0,
where the horizon lies. It would be interesting to check whether the problem is simplified in this way. Of
course, our differential equations should be reformulated in the language of the new variable.
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Obviously, the existence of such a horizon indicates that the solution is a BH, while its
absence leads to the conclusion that we are dealing with a skyrmion.

First of all, let us provide a physical picture of the skyrmion BH solutions. As stated,
such solutions are identified by the existence of a regular event horizon. What is crucial in
this case is that the horizon is smaller that the characteristic length scale of the skyrmion
L. Namely, the BH lies inside of the skyrmion, but has not managed to swallow it, as the
skyrmion is larger. The part of the skyrmion which has not been swallowed constitutes
the hair in the sense that it alters the spacetime surrounding the black hole with respect
to the corresponding Schwarzschild BH of the same ADM mass.

Figure 2.1: Fh vs xh diagram for α = 0, 0.05, 0.1 and β = 0. Solid lines are used for the
upper stable branch, while dotted lines for the lower unstable branch. It is evident that
for given (α, β, xh) one can find two different solutions. At the same time, there exists a
maximum value of xh, different for each combination of (α, β), beyond which there are no
solutions. The figure is adopted from [7].

Both solution families, gravitating skyrmions and skyrmion BHs, are characterized by
the value of the horizon xh and the two parameters α and β introduced in (2.31),(2.32). In
other words, after choosing the values of those three parameters 7, one can find solutions
only for certain values of Fh and Nh. In the case of gravitating skyrmions, a unique
solution can be found. On the contrary, there is a degeneracy in the case of skyrmion
BHs as one can find two different solutions for the same combination of (α, β, xh). The
two solutions differ in the value of Fh. Consequently, one obtains two separate branches
of solutions in a diagram Fh vs xh as seen in Figure 2.1.

There are some major physical differences between these two branches. First of all, one

7Those three parameters cannot be picked arbitrarily, as solutions exist only for a certain range of
their values as described in the following paragraphs.
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α=0.000,xh=0.1300
α=0.005,xh=0.0770
α=0.007,xh=0.0547

1 2 3 4 5 6 7
x0.02

0.03

0.04

0.05

0.06

m(x)

Figure 2.2: m(x) vs x diagram for β = 0 and α, xh as they appear in the legend. All three
models havemADM = 0.065, thus proving that mass does not single-handedly characterize
a static and spherically symmetric Skyrmion black hole solution.

should examine what happens at the limits xh → 0 and α→ 0. One can see that all BH
solutions converge to globally regular solutions for a 6= 0 as xh → 0. On the other hand,
as α → 08 solutions of the upper branch go continuously to the Schwarzschild solutions
with chiral hair as seen in Figures 2.2 and 2.3, while solutions of the lower branch converge
to the n = 1 colored black hole solution [21].

α=0.000,xh=0.1300
α=0.005,xh=0.0770
α=0.007,xh=0.0547

1 2 3 4 5 6 7
x0.0

0.5

1.0

1.5

2.0

2.5

3.0
F(x)

Figure 2.3: F (x) vs x diagram for β = 0 and α, xh as they appear in the legend.

At the same time, the issue of stability arises [7, 10, 49]. In order to examine stability
at the linear level, one has to consider the time-dependent Skyrme action. Then, the
time-dependent versions of Eq. (2.36)-(2.38) have to be produced. Small radial fluctu-
ations around the static classical solutions are considered for both branches. One then

8This can be interpreted as the decoupling limit G → 0 or, due to the other interpretation of α in
(2.50), as the limit NC → 0.

14



2. Skyrmion Black Holes

looks for negative modes in the spectrum. No negative modes are present for the upper
branch solution, thus making them stable against spherically symmetric time-dependent
perturbations. At the same time, the same does not hold for the lower branch solutions
where a negative mode is present in the spectrum rendering them unstable against such
perturbations. All solutions that will be reproduced and investigated in the context of
this work belong to the upper branch, thus represent plausible physical configurations.

β=0.1,xh=0.076
β=0.3,xh=0.075
β=0.5,xh=0.074

1 2 3 4 5 6 7
x0.035

0.040

0.045

0.050

0.055

0.060

0.065

m(x)

Figure 2.4: m(x) vs x diagram for α = 0.005 and β, xh as they appear in the legend.
All three models have mADM = 0.065, aligning with the fact that mass does not single-
handedly characterize a static and spherically symmetric Skyrmion black hole solution
and showing that β induces more freedom in finding solutions.

We have stated that for a given combination of (α, β, xh) one can find two black hole
solutions. However, there exist solutions only for a specific range of those parameters. Let
us elaborate a bit on those ranges and interpret them inside a more physical framework
along the lines of [50].

β=0.1,xh=0.076
β=0.3,xh=0.075
β=0.5,xh=0.074

1 2 3 4 5 6 7
x0.0

0.5

1.0

1.5

2.0

2.5

3.0
F(x)

Figure 2.5: F (x) vs x diagram for α = 0.005 and β, xh as they appear in the legend.
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We have three different length scales involved in the system. Those are the character-
istic length scale of the skyrmion L, the gravitational radius of the skyrmion Lg ∼ 2GMS

and the Compton wavelength of a single skyrmion LC . If one takes a better look at the
definition of α and β it becomes evident that they are related to the aforementioned length
scales as

α ∼ Lg
L
, (2.48)

β =
L

LC
. (2.49)

At the same time
α ∼ NC (2.50)

as evidenced by Witten [51], where NC is the number of colors. Note that neither L, nor
LC scale with NC , so β is independent of NC . Thus, for starters, we fix the value of β and
investigate the parameter space of solutions. The following become more evident through
Figures 2.1 - 2.3.

When investigating the solution space, one finds out that there exists a maximal value
αmax of the coupling constant, for which non-trivial solutions exists. Namely 0 ≤ α ≤
αmax. This value is αmax = 0.126. The existence of such a maximal value translates to a
maximal limit to both the value of Lg/L, as well as NC . Physically, that means that L
cannot become less than Lg, namely the skyrmion is not a black hole itself. At the same
time, the number of colors of the theory has also be constrained from above in order to
have non-trivial solutions.

Moreover, for each α ∈ [0, αmax] there exists a maximal value for the event horizon
xmax,α,βh . In particular, as α→ αmax, it follows that xmax,α,βh → 0. The existence of xmax,α,βh

is the supporting evidence for the picture that we have provided, of the BH residing inside
of the skyrmion. Roughly, this value follows the constraint xmax,α,βh + Lg ∼ L. In other
words, the sum of the maximal value of the horizon for each α and the gravitational radius
of the skyrmion, cannot become greater than the size of the skyrmion itself.

1 2 3 4 5 6 7
x0.035

0.040

0.045

0.050

0.055

0.060

0.065

m(x)

α=0.000
α=0.003
α=0.005

Figure 2.6: m(x) vs x diagram for β = 0, xh = 0.07445 and α as they appear in the
legend. This highlights that as we increase the coupling constant α, more massive models
emerge, as more energy is stored in (self-)interactions.
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Taking β into account, we find that the main difference introduced is that F (x) scales
differently for large x, depending on β. Specifically, for large values of x, F (x) ∼ 1/x2 for
β = 0, while F (x) ∼ e−mπx/x for β 6= 0. This is precisely the same scaling behaviour as
in the flat-space case [52]. In Figures 2.4 - 2.5 one can see the effect of the β parameter
on the mass and the hair profile function. One can observe that the values of the mass
of those models at the horizon are in a decreasing order as β increases, since they are
proportional to the horizon radius. However, contrary to the β = fixed case, from some
point onwards this order is reversed. This can be explained if one thinks of β as the mass
of the hair. Models with larger β have more massive hair and so mass accumulates faster.
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Chapter 3

Photon orbits

Up to this point we have discussed Skyrmion black holes and focused on the static spher-
ically symmetric case. We have seen that the presence of hair changes the spacetime
with respect to the static and spherically symmetric black hole solution of pure Einstein’s
theory, the Schwarzschild solution. In this chapter, we would like to start exploiting
those differences and investigate whether they bear observational manifestations. As per
most studies on black holes, we will start by studying null-geodesics and observational
phenomena derived from them. We track down the differences and draw a connection
between them and our current observational means, thus enabling us to comment on the
probability of such an observation.

3.1 General characteristics

Before we start discussing geodesics, let us first have a look at how the spacetime is
affected from the presence of hair. We would like to find out the extent to which it is
affected, which in turn will motivate the study of geodesics.

In Section 2.2.4, we have presented Figures 2.2 - 2.5. Those were showing models
characterized by different values for the set of parameters (α, β, xh), with the common
characteristic that the ADM mass of those models was the same. When comparing differ-
ent black hole solutions, we should keep in mind that them having the same ADM mass is
crucial in the sense that a distant object will get to experience the total gravitational force
of all the mass lying inside the sphere centered at the black hole and extending all the way
to object. Consequently, configurations with unequal ADM mass will be straightforward
to distinguish by their effect on distant objects.

When looking at a Schwarzschild black hole, its mass is constant and specifically it
holds that xh = 2mADM . However, as it is evidenced by Figures 2.2 and 2.4, in the case of
hairy BH models mass varies with x as it goes from the value xhairyh /2 at the horizon all the
way to mADM asymptotically. Those models have mass stored in the hair themselves and
the interactions. As a result, in the case of hairy BHs it holds that xh < 2mADM . On can
automatically make the following two observations. First of all, different event horizon
radii lead to different deflection angles and black hole shadow. Secondly, depending on
the model, the masses reach their asymptotic value at a distance which typically is of
the order x ∼ (10 − 100) xh. This calls for more investigation on how the spacetime
is affected, as these distances suggest that phenomena such as Einstein rings, which are
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3. Photon orbits

widely used in observations, could lead to wrong conclusions when interpreted under the
wrong assumptions as to the nature of the black hole.

α=0.000,xh=0.1300
α=0.005,xh=0.0770
α=0.007,xh=0.0547

1 2 3 4 5 6 7
x0.0

0.2

0.4

0.6

0.8

1.0
N 2 (x) h(x)

Figure 3.1: gt̃t̃ vs x diagram for β = 0 and α, xh as they appear in the legend. All three
models have mADM = 0.065. The deviations from the Schwarzschild solution are evident.

By looking at the ansatz (2.27) for the metric, which in our current notation reads1

ds̃2 = N2(x)h(x)dt̃2 − h(x)−1dx2 − x2dΩ2, (3.1)

we see that the origin of the dissimilarities between the Schwarzschild and the skyrmion
black hole spacetimes is the presence of the N2(x) term, which is in the Schwarzschild
case is equal to 1, and the radial dependence of the mass function m(x), present in both
the gtt and the grr term. Having seen how the mass function m(x) behaves, we now focus
on N2(x) and the metric functions gtt, grr.

α=0.000,xh=0.1300
α=0.005,xh=0.0770
α=0.007,xh=0.0547

1 2 3 4 5 6 7
x1.0

1.2

1.4

1.6

1.8

2.0
h-1(x)

Figure 3.2: gxx vs x diagram for β = 0 and α, xh as they appear in the legend.

1Note that s̃, t̃ are the dimensionless versions of s, t. Specifically, s̃ = eFπs and t̃ = eFπt.

20



3. Photon orbits

The metric functions are drawn in Figures 3.1 and 3.2 for the same models as those
shown in Figures 2.2 and 2.3. It is evident that the spacetime indeed changes by the
presence of hair. The value of gtt tends to be larger for hairy black holes, until it reaches
its asymptotic value of 1. The opposite holds for grr. Note that this automatically means
that all the interesting phenomena taking place around the black hole are going to be
altered to some extent. For example, geodesics, as well as time dilation are going to be
quantitatively different.

Note that in the models under investigation here the spacetimes differ significantly up
to x ∼ (10− 20) xh. Also, keep in mind that those models are far from extremal, in the
sense that they are not characterized by large values for α and β. Finally, it has been
examined and proven [53, 54] that the hair are not short, namely their presence and effect
extends at least up to some distance outside the horizon. These facts indicate that the
study of Einstein rings is rather prominent.

3.2 Geodesics

At this point we discuss geodesics. We start by producing the differential equations for
our spacetime. A small recap of the main results in the Schwarzschild case is presented.
Then, we move on to apply our results and compute deflection angles and photon sphere
radii in order to investigate how they are altered and how much they are affected by the
presence of hair. A more extensive exposition of the formulation of the problem can be
found in [55].

3.2.1 Formulation

Particles in a generic spacetime move along geodesics. Geodesics from a physical point
of view is a way of describing the shortest path between 2 points. As such, they can be
found by minimizing the length

S =

∫
ds =

∫
dλ

ds

dλ
=

∫
dλ

√
gµν

dxµ

dλ

dxν

dλ
, (3.2)

where we have assumed the existence of a metric tensor gµν and λ is an affine parameter.
By extremizing the aforementioned expression we obtain the geodesic equation2

d2xα

dλ2
+ Γαµν

dxµ

dλ

dxν

dλ
= 0, (3.3)

Γαµν being the Christoffel symbols of the given metric.
One can thus compute the Christoffel symbols and obtain the geodesic equations.

However, there is a more illustrative way to compute the geodesic equation in the case

2Note that the caveat of this method is that the quantity appearing in the Euler-Lagrange equations
is a square root. The problem thus cannot be defined when investigating null-geodesics, since at some
point we will be dividing by 0. This can either be treated by getting rid of the square root by introducing
an einbein field e, or by looking at the problem from a different perspective and define geodesics as the
curves along which parallel transport preserves the tangent vector. Both ways turn out to be equivalent.

21
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of a static and spherically symmetric spacetime, as the one under investigation. Such a
spacetime admits 2 Killing vectors, which in our coordinate system can be written out as

tα = (1, 0, 0, 0), (3.4)
φα = (0, 0, 0, 1). (3.5)

As a result, there are 2 related conserved quantities

tαuα = e, (3.6)
φαuα = −l, (3.7)

which can be identified with the energy per unit mass and the angular momentum per
unit mass if one takes r →∞.

We can now start from the constant of motion uαuα = κ, where

κ =

{
1 , timelike geodesics
0 , null geodesics . (3.8)

We write everything down in terms of our initial units and in the end we will convert
our expressions to the dimensionless units introduced. Since our spacetime is spherically
symmetric and the angular momentum of our probe particle is conserved, we can choose
a θ−level, which we take to be θ = π/2, namely the equator. The canonization then reads

κ = uαuα

= gµνu
µuν

= gtt

(
e

gtt

)2

+ grr

(
dr

dλ

)2

+ gφφ

(
l

gφφ

)2

=
e2

N2(r)H(r)
− 1

H(r)

(
dr

dλ

)2

− l2

r2
,

(3.9)

where λ can be taken to be the proper time τ in the case of massive particles and

H(r) = 1− 2GM(r)

r
. (3.10)

We have now obtained the geodesic equation, better written as(
dr

dλ

)2

=
e2

N2(r)
−H(r)

(
l2

r2
+ κ

)
. (3.11)

One can now integrate this differential equation. Furthermore, one could perform a
change of variables and write the corresponding differential equation relating coordinate
time t or φ to r. Let us first worry about the orbits and then discuss deflection angles.
Thus, we will differentiate once more with respect to λ in order to avoid taking the square
root on both sides and get a 2nd order differential equation instead. After taking into
account the definition of H(r) and simplifying our expression we get

d2r

dλ2
= − e2

N3(r)

dN(r)

dr
+ l2

(
2r − 6GM(r) + 2rGdM(r)

dr

)
2r4

+ κG

(
r dM(r)

dr
−M(r)

)
r2

. (3.12)
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Thus, in order to find the orbit of a test particle, we can solve the following system of
1st-order differential equations

dφ

dλ̃
=

l̃

x2
, (3.13a)

dx

dλ̃
= p, (3.13b)

dp

dλ̃
= − e2

N3(x)

dN(x)

dx
+ l̃2

(
x− 3m(x) + xdm(x)

dx

)
x4

+ κ

(
xdm(x)

dx
−m(x)

)
x2

, (3.13c)

where we have reverted back to our newly set dimensionless notation, with l̃ = eFπl and
λ̃ = eFπλ.

