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Abstract

In this thesis we study tree-level moduli stabilization via flux compactification of type IIB
string theory on Calabi-Yau 3-folds. At first, we review general facts about orientifolds
as well as various moduli fields and present eventually the complete Kähler potential. We
also investigate the 10d effective supergravity action and introduce the fluxes necessary for
moduli stabilization. Special emphasis is placed on geometric and non-geometric fluxes,
which finally lead us to a convenient expression for the full superpotential. Thereby we ob-
tain several scalar potentials for the moduli, showing interesting properties in their stable
non-supersymmetric flux minima. On the one hand, we come up with a concrete model
where all possible fluxes have been turned on, and on the other hand every scenario obeys
a novel flux-scaling behaviour. As all of our models keep one axionic modulus unstabi-
lized, in the end we are able to apply these concepts to the discussion of inflation in string
theory, more precisely to axion monodromy inflation. It turns out that some backreacted,
uplifted F-term scalar potentials interpolate between quadratic and Starobinsky-like in-
flation. The latter appears to belong no longer to single-field inflation, which motivates
further investigations of the inflationary trajectory.



viii Abstract



Chapter 1

Introduction

Why String Phenomenology?

As a matter of fact, modern high precision experiments are in astonishing agreement with
predictions derived from rather abstract and mathematical concepts of theoretical physics.
On the one hand, the standard model of particle physics (SM) embedded in the more
general framework of quantum field theory, is a successful theory to investigate small
length scales and in celebrated accordance with data from the CERN collaboration. On
the other hand, Einstein’s renowned general relativity (GR) determines the large scale
physics of our universe and gives rise to the standard model of cosmology. Nevertheless, so
far there is no ”Theory of Everything” incorporating the SM and GR. However, a proper
description of black holes or the big bang demands a full theory of quantum gravity, i.e.
a unification of quantum physics and gravity. Arguably the currently best candidate for
a quantized theory of gravity is given by string theory which is not just appealing due to
its totally new features in physics, but also because of its aesthetic formulation in various
branches of mathematics.

String theory is constructed quite differently from the SM in the sense that it is a top-
down approach. To be more precise, string theory is constructed as an ultraviolet (UV)
complete theory and people try to deduce an effective theory for lower energy scales. In
contrast, the SM is a theory at a relatively low energy scale (IR) and people try to enhance
it towards the UV. The basic idea of string theory is to take tiny open and closed strings as
fundamental objects sweeping out a 2d worldsheet. Mapping the worldsheet to a physical
target space, all particles arise from excitations of a string after quantization. A remark-
able feature is the natural appearance of a spin two particle identified with the graviton.
Apparently, String theory masters the idea of unification and represents a promising the-
ory in the direction of quantum gravity. However, there are even more striking properties
following from elementary assumptions in string theory. For instance, cancellation of Weyl
anomaly requires a certain number of dimensions, which turns out to be 10 if we take
supersymmetry into account. One finds five consistent superstring theories in 10d, all con-
nected by a web of string dualities. In this thesis we will focus on type IIB superstring
theory.
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Although the pure 10d string theory is conceptually already very attractive, it must
eventually be connected to particle physics and cosmology in 4d in order to be a relevant
theory for describing nature. This part of string theory research is known as string phe-
nomenology. Nowadays this is a fairly broad field of research since modern experiments
might be able to probe string theoretical predictions. Cosmic inflation, which will be in-
vestigated later on, seeks an embedding in an ultraviolet complete theory and hence is an
excellent opportunity for string phenomenology.

To get from 10d superstring theory to the 4d standard model, one obviously has to get
rid of the redundant 6d. This can be achieved by compactifying them on a so-called Calabi-
Yau manifold. In practice, the extra dimensions were made very small and ”rolled up”,
such that we perceive solely four large dimensions. A major issue in that procedure is the
unavoidable appearance of numerous massless scalar fields called moduli after any possible
string compactification. Moduli correspond to ”free parameters” of the compactification
as for example size and shape of the Calabi-Yau manifold. However, there exist various
reasons why moduli fields are unwanted in the 4d effective theory [1]: First, they would
lead to fifth forces, second, destroy successful predictions of Big Bang Nucleosynthesis and
third, change the gauge and Yukawa couplings. These problems can be solved by giving
the moduli a mass which is large enough to overcome conflicts with observational facts.
Generating a mass term for the a priori massless moduli is know as moduli stabilization and
a central task in string phenomenology. Thus we introduce background fluxes originating
from field strengths of the effective string action. We will show that fluxes generate a
scalar potential for moduli and thereby fix their vacuum expectation values (vev). Besides,
fluxes additionally induce new tadpoles via Chern-Simons terms and source terms in the
Einstein equation which can spoil the Calabi-Yau property. We will not consider those
issues in this thesis, instead let us face another important consequence of fluxes: they are
able to either preserve supersymmetry (susy) or break it spontaneously. Here, we focus on
supersymmetry breaking scenarios and as a characteristic result, susy breaking happens at
a high scale. Since the LHC experiment has not detected any evidence for supersymmetry
yet, high-scale susy breaking might indeed be a fact we have to accept.

String phenomenology does not only take care of embedding the 4d standard model
into the 10d string theory, but equally includes applications of string theory to cosmology.
In recent years there has been particularly much effort to find a stringy formulation of
cosmic inflation. Let us briefly explain why.

Why String Inflation?

In the last decades cosmological data improved enormously due to the WMAP and PLANCK
missions measuring the cosmic microwave background (CMB). One crucial outcome is the
fact that today’s large scale structures in the universe must have originated from primor-
dial quantum fluctuations stretched by an extremely rapid expansion of the universe. We
call this early epoch of accelerated expansion of the universe inflation. Aside of primordial
fluctuations, inflation solves further issues of standard cosmology, for instance the horizon
problem which creates causality inconsistencies.
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In physics, we approach inflation via a scalar inflaton field moving along a specific
potential. Usually, the inflaton traverses a so-called slow-rolling phase of the potential
where some of the inflaton’s large potential energy is converted into an energy source
driving the extremely rapid expansion of the universe. It is well-known that there exists a
huge number of scalar potentials enabling inflation and some experimental input is needed
to choose the one realized in nature.

In the beginning of 2014 BICEP2 [2] provided us with such an astonishing discovery by
publishing their observations of a large tensor-to-scalar ratio r ∼ 0.2. This was the initial
motivation for the project summarized in this thesis. Due to the Lyth bound [3]

∆φ

MPl

= O(1)

√
r

0.01
, (1.0.1)

a large value r ∼ 0.2 implies obviously ∆φ > Mpl which corresponds to the class of large-
field inflation. Note that ∆φ is the distance the inflaton φ moves between the creation of
the CMB and the end of inflation. In 2015 improved data from the PLANCK collaboration
[4–6] released a much smaller upper bound for the tensor-to-scalar ratio r < 0.113. Hence
large-field inflation became more unlikely, but let us stress that it is nevertheless not ruled
out! The fact which makes large-field inflation quite interesting for string theory is its high
sensitivity to Planck scale physics. Potentials of large-field inflation are hugely affected by
non-renormalizable interactions at a high scale and should therefore be handled via an UV
complete theory. Thus, it is an exceptional chance for string theory to embody large-field
inflation in a consistent way.

One popular method to exclude the dangerous non-renormalizable operators is to em-
ploy axions as inflaton field, whose shift symmetry prevents harmful UV contributions. In
string theory axions appear naturally during compactification. Hence people worked out
several scenarios of string inflation via axions and one quite intuitive possibility is natu-
ral inflation [7]. As a drawback, large-field natural inflation requires a large axion decay
constant which contradicts a controllable string compactification. We will instead consider
axion monodromy inflation which was developed in [8,9]. A more detailed derivation from
string theory is postponed to later sections. Axion monodromy can for instance be realized
via F-term potentials of the moduli scalar potential. This has the advantage that super-
symmetry is broken spontaneously by the very same effects which stabilizes the moduli.
To summarize, in this thesis we will realize inflation in the context of moduli stabilization
by using an axionic inflaton field, which is natural in string theory. As a remark, this con-
tinues the work of [10] by extending the discussion to Kähler moduli. A major challenge
of our string inflation scenarios is to guarantee a correct hierarchy of mass scales. One
can easily ensure an appropriate mass hierarchy for controlled moduli stabilization or for
a desirable single-field inflation model by choosing the above mentioned background fluxes
accordingly. However, a mass hierarchy suitable for both turns out to be rather tricky.
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Overview

The structure of this thesis can be roughly divided into three parts. First, we introduce
essential and necessary concepts of string theory, second we construct various models of
moduli stabilization and finally we present an application to axion monodromy inflation.

The string theoretical framework of moduli stabilization requires a concrete definition
of moduli fields, which is the core task of chapter 2. In string phenomenology one usually
works in a 4d effective N = 1 supersymmetric theory and thus we need to introduce
orientifold projections. Afterwards we will show how moduli arise as fluctuations of the
metric of the Calabi-Yau manifold on which we compactify the unwanted 6d. Variations
of the shape of the Calabi-Yau manifold will correspond to complex structure moduli,
while variations of the size are called Kähler moduli. A mathematical treatment in the
context of Kähler geometry is illustrated as well, and in the end of chapter 2 we present
a complete list of the involved moduli. Chapter 3 investigates the stabilization of moduli
fields by employing background fluxes. Having clarified the origin of fluxes, we will state
their quantization and the important connection to the Gukov-Vafa-Witten superpotential.
Then, T- and S- duality lead us to new fluxes with geometric and even non-geometric
characteristics. Chapter 3 ends with more comments on moduli stabilization, i.e. how
these fluxes generate a scalar potential for the moduli and give them a mass.