In order to solve the system of differential equations we have to provide the initial
position of our particle as initial conditions for (3.13a)(3.13b) and the component of its
initial velocity which lies along the radial direction as initial condition for (3.13c). By
specifying its angular momentum per unit mass l̃ and energy per unit mass e, we have
completely determined the motion of the particle.

Let us now focus our attention on deflection angles. That is extract a relation between
φ and x, indicating how the orbit changes as the particle moves through the spacetime.
Keeping in mind Eq. (3.7) in our dimensionless units it holds

(
dx

dφ

)2

=

(
dx

dλ̃

)2
(
dλ̃

dφ

)2

=

(
dx

dλ̃

)2(
x2

l̃

)2

. (3.14)

So, one has (
dx

dφ

)2

=

[
e2

N2(x)
− h(x)

(
l̃2

x2
+ κ

)](
x2

l̃

)2

, (3.15)

which in the case of photons becomes

φ(x2)− φ(x1) =

∫ x2

x1

dx

x
√
h(x)

√
x2

N2(x)h(x)

e2

l̃2
− 1

. (3.16)

The deflection angle of a particle being initially at a distance x1 and moving all the
way to some distance x2 is defined through

∆φ = φ(x2)− φ(x1)− π. (3.17)

This definition is such that in the case of a particle moving far away from the black
hole the deflection angle turns out to be 0, while for a particle which is scattered back at
the direction from which it originally came from it evaluates to π. This indeed is rather
reasonable, as in the first case the particle remains unaffected by the black hole, while in
the second case the direction of motion is inverted.
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3. Photon orbits

3.2.2 Schwarzschild recap: Null geodesics

We will be focusing on photon orbits, namely null geodesics at later parts of this work.
Thus, we present some general results for them in the case of a Schwarzschild black hole
carrying no hair. Essentially, we only wish to provide a rough picture of the possible
orbits. A more extensive review can be found in [56].

In the case of the Schwarzschild black hole Eq. (3.11) becomes(
dr

dλ

)2

= e2 −H(r)

(
l2

r2
+ κ

)
, (3.18)

where we have set N2(r) = 1. This equation can be rearranged as

Ẽ =
1

2

(
dr

dλ

)2

+ Ṽ (r), (3.19)

where now we have defined the hypothetical energy and potential as

Ẽ =
e2 − κ

2
, (3.20)

Ṽ (r) =
1

2

(
l2

r2
− 2GM

r
κ− 2GMl2

r3

)
(3.21)

respectively. One can easily switch to our dimensionless units by taking at the same time
GM → m, r → x, l → l̃ and λ→ λ̃.

We can really profit from Eq. (3.19), as it reduces the problem of investigating orbits
to studying the motion of a particle carrying energy Ẽ in the one-dimensional central
potential Ṽ (r). Now, if we restrict ourselves to the case of photons, namely take κ = 0,
the following scenarios emerge:

1. Circular orbits: Following the formulation of the problem as the motion of a
particle in a central potential, we can track down circular orbits, if they exist, as
the extrema of the hypothetical potential Ṽ (r).

dṼ (r)

dr
= 0⇒ l2

2

(
− 2

r3
+

6GM

r4

)
= 0

⇒ r = 3GM

(3.22)

So, there indeed exists a circular orbit at r = 3GM , also called the photon sphere,
which is unstable since

d2Ṽ (r)

dr2
=

3l2

r5
(r − 4GM)⇒ d2Ṽ (r)

dr2

∣∣∣∣∣
r=3GM

< 0. (3.23)

2. Incoming/outcoming photons: Initially, let us define the impact parameter

b =

∣∣∣∣ le
∣∣∣∣ , (3.24)

24



3. Photon orbits
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Figure 3.3: The hypothetical potential for the (α, β, xh) = (0, 0, 0.13) case as the blue
line. At the maximum of the potential lies the circular orbit. The green dashed line
can correspond to either an incoming photon getting swallowed by the black hole, or an
outcoming photon which escapes. The orange dashed line is an incoming photon getting
scattered back at infinity. Finally, the red dashed line is an outcoming photon captured
by the black hole.

which from a geometric point of view is the distance of the photon from the x-axis
at infinity, in a coordinate system with the black hole at the origin and the x-axis
parallel to the orbit of the photon at infinity.

In the case of the circular orbit, which is at the maximum of the potential Ṽmax =
Ṽ (3GM), it is easy to see from Eq. (3.19) for r = 3GM that bc =

√
27M . This value

is important when identifying the possible scenarios for an incoming/outcoming
photons.

• Incoming: There are two possible fates for such photons. Either Ẽph < Ṽmax ⇔
b > bc in which case the photon is scattered back at infinity, or Ẽph > Ṽmax ⇔
b < bc which means that the photon will fall inside the black hole.

• Outcoming: Again there are two cases, which are opposite than before. When
Ẽph > Ṽmax ⇔ b < bc then r > 2GM and the photon escapes the black hole,
while when Ẽph < Ṽmax ⇔ b > bc we get r < 3GM and the photon again is
swallowed by the black hole.

3.2.3 Numerical results

As we have already seen, Skyrmion black holes have mass that is enclosed and can be
attributed to the black hole and then some more on the exterior of the black hole. Thus,
the main difference between a Skyrme black hole and a Schwarzschild black hole of the
same total mass is that this mass is distributed differently and they have different horizon
radii. One thus expects that photon orbits will be altered.

Qualitatively the orbits for the models under investigation should be the same. Namely,
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we expect to find a circular photon orbit, which however will not be exactly at x = 3xh/2
as in the Schwarzschild case. A proof for the existence of at least one such orbit can
be found in Appendix A. So, the differences that we expect are of quantitative nature.
This can indeed be seen in Figure 3.4, where orbits for the same impact parameters
are presented for a Schwarzschild black hole with chiral hair and a Skyrme black hole
configuration.
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(a) (α, β, xh) = (0, 0, 0.13)
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Black Hole horizon
b=0.3381
b=0.3403
b=0.3572
b=0.4677
b=0.9877

(b) (α, β, xh) = (0.005, 0, 0.077)

Figure 3.4: Photon orbits with the same impact parameters in the background of (a)
a Schwarzschild black hole with chiral hair and (b) a Skyrme black hole. Evidently,
the orbits differ. The parameters characterizing these black holes can be found in the
respective subcaptions.

A more concrete study of the orbits comes through the study of deflection angles. An
investigation of deflection angles for photons can be found in Figure 3.5. There deflection
angles for many different impact parameters and models are plotted against the inverse
of the closest approach of the photon in each case. The largest value of 1/xmin is different
for each model, since the models have different horizon radii. This results in different
radii at which the photon spheres lie as well. For each model, the largest value of 1/xmin,
to which they asymptotically tend, is the radius of its photon sphere. At the same time,
as we move towards smaller values of 1/xmin, we see that the values of ∆φ come closer to
each other and from some point onwards they coincide. As stated, all configurations have
the same ADM mass. Thus, a photon which moves at a large distance from the black
hole cannot resolve whether this mass can be solely attributed to a black hole without
hair or if hair are present as well. One can read from the diagram that for the models
under investigation this happens at 1/xmin ≈ 0.5 ⇒ xmin ≈ 2. Indeed, looking back
at Figures 3.1 - 3.2, where the metric functions for some of those models are presented,
one can see that this is the distance at which the metrics become identical. As a result,
the spacetimes from this point and outwards are identical and are thus expected to host
phenomena which admit the same behaviour.

The fact that ∆φ for all the models present in Figure 3.5 approach some value at large
1/xmin indicates the presence of a photon sphere for each one of those models. Instead of
looking for this asymptotic value through deflection, one can look into the zeros of

G(x) =
h(x)

N(x)

dN(x)

dx
+

1

2

dh(x)

dx
− h(x)

x
, (3.25)

26



3. Photon orbits

0 2 4 6 8 10 12
1/ xmin0

2

4

6

8
Δϕ

α=0.000,β=0.0,xh=0.130
α=0.005,β=0.0,xh=0.077
α=0.005,β=0.1,xh=0.076
α=0.005,β=0.3,xh=0.075
α=0.005,β=0.5,xh=0.074
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Figure 3.5: Deflection angle ∆φ(rad) vs closest approach 1/xmin diagram for many black
hole configurations of the same ADM mass. Different horizon radii and the fact that
all models have the same total mass determine the behaviour at large and small 1/xmin
respectively.

as argued in Appendix A. If this non-linear equation admits more than one zeros, then
we are interested in the smallest one.

In the case of the Schwarzschild black hole, we have found that the photon sphere
lies at a distance xphot = 3mBH = 3xh/2. The presence of hair is bound to alter this.
An interesting question to pose is by how much the photon sphere is moved. So, we are
looking into the radius xphot at which the photon sphere for each model lies and compare
it with

xphot,nh =
3xh
2
, (3.26)

which is where the photon sphere would be if it were not for the hair.
Table 3.1 presents the data aspiring to provide us with an answer. Photonspheres are

indeed altered and we find them a bit further than in the Schwarzschild case. We can
understand this as in the Schwarzschild case the mass inside the photon sphere is that of
the black hole. In the case of Skyrmion black holes we have some more mass coming from
the presence of the hair. So, the gravitational pull at the radius suggested by the study
of Schwarzschild black holes will be greater. Since photon spheres represent the distance
at which we find the last circular photon orbit, it should be moved a bit further, since the
additional gravitational pull will lead to any photon circling the black hole at a distance
xphot,nh to fall inside the black hole.

One cannot conclude directly whether this change is significant or not, since the quan-
tities presented here are dimensionless and they strongly depend on the parameters e, Fπ
of the model. Depending on the values of those parameters the distances and subsequently
the change in the photon sphere radius can be rather small or large in terms of real life
units. Thus, we investigate the relative difference defined as

δx

x
=
xphot − xphot,nh

xphot,nh
× 100%, (3.27)

which shows us the deviation from the corresponding result in the Schwarzschild case.
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The relative differences are really small for the models under investigation here. This
means that there is no substantial change in the radius of the photon sphere due to the
presence of the hair. We can however make the following observation. For the models
which have the same α, the change in the radii of their photon spheres becomes stronger
as β is increased. Recall that β is indicative of the mass of the skyrmion hair. One
could think of this result in the following way. The more mass that is enclosed between
xphot,nh and xh, the further away the photon sphere should lie. Thus, as part of a rather
pedestrian approach, one can look at m′(x) for x ∈ [xh, xphot] for an explanation. This
follows from the fact that the mass related to the presence of hair enclosed in the photon
sphere can be approximated as δm|xphotxh ≈ m′(x0)× (xphot−xh) ≈ m′(x0)×xh/2 for some
x0 ∈ [xh, xphot]. Indeed, for all the models present in Table 3.1, the derivative of the mass
aligns with the relative differences obtained here.

Table 3.1: Photonspheres for many models and their relative difference from xphot,nh.

Model (α, β, xh) xphot xphot,nh
xphot−xphot,nh

xphot,nh
× 100%

Maximum distance d
(in 109 mADM)

(0, 0, 0.13) 0.195 0.195 0 -

(0.005, 0, 0.077) 0.11558 0.1155 0.06755 4.2

(0.005, 0.1, 0.076) 0.11408 0.114 0.0702 4.28

(0.005, 0.3, 0.075) 0.11259 0.1125 0.08193 4.358

(0.005, 0.5, 0.074) 0.11111 0.111 0.10191 4.437

(0.007, 0, 0.05468) 0.08205 0.08202 0.04092 5.974

If we denote the mass related to the presence of the hair as mhair and look at the
limiting case we can state the following. If mhair << mBH then photon spheres remain
practically unaltered, while in any other case there is a change which becomes stronger
as mhair increases. However, at the same time models with large mhair could possibly be
characterized as not so realistic.

At the same time in Table 3.1 we also provide the maximum distance d at which one
could observe the difference in the photon sphere radii between each Skyrme black hole
and the Schwarzschild one. In order to compute this we have used the fact that the Event
Horizon Telescope has achieved angular resolutions better than 60 µarcsec, which is the
value which we used. The distances are expressed in units of 109 mADM and look rather
promising for the models under consideration.

In the case of a Schwarzschild black hole, associated to the photon sphere is an impact
parameter as we have seen in Section 3.2.2. This impact parameter is bc =

√
27mBH . In

Table 3.2 we present the corresponding impact parameters for all the models investigated
here. Since in the case of a Skyrmion black hole the black hole mass and the ADM mass
of the system do not coincide, we check how close those impact parameters are to the
Schwarzschild value, which we take both with respect to mBH and mADM . Obviously,
since mBH < mADM , the first ratio is expected to be greater.

We see, that the effect of the black hole mass is stronger on impact parameters than
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that of the hair, as the ratios we obtain are better normalized with mBH than mADM .
The presence of hair though does bear an effect on the impact parameter which is not
insignificant, as it is of the order of ∼ 7% using relative difference as a measure again.
This answers the question of what would happen if instead of taking the same impact
parameters for the photon orbits in Figure 3.4, we normalized them with respect to the
mass attributed solely to the black hole in case (b). The orbits would still be different,
though not as much as they are currently shown. Finally, note that the impact parameters,
as photon spheres, are increasing with respect to the Schwarzschild value, since they are
feeling the pull of the additional mass attributed to the presence of hair.

Table 3.2: Impact parameters corresponding to photon spheres and deviation from the
corresponding Schwarzschild result.

Model (α, β, xh) impact parameter b b√
27mBH

b√
27mADM

(0, 0, 0.13) 0.33775 1 1

(0.005, 0, 0.077) 0.21265 1.063 0.63

(0.005, 0.1, 0.076) 0.21001 1.064 0.626

(0.005, 0.3, 0.075) 0.2083 1.069 0.621

(0.005, 0.5, 0.074) 0.20706 1.077 0.616

(0.007, 0, 0.05468) 0.15414 1.085 0.456

We notice that impact parameters corresponding to orbits which asymptotically end
up on the photon sphere are altered more significantly than photon spheres themselves.
There is an explanation for that. Photon spheres capture the behaviour of the spacetime
really close to the back hole, but at the same time remain ignorant of what happens at
larger distances. However, a photon coming from infinity and passing close by the black
hole can resolve this. This of course bears consequences to its impact parameter, which
is strongly dependent on its energy and angular momentum.

The underlying reason for studying models with the same ADM mass is that this is
the mass seen by an observer lying in the asymptotic region. Black holes with different
ADM masses will influence distant objects differently, thus making it relatively simple
to distinguish them. However, one could try and tackle the question of how much the
mass originating strictly from the presence of hair affects photons in the following way.
Consider two or more black holes which have the same horizon radius and thus black holes
of the same mass lying at the center of the configuration. Now, the first one should be a
Schwarzschild black hole, having no additional mass and the rest of them Skyrmion black
holes which have a non-zero mass distribution outside of the horizon as well. This is a
non-physical scenario, but it can shed some light on the importance of mass attributed
to the hair.

In Figure 3.6 we consider such a case. We worry about two black holes characterized
by (α, β, xh)1 = (0, 0, 0.07445) and (α, β, xh)2 = (0.003, 0, 0.07445) respectively. We then
compute the deflection angles ∆φ1,∆φ2 for many impact parameters for both black holes
and compare them through

∆φrel = ∆φ2 −∆φ1, (3.28)
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where ∆φi are defined though (3.17).
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Figure 3.6: Difference in deflection angles ∆φrel(rad) between two black holes with
(α, β, xh)1 = (0, 0, 0.07445) and (α, β, xh)2 = (0.003, 0, 0.07445) vs closest approach 1/xmin
diagram. The models have the same horizon radius and thus black hole mass, but their
ADM masses are mADM,1 = 0.0372 and mADM,2 = 0.0533 respectively.

Let us now examine Figure 3.6, keeping in mind that the mass function for those
two black holes can be found as part of Figure 2.6. Since the Skyrmion black hole is
the one with a non constant mass function, we examine the motion of a photon starting
with a very large impact parameter and then gradually decreasing it, closely following the
Skyrmion black hole mass that the photon resolves. For very large distances, the photon
remains unaffected by the presence of any of the black holes and thus ∆φrel tends to 0
for very small 1/xmin. Then, as it comes closer to each black hole it starts feeling its
presence and thus ∆φrel is increased as mADM,1 < mADM,2. At some point, in the case of
the Skyrmion black hole it reaches the region where m(x) varies. From this point onwards
it starts spending parts of its orbit in regions where it feels a mass m(x) < mADM,2. So,
as it comes closer and closer, ∆φrel is bound to start decreasing. Thus a maximum is
encountered at some point. That maximum is in general quite close to the point xm at
which m′(xm) = 0. Finally, when the photon approaches the photon sphere and thus the
black hole, ∆φrel is drastically increased. One could say that going by the black hole at
such a small distance leads to the black hole dominating its scattering and significantly
amplifying any difference in the deflection angles there is.

In general, the differences we observe in this case are about ∆φrel ≈ 0.06 rad ≈ 3.5◦.
They can in no case be considered insignificant. Depending on the additional mass due to
the hair this value varies, but in general this result is rather representative. Furthermore,
note that even if through some combination of α and β one builds two models which have
the same ADM mass and horizon radius at the same time, the mass functions are going
to be different and thus their ∆φrel will only agree for very large distances.

Based on all the aforementioned considerations, we can conclude that the presence
of hair affects up to some notable extent photon orbits. However, as we have seen, the
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photon spheres remain practically unaffected. Even so, if one knows up to some high
accuracy the mass of the black hole under observation, he could possibly distinguish the
difference in the photon sphere with respect to what he would expect assuming it is a
Schwarzschild black hole. This mainly depends on the mass stored in the hair, but for the
models under investigation here the numbers are promising. Furthermore, in the case of
rotating black holes and for a different family of hairy black holes solutions, the effect of
the hair on the shadow of the black hole leads to observationally prominent phenomena
[57, 58, 59, 60, 61, 62, 63]. One could test whether this is the case for Skyrmion black
holes as well.

3.3 Skyrme black holes as Gravitational lenses

Up to this point we have shown that there are indeed major differences between a
Schwarzschild and a Skyrmion black hole of the same ADM mass. We have indeed wit-
nessed that their signature is strong in the spectrum of phenomena related to photon
scattering. Furthermore, we have observed that the more time a photon spends inside the
region where the spacetimes are differentiated, the better probe it becomes in distinguish-
ing between the two. Even better if the photon spends time moving at large distances
and also approaches the black hole as well.

All these facts motivate the study of Skyrme black holes as gravitational lenses. By
studying the collinear case, namely Einstein rings, we wish to further investigate the mark
that photons travelling through the hair leave. On the other hand, the not collinear case
will provide us with a more extremal example, allowing us to investigate if we can make a
direct use of the fact that mADM 6= mBH in the case of Skyrmion black holes. Nice reads
on the topic of gravitational lenses are [64, 65, 66, 67, 68].

3.3.1 Description

The idea of a very massive object acting as a gravitational lens is quite old. It is a
consequence of the bending of light by some matter distribution and was suggested as
an observationally interesting phenomenon quite early in the years of General Relativity,
back in the 1920s. As our observational capabilities have increased through the years,
with large radio telescopes, the Hubble space telescope and so on, the field has managed
to draw a lot of attention, especially in more recent years. It is a prominent candidate
to provide answers both to the field of gravity, through testing General Relativity and
alternative theories of gravity, as well as to the field of cosmology by observing objects
lying at immensely large distances.

Essentially, the idea is that there is a source (S) which emits light. Some rays pass in
the vicinity of some mass (L) capable of bending their trajectory. Now depending on the
geometry of the problem, some of those rays make it to the observer. Broadly speaking,
the observer, based on the data from the affected light rays he receives, can get a wrong
perception as to the position of the object on the sky or he could observe multiple images,
arcs, rings or just some variation in the amount of light received.

Objects that can act as gravitational lenses are for example stars, black holes, galaxies
and galaxy clusters. Their efficiency and detectability varies with their distance from the
observer. Depending on how evident the lensing is, it is divided in three main classes:
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1. Strong lensing: This is the case where the traces of lensing are easily made out
as e.g. rings and multiple images.

2. Weak lensing: Here the distortion of the source is so small that it cannot be
detected for a single source individually. A statistical analysis of many sources has
to be performed instead and then the signature of lensing is visible, though weak.

3. Microlensing: Here no distortion can be observed. However, the flux received
from the source varies with time, which indicates the presence of some object acting
as a gravitational lens.

Figure 3.7: The geometry of a gravitational lens system. This is the general case where
the source (S), the center of the lens (L) and observer (O) are not taken to be collinear.
The distances are as seen in the figure, while SS and Sd are spheres centered at O on
which S and L lie. The line through O and L is the optical axis. The undisturbed angular
position of the source with respect to the optical axis is denoted by βββ. A light ray emitted
by S crosses Sd at I ′, while I is where the tangent to the geodesic of the ray at S crosses
Sd. Due to the smallness of the angles involved they can be taken to coincide as a very
accurate approximation. Due to the same reasoning one can think of the spheres Sd, SS
in terms of their tangent planes. The presence of L causes the ray to be deflected by α̂̂α̂α,
so that an image of the source is observed at position θθθ. Finally, N is the point where
the optical axis intersects the sphere SS and S0 is a sphere representing the apparent sky
of the observer. Note that the position of the source (S) and the observer (O) could be
interchanged with the appropriate modifications in the relevant equations. The figure is
adopted from [64]

Let us now direct our attention to the geometry of the problem. In our notation, as
seen in Figure 3.7, S is the source, L the mass distribution acting as a lens, O the observer
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and DS, Dd, Dds the distances observer-source, observer-lens and lens-source. The angles
are defined as seen in the figure, whereas in the caption a more detailed explanation of
it is provided. In the case where scenarios of cosmological nature are investigated, these
distances should be replaced with the corresponding redshifts.

As described in the caption of Figure 3.7, the deflection angles are rather small and
we can think of the spheres as their tangent planes. They will be called the source plane
and lens plane respectively. The separation of the light ray from the optical axis in the
lens plane will be described by a two-dimensional vector ξξξ.

In order to relate the observed angular position θθθ with the real angular position βββ we
take a look at the geometry of the problem, assuming that we are in the asymptotic region
so we can think in terms of Euclidean geometry. Then, in order for the ray to reach the
observer it should hold that

sin (θθθ − βββ)DS = α̂̂α̂α(ξξξ)Dds, (3.29)

which is also called the lens equation. All the observed deflection angles are really small
and so this can also be written as

βββDS + α̂̂α̂α(ξξξ)Dds = θθθDS. (3.30)

The apparent usefulness of Eq. (3.29) is that given the observed position and the mass
distribution one has access to both θθθ and α̂̂α̂α(ξξξ). Thus, the real position of the source ξξξ
comes as the solution to Eq. (3.29). Note that usually the problem is for a given image
to find the mass distribution that caused the distortion.

Note that the α̂̂α̂α(ξξξ) present here is the one defined in Eq. (3.17), only here we have
switched our notation to match the corresponding literature. Furthermore, keep in mind
that due to the symmetry of the spacetime the orbit from a very large distance up to the
point of closest approach to the lens is going to be the same as from that point all to way
to some large distance. Thus, one can also write

α̂̂α̂α(xmin) = 2|φ(xmin)− φ(∞)| − π. (3.31)

Another important property of gravitational lenses is that, as per all objects described
as lenses, they also magnify the source. The magnification factor µ is the ratio of the flux
we receive from the source with lensing, over the flux we would receive in the absence of
the lens. Keeping in mind that gravitational light deflection is not connected to absorption
or emission and that it introduces no additional frequency shift, the surface brightness of
the source is the same as if there was no gravitational lens. Since the flux is the product
of the surface brightness with the solid angle that the source spans on the sky, we get
that the magnification factor is the ratio of the solid angle ∆ω that the source subtends
on the sky after its been lensed, over the solid angle (∆ω)0 it normally subtends. Thus it
reads

µ =
∆ω

(∆ω)0
, (3.32)

where if we denote the area that the source spans without lensing as AS and after lensing
as AI , we can write the solid angles as

(∆ω)0 =
AS
D2
S

and ∆ω =
AI
D2
d

, (3.33)
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which in general are not equal to each other.
Note that we have used the geometrical setup for the not collinear case. If one were to

place the source on the optical axis, then a rather interesting phenomenon emerges. We
have ξξξ = 0 and plugging it back into Eq. (3.29) we get

θθθ =
Dds

DS

α̂̂α̂α(ξξξ). (3.34)

If now the gravitational lens was axisymmetric, with the axis of symmetry coinciding
with the optical axis, θθθ would be the same all around the optical axis. Thus, the source
would be imaged as a ring around the optical lens. Those rings are called Einstein rings.
In the case where the lens did not admit such a symmetry, but the system of observer-
lens-source was collinear, we would still obtain some geometrical shape, which would not
be a ring though.

The mathematical formalism of the problem is such that it allows for an infinite number
of Einstein rings in the collinear case. The one discussed usually in the literature is the
most prominent one and it corresponds to the case where light emitted at a specific angle
from the source is slightly deflected by the gravitational lens, as much as needed to reach
the observer. This is the first Einstein ring. One however could imagine the case where
the light from the source circles the source once and then reaches the observer. This
would be the third Einstein ring. Of course, circling the source more than once leads to
the fifth, seventh and so on Einstein rings.

At the same time, if we have another alignment where the source and the observer lie
on the same side of the source, we can again have Einstein rings. In this case, the light
from the source has to make a U-turn near the photon sphere of the lens. This is the
second Einstein rings and if light ends up circling the lens more times we get the fourth,
sixth and so on Einstein rings. Of course, in this alignment, one has also the direct image
of the source from light emitted from the source which moved through space unaffected
and reached the observer. This could also be denoted as the zeroth Einstein ring.

Note that the numbering of the rings corresponds to the order in which we meet
them as we move closer and closer to the gravitational field. So, the first ring lies on
the outside of the second, which in turn is larger than the third and so on. The use of
the word “infinite” when describing how many Einstein rings correspond to each source
is quite strong and we should highlight that at some point the assumptions of the model
break and so we have a finite number of rings. Furthermore, since higher order rings have
smaller angular diameters, they are more difficult to observe. There are however cases in
which such rings have been observed. We should note though that current belief is that
higher order rings can be produced if the gravitational lens is a black hole, but not from
a galaxy or any other gravitational field which is bound to be weaker.

3.3.2 Numerical results

We wish to examine how a Schwarzschild and a Skyrme black hole can be distinguished
through gravitational lensing phenomena. This is not something trivial as from a point
outwards black holes with the same ADM mass will have identical spacetimes. So, we
should see up to which distances the difference in the spacetimes is something that affects
gravitational lensing. At some points we might refer to Dd as xobs and to Dds as xs, which
is our dimensionless notation.
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We start by examining Einstein rings. In order to do this we take the observer at some
fixed position from the black hole and compute the angular radius of the Einstein ring
θE of a source placed behind the black hole and obviously on the optical axis. In Figure
3.8 this is done for some possible positions of the observer xobs, for each one of which we
examine a wide range of positions for the source xs. The positions of the observer that
we have considered here are really close to the black hole, the smallest one being on the
innermost circular orbit of the Schwarzschild black hole. Though these positions are not
useful from an observational point of view, they help us put some solid ground behind the
importance of this study. We should also highlight that for such small distances the lens
equation is not a good ally, as it does not hold. So, we solved the full geodesics problem
to produce Figure 3.8.
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Figure 3.8: Einstein angular radii θE vs lens-source distance xs for 4 different observer-
lens distances xobs. Those have been produced for two black hole models character-
ized by (α, β, xh) = (0, 0, 0.13) and (α, β, xh) = (0.005, 0, 0.077). They are denoted as
Schwarzschild and Skyrme respectively and both have mass mADM = 0.065.

It is evident through the figure that the angular radii of the Einstein rings formed due
to the presence of each black hole are different. One can understand this by thinking that
in the case of the Skyrme black hole the photons pass by the black hole at a distance
which is close enough to resolve that the spacetime is different than the corresponding
Schwarzschild one. As the source is moved towards larger distances the Einstein angular
radius approaches a value for each black hole model and observer position. The difference
in this limiting value changes as we move the observer further away from the black hole.

Figure 3.8 raises two issues. First of all, it is evident that a disambiguity in either the
mass of the black hole or the distance from the black hole to the observer could lead us to
the wrong conclusions. We could interpret the observed θE through some analysis which
involves a Schwarzschild black hole and obtain results that are incorrect. Secondly, up
to which distances are such differences in θE present in Einstein rings data. If we found
out that the distances Dd up to which such differences are present in the spectrum are
smaller than any reasonable distances that we encounter in real life, then we should not
be worried about them and disregard gravitational lensing as one of the tools that could
help us resolve the question of whether a static and spherically symmetric black hole is
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Skyrme or not.
In order to answer the second issue raised here, we adopt the following reasoning.

Since the differences in θE come through the fact that photons approach the black hole
enough to feel the hair, we set a limiting radius outside of which the spacetimes of the
models under consideration here are identical. That we take to be xlr = 10, supported
by our numerical analysis and Figures 3.1 - 3.2. We then examine where would a photon
coming practically from infinity converge, if its closest approach to the black hole was
equal to that limiting radius, namely xmin = xlr.