The second part of my thesis consists of chapter 4, where we accurately analyze different
models of moduli stabilization. The complexity of the models increases step by step as
we add more moduli and fluxes. In the end we examine a model including all possible
moduli and geometric plus non-geometric fluxes. A common feature is the appearance
of a non-supersymmetric minimum of the moduli scalar potential. Consequently, we are
able to avoid the no-go theorem by [11] and keep one modulus unfixed. If this modulus
is axionic, one might try to apply the model to axion monodromy inflation. Furthermore,
every scenario obeys a novel scaling behaviour with the fluxes, that is, the superpotential
determines the flux dependence of the moduli at their minima. The scaling property is
quite powerful and helps us to realize the correct mass hierarchy as demonstrated in the
last section of chapter 4.

Last but not least, we want to combine our moduli stabilization scenarios with inflation
in order to come back to our original motivation by BICEP2. This is the third part of my
thesis and covered in chapter 5. To shed more light on basic concepts of inflation, we will
begin with a general introduction and afterwards show an embedding into string theory
via axion monodromy. In the very last section we investigate one particular scenario of
chapter 4 and check whether one can realize single-field F-term axion monodromy inflation
and moduli stabilization simultaneously in a controlled way.

The results of this thesis are based on the recent paper:

”A Flux-Scaling Scenario for High-Scale Moduli Stabilization in String Theory”
by R. Blumenhagen, A. Font, M. Fuchs, D. Herschmann, E. Plauschinn, Y.
Sekiguchi, F. Wolf,
published in Nucl. Phys. B897, 500(2015), arXiv:1503.07634 hep-th.



Chapter 2

Type IIB Orientifold
Compactification on Calabi-Yau
3-folds

This introductory chapter defines the theoretical framework of my thesis. At first we discuss
orientifold projections to obtain a suitable effective theory in 4d after compactification on
a Calabi-Yau manifold. Compactification allows for certain fluctuations identified with
massless moduli fields in 4d. The goal of this chapter is to clarify the origin of moduli and
shed some light on a mathematical embedding in special Kähler geometry by deriving an
explicit Kähler potential.

2.1 Orientifold Planes and D-Branes

Let us begin with type IIB superstring theory, which is described in 10d and contains
exclusively closed strings. The massless spectrum can be found by imposing the so-called
level matching constraint and same GSO projection for left- and right-movers on the closed
string. Its bosonic fields are a scalar dilaton φ, an anti-symmetric 2-form B2 and a traceless
symmetric graviton g in the NS-NS sector as well as a 0-form axion C0, a 2-form C2 and a
4-form C4 in the R-R sector. Spacetime fermions emerge from the NS-R and R-NS sector.
A more detailed explanation can be found in the standard literature on string theory, see
for instance [12,13].

Moreover, the low energy effective theory of type IIB superstring theory corresponds
to 10d type IIB supergravity equipped with 32 supercharges. Eventually string theory
ought to give a complete description of nature which appears to be 4d Minkowski space
R1,3. Therefore we have to compactify the 10d string theory on a 6d manifold M partly
preserving supersymmetry. It turns out that this can be realized on a so-called Calabi-Yau
3-fold which is defined as follows:

Definition: A Calabi-Yau n-fold is a 2n (real) dimensional compact Kähler manifold
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with vanishing first Chern class.

As proposed by E. Calabi and proven by S.T. Yau, a vanishing first Chern class of a com-
pact Kähler manifold is equivalent to the existence of a Ricci flat Kähler metric and holon-
omy group SU(n). The topological structure of a Calabi-Yau manifold is fully encoded
in terms of Dolbeault cohomology groups Hp,q and their dimensions hp,q = dimC(Hp,q),
called Hodge numbers. These are usually arranged in Hodge diamonds which are obliged
to satisfy the following properties in the case of Calabi-Yau manifolds:

• hn,0 = 1 and hp,0 = 0 for 0 < p < n

• complex conjugation hp,q = hq,p

• Hodge-∗ duality hp,q = hn−q,n−p

For a Calabi-Yau 3-fold there remain solely the two non-trivial Hodge numbers h1,1 and
h1,2. As a comment, let us remark that for a Calabi-Yau 3-fold M there exists a mirror
manifold M̂ with h1,1 and h1,2 interchanged. It is essential for our work to mention that
every Calabi-Yau 3-fold is endowed with

• a unique nowhere vanishing holomorphic (3,0)-form Ω3

• a closed Kähler (1,1)-form J .

After compactification we are left with a N = 2 supersymmetric theory in 4d with 8
supercharges. However, this is too much supersymmetry! Realistic 4d models of particle
physics, for instance the MSSM, are based onN = 1 supersymmetry which finally has to be
(softly) broken entirely. Hence for phenomenological reasons the standard compactification
scheme on Calabi-Yau 3-folds requests new ingredients. This can be achieved via orientifold
compactification, which we will introduce in the following.

Orientifold Theory

Following [1, 14–16] and especially [17], we can constuct a new string theory by modding
out the worldsheet parity ΩP , i.e. we keep only states that are invariant under exchange
of left- and right-movers. One then obtains an unoriented theory which is usually named
orientifold theory and defined by the full orientifold projection, which we derive next.