Since we are unaware of the distance xobs that will emerge out of this analysis, even
though one could make an estimate, we again solve the full geodesics problem. We find
that the distance for which the closest approach a photon makes to the black hole is equal
to xlr is xobs = 6157 mADM . Solving the geodesics for both black holes with the same
initial conditions verifies that the photon moves in exactly the same way for both models.

Thus, we can state that for the models considered up to this point in this study,
distances of the order 5 × 103 mADM are the limit up to which gravitational lensing can
be used to distinguish between a Schwarzschild and a Skyrme black hole. Such distances
are really small in astronomical terms and thus the collinear case of gravitational lensing
cannot be considered as a prominent mean of studying black hole hair in our case.
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Figure 3.9: θα̂̂α̂α(θθθ),−θα̂̂α̂α(θθθ) vs θθθ diagram for the 2 models under consideration. The param-
eters here are taken as Dds = 1010 mADM and Dd = 5× 102 mADM . We have also plotted
the function θθθ and θθθ + 0.4. The points where those functions intersect θα̂̂α̂α(θθθ) and −θα̂̂α̂α(θθθ)
are the solutions to the lens equation. Angles are in rad.

However, keep in mind that up to now we have considered the collinear case. One
should also investigate the case where the source does not lie on the optical axis. The
reason for that is that if one drops the collinearity condition the following picture emerges.
The light rays moving on the one side of the lens follow different paths than those on the
other side of the lens. So, even though on the side towards which the source is displaced
the rays might move far enough from the black hole to be able to feel the difference in the
spacetime originating from the hair, the ones moving from the other side might actually
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feel the hair simply because they have to come closer to the black hole in order to be
converged on the observer.

This reasoning is presented in Figure 3.9. There the lens equation approach is adopted.
Specifically, if we take a look at Eq. (3.29) we can define

θα̂̂α̂α(θθθ) = sin−1
(
Dds

DS

sin
(
α̂̂α̂α(xmin)

))
(3.35)

where the dependence on θ comes through the impact parameter as

sinθθθ =
b

Dd

, (3.36)

where for e = 1 one has

b = xmin

√
1

N2(xmin)h(xmin)
, (3.37)

as proven e.g. in [55].
The lens equation takes now the form

θθθ − βββ = θα̂̂α̂α, (3.38)

which has to be solved numerically. In Figure 3.9 we present θα̂̂α̂α(θθθ) as well as θθθ for the
configurations and distances stated in the caption, so that one can have a better, graphical
understanding of this. A nice paper which applies this concept on a case with analytical
metric functions is [69].

Table 3.3: Angular separations for the images produced by both models and geometrical
parameters Dds = 1010 mADM , Dd = 6157 mADM for the collinear and a non-collinear
case.

Model (α, β, xh)
Same side as source

θθθ(arcsecs)
βββ(arcsecs)

Opposite side than source
θθθ(arcsecs)

(0, 0, 0.13) 5310.49 0 5310.49

(0, 0, 0.13) 5340.3 60 5280.86

(0.005, 0, 0.077) 5310.49 0 5310.49

(0.005, 0, 0.077) 5340.3 60 5280.86

Our point about the non-collinear case becomes evident if one looks at the θθθ+ 0.4 line
and the points at which it intersects θα̂̂α̂α(θθθ) and −θα̂̂α̂α(θθθ). One automatically sees that for
βββ = −0.4 the angular separations at which the 2 images of the source can be found on
the sky are not the same. For the rays which travel on the same side of the optical axis
as the displacement of the source the lens equation solution is identical for both black
holes. For those travelling on the other side we can see that they are not. Keep in mind
that βββ = −0.4 is terribly large for an angular separation, but we picked it only for the
difference to be obvious in this scale. In general large displacements are not prominent
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for observation as they are not favoured by the geometry of the system. The intensity
of those rays would significantly drop as not that many photons would undergo such a
“trip”. This is something that could also be checked numerically.

Having discussed how βββ 6= 0 could perhaps help in observing the effects of the hair
through a gravitational lensing phenomenon, we turn our attention to our case. We wish
to see if physical values for βββ can make any difference in the case where xobs = 6157 mADM ,
where the βββ = 0 geometry is unable to help us resolve the hair. If taking βββ 6= 0 proves
helpful then one should investigate up to which distances it continues to be so. If not,
then the case of gravitational lensing for static and spherically symmetric Skyrmion black
holes is closed.
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Figure 3.10: θα̂̂α̂α(θθθ),−θα̂̂α̂α(θθθ) vs θθθ diagram for the 2 models under consideration. The pa-
rameters here are taken as Dds = 1010 mADM and Dd = 6157 mADM . We have also
plotted the function θθθ. The points where this function intersects θα̂̂α̂α(θθθ) and −θα̂̂α̂α(θθθ) are
the solutions to the lens equation. Angles are in rad.

The solution to the lens equation for Dds = 1010 mADM and Dd = 6157 mADM can be
found in Table 3.3. There we examine two cases. The case βββ = 0 and the case βββ = 60′′.
The choice of βββ = 60 was made in the following sense. The angular separations observed
are in general very small and specifically < 30′′. But this number refers to the observer
and the source lying at large distances from the source and in general with Dds ≈ Dd.
In our case, Dds is rather physical but Dd << Dds. So, we should double those angular
separations observed. As an upper limit, which however is logical, one can take βββ = 60′′.

As it can be seen in the table, indeed for this distance of the observer from the lens, the
results obtained verify our previous conclusion. Namely, the Einstein rings for both black
hole models turn out to be the same. If one then examines how those angular separations
are altered by taking βββ = 60′′, he finds that the differences obtained are practically non-
existent, as up to the point of our resolution abilities the angles are identical. As the
non-collinear case does not improve our observational chances, even for this distance, we
can disregard the possibility that it will provide us with observable differences in larger
distances.
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In Figure 3.10 one can see the graphical solution to the lens equation for βββ = 0. For
both black hole models, θα̂̂α̂α(θθθ) is shown. The scale is not optimal in order to pinpoint the
solutions, but by comparing to Figure 3.9 one can see that even for very large values of
βββ, there are not very significant differences in θα̂̂α̂α(θθθ) between the models.

Based on our considerations, one can conclude, that in the case of favoured geometries,
gravitational lensing phenomena are not helpful in identifying the presence of hair. As
a gravitational lens, for the vast majority of physical scenarios, a static and spherically
symmetric black hole will behave exactly as a Schwarzschild black hole of the same mass.

Finally let us note that the analysis of this chapter indicates that an observation
of the shadow of a Skyrmion black hole is much more prominent to help us make out
the presence of the hair than some gravitational lensing phenomena, where for realistic
geometries Skyrmion black holes would appear as Schwarzschild ones.
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Chapter 4

Scalar field scattering and absorption

In the previous chapter we focused on photons as a probe. However, one can have other
probes as well. The behaviour of the black hole with respect to all of them builds its
observational profile and enables us to infer its characteristics and properties. Typical
probes are the scalar field, the electromagnetic field and gravitational waves. Essentially,
fields of different spin. In this chapter we focus on the scalar field and we investigate
how massless scalar fields are scattered and absorbed by Skyrmion black holes. We then
extend both the scattering, as well as the absorption results to the massive case. A quite
general and complete read on the topic is [70].

4.1 Probe field

In the following sections we develop the theory of scalar field scattering by black holes.
Initially, we produce the differential equation describing the propagation of the scalar
field. We then discuss the basics of scattering theory. Afterwards, we describe how to
solve the differential equation. Finally, we present and discuss our results for both the
massless and the massive case.

4.1.1 Lagrangian and DE

We wish to study classical cross sections of a scalar field Φ by a Skyrmion black hole
and compare them to those produced by a Schwarzschild black hole of the same ADM
mass. We focus on a minimally coupled scalar field. That is we take the standard real
massive scalar field lagrangian and we make all contractions with respect to the metric
gµν . No direct interaction of non-gravitational nature between the scalar field and the
hair is considered, even though such a study would be rather interesting.

The propagation of the probe field Φ is described by the wave equation in the curved
background (

�g +
m2
φ

~2

)
Φ = 0, (4.1)

where �g is the d’Alambertian with respect to the metric gµν and mφ the mass of the
probe field. Based on the fact that mφ << mADM , we take no backreaction from the
scalar field to the spacetime into account.
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The standard way to solve such equations is the separation method, implemented by
plugging in an expansion of the form

Φ =
A(r)

r
Ylm(θ, φ)e−iWt. (4.2)

Here A(r) is simply a function with radial dependence, W the frequency of the scalar
field and Ylm(θ, φ) the spherical harmonics having their roots in the spherical symmetry
of the problem. Again, due to the spherical symmetry of the problem we cannot have any
azimuthal dependence and so m = 0. Note that for each value of l we obtain a different
solution for A(r).

If we perform the necessary algebra1, we can obtain the radial part of the differential
equation. It reads

∂2x?A(x) +
(
w2 − Veff (x)

)
A(x) = 0, (4.3)

where

∂x? = N(x)h(x)∂x, (4.4)

Veff (x) = h(x)

[
N2(x)

l(l + 1)

x2
+
N(x)

x
∂x

(
N(x)h(x)

)
+N2(x)β2

φ

]
(4.5)

and
βφ =

mφ

~eFπ
(4.6)

a dimensionless parameter directly related to the mass of the probe field. Note furthermore
that w = W (eFπ)−1 is the dimensionless frequency.

In order to get a better insight of the differential equation, we have to cast it into its
standard form, namely account for the dispersion relation and write the equation down
with respect to the field’s velocity. It then reads

− ∂2x?A(x) + V ?
eff (x)A(x) = w2υ2A(x), (4.7)

where now the effective potential V ?
eff (x) reads

V ?
eff (x) = h(x)

[
N2(x)

l(l + 1)

x2
+
N(x)

x
∂x

(
N(x)h(x)

)]
+
(
h(x)N2(x)− 1

)
β2
φ, (4.8)

while on the right hand side we have employed the dispersion relation

υ =

√
1−

β2
φ

w2
, (4.9)

υ being the velocity of the massive field.
1Note that the d’Alambert operator is given by �g = gµν∇µ∇ν , where ∇µ is the covariant derivative.

Thus, one should be careful as Φ may be a scalar, but ∇µΦ is a vector. As a result

�gΦ = gµν∇µ∇νΦ = gµν∇µ∂νΦ = gµν
(
∂µ∂νΦ− Γανµ(∂αΦ)

)
,

where Γανµ are the Christoffel symbols.
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In our new notation, the equation now appears to be Schrödinger-like, so the problem
can be seen as a standard scattering problem of quantum mechanics. Namely, standard
means of scattering theory as applied in quantum mechanics can be adopted here as well.
Here, V ?

eff (x) plays the role of the quantum mechanical potential, while w2υ2 that of the
energy eigenvalue.

We should highlight that precisely because the problem is formulated as a quantum
mechanics problem, one can look at V ?

eff (x) for the effective potential that the probe field
feels. Thus all results can be cross checked with the corresponding effective potential.
This can be rather helpful in understanding the effect of mass in the problem.

4.1.2 Scattering theory

Let us now direct our attention to scattering amplitudes and absorption cross sections.
In order to obtain them we perform a partial wave analysis as per most cases in quantum
mechanical problems. The method described here is presented in depth in [71].

Looking at the potential Veff in Eq. (4.5) we notice that

Veff → β2
φ as x? →∞, (4.10)

Veff → 0 as x? → −∞ (x→ xh). (4.11)

We can thus write down the asymptotic solutions of Eq. (4.3) as

A(x?) =

{
A

(1)
wl e
−iwυx? + A

(2)
wl e

iwυx? , x? →∞
A

(3)
wl e
−iwx? , x? → −∞

, (4.12)

which represents a purely ingoing mode at the horizon. The conservation of flux here
implies that |A(1)

wl |2 = |A(2)
wl |2 + 1

υ
|A(3)

wl |2.
In order to obtain the scattering amplitudes and the absorption cross section we impose

an asymptotic scattering boundary condition. We wish for the total field at spatial infinity
to be the sum of a plane wave plus an outgoing scattered wave. In other words, it should
hold

Φ(t, x, θ, φ) ∼ e−iwtΦplane(x, θ) +
e−iwt

x
f(θ)eiwυx

?

. (4.13)

At this point we should substitute the expansion for the plane wave. However, in a
curved spacetime this is not the same as in Minkowski spacetime. Essentially, when we
have a long range scattering field, plane waves are altered even at infinity. In our case,
we indeed have such a field, the gravitational field. It has been shown that the long range
character of the gravitational field can be accounted by a logarithmic phase modification
of the exponentials [72, 73]. In practice, one has only to substitute x → x? in all the
exponentials and the rest of the expressions remain the same as in Minkowski spacetime.
Thus, if we take the plane wave to propagate along the z-axis it reads

Φplane(x, θ) = eiwυx
? cos θ =

∞∑
l=0

(2l + 1)iljl(wυx
?), (4.14)

where jl is the spherical Bessel function and Pl(cos θ) = Yl0(θ) the Legendre polynomial
of order l.
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4. Scalar field scattering and absorption

If one now takes the asymptotic behaviour of the Bessel function into account and
plugs it into Eq. (4.14) he obtains

Φplane(x, θ) = − 1

2iwυx

∞∑
l=0

(2l + 1)il
(
e−i(wυx

?−lπ/2) − ei(wυx?−lπ/2)
)
Pl(cos θ). (4.15)

Since the flux is conserved, scattering can only change the solution by a phase. Thus,
the physical solution at infinity should look like

Φ(t, x, θ, φ) = − e−iwt

2iwυx

∞∑
l=0

(2l + 1)il
(
e−i(wυx

?−lπ/2) − e2iδl(w)ei(wυx?−lπ/2)
)
Pl(cos θ)

=
e−iwt

wυx

∞∑
l=0

(2l + 1)il sin
(
wυx− lπ/2 + δl(w)

)
eiδl(w)Pl(cos θ)

(4.16)

If one now compares equations (4.13) with (4.16), taking (4.15) into account, he can
extract the explicit expression for f(θ). It reads

f(θ) =
1

2iwυ

∞∑
l=0

(2l + 1)
(
e2iδl(w) − 1

)
Pl(cos θ). (4.17)

The phase shifts e2iδl(w) can be expressed in our terminology if one checks how the
solution at infinity is written in our language. This requires substituting the solution for
x? →∞ found in (4.12) into the general solution, which is a weighted summation over l
of Eq. (4.2). A direct comparison with Eq. (4.16) then leads to

e2iδl(w) = (−1)l+1A
(2)
wl

A
(1)
wl

, (4.18)

which is how the phase shifts can be computed in our case.
Now, as in the quantum mechanical scattering, the differential scattering cross section

can be obtained as
dσ

dΩ
= |f(θ)|2, (4.19)

while partial absorption cross sections are computed as

σl =
π(2l + 1)

w2υ2

1−

∣∣∣∣∣A(2)
wl

A
(1)
wl

∣∣∣∣∣
2
 . (4.20)

The total absorption then follows as

σ =
∞∑
l=0

σl. (4.21)

Finally, let us make the following observation. The differential scattering cross section
is divergent at θ = 0, as Pl(cos (0)) = Pl(1) = 1 and it enters an infinite sum. In order
to get around this problem, one can use the method of reduced series which was first
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introduced in [74]. This method states that one needs only to take into account the
summation up to some lmax and not ∞. This lmax can be found through trial and error,
by examining how the behaviour changes when one takes more l’s into account, up to
the point where the differential cross section remains unaltered by the addition of larger
l’s. Then, one can make f(θ) less singular around θ = 0 by multiplying it by a function
that vanishes at θ = 0. If the new function is then expanded in a series of Legendre
polynomials, one can compute the new coefficients for the summation. Let us illustrate
this by writing Eq. (4.17) as

2iwυf(θ) =
∞∑
l=0

alPl(cos θ). (4.22)

The mth reduced series is then defined as

(1− cos θ)m2iwυf(θ) =
∞∑
l=0

a
(m)
l Pl(cos θ), (4.23)

where the a(m)
l ’s can be computed through the recurrence relations for Legendre polyno-

mials and turn out to be

a
(i+1)
l = a

(i)
l −

l + 1

2l + 3
a
(i)
l+1 −

l

2l − 1
a
(i)
l−1. (4.24)

By performing a few iterations2 the new coefficients a(m)
l are computed and they

can be used to compute the differential scattering cross section, avoiding running into
singularities3.

4.1.3 Numerical approach

4.1.3.1 Way 1

In order to obtain the data needed to compute scattering differential cross sections and
absorption cross sections one needs to solve Eq. (4.3). The standard way to do this is
to use Eq. (4.12) at x? → −∞ (x→ xh) as an initial condition in order to integrate the
differential equation up to a very large distance. Since two initial conditions are required
one matches both the asymptotic expansion, as well as its derivative at x? → −∞. Since
solutions can be multiplied by an arbitrary factor, one can set A(3)

wl = 1 or any other
value he wishes. However, keep in mind that by doing so, the flux condition changes. For
example, for A(3)

wl = 1 it reads |A(1)
wl |2 = |A(2)

wl |2 + 1
υ
.

Having integrated the solution up to a large distance from the black hole4, the numer-
ical solution should be matched to the asymptotic solution at x? → ∞. The coefficients

2Usually m = 2 or m = 3 suffices.
3Keep in mind that after each iteration we are left with one less al because of the presence of the a

(i)
l+1

term in the recurrence relation. Furthermore, the careful reader might have noticed that for l = 0 one is
faced with the problem of which is the value of a(i)−1 to be plugged into Eq. (4.24). This is dealt with by
noticing that one could think of the summation as running over all integers and having al = 0 for l < 0.

4A more precise explanation of what “large distance” means is the following. One can substitute the
asymptotic solution into (4.3). Then on the left hand side a function of x? appears, while on the right
hand side we have that it equals 0. By trying values of x? one can find out at which distances the
deviation of the left hand side from 0 becomes as small as one wishes. This is a measure of the accuracy
of the asymptotic solution.
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A
(1)
wl , A

(2)
wl = 1 are determined through this matching. Plugging them into Eq. (4.18) and

(4.20) , the corresponding phase shifts and partial absorption cross sections are obtained.
This process should be carried out for each l up to some lmax as described in the previous
section.

A measure of the accuracy of the solution is the condition referring to the flux
|A(1)

wl |2 = |A(2)
wl |2 + 1

υ
|A(3)

wl |2. Having obtained all the coefficients one can plug them into
the expressions and check whether it is satisfied. This is a check that the solution should
be able to pass. Actually, one can take this a step further by noticing that the differential
equation (4.3) is of the form

d2A(x)

dx2
+ U(x)A(x) = 0, (4.25)

namely there are no first order derivatives. Such differential equations have a constant
wronskian W (A1, A2), where A1(x) and A2(x) are solutions of the differential equation.
This is rather easy to derive as(

W (A1, A2)
)′

=
(
A1(x)A′2(x)− A2(x)A′1(x)

)′
= A1(x)A′′2(x) + A′1(x)A′2(x)− A′2(x)A′1(x)− A2(x)A′′1(x)

= −U(x)A1(x)A2(x) + U(x)A1(x)A2(x)

= 0,

(4.26)

where ′ = d
dx

and in the penultimate line we made use of (4.25).
This result can be used to derive the flux condition by plugging in the wronskian the

asymptotic solutions at x? → −∞ and x? →∞, alongside with their complex conjugates.
Specifically

W
(
A

(1)
wl e
−iwυx? + A

(2)
wl e

iwυx? ,
(
A

(1)
wl

)?
eiwυx

?

+
(
A

(2)
wl

)?
e−iwυx

?
)

= 2iwυ

(∣∣∣A(1)
wl

∣∣∣2 − ∣∣∣A(2)
wl

∣∣∣2) ,
W
(
A

(3)
wl e
−iwx? ,

(
A

(3)
wl

)?
eiwx

?
)

= 2iw
∣∣∣A(3)

wl

∣∣∣2 ,
(4.27)

which, when equated, lead to |A(1)
wl |2 = |A(2)

wl |2 + 1
υ
|A(3)

wl |2. The standard way to derive this
condition is by using the current corresponding to Φ.

An even stronger condition is that the wronskian has to remain constant ∀x? ∈
(−∞,∞). This can be used to check the accuracy of the numerical solution at every
point. Namely, though this check one can verify that the numerical integration went
well or perhaps locate the point at which it exhibited an unexpected behaviour. These
results can be applied to any method which involves numerically integrating a differential
equation of this form.

The drawback of this method is that the solution to the differential equation is os-
cillating. Furthermore, as l increases, the amplitude of the oscillation increases as well.
From the numerical point of view, this is not a preferable behaviour as numerical errors
can easily be picked along the way. As a result one has to be cautious.
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4.1.3.2 Way 2

A different way to tackle the problem, and the one we implemented, is described in [75].
There they redirect the solution of the problem from the study of the numerical solution
to a direct study of the phases. The advantage of this approach is that even though the
solution to the differential equation admits oscillatory behaviour, the phases do not.

The basis of their approach is a modified version of the simple Prüfer transformation
[76, 77]. The differential equation we wish to solve is (4.3), while we have already examined
the asymptotic behaviour of the potential. The asymptotic solutions can be written as
(4.12) or equivalently as

A(x?) =

{
B sin (wυx? + ζ) , x? →∞

e−iwx
?

, x? → −∞ , (4.28)

where B and ζ are complex constants.
A direct comparison of the asymptotic expansion at x? →∞ with (4.16) leads to the

definition of the phase shifts in this language. We identify the phase shifts as

δl(w) = ζ +
lπ

2
. (4.29)

So, determining ζ is all we need to compute scattering differential cross sections and
absorption cross sections.

We now introduce P (x?) as the logarithmic derivative of A(x?),

P (x?) =
dA(x?)/dx?

A(x?)
, (4.30)

which at x? → −∞ obeys the boundary condition P (x?) = −iw.
In terms of P the exact solution to (4.3) reads

A(x?) = e
∫
P (x?) dx? . (4.31)

At the same time, A(x?) and its derivative can be expressed through a Prüfer trans-
formation as

A(x?) = B(x?) sin
(
wυx? + P̃ (x?)

)
, (4.32)

dA(x?)

dx?
= B(x?)wυ cos

(
wυx? + P̃ (x?)

)
, (4.33)

where P̃ (x?) is a Prüfer phase function for which it holds that P̃ (x?)
∣∣∣
x?→∞

= ζ.
Substituting (4.32) and (4.33) into (4.30) a relation between the two phase functions,

P and P̃ , can be found. The connection reads

P̃ (x?) = −wυx? +
1

2i
ln

(
iP (x?)− wυ
iP (x?) + wυ

)
. (4.34)

If one plugs (4.31) and then (4.32) into (4.3) he derives

dP (x?)

dx?
+ P 2(x?) + w2 − Veff (x?) = 0, (4.35)

dP̃ (x?)

dx?
+

[
wυ − w2 − Veff (x?)

wυ

]
sin2

(
wυx? + P̃ (x?)

)
= 0, (4.36)
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as the differential equations for determining P (x?) and P̃ (x?) respectively.
Numerically solving any of those two equations will provide us with the phase shifts

δl(w). There is however another issue that needs to be accounted. In problems of the
form (4.3), small exponentials can be switched on along the solution of the differential
equation. This is called the Stokes phenomenon. In order to deal with this behaviour, we
numerically integrate (4.35) up to some point using P (−∞) = −iw as an initial condition
and then we switch to the study of (4.36). We obtain an initial condition in order to
kick off the integration through (4.34) and we numerically integrate up to some very large
distance. We can then read off the value of ζ. The point at which the switch is made
is crucial. Ideally, it should be done somewhere around the maximum of the black hole
potential barrier, as this secures that we do not run into trouble. Essentially, we wish to
avoid studying the same phase function throughout the entire potential barrier.

4.1.3.3 Glory scattering

The aforementioned methods can be used to study differential cross sections for scattering
and absorption cross sections. The generality with which the potential is treated makes
them rather powerful tools for every problem with the same setup. There is however an
approximation that can be used for obtaining differential scattering cross sections in the
case of the massless scalar field. It can only reproduce a limited number of peaks for a
specific range of frequencies and at the same time it does not offer any kind of information
about absorption. Its validity however has been checked in the case of a Skyrmion black
hole [50] and it is a relatively easy and fast way to obtain partial answers to the scattering
problem.

Let us begin by examining a high frequency plane wave. High frequency in this context
means that the wavelength λ of the wave is small compared to the radius of curvature of
the background geometry. Essentially, if the geometry varies over a characteristic distance
L, then λ << L. Then as shown in [70, 78], one can approximate massless plane waves
as moving along null geodesics. At the same time, there exist orbits where the incoming
particle is scattered back into the incoming direction. This happens when the particle
circles the black hole once or more times as seen e.g. in Figure 3.4a and is discussed in
standard texts [27].

For these scattering angles, namely θ = κπ where κ ∈ Z, we have a classical scattering
phenomenon, known as glory scattering, which allows one to compute scattering cross
sections. The same phenomenon appears in the black hole scattering case as well [79, 80,
81, 82]. Depending on whether the line of propagation remains the same or is inverted it
is called a forward or backwards glory. Essentially it is a diffraction effect.

Combining these facts one can compute the scattering cross section for massless scalar
waves with w >> 1 and for scattering angles θ ≈ π by looking at null geodesics orbiting
the black hole once and being deflected back at the initial direction from where they came
from through the simple formula(

dσ

dΩ

)
θ≈π
≈ 2πwb2g

∣∣∣∣dbdθ
∣∣∣∣
θ=π

J2
0 (wbg sin θ), (4.37)

where bg is the dimensionless impact parameter of a geodesic moving once around the
black hole and scattered back to the incoming direction and J0 a Bessel function of the
first kind.
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This formula was initially proposed in [83] for the case of scalar waves and was then
extended to arbitrary spins [84]. Cases where glory scattering is investigated and verified
are [50, 75, 85]. In [85] one can also find an approximate relation for b as a function of θ,
which in turn he can use to compute db/dθ as well. The results are quite accurate using
this formula, but in our case we will be obtaining those numbers by directly solving the
geodesics problem.

4.2 Numerical results

We will be applying the methodology of Section 4.1.3.2 in order to obtain differential
scattering cross sections and absorption cross sections for the case of the massless scalar
field. Our results on scattering cross sections are in agreement with those in [50], which
we also extend to account for absorption as well. Then, the results obtained for the
massless scalar field are extended to the case of the massive scalar field as well. Up to our
knowledge, this has not been investigated for a Skyrmion black hole up to now.

4.2.1 Massless case

We wish to compare differential scattering cross sections and absorption cross sections of
Schwarzschild and Skyrmion black holes for massless scalar field. In order to do this, we
consider a Schwarzschild black hole (α, β, xh) = (0, 0, 0.2166) and to Skyrmion black holes
of the same ADM mass. We will name the two Skyrmion black holes CASE I (α, β, xh) =
(0.01, 0, 0.119) and CASE II (α, β, xh) = (0.01, 0.5, 0.116). These three configurations
allow us to find out the impact of both α as well as β in the final outcome.

1.0 1.5 2.0 2.5 3.0
θ-2.5

-2.0

-1.5

-1.0

-0.5

Log10 |dσ /dΩ|

Schwarzschild
CASE I
CASE II

Figure 4.1: Differential scattering cross section of a scalar field with frequency w = 15.
The scatterers are a Schwarzschild (α, β, xh) = (0, 0, 0.2166) and two Skyrmion black holes
named CASE I (α, β, xh) = (0.01, 0, 0.119) and CASE II (α, β, xh) = (0.01, 0.5, 0.116). All
have mADM = 0.1083.
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We plot the differential scattering cross sections obtained for all three models in Figure
4.1 for a scalar field of frequency w = 15. The following observations can be made. The
scattering peaks in the case of the Skyrmion black holes are moved towards smaller scat-
tering angles. This can be understood in the sense that in the Skyrmion black holes case,
the central black hole is smaller compared to the Schwarzschild one under examination
here. But for two Schwarzschild black holes of masses M1 < M2, the peaks for M1 appear
at smaller angles as it can be seen in Figure 4.2, where two Schwarzschild black holes with
masses mADM,1 = 0.1083 and mADM,2 = 0.0783 are compared under the same scattering
experiment.

1.0 1.5 2.0 2.5 3.0
θ-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Log10 |dσ /dΩ|

mADM =0.1083
mADM =0.0783

Figure 4.2: Differential scattering cross section of a scalar field with frequency w =
15. The scatterers are two Schwarzschild black holes of masses mADM,1 = 0.1083 and
mADM,2 = 0.0783. The peaks for the smaller Schwarzschild black holes are moved towards
smaller angles.

This result is not universal. Namely, simply the size of the central black hole cannot
determine the order at which the characteristic peaks will appear. If one makes a com-
parison between CASE I and CASE II, he will find out that even though CASE II has
a smaller black hole lying at the centre, its peaks are met at larger angles. The crucial
difference between those two models is that CASE I has a massless pion (β = 0), while
this does not hold for CASE II (β 6= 0). One thus sees that the effect of the mass of the
pion is quite strong in the spectrum of scattering experiments with scalar fields as probes.
Specifically, they shift the scattering peaks towards larger values of the scattering angle.
Its effect is so strong, that up to some point it can counteract differences in the size of
the black hole surrounded by the skyrmion.

The aforementioned results hold for all the frequencies of the scalar field that were
tested and which satisfied the condition that w is of the order of 1/xh. The case w = 8
can be found in Figure 4.3 as further proof. For these values of w one can view the
scattering as some diffraction phenomenon, which would fade as w becomes smaller and
smaller. The peaks in this picture can be interpreted as the angles at which the diffraction
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maxima occur.
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Figure 4.3: Differential scattering cross section of a scalar field with frequency w = 8.
The scatterers are a Schwarzschild (α, β, xh) = (0, 0, 0.2166) and two Skyrmion black holes
named CASE I (α, β, xh) = (0.01, 0, 0.119) and CASE II (α, β, xh) = (0.01, 0.5, 0.116). All
have mADM = 0.1083.
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Figure 4.4: Differential scattering cross section of a scalar field with frequency w = 15
as obtained through a full partial wave analysis and the glory approximation. Clearly,
the peaks near θ ≈ π are in good agreement. The scatterer is a Schwarzschild black hole
(α, β, xh) = (0, 0, 0.2166).