In the case of type IIB string theory, we introduce in addition to Ωp a geometric
symmetry operator σ acting holomorphically on the internal manifold M. σ does not
change the Kähler form J , but its action on the holomorphic (3, 0)-form Ω3 of the Calabi-
Yau 3-fold is not fixed yet. Denoting the action of σ on differential forms by its pull-back
σ∗, throughout this thesis we will use the choice:

σ∗ : J → J, σ∗ : Ω3 → −Ω3. (2.1.1)
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Lastly, an operator (−1)FL with the left-moving fermion number FL is necessary for the
orientifold action to square to the identity operator. Thus the full orientifold projection
reads

ΩP (−1)FLσ. (2.1.2)

It can be shown that this projection indeed truncates the massless spectrum and modifies
the couplings, such that the low energy effective theory becomes N = 1 supergravity which
motivated the introduction of orientifolds.

For later usage let us briefly explain how the 10d bosonic fields of type IIB string theory
transform under the orientifold action. Under the worldsheet parity ΩP the fields φ, g and
C2 are even, whereas B2, C0 and C4 are odd according to [17]. The left-moving fermion
operator (−1)FL leaves apparently all NS-NS fields φ, g and B2 invariant, but produces
a minus for the R-R fields C0, C2 and C4. To summarize, we end up with the following
transformation of the bosonic fields:

ΩP(−1)FL =

{
g, φ, C0, C4 even ,

B2, C2 odd .
(2.1.3)

The involution σ leaves the 4d Minkowski spacetime unchanged and acts only on the
Calabi-Yau manifoldM. Its action on the bosonic fields is easily derived as the fields have
to be invariant under the full orientifold projection (2.1.2).

Next, consider points of the full 10d spacetime fixed under the internal symmetry σ.
These points define the orientifold planes or Op-planes where p denotes the number of
spatial dimensions. Op-planes wrap a compact (p − 3)-cycle on the Calabi-Yau manifold
M and cover the 4d Minkowski spacetime.

As σ must be an involution (i.e. σ2 = id) [16], all orientifold planes in type IIB are
even dimensional (including the time direction) and hence non but O3-, O5-, O7- and O9-
planes are possible. Choosing z1, z2 and z3 to be complex coordinates of the Calabi-Yau
manifoldM, one can always write Ω3 ∼ dz1 ∧ dz2 ∧ dz3. Recalling that σ acts only on the
Calabi-Yau manifold, our choice σ∗Ω3 = −Ω3 implies then that the internal part of the
orientifold plane is either a point or a surface of complex dimension two. Together with
the 4d Minkowski spacetime, the orientifold planes in our type IIB setting are therefore
O3- and O7-planes.

A general fact of orientifold planes is that they carry (negative) RR-charge correspond-
ing to 1-point vertices of spacetime fields in the closed string sector; consider the disk
diagrams in figure 2.1 from [14]. Diagrams of that kind are usually called tadpoles. In
accordance with Gauss’ law, flux lines of RR p-forms cannot escape on a compact mani-
fold and thus RR-charge must in total add up to zero. This initiates tadpole cancellation
conditions which are of great importance, but will not be investigated in detail in this
thesis.
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(a)

C10

(b)

C10

Figure 2.1: (a) Disk diagram leading to a tadpole for the R-R 10-form C10 in theories with
a 10d Poincaré invariant sector of open strings. (b) Crosscap diagram leading to a tadpole
for the R-R 10-form C10 in 10d Poincaré invariant unoriented theories.

D-Branes

The easiest way to cancel the RR-tadpoles from the orientifold planes is introducing Dp-
branes, where again p stands for the number of spatial dimensions, since they are sources
of (positive) RR-charges. It turns out that O3- and O7-planes require D3- and D7-branes
in order to fulfill the tadpole cancellation conditions. Note that D3- and D7-branes also
preserve 4d N = 1 supersymmetry and are consequently not in conflict with the original
motivation for orientifold planes. Having Dp-branes with p 6= 3, 7 is in general allowed,
however, we are not going to take this situation into account.

Dp-branes must span Minkowski spacetime because of 4d Poincaré invariance. D3-
branes are point-like regarding the compact Calabi-Yau manifold. More exciting, the
preservation of supersymmetry forces the D7-branes to wrap a homological 4-cycle which
can be different from the cycle wrapped by the O7-plane. Consider [18–20] for further
information related to our setup.

2.2 Moduli Space and Special Geometry

The appearance of numerous moduli fields is a characteristic feature of string theory and the
issue of stabilizing them one of the core tasks in string phenomenology. Generally speaking,
moduli occur as free continuous parameters which in the case of string theory distinguish
possible string backgrounds. We start by emphasizing that Calabi-Yau manifolds with
certain Hodge numbers are not unique at all, since they may still vary in size and shape.
This is embodied in the discussion of Kähler and complex structure moduli and will be
presented next.