Furthermore, let us also make a comment on the glory approximation presented in Sec-
tion 4.1.3.3. What the glory approximation promises, is to reproduce the peaks appearing
at scattering angles which are multipoles of π. In Figure 4.4 we present the differential
cross section for a probe field of frequency w = 15 scattered by the Schwarzschild black
hole with (α, β, xh) = (0, 0, 0.2166). There the cross sections as obtained through the
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full partial wave analysis and the glory approximation are presented. Indeed, there is a
good agreement between the two methods for those peaks. This result holds also for the
Skyrmion black holes.

At this point let us pause for a moment and try to understand the reason for which
the differential scattering cross sections look as they do. Namely, why we get this pattern
of maxima and minima at different angles. Let us temporarily think of the scalar field
as a continuum of particles travelling in the plane and being scattered by the black hole.
Then, at each scattering angle we have that the main contribution comes from two rays
with different impact parameters, as seen in Figure 4.5. Those two rays follow different
orbits and thus have a phase difference. Thus, at some scattering angles they will interfere
constructively and in some others destructively. The values of the angle at which we have
constructive interference are the maxima of the differential scattering cross section, while
the minima correspond to the angles where destructive interference occurs. Since the two
main orbits contributing to the scattering at a scattering angle θ = π follow symmetric
trajectories due to the symmetry of the spacetime, we are bound to observe constructive
interference at that angle, as we indeed do. This result does not hold for spacetimes which
are not spherically symmetric, for example the Kerr black hole.

-1.5-1.0-0.5 0.0 0.5 1.0 1.5
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0.0

0.5

1.0

1.5

x1

x2

Figure 4.5: Null geodesics in the black hole spacetime. The black hole is denoted by
the black circle. On the left, we have the symmetric case of rays being backscattered
at the initial direction they came from. Due to the symmetry of the spacetime the
two trajectories are symmetric. On the right, we show two rays with different impact
parameters being scattered at the same direction. All rays are coming from infinity and
we use arrows to indicate the direction along which they initially move.

We now turn our attention towards absorption cross sections. Initially, we wish to
break down absorption to partial absorptions, so that we get a better understanding of
the phenomenon. We then move on to perform a comparison between the three models
as before.

In Figure 4.6, the partial absorption cross sections for the Schwarzschild black hole are
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Figure 4.6: Partial and total absorption cross section of a scalar field with respect to
its frequency. The absorber is a Schwarzschild (α, β, xh) = (0, 0, 0.2166) black hole of
mADM = 0.1083.

presented, alongside the total absorption cross section. The effective potential for each
value of l is an efficient absorber around different values of the frequency of the scalar
field w. Peaks appear each time one of those l’s is switched on. However, we see that the
amplitude of the peaks decreases as w becomes larger and larger. This can be understood
in the sense that as w increases, the wavelength of the probe field decreases. When it
becomes rather small compared to the radius of the black hole absorption essentially
becomes constant, as they decouple. At the other end, for very small values of w, the
wavelength of the scalar field becomes much larger than the radius of the black hole and
thus absorption is very limited.

In the case of the Schwarzschild black hole one can actually quantify the above con-
siderations. At the high energy limit the value of the absorption cross section approaches
the geometrical optics value of σabs = πb2c = 27πm2

ADM . Thus, in our diagram it should
approach the value σabs/m2

ADM = 27π as w becomes rather large. This indeed happens.
At the same time, the corresponding low energy limit is σabs = 16πm2

ADM . Again, for
small values of w we see that σabs/m2

ADM = 16π. The high energy result holds for probe
fields of other spins as well. The same cannot be said for the low energy limit.

As a reminder keep in mind that for the Schwarzschild black hole mAMD = mBH ,
which is not true for the Skyrmion black holes. If one were to redraw the diagram with
mBH in the place of mAMD in the y-axis, the low energy absorption limit is recovered for
Skyrmion black holes as well. The high energy limit on the other side is not, as fields with
small wavelength are better able to resolve the differences in the spacetime geometry.

Partial and total absorption cross sections are also presented for the CASE II Skyrmion
black hole in 4.7. We observe that the same reasoning as before can be applied to under-
stand the behaviour of the curve for the range of values w under investigation. A direct
comparison of the partial absorptions with the Schwarzschild case reveals that for the
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Figure 4.7: Partial and total absorption cross section of a scalar field with respect to its
frequency. The absorber is the CASE II (α, β, xh) = (0.01, 0.5, 0.116) Skyrmion black hole
with mADM = 0.1083.

same values of w less values of l for the effective potential are stimulated.
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Figure 4.8: Total absorption cross section of a scalar field with respect to its frequency.
The absorbers are a Schwarzschild (α, β, xh) = (0, 0, 0.2166) and two Skyrmion black holes
named CASE I (α, β, xh) = (0.01, 0, 0.119) and CASE II (α, β, xh) = (0.01, 0.5, 0.116). All
have mADM = 0.1083.

The total absorption of the Schwarzschild black hole is compared with those of CASE
I and CASE II in Figure 4.8 for a broad range of w. First of all, we notice that the
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4. Scalar field scattering and absorption

Schwarzschild black hole absorbs more than the corresponding Skyrmion black holes of
the same ADM mass. Again, this can be put to perspective by thinking that a larger
black hole is bound to absorb more on a mean scale. Furthermore, we see that absorption
peaks in the case of the Skyrmion black holes are moved towards larger values of w. Once
more, this is behaviour admitted by smaller Schwarzschild black holes. Finally, the peaks
are more wide in the case of the Skyrmion black holes.

Note that once again, simply looking at the size of the actual black hole in each one
of the configurations under investigation does not suffice to predict the results, not even
at the qualitative level. The effect of the pion mass β can reverse the case and account
for small differences in the radii of the black holes. Indeed, as in the scattering case, the
absorption peaks for CASE II can be found at smaller values of w and absorption is higher
as well.

4.2.2 Effect of mass

Having considered the massless scalar field as a probe, we wish to extend those results
in the case of the massive scalar field as well. We will be changing the order in this case
and we will study absorption first and then scattering. The motivation for that is that in
order to understand our scattering results, we will need a better picture of the absorption.

Initially let us focus on the Schwarzschild black hole. Before we present our results on
absorption cross sections let us examine the effect of βφ on the effective potential Veff .
This can be seen in Figure 4.9, where the effective potential is drawn for different values
of l and βφ. We see that the effect of the mass of the probe field is that it lowers the
height of the peak, when compared to the level of classically allowed motion. There, we
plot the first three l’s for βφ = 0 and βφ = βφ,crit,1 = 1.778. The terminology βφ,crit,l was
introduced in [86] and refers to the value of βφ for which the peak of Veff for the respective
l cannot play the value of a barrier any more. Increasing the value of βφ decreases the
height of the peaks of the effective potential with respect to the level of classically allowed
motion, thus it should lead to higher absorption.

A better grasp of absorption comes through Figure 4.10. There the real part of the
phase shifts Re(e2iδl), alongside their imaginary part Im(e2iδl) and their modulus are
plotted against l. There we see that for small l’s, δl has a positive imaginary part and
thus e2iδl is essentially zero. This indicates absorption from the black hole. As the value
of l increases, δl becomes almost real and e2iδl is oscillating. This figure can be read in
parallel with Figure 4.6. One sees that the l’s for which absorption is significant are those
that have been switched on for a frequency w = 15.

Indeed, absorption behaves as we expected from the study of Veff . This can be ver-
ified by looking at Figure 4.11, where absorption cross sections are presented for the
Schwarzschild black hole and different values of the probe field mass βφ. In general ab-
sorption is increased, while the characteristic peaks are moved towards higher frequencies
as the value of βφ is increased. Specifically for small values of the frequency the difference
in the absorption is significant, since the effect of βφ on the peaks of the effective potential
for each l is more significant for small values of l. As we move towards higher frequencies
on the other side, the higher l modes contribute to the absorption as well, and they are
not affected significantly by the presence of the βφ term, so at the limit of large frequencies
absorption tend to coincide. Furthermore, notice that as predicted for βφ = βφ,crit,1, the
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Figure 4.9: Effective potential for the Schwarzschild black hole (α, β, xh) = (0, 0, 0.2166).
The first three values of l are drawn for βφ = 0 and βφ = βφ,crit,1.

l = 1 peak of the potential cannot act as a barrier any more and indeed we lose the peak
in the absorption cross section which was more closely related to that. Note that our
results are in agreement with those in [86].
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Figure 4.10: Re(e2iδl), Im(e2iδl) and |e2iδl | vs l diagram for the Schwarzschild black hole.
The first l’s are absorbed, while for larger l, Sl admits oscillatory behaviour. Here we
have chosen w = 15 and βφ = 0.

Our considerations up to now allow us to draw the following conclusion when it comes
to the study of absorption cross sections for the massive scalar field. They are directly
related to the study of Veff . Thus, the study of the effective potential for each black hole
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4. Scalar field scattering and absorption

under consideration can provide us with relatively accurate answers as to the absorption
cross section of the black hole.
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Figure 4.11: Total absorption cross sections for the Schwarzschild black hole (α, β, xh) =
(0, 0, 0.2166) for three different values of the mass of the scalar field. They are taken to
be βφ = 0, βφ = 0.4 and βφ = βφ,crit,1 = 1.778.

In the case of the Skyrmion black hole, the black hole lying at the centre of the
configuration is smaller than the corresponding Schwarzschild black hole of the same mass.
However, smaller black holes have higher peaks in the effective potential for the each l.
This automatically means that the critical values for βφ for each l, namely βφ,crit,l, of the
Skyrmion black holes denoted as CASE I and CASE II are greater than the corresponding
critical values referring to the Schwarzschild black hole. As a result, for the same value
of βφ, we expect that the Skyrmion black holes will still absorb less compared to the
Schwarzschild one. This can indeed be seen in Figure 4.12, where our results regarding
the amount of absorption and the characteristic peaks of the absorption cross section
remain qualitatively the same. At the same time, the value of βφ required to wipe out
the first characteristic peak is smaller for the Schwarzschild black hole than the Skyrmion
black holes as argued. Same goes for the other characteristic peaks as well.

Note also that the larger the black hole, the more efficient absorber it is. That is
after all why we normalize the absorption cross sections with respect to the square of the
mass of the configuration. In the case of the Skyrmion black holes mADM 6= mBH , thus
σ/m2

ADM 6= σ/m2
BH . Even though the extra mass lying around the Skyrmion black holes

helps them absorb more with respect to a Schwarzschild black hole of the same size, this
extra mass cannot absorb the scalar field by itself. That is something only that black hole
itself is able to do. That is after all why the absorption cross sections do not coincide
for all three black holes under consideration here. Even if the absorptions do coincide
in some neighbourhood of w 5, they will not coincide globally, as for greater values of w

5This happens for each value of the probe field mass βφ, if we look at the neighbourhood where w ≈ βφ.
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absorption will be dominated by larger values of l which are less affected by the value of
βφ.
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Figure 4.12: Total absorption cross section of a scalar field with mass βφ = 0.4 with
respect to its frequency. The absorbers are a Schwarzschild (α, β, xh) = (0, 0, 0.2166)
and two Skyrmion black holes named CASE I (α, β, xh) = (0.01, 0, 0.119) and CASE II
(α, β, xh) = (0.01, 0.5, 0.116). All have mADM = 0.1083.

We now move on to examine the effect of the mass of the probe field on the scattering
cross sections. In Figure 4.13, we present the differential scattering cross section of a
scalar field with frequency w = 15 for different values of its mass. We observe that as
its mass is increased from zero, the peaks are starting to move towards smaller scattering
angles. Then, for some value of the mass of the scalar field this motion is reversed and the
peaks start moving towards their initial positions again. In the case of the Schwarzschild
black hole this back and forth motion is of the order of ∼ 0.1 rad.

One way to interpret this would be to think of each l mode in terms of particle
trajectories. It has been shown that each l mode can be viewed as a trajectory with a
specific impact parameter. In the case of the massless scalar field this is given by [70, 71]

blw ≈ E
1/2
l =

√
l(l + 1), (4.38)

where El are the angular eigenvalues as obtained from the solution of (4.1) through the
separation ansatz (4.2). So, for a fixed w, the larger l is, the further away from the black
hole the corresponding trajectory lies. As βφ is increased, smaller l’s get absorbed and so
only larger l’s and correspondingly large bl’s survive. But the scattering angles for those
impact parameters are smaller, so the peaks of the scattering cross section move towards
smaller scattering angles. From a point onwards, absorption is rather high for small l’s,
while β2

φ is insignificant with respect to the the l(l + 1) term in Veff for the surviving
values of l. So, the scattering peaks start moving towards those of the massless case.

Specifically we have that σ/m2
BH coincides in a small such neighbourhood for all three black holes under

consideration here. Of course, keep in mind that w > βφ as it can be seen e.g. through (4.9).
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Figure 4.13: Differential scattering cross section of a scalar field with frequency w = 15.
The scatterer is a Schwarzschild black hole (α, β, xh) = (0, 0, 0.2166). Three different
masses for the scalar are considered and they are labelled by their respective velocities.
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Figure 4.14: Differential scattering cross section of a scalar field with frequency w = 15.
The scatterer is the CASE II Skyrmion black hole (α, β, xh) = (0.01, 0.5, 0.116). Three
different masses for the scalar are considered and they are labelled by their respective
velocities.

The case of the Skyrmion black hole is similar. Again we notice that the peaks are
initially moved towards smaller scattering angles and then the motion is inverted. The
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4. Scalar field scattering and absorption

main difference in this case is that this happens rather fast, leading to the backward motion
of the peaks to be one order of magnitude less than in the case of the Schwarzschild black
hole. One should keep in mind that in the case of the Skyrmion black hole there is extra
mass due to the presence of hair. If we follow our line of thought for the Schwarzschild
black hole, relating l modes to trajectories, we notice the following crucial difference. As
the mass of the probe field is increased, then only larger l’s and correspondingly bl‘’s
survive. However, in the case of the skyrmion black hole there extra mass lying around
the black hole. Thus, those bl’s are able to “feel” that mass and are effectively scattered by
a more massive body. This effect tries to shift scattering peaks towards larger scattering
angles, while typically larger bl’s would lead to smaller scattering angles. Out of those two
opposing effects, the first one quickly manages to overpower the latter and so scattering
peaks are moved towards higher scattering angles almost immediately as βφ is increased.
Namely, the motion is inverted much faster. This can be seen in Figure 4.14, where the
peaks for the probe field with velocity υ = 0.359 are already located at a greater angle
than where they were for the υ = 1 probe field. This is not the case for the Schwarzschild
black hole.
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Figure 4.15: Differential scattering cross section of a massive scalar field with frequency
w = 15 and velocity υ = 0.115. The scatterers are a Schwarzschild (α, β, xh) =
(0, 0, 0.2166) and two Skyrmion black holes named CASE I (α, β, xh) = (0.01, 0, 0.119)
and CASE II (α, β, xh) = (0.01, 0.5, 0.116). All have mADM = 0.1083.

Taking the aforementioned behaviour into account, one can make the following ob-
servation. As the peaks are affected by the mass of the scalar field, one might well get
the case where some of those peaks actually end up coinciding for a Schwarzschild and a
Skyrmion black hole of the same ADM mass. Namely, as the peaks move back and forth,
but in a different range of values for the angle, the peaks of the Skyrmion black hole might
catch up with those of the Schwarzschild black hole, provided they were relatively close
to each other from the very start. So, there might exist values of the mass of the probe
field for which it is not an effective mechanism of distinguishing between the two black
holes.
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4. Scalar field scattering and absorption

Note that one such limit always exists, as at the large mass limit of the probe field,
it is only able to resolve the far horizon geometry and thus the two black holes appear
to be rather similar. Essentially, since in the “l modes ↔ trajectories” image that we
have introduced earlier only large bl survive for large values of the mass βφ, the two black
holes appear the same as their spacetimes at large radial distances are identical. This is
exhibited in Figure 4.15, where one clearly sees that a rather massive scalar field is unable
to produce different scattering peaks at certain angles, thus unable to resolve the presence
of hair.

Based on the above, a general remark would be that a scalar field is able to differentiate
between Schwarzschild and Skyrmion black holes of the same mass. However, when the
scalar field is taken to be massive, this ability is distorted as not all the peaks can be told
apart for all values of the mass of the scalar field. One such characteristic case would be
a rather massive scalar field with respect to its frequency.
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Chapter 5

Conclusions

Our work has been an investigation of Skyrmion black holes, focusing on how they could
be distinguished from a Schwarzschild black hole. One could also interpret it as using
different probes to extract the values of the parameters of the Skyrme model through
experiments performed on Skyrmion black holes. Our main results are summarized as
following:

• We reproduced the main results on Skyrmion black holes. Namely, we tracked
them down numerically as solutions of the Einstein-Skyrme model and we obtained
solutions expected from the solution space of the model.

• Photons were used as probes in order to distinguish between Schwarzschild black
holes and Skyrmion ones. Initially, the effect of hair on the photonspheres was used
to trace differences in the near horizon geometry of the black holes sitting at the
center of the Skyrmion. The corresponding impact parameters were found as well
and were used to conclude that the effect of the black hole is significantly larger
than that of the hair.

The above motivated the study of gravitational lensing phenomena. The basics of
gravitational lensing were introduced and the distance up to which such phenomena
can be used to track down differences in the spacetimes produced by Schwarzschild
and Skyrmion black holes of the same ADM mass was found.

• Scalar fields was the next probe we used. Results were obtained both for massless
scalar fields as well as for massive scalar fields. In both cases we investigated both
scattering, as well as absorption cross sections. In the massless case we found out
that, both for scattering as well as absorption phenomena, the characteristic peaks
of Skyrmion black holes, when compared to the same mass Schwarzschild ones, are
moved towards were you would expect to find the peaks of a smaller Schwarzschild
black hole. This does not depend monotonically on the mass of the central black
hole, as the mass of the pion strongly affects this result. Large values of the pion
mass β can counteract this behaviour and even reverse it for small differences in the
mass of the central black hole. The expected behaviour at the high and low energy
limits was reproduced.

In the massive case, we found that absorption is increased and that it can be pre-
dicted qualitatively by looking directly at the effective potential. Absorption cross
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sections present the same qualitative characteristics as in the massless case, the
main difference from the quantitative point of view being that for frequencies close
to the mass of the probe field absorption is significantly increased. As the frequency
becomes even larger this behaviour becomes weaker. Regarding scattering exper-
iments we found that the mass of the probe field is not an ally when it comes to
identifying a Schwarzschild/Skyrmion black hole, as the peaks are influenced in the
same way qualitatively as the mass of the probe field is increased, but from the
quantitative point of view the situation is not clear. At the small velocity limit for
the probe field, scattering peaks seem to align for all models of the same ADM mass
and thus a rather massive scalar field, with respect to its frequency, is a clumsy and
not accurate way to resolve the question of whether our spherically symmetric black
hole has hair. At the same time, depending on the models under consideration there
might exist other discrete values for the mass of the scalar field for which Skyrmion
black holes can admit the same scattering peaks as a Schwarzschild black hole of
the same ADM mass. This depends on the models.

Let us note that our results are quantitative in the Skyrmion black hole case, but
qualitatively they hold for all such configurations, even in the context of other theories
admitting solitonic solutions of a topological nature coupled to pure General Relativity.
Evidence supporting this claim can be found in [87].

There are of course possible extensions to this work. First of all, throughout our
work we have not taken into account any direct interaction term between the probes and
the Skyrme hair. Such a study would be rather interesting, in order to see up to which
extent our results could be altered. Furthermore, our absorption results can be extended
and related to Hawking radiation. The thermodynamical properties of the black hole
could then be accessed as well. In their current form, they are directly related to what
goes around in the literature as the greybody factor. Finally, let us highlight that many
more probes can be employed. Specifically, fields of different spin value. “Experiments”
using them as their basis is a rather interesting question to pose and a potential future
direction.
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Appendix A

Circular orbits in Skyrme black hole
spacetime

In the main text we have claimed that photon orbits around a Skyrme black hole change
quantitatively, but not qualitatively. What we meant is that we expect to find a circular
orbit at some radius from the Skyrmion black hole. However, the position of this orbit is
not the same as it is in a Schwarzschild spacetime. Of course to this circular orbit we can
then associate a constant impact parameter. The fate of incoming/outcoming photons
can then be determined by comparing their impact parameter with the one corresponding
to the innermost circular photon orbit. Here we investigate the claim that such a circular
orbit exists even further and provide proof that it holds.

We begin by looking at Eq. (3.11), which for photons reads(
dr

dλ

)2

=
e2

N2(r)
−H(r)

l2

r2
. (A.1)

If one is looking for circular orbits, then r = r∗ = constant and we have that the condition
dr/dλ = 0|r=r∗ holds. As a result, Eq. (A.1) becomes

e2

l2
=
H(r∗)N

2(r∗)

r2∗
. (A.2)

One should locate the value r∗ for which this equation is satisfied. Once he finds
this value he can plug it back in the right hand side of Eq. (A.2) and compute the
corresponding value for the impact parameter by looking at the left hand side. So, we
have a problem of the form

f(x0) = a, (A.3)

namely for some function f we are looking for the value(s) of x at which it crosses the
a−level. In the case of the Schwarzschild black hole the identification of the problem as
the motion of a particle in a central potential offers a nice physical picture for the problem.
We know that the point r∗ at which this happens is also an extremum of the potential.
So, we can differentiate Eq. (A.2) and look for the solution to the new equation.

In the general case one has to think that he is looking for circular orbits. So he needs
to require that the particle not only moves on a circular orbit, but it also stays on the
circular orbit. So, on top of dr/dλ = 0|r=r∗ , we also have d2r/dλ2 = 0|r=r∗ . Thus, we
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A. Circular orbits in Skyrme black hole spacetime

differentiate Eq. (A.1) with respect to λ. We then obtain Eq. (3.12) for photons. Here we
will avoid substituting the explicit expression for the function H(r). Our equation then
reads

d2r

dλ2
= − e2

N3(r)

dN(r)

dr
− l2

2r2
dH(r)

dr
+H(r)

l2

r3
. (A.4)

We now use Eq. (A.1) to get rid of e2 in the first term. The new form of the equation
is

d2r

dλ2
= − 1

N(r)

dN(r)

dr

[(
dr

dλ

)2

+H(r)
l2

r2

]
− l2

2r2
dH(r)

dr
+
H(r)l2

r3
. (A.5)

At this point we recall that we are looking for circular orbits. So, we set r = r∗ and
get rid of the derivative terms appearing in our expression. At the same time, the factor
l2/r2 appears in each summand and can be omitted. We then investigate whether this
equation admits solutions. The final version of the equation is

H(r∗)

N(r∗)

dN(r)

dr

∣∣∣∣
r=r∗

+
1

2

dH(r)

dr

∣∣∣∣
r=r∗

− H(r∗)

r∗
= 0. (A.6)

This is a much better equation to check whether it admits solutions, as neither e nor
l appear. Let us set a new function

G(r) =
H(r)

N(r)

dN(r)

dr
+

1

2

dH(r)

dr
− H(r)

r
, (A.7)

which is continuous in the interval [rh,∞), where rh is the event horizon.
Our newly set function admits the following behaviour

• At r = rh we have

G(rh) =
1

2

dH(r)

dr

∣∣∣∣
r=rh

> 0, (A.8)

as H(rh) = 0 and H(r) > 0 ∀r > rh in order for our manifold to have the right
signature. So the derivative of H(r) has to be positive.

• Take some rl which lies in the asymptotic region in which H(r) = 1 = N2(r). This
can always be found as we can take rl as large as needed. Then

G(rl) = − 1

rl
< 0. (A.9)

Combining those facts, we can conclude through Bolzano’s theorem that there indeed
exists at least one value r∗ ∈ (rh, rl) such that

G(r∗) = 0⇔ H(r∗)

N(r∗)

dN(r)

dr

∣∣∣∣
r=r∗

+
1

2

dH(r)

dr

∣∣∣∣
r=r∗

− H(r∗)

r
= 0. (A.10)

As a result, for r = r∗ we have a circular orbit in any spacetime described by the
metric (2.27). If there exist more than one zeros, the photonsphere is taken to be the
smallest one.
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If we apply the aforementioned procedure to the Schwarzschild black hole, where
HSch(r) = 1− 2GMSch/r and N2(r) = 1, we get

GSch(r) =
3GMSch − r

r2
, (A.11)

which admits a single finite solution at r∗,Sch = 3GMSch as expected.
Note that r∗ defines a corresponding impact parameter through Eq. (A.2). Our

analysis leads us also to the following conclusion. We can define an effective potential as

Veff (r) =
H(r)N2(r)l2

r2
. (A.12)

Then we notice that
dVeff (r)

dr
=

2l2N2(r)

r2
G(r), (A.13)

so, since N2(r) 6= 0, the zeros of dVeff (r)/dr coincide with those of G(r). As a result,
Veff (r) is the extension of Ṽ (r) from the main text in the generic case.

For a numerical study of the system, one has to track down the zeros of G(r). After-
wards, determining whether they are maxima or minima can be done either by inspecting
the corresponding graph or, as per usual, by examining d2Veff (r)/dr2 and checking its
sign at each one of the zeros.

Note that usually people (e.g. [56, 88]) define another “goto” quantity in these cases,
which is

Vr(r) =

(
dr

dλ

)2

⇔ Vr(r) =
e2

N2(r)
−H(r)

(
l2

r2
+ κ

)
, (A.14)

which in turn can also be studied for the same reason as Veff (r) since

dVr(r)

dr
= −2l2

r2
G(r), (A.15)

where we have made the substitutions κ→ 0 and e2/l2 → H(r)N2(r)/r2, which hold
for circular photon orbits.

Both quantities can be studied for the same reason. In general, Vr constitutes the
standard approach. Nevertheless, we wished to motivate and introduce the idea of an
effective potential in this case as well, as well as prove that there exist circular photon
orbits.

In terms of Vr and the corresponding approach, circular orbits are characterized
by Vr(r∗) = 0 and dVr/dr|r=r∗ = 0. For timelike geodesics this system leads to the
following expressions for the energy per unit mass and the angular momentum per
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unit mass

e2 =
2H2(r)N4(r)

2H(r)N2(r)− r
(
N2(r)dH(r)

dr
+ 2H(r)N(r)dN(r)

dr

)
∣∣∣∣∣∣
r=r∗

,

l2 =
r3
(
N2(r)dH(r)

dr
+ 2H(r)N(r)dN(r)

dr

)
2H(r)N2(r)− r

(
N2(r)dH(r)

dr
+ 2H(r)N(r)dN(r)

dr

)
∣∣∣∣∣∣
r=r∗

,

(A.16)

where the denominator should be strictly positive as the energy should be positive.
For circular null geodesics, those conditions lead to the denominator being equal

to zero, namely

2H(r)N2(r)− r
(
N2(r)

dH(r)

dr
+ 2H(r)N(r)

dN(r)

dr

)∣∣∣∣
r=r∗

= 0⇒

−2r∗N
2(r∗)G(r∗) = 0,

(A.17)

which again is the condition we found earlier.

One can furthermore put a constraint on the radii at which a circular photon orbit
can be found. If we substitute the expression for H(r) into Eq. (A.7) we obtain

G(r) =
−N2(r)

(
r − 3GM(r) +Gr dM(r)

r

)
+ rN(r)dN(r)

dr
(r − 2GM(r))

r2N2(r)
. (A.18)

By examining Eq. (2.38), which is one of the differential equations of the Skyrme
model1, it is evident that

N(r)
dN(r)

dr
≥ 0. (A.19)

As a result, in order for G(r) to be equal to zero, the first summand of the numerator
should be negative. This leads to the condition

r − 3GM(r) +Gr
dM(r)

r
≥ 0, (A.20)

which defines the spacetime region in which a circular orbit can exist2.
1Namely this result is model specific and does not hold for any metric of the given form.
2Note that the mass is also given by

GM(r) =
rh
2

+

∫ r

rh

4πr′2ρ(r′)dr′, (A.21)

in terms of the energy density ρ.
Condition (A.20) can then be written as

r − 3GM(r) + 4πr3ρ(r) ≥ 0. (A.22)

If one studied Einstein’s equations instead of G(r), he would be able to infer an even stricter condition
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Note that if we apply the inequality (A.20) to the case of the Schwarzschild black hole3

it becomes
r − 3GMSch ≥ 0, (A.25)

as we expected.

which would read
r − 3GM(r)− 4πr3p(r) ≥ 0, (A.23)

where p is the pressure as defined through the energy-momentum tensor. The fact that the latter is a
stricter condition follows from the weak energy condition (WEC)

ρ+ p ≤ 0. (A.24)

3This can be done as (A.19) holds in the case of the Schwarzschild spacetime, where the inequality is
actually saturated.

69





Bibliography

[1] G. Dvali and A. Gußmann, “Aharonov–Bohm protection of black hole’s
baryon/skyrmion hair,” Phys. Lett., vol. B768, pp. 274–279, 2017.

[2] G. Dvali and C. Gomez, “Black Hole’s 1/N Hair,” Phys. Lett., vol. B719, pp. 419–423,
2013.

[3] T. H. R. Skyrme, “A Non-Linear Field Theory,” Proceedings of the Royal Society of
London. Series A, Mathematical and Physical Sciences, vol. 260, no. 1300, pp. 127–
138, 1961.

[4] T. H. R. Skyrme, “A unified field theory of mesons and baryons,” Nuclear Physics,
vol. 31, pp. 556–569, Mar. 1962.

[5] I. Zahed and G. E. Brown, “The Skyrme model,” Physics Reports, vol. 142, pp. 1–102,
Sept. 1986.

[6] Y.-L. Ma and M. Harada, “Lecture notes on the Skyrme model,” arXiv:1604.04850
[hep-ph], Apr. 2016. arXiv: 1604.04850.

[7] N. Shiiki and N. Sawado, “Black Holes with Skyrme Hair,” ArXiv General Relativity
and Quantum Cosmology e-prints, Jan. 2005.

[8] G. H. Derrick, “Comments on nonlinear wave equations as models for elementary
particles,” Journal of Mathematical Physics, vol. 5, no. 9, pp. 1252–1254, 1964.