Given a Ricci-flat metric gµν of a Calabi-Yau manifold M, it is natural to question
which infinitesimal deformations δgµν do not spoil the Calabi-Yau conditions, cf. [13]:

Rµν(g + δg) = 0 =⇒ ∇ρ∇ρδgµν + 2R ρ σ
µ ν δgρσ = 0 . (2.2.1)

The final equation is also known as Lichnerowicz equation and constitutes all possible de-
formations of the metric preserving the Calabi-Yau property. Using the Riemann tensor on
Kähler manifolds, it can be shown that there are two different types of solutions satisfying
Lichnerowicz’s equation separately: on the one hand, we have mixed components gī and
on the other hand, those of pure type gij. These deformations are called moduli. gī, gij



2.2 Moduli Space and Special Geometry 9

correspond to Kähler and complex structure moduli, respectively, as explained below. It
is remarkable that the moduli space of a Calabi-Yau manifold splits locally into the direct
product:

moduli space of M = Kähler moduli ⊗ complex structure moduli

For further investigation of the precise structure of these moduli spaces we at first review
some concepts of special Kähler geometry. We refer to [21,22] and in particular to [23] for
details.

Special Kähler Geometry

Recall that a Hermitian metric is a covariant tensor field of the form ds2 = 2
∑n

i,j=1 gī(z)dzi⊗
dz̄j with gjı̄(z) = gī(z) and gī(z) being positive definite1. One can always associate to
such a Hermitian metric a real fundamental (1,1)-form J = i

∑n
i,j=1 gī(z)dzi ∧ dz̄j. If the

(1,1)-form J is closed, that is dJ = 0, it is called Kähler form and its associated Hermitian
metric g Kähler metric. This gives rise to the following definition:

Definition: A Kähler manifold is a complex manifold equipped with a Kähler metric.

The existence of a Kähler form J has already been stressed to be a crucial property of
Calabi-Yau manifolds, which are Kähler manifolds by definition.

Spelling out the closure condition of J , we immediately find

∂igjk̄ = ∂jgik̄, ∂̄igjk̄ = ∂̄kgjı̄ , (2.2.2)

which motivates the local existence of a real Kähler potential K = K(z, z):

gī = ∂i∂̄jK or J = i∂∂̄K . (2.2.3)

The Kähler potential is hugely important throughout this thesis as it is necessary to de-
termine the manifold we are compactifying on.

By adding some extra structure on Kähler manifolds, we finally arrive at special (Kähler)
geometry. Such extra structure basically boils down to independent holomorphic functions
XI(z) and a holomorphic prepotential F (X) which fix the Kähler potential on the moduli
space in a uniform manner.

We explained above that 10d type IIB superstring theory resembles effectively 10d type
IIB supergravity and its compactification on a Calabi-Yau 3-fold generates a 4d theory
with N = 2 supersymmetry. If the N = 2 vector multiplet in 4d is seen to be a N = 1
vectormultiplet plus a N = 1 chiral scalar multiplet, the chiral superfields can be regarded
as coordinates of a manifold which then is in fact Kähler. According to [24–26] this is not
just a Kähler manifold, instead it turns out that N = 2 supersymmetric theories exhibit
even special Kähler geometry.

1Positive definite means that zigīz̄
̄ ≥ 0 ∀{zi} ∈ C and equality holds if and only if all zi = 0.
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There are two distinct special geometries:

rigid special geometry ←→ N = 2 global supersymmetry

local special geometry ←→ N = 2 local supersymmetry (supergravity) .
(2.2.4)

Since compactification of type IIB string theory on a Calabi-Yau manifold leads to moduli
integrated in a 4d N = 2 supergravity theory, it is natural to assume that local special
geometry accounts for the moduli spaces of Calabi-Yau manifolds. Before illustrating this
relation in the next sections, there is a crucial remark we want to point out:

Orientifold compactifications lead to 4d N = 1 (not N = 2) supersymmetric theories
and hence special geometry is not applicable at a first glance! This issue will be addressed
later on in section 2.2.3.

2.2.1 Complex Structure Moduli

Above we defined moduli fields to be the solutions of the Lichnerowicz equation (2.2.1).
Let us start with deformations of pure type δgı̄̄ which are no longer Hermitian as the
indices are not mixed. However, the deformed metric ought to be Hermitian in order to
be Kähler. Hence a non-holomorphic transformation must remove δgı̄̄, i.e. we need a new
choice of complex coordinates implying a new complex structure. For this reason, δgı̄̄ are
declared to be complex structure deformations.

Employing the holomorphic (3,0)-form Ω3, one associates a complex (2,1)-form to δgı̄̄

Ωijkg
kl̄δgl̄m̄ dzi ∧ dzj ∧ dz̄m̄ . (2.2.5)

This form is actually harmonic if and only if δgı̄̄ satisfies the Lichnerowicz equation (2.2.1).
Therefore, zero modes of the Lichnerowicz equation related to δgı̄̄ are in 1-to-1 correspon-
dence with elements2 of H2,1.