[9] G. S. Adkins, C. R. Nappi, and E. Witten, “Static properties of nucleons in the
skyrme model,” Nuclear Physics B, vol. 228, no. 3, pp. 552 – 566, 1983.

[10] P. Bizon and T. Chmaj, “Gravitating skyrmions,” Physics Letters B, vol. 297, pp. 55–
62, Dec. 1992.

[11] M. Heusler, N. Straumann, and Z. Zhou, “Selfgravitating solutions of the Skyrme
model and their stability.,” Helvetica Physica Acta, vol. 66, pp. 614–632, Sept. 1993.

[12] R. Bartnik and J. McKinnon, “Particlelike Solutions of the Einstein-Yang-Mills Equa-
tions,” Phys. Rev. Lett., vol. 61, pp. 141–144, July 1988.

[13] M. E. Ortiz, “Curved-space magnetic monopoles,” Phys. Rev. D, vol. 45, pp. R2586–
R2589, Apr. 1992.

[14] P. Breitenlohner, P. Forgács, and D. Maison, “Gravitating monopole solutions,” Nu-
clear Physics B, vol. 383, pp. 357–376, Sept. 1992.

71



BIBLIOGRAPHY

[15] P. Breitenlohner, P. Forgács, and D. Maison, “Gravitating monopole solutions II,”
Nuclear Physics B, vol. 442, pp. 126–156, May 1995.

[16] D. Maison, “Solitons of the Einstein-Yang-Mills Theory,” in Gravitation and Cosmol-
ogy (S. Dhurandhar and T. Padmanabhan, eds.), vol. 211 of Astrophysics and Space
Science Library, p. 245, 1997.

[17] H. Luckock and I. Moss, “Black holes have skyrmion hair,” Physics Letters B, vol. 176,
pp. 341–345, Aug. 1986.

[18] S. Droz, M. Heusler, and N. Straumann, “New black hole solutions with hair,” Physics
Letters B, vol. 268, pp. 371–376, Oct. 1991.

[19] M. S. Volkov and D. V. Galtsov, “NonAbelian Einstein Yang-Mills black holes,”
JETP Lett., vol. 50, pp. 346–350, 1989. [Pisma Zh. Eksp. Teor. Fiz.50,312(1989)].

[20] H. P. Künzle and A. K. M. Masood-ul Alam, “Spherically symmetric static SU(2)
Einstein–Yang–Mills fields,” Journal of Mathematical Physics, vol. 31, pp. 928–935,
Apr. 1990.

[21] P. Bizon, “Colored black holes,” Phys. Rev. Lett., vol. 64, pp. 2844–2847, June 1990.

[22] K. Lee, V. P. Nair, and E. J. Weinberg, “Black holes in magnetic monopoles,” Phys.
Rev. D, vol. 45, pp. 2751–2761, Apr. 1992.

[23] P. C. Aichelburg and P. Bizon, “Magnetically charged black holes and their stability,”
Phys. Rev. D, vol. 48, pp. 607–615, July 1993.

[24] M. D. Johnson, S. S. Doeleman, and Event Horizon Telescope Collaboration, “The
Event Horizon Telescope: New Developments and Results,” IAU General Assembly,
vol. 22, p. 2257792, Aug. 2015.

[25] S. Hawking and W. Israel, eds., 300 Years of Gravitation. Cambridge University
Press, 1987.

[26] M. Heusler, “No hair theorems and black holes with hair,” Helv. Phys. Acta, vol. 69,
no. 4, pp. 501–528, 1996.

[27] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. W.H. Freeman and
Co., 1973.

[28] P. T. Chruściel, J. L. Costa, and M. Heusler, “Stationary black holes: Uniqueness
and beyond,” Living Reviews in Relativity, vol. 15, p. 7, May 2012.

[29] R. Ruffini and J. A. Wheeler, “Introducing the black hole,” Physics Today, vol. 24,
p. 30, 1971.

[30] M. Heusler, Black hole uniqueness theorems. Cambridge University Press, 1996.

[31] S. W. Hawking, “Black holes in general relativity,” Communications in Mathematical
Physics, vol. 25, pp. 152–166, June 1972.

72



BIBLIOGRAPHY

[32] S. W. Hawking and G. F. R. Ellis, The large-scale structure of space-time. Cambridge
University Press, 1973.

[33] W. Israel, “Event horizons in static vacuum space-times,” Phys. Rev., vol. 164,
pp. 1776–1779, Dec 1967.

[34] W. Israel, “Event horizons in static electrovac space-times,” Comm. Math. Phys.,
vol. 8, no. 3, pp. 245–260, 1968.

[35] G. L. Bunting and A. K. M. Masood-ul Alam, “Nonexistence of multiple black holes
in asymptotically euclidean static vacuum space-time,” General Relativity and Grav-
itation, vol. 19, pp. 147–154, Feb 1987.

[36] F. J. Ernst, “New formulation of the axially symmetric gravitational field problem,”
Phys. Rev., vol. 167, pp. 1175–1178, Mar 1968.

[37] B. Carter, “Axisymmetric black hole has only two degrees of freedom,” Phys. Rev.
Lett., vol. 26, pp. 331–333, Feb 1971.

[38] B. Carter, “Rigidity of a Black Hole,” Nature Physical Science, vol. 238, pp. 71–72,
July 1972.

[39] D. C. Robinson, “Uniqueness of the kerr black hole,” Phys. Rev. Lett., vol. 34, pp. 905–
906, Apr 1975.

[40] P. O. Mazur, “Proof of uniqueness of the Kerr-Newman black hole solution,” Journal
of Physics A Mathematical General, vol. 15, pp. 3173–3180, Oct. 1982.

[41] P. O. Mazur, “Black hole uniqueness from a hidden symmetry of Einstein’s gravity,”
General Relativity and Gravitation, vol. 16, pp. 211–215, Mar. 1984.

[42] G. L. Bunting, Proof of the Uniqueness Conjecture for Black Holes. PhD thesis,
Univ. of New England, Armidale, N.S.W, 1983.

[43] J. D. Bekenstein, “Transcendence of the law of baryon-number conservation in black-
hole physics,” Phys. Rev. Lett., vol. 28, pp. 452–455, Feb 1972.

[44] J. D. Bekenstein, “Nonexistence of baryon number for static black holes,” Phys. Rev.
D, vol. 5, pp. 1239–1246, Mar 1972.

[45] J. D. Bekenstein, “Nonexistence of baryon number for black holes. ii,” Phys. Rev. D,
vol. 5, pp. 2403–2412, May 1972.

[46] C. Teitelboim, “Nonmeasurability of the baryon number of a black-hole,” Lettere al
Nuovo Cimento (1971-1985), vol. 3, pp. 326–328, Feb 1972.

[47] C. Teitelboim, “Nonmeasurability of the lepton number of a black hole,” Lettere al
Nuovo Cimento (1971-1985), vol. 3, pp. 397–400, Mar 1972.

[48] J. B. Hartle, “Long-range neutrino forces exerted by kerr black holes,” Phys. Rev. D,
vol. 3, pp. 2938–2940, Jun 1971.

73



BIBLIOGRAPHY

[49] M. Heusler, S. Droz, and N. Straumann, “Linear stability of Einstein-Skyrme black
holes,” Physics Letters B, vol. 285, pp. 21–26, July 1992.

[50] G. Dvali and A. Gußmann, “Skyrmion black hole hair: Conservation of baryon num-
ber by black holes and observable manifestations,” Nuclear Physics B, vol. 913,
pp. 1001–1036, Dec. 2016.

[51] E. Witten, “Baryons in the 1n expansion,” Nuclear Physics B, vol. 160, no. 1, pp. 57
– 115, 1979.

[52] G. S. Adkins and C. R. Nappi, “The skyrme model with pion masses,” Nuclear Physics
B, vol. 233, no. 1, pp. 109 – 115, 1984.

[53] D. Núñez, H. Quevedo, and D. Sudarsky, “Black holes have no short hair,” Phys.
Rev. Lett., vol. 76, pp. 571–574, Jan 1996.

[54] S. Hod, “Hairy Black Holes and Null Circular Geodesics,” Phys. Rev., vol. D84,
p. 124030, 2011.

[55] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General
Theory of Relativity. New York, NY: Wiley, 1972.

[56] S. Chandrasekhar, The Mathematical Theory of Black Holes. International series of
monographs on physics, Oxford, 1983.

[57] C. A. R. Herdeiro and E. Radu, “Kerr black holes with scalar hair,” Phys. Rev. Lett.,
vol. 112, p. 221101, 2014.

[58] C. A. R. Herdeiro and E. Radu, “A new spin on black hole hair,” Int. J. Mod. Phys.,
vol. D23, no. 12, p. 1442014, 2014.

[59] C. Herdeiro and E. Radu, “Construction and physical properties of Kerr black holes
with scalar hair,” Class. Quant. Grav., vol. 32, no. 14, p. 144001, 2015.

[60] P. V. P. Cunha, C. A. R. Herdeiro, E. Radu, and H. F. Runarsson, “Shadows of Kerr
black holes with scalar hair,” Phys. Rev. Lett., vol. 115, no. 21, p. 211102, 2015.

[61] C. A. R. Herdeiro, E. Radu, and H. Rúnarsson, “Kerr black holes with self-interacting
scalar hair: hairier but not heavier,” Phys. Rev., vol. D92, no. 8, p. 084059, 2015.

[62] C. Herdeiro, E. Radu, and H. Runarsson, “Kerr black holes with Proca hair,” Class.
Quant. Grav., vol. 33, no. 15, p. 154001, 2016.

[63] P. V. P. Cunha, C. A. R. Herdeiro, E. Radu, and H. F. Runarsson, “Shadows of
Kerr black holes with and without scalar hair,” Int. J. Mod. Phys., vol. D25, no. 09,
p. 1641021, 2016.

[64] P. Schneider, J. Ehlers, and E. E. Falco, Gravitational Lenses. 1992.

[65] J. Wambsganss, “Gravitational Lensing in Astronomy,” Living Reviews in Relativity,
vol. 1, p. 12, Nov. 1998.

74



BIBLIOGRAPHY

[66] L. Ryder, Introduction to General Relativity. Cambridge University Press, 2009.

[67] N. Andersson and B. P. Jensen, “Scattering by black holes. Chapter 0.1,” pp. 1607–
1626, 2000.

[68] R. J. Nemiroff, “Visual distortions near a neutron star and black hole,” Am. J. Phys.,
vol. 61, p. 619, 1993.

[69] K. S. Virbhadra, D. Narasimha, and S. M. Chitre, “Role of the scalar field in gravi-
tational lensing,” Astron. Astrophys., vol. 337, pp. 1–8, 1998.

[70] J. A. H. Futterman, F. A. Handler, and R. A. Matzner, Scattering from Black Holes.
Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1988.

[71] R. Newton, Scattering Theory of Waves and Particles. Dover Books on Physics,
Dover Publications, 1982.

[72] R. A. Matzner, “Scattering of massless scalar waves by a schwarzschild “singularity”,”
Journal of Mathematical Physics, vol. 9, no. 1, pp. 163–170, 1968.

[73] P. L. Chrzanowski, R. A. Matzner, V. D. Sandberg, and M. P. Ryan, “Zero-mass plane
waves in nonzero gravitational backgrounds,” Phys. Rev. D, vol. 14, pp. 317–326, Jul
1976.

[74] D. R. Yennie, D. G. Ravenhall, and R. N. Wilson, “Phase-shift calculation of high-
energy electron scattering,” Phys. Rev., vol. 95, pp. 500–512, Jul 1954.

[75] K. Glampedakis and N. Andersson, “Scattering of scalar waves by rotating black
holes,” Class. Quant. Grav., vol. 18, pp. 1939–1966, 2001.

[76] J. Pryce, Numerical Solution of Sturm-Liouville Problems. Monographs on numerical
analysis, Clarendon Press, 1993.

[77] D. Zwillinger, Handbook of Differential Equations. Academic Press, 1997.

[78] R. A. Isaacson, “Gravitational radiation in the limit of high frequency. i. the linear
approximation and geometrical optics,” Phys. Rev., vol. 166, pp. 1263–1271, Feb
1968.

[79] F. A. Handler and R. A. Matzner, “Gravitational wave scattering,” Phys. Rev. D,
vol. 22, pp. 2331–2348, Nov 1980.

[80] R. A. Matzner, C. DeWitte-Morette, B. Nelson, and T.-R. Zhang, “Glory scattering
by black holes,” Phys. Rev. D, vol. 31, pp. 1869–1878, Apr 1985.

[81] N. Sánchez, “Elastic scattering of waves by a black hole,” Phys. Rev. D, vol. 18,
pp. 1798–1804, Sep 1978.

[82] P. Anninos, C. DeWitt-Morette, R. A. Matzner, P. Yioutas, and T. R. Zhang, “Or-
biting cross sections: Application to black hole scattering,” Phys. Rev. D, vol. 46,
pp. 4477–4494, Nov 1992.

75



BIBLIOGRAPHY

[83] K. W. Ford and J. A. Wheeler, “Semiclassical description of scattering,” Annals of
Physics, vol. 7, no. 3, pp. 259 – 286, 1959.

[84] T.-R. Zhang and C. DeWitt-Morette, “Wkb cross section for polarized glories of
massless waves in curved space-times,” Phys. Rev. Lett., vol. 52, pp. 2313–2316, Jun
1984.

[85] S. Dolan, C. Doran, and A. Lasenby, “Fermion scattering by a Schwarzschild black
hole,” Phys. Rev., vol. D74, p. 064005, 2006.

[86] E. Jung and D. K. Park, “Effect of scalar mass in the absorption and emission spectra
of Schwarzschild black hole,” Class. Quant. Grav., vol. 21, pp. 3717–3732, 2004.

[87] A. Gußmann, “Scattering of massless scalar waves by magnetically charged black
holes in Einstein–Yang–Mills–Higgs theory,” Class. Quant. Grav., vol. 34, no. 6,
p. 065007, 2017.

[88] V. Cardoso, A. S. Miranda, E. Berti, H. Witek, and V. T. Zanchin, “Geodesic stability,
lyapunov exponents, and quasinormal modes,” Phys. Rev. D, vol. 79, p. 064016, Mar
2009.

76



Statement of authorship

I hereby declare that I am the sole author of this master thesis and that I have not used
any sources other than those listed in the bibliography and identified as references.

Munich, May 18, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . .


	Front page
	List of Figures
	List of Tables
	Conventions and notation
	Introduction
	General description
	Outline

	Skyrmion Black Holes
	The Skyrme model
	Lagrangian and stability of static configurations
	Topological properties

	Coupling to Einstein gravity
	No-hair Theorems
	Einstein-Skyrme model
	Numerical approach
	Solution space


	Photon orbits
	General characteristics
	Geodesics
	Formulation
	Schwarzschild recap: Null geodesics
	Numerical results

	Skyrme black holes as Gravitational lenses
	Description
	Numerical results


	Scalar field scattering and absorption
	Probe field
	Lagrangian and DE
	Scattering theory
	Numerical approach
	Way 1
	Way 2
	Glory scattering


	Numerical results
	Massless case
	Effect of mass


	Conclusions
	Circular orbits in Skyrme black hole spacetime
	Bibliography