Consider a basis eaijm̄, with a = 1, . . . , h2,1, of harmonic (2,1)-forms and expand the
complex structure deformations

Ωijkg
kl̄δgl̄m̄ =

h2,1∑
a=1

Uaeaijm̄. (2.2.6)

Later on we will refer to the complex parameters Ua, a = 1, . . . , h2,1, as complex structure
moduli.

To gain more insight into the complex structure moduli space, we parametrise it by wa

with a = 1, . . . , h2,1 and redefine the harmonic (2,1)-forms on the Calabi-Yau manifoldM

χa =
1

2
(χa)ijk̄ dz

i ∧ dzj ∧ dz̄k̄, (χa)ijk̄ = −1

2
Ω l̄
ij

∂gl̄k̄
∂wa

(2.2.7)

2By Hodge’ theorem Hp,q is isomorphic to the space of harmonic (p, q)-forms.
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with the inverse

δgl̄k̄ = − 1

||Ω||2
Ω
ij

l̄(χa)ijk̄δw
a, ||Ω||2 =

1

3!
ΩijkΩ

ijk
. (2.2.8)

Next, one has to plug this into the general ansatz for the metric of the Calabi-Yau moduli
space which is known as Weil-Petersson metric:

ds2 =
1

2V

∫
M
dV gigkl δgikδgl (2.2.9)

where V is the volume of the Calabi-Yau manifold, which we will explain more precisely
later on. If we want the line element to be of the form ds2 = 2Gab̄δw

aδwb, one can show
that the metric of the complex structure moduli space is given by

Gab̄ = −
∫
χa ∧ χ̄b̄∫
Ω3 ∧ Ω3

. (2.2.10)

It turns out that this metric is indeed Kähler and the corresponding Kähler potential for
complex structure moduli can be determined to be

KU i = − ln

(
i

∫
M

Ω3 ∧ Ω3

)
. (2.2.11)

The subindex U i will become clear in equation (2.2.15). At this point, it is appropriate to
relate the discussion at hand to the context of special geometry.

We begin with introducing a basis of 3-cycles {AΛ, BΣ} for H3 of the Calabi-Yau 3-fold
M where Λ,Σ = 0, . . . , h2,1. This basis can be chosen such that the intersection numbers
are

AΛ
⋂

BΣ = −BΣ

⋂
AΛ = δΛ

Σ, AΛ
⋂

AΣ = BΛ

⋂
BΣ = 0. (2.2.12)

Since the Calabi-Yau 3-fold M has real dimension 6, the Poincaré dual space of H3 is of
the similar form H3. The dual cohomology basis denoted by the real 3-forms {αΛ, β

Σ},
where again Λ,Σ = 0, . . . , h2,1, obeys the following relations∫

AΣ

αΛ =

∫
M
αΛ ∧ βΣ = δ Σ

Λ ,

∫
BΣ

βΛ =

∫
M
βΛ ∧ αΣ = −δΛ

Σ,∫
AΛ

βΣ =

∫
BΛ

αΣ = 0.

(2.2.13)

Moreover, we define the so-called periods of the holomorphic 3-form Ω3:

XΛ =

∫
AΛ

Ω3 =

∫
M

Ω3 ∧ βΛ, FΛ =

∫
BΛ

Ω3 =

∫
M

Ω3 ∧ αΛ. (2.2.14)

One might suggest to take XΛ as coordinates of the h2,1-dimensional space of complex
structure deformations. But they span a (h2,1 + 1)-dimensional space and hence, form an
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over-complete basis. So, we redefine the coordinates of the complex structure moduli space
to be

U i = vi + iui ≡ −iX
i

X0
, i = 1, . . . , h2,1 , (2.2.15)

where U i are again the complex structure moduli. Comparing equations (2.2.13) and
(2.2.14), one can easily read off an useful expression for the holomorphic (3,0)-form

Ω3 = XΛαΛ − FΛβ
Λ . (2.2.16)

Then, we can rewrite the Kähler potential for the complex structure moduli by plugging
expression (2.2.16) into definition (2.2.11)

KU i = − ln

(
i

∫
M

Ω3 ∧ Ω3

)
= − ln

[
−i
(
XΛF̄Λ − X̄ΛFΛ

)]
. (2.2.17)

It is quite remarkable that there exists a prepotential F (XΛ), which is homogeneous of
degree two, that fulfills the following relation

FΛ =
∂

∂XΛ
F (2.2.18)

where XΛ and FΛ are the periods defined above. Thus, all we need to describe the holo-
morphic (3, 0)-form Ω3 and the Kähler potential KU i are the complex structure moduli
U i and the prepotential F ! For this reason local special geometry provides a very useful
framework to investigate the complex structure moduli space.

Since the prepotential F is homogeneous of degree two, it makes sense to assume the
general ansatz

F = − 1

3!
κijk

X iXjXk

X0
+

1

2
aijX

iXj + biX
iX0 +

i

2
γ(X0)2 (2.2.19)

which does not incorporate non-perturbative contributions. The constants κijk are sym-
metric in their indices and will be defined later in equation (2.2.24).

In this thesis we always work in the so-called large complex structure limit Re U i � 1,
where the prepotential takes the simple form3

F = − 1

3!
κijk

X iXjXk

X0
, i = 1, . . . , h2,1 . (2.2.20)

3The other terms in the prepotential (2.2.19) are not sub-leading, but their effects in the superpotential
can be absorbed in the fluxes.
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2.2.2 Kähler Moduli

Similarly to the complex structure moduli, let us consider the metric deformations δgī of
mixed type. They can obviously be viewed as components of a (1,1)-form and thus these
variations lead to a cohomological non-trivial change of the Kähler (1,1)-form J . As a
consequence, δgī correspond to deformations of the Kähler structure.

To be more precise, for the (1, 1)- and (2, 2)-cohomologies of M we introduce bases of
the form

{ωA} ∈ H1,1(M) ,

{ω̃A} ∈ H2,2(M) .
A = 1, . . . , h1,1 , (2.2.21)

For later convenience we define in addition {ωA} = {1, ωA} and {ω̃A} = {dvol6, ω̃
A}, where

A = 0, . . . , h1,1, such that ∫
M
ωA ∧ ω̃B = δA

B . (2.2.22)

Employing this basis, we define the complex Kähler moduli Tα by the following expansion
of the (1,1)-form:

(iδgī + δBī) dz
i ∧ dz̄ ̄ = i

h1,1∑
A=1

TAωA . (2.2.23)

The contribution δBī has its origin in internal components of the antisymmetric NS-NS
2-form4 B2. The real part τA of the Kähler moduli TA belongs to the deformations δgī
of the Kähler structure. Equation (2.2.23) is often called complexification of the Kähler
cone5, which is the subspace of Rh1,1

spanned by the τA.
Furthermore the overall volume V of the Calabi-Yau manifold M is typically defined

as

V =
1

3!

∫
M
J ∧ J ∧ J =

1

3!
κABCt

AtBtC with κABC =

∫
M
ωA ∧ ωB ∧ ωC. (2.2.24)

The parameters κijk are triple intersection numbers and J = tAωA the Kähler form ex-
panded in 2-cycle volumina tA (compare to equation (2.2.29)).

There is an interesting connection between the real parts τA of the Kähler moduli TA
and the tα in the expansion of the Kähler form J (2.2.29):

τA =
1

2

∫
γA

J ∧ J =
1

2
κAjkt

jtk =
∂V
∂tA

(2.2.25)

4In the gauge d∗B2 = 0, the equation of motion reads ∆B2 = 0. Thus the solutions correspond to
harmonic 2-forms on the Calabi-Yau manifold.

5The Kähler form J associated with the metric involves certain conditions guaranteeing positive def-
initeness of the deformed metric. If J fulfills these conditions, then λJ ∀λ ∈ R+ do so either. For this
reason it is a cone.
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where we integrated over a 4-cycle γA ∈ H4. That is why τi are basically 4-cycle volumina,
which in turn suggests to imagine Kähler moduli as fluctuations of the size of the Calabi-
Yau manifold we are compactifying on.

Finally, we want to consider the metric of the Kähler moduli space. Although we
will not present a derivation here, it can be computed putting (1,1)-forms into the Weil-
Petersson metric ansatz and rewriting it in terms of the Kähler form J as well as the bases
introduced above. Applying then equation (2.2.3), we obtain the Kähler potential for the
Kähler moduli

KTA = −2 lnV . (2.2.26)

It is worth mentioning that alike the complex structure case, there exist also complex
coordinates X0 = 1, XΛ = ti and a holomorphic prepotential F (XΛ), such that

KTA = − ln
[
−i
(
XΛF̄Λ − X̄ΛFΛ

)]
. (2.2.27)

Concluding, the moduli space of Kähler deformations of the Calabi-Yau manifold is again
encapsulated by local special Kähler geometry. However, this statement is not true if we
include orientifolds!

2.2.3 Axio-Dilaton, G-Moduli and the Full Kähler Potential

A phenomenologically reasonable string compactification must end up in a 4d theory en-
dowed with N = 1 supersymmetry. In section 2.1 we demonstrated how this goal can be
achieved via orientifold planes. But N = 1 supersymmetry makes in turn the application
of special geometry questionable. In fact, a more involved analysis is needed to understand
the structure of the moduli space.

We start with compactifying the massless string spectrum on a Calabi-Yau 3-fold in-
cluding orientifolds. The holomorphic involution σ (2.1.1) splits the cohomology groups
Hp,q into even eigenspace Hp,q

+ as well as an odd eigenspace Hp,q
− :

Hp,q(M) = Hp,q
+ (M)⊕Hp,q

− (M) , hp,q = hp,q+ + hp,q− . (2.2.28)

Recalling earlier definitions of ωA, ω̃A, χa, αΛ and βΣ, all non-trivial cohomologies and
their bases are summarized in table 2.1.6.

Note that the volume form dvol6 is invariant under the action of σ because it is pro-
portional to Ω3 ∧ Ω3 and Ω3 transforms according to equation (2.1.1).

Moreover, the Kähler form J is not affected by the involution σ, cf. equation (2.1.1),
hence odd Kähler deformations are projected out and one can expand J in the basis of
H

(1,1)
+

J = tαωα, α = 1, . . . , h1,1
+ . (2.2.29)

6In order to determine the dimensions of the bases for H3
+ and H3

−, one should notice that the action

of σ on Ω3 implies h3,0
+ = h0,3

+ = 0 and h3,0
− = h0,3

− = 1.
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cohomology group dimension basis

H1,1
+ H1,1

− h1,1
+ h1,1

− ωα ωa

H2,2
+ H2,2

− h1,1
+ h1,1

− ω̃α ω̃a

H2,1
+ H2,1

− h2,1
+ h2,1

− χλ̂ χλ

H3
+ H3

− h2,1
+ h2,1

− + 1 {αλ̂, βλ̂} {αλ, βλ}

Table 2.1: Cohomology groups and their basis elements from [17].

As all fields must survive the full orientifold projection (2.1.2), B2, C2 transform odd under
the action of the involution σ and C4 even as implied by equation (2.1.3). Therefore the
internal components of these fields are given by

B2 = baωa, C2 = caωa, a = 1, . . . , h1,1
−

C4 = ραω̃
α, α = 1, . . . , h1,1

+

(2.2.30)

where ba, ca and ρα are real scalar fields forming together with tα two chiral multiplets
(ba, ca) and (tα, ρα).

Having encountered the truncated massless spectrum of the orientifold compactification,
we are now able to return to the discussion of the moduli space. Deformations of the 10d
metric with respect to the Calabi-Yau conditions correspond to moduli fields, i.e. scalar
fields in 4d. The correct metric is actually obtained by a Kaluza-Klein reduction of the
10d low-energy effective supergravity action using the field content we just revealed. For
details of this rather elaborate computation we refer to the literature [17, 27]. The metric
derived from Kaluza-Klein reduction is nevertheless not obviously Kähler. Therefore we
have to find good Kähler coordinates on the space of scalar moduli fields in 4d.

At first we define the so-called axio-dilaton

S = e−φ − iC0 := s+ ic (2.2.31)

with the dilaton φ and R-R 0-form axion C0. Then we introduce G-moduli according to [17]
as a combination of ba and ca

Ga = Sba + ica := ψa + iηa (2.2.32)

and redefine the Kähler moduli as follows

Tα =
1

2
καβγt

βtγ + i

(
ρα −

1

2
καabc

abb
)
− 1

4
eφκαabG

a(G+G)b. (2.2.33)

Note that the intersection numbers κijk given in (2.2.24) are invariant under the holomor-
phic involution σ.

The complex structure moduli U i from equation (2.2.15) appear to be already good
Kähler coordinates.
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To summarize, the full moduli spaceMmod of N = 1 Calabi-Yau orientifold compacti-
fications is again a direct product Mmod =Mcs ×Mrest of the complex structure moduli
space Mcs and the space Mrest of the remaining moduli. Both factors are Kähler man-
ifolds and Mcs is even a special Kähler manifold. Thus the difference to the 4d N = 2
supersymmetric theories is the fact that Mrest is not described by special geometry, so
there is no prepotential for the Kähler moduli.

All of this depends heavily on the specific orientifold planes which are in our case
O3/O7-planes! If one usesO5/O9-planes instead, the truncated spectrum and consequently
the moduli fields will look completely different.

Let us now figure out how the Kähler potential reads in terms of the new good Kähler
coordinates. Apparently, the part of the Kähler potential sourced by the complex structure
moduli stays the same as there was no redefinition of the complex structure moduli. We
restrict our calculation to one Kähler modulus T as well as one axionic-odd modulus G for
simplicity. Next, consider the part arising from the volume of the Calabi-Yau manifold, see
equation (2.2.26), and plug in the new expression for the 2-cycle volume tα from definition
(2.2.33):

(t)2 =
(
T + T

)
+

1

8
eφκ

(
G+G

)2

⇒ KTα = −2 lnV = −2 ln
(
t3
)

= −3 ln

(
(T + T ) +

κ

4 (S + S)
(G+G)2

)
,

(2.2.34)

where we have set for convenience κ := 2καab for α = a = b = 1.
It remains to identify the Kähler potential for the axio-dilaton modulus S. Guided

by [14], the kinetic part of the 4d effective action is found to be of the form
∫
d4x ∂S ∂̄S̄

2(Re(S))2 .

In standard supergravity formalism this term is supposed to be KSS̄ ∂S∂S̄, where Kī is
the inverse of Kī = ∂i∂̄K in compliance with equation (2.2.3). Thereby, it is simple to
deduce the Kähler potential for the axio-dilaton:

KS = − ln(S + S). (2.2.35)
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number modulus name

1 S = e−φ − iC0 axio-dilaton

h2,1
− U i = vi + iui complex structure

h1,1
+ Tα = τα + iρα + . . . Kähler

h1,1
− Ga= Sba + ica axionic odd

Table 2.2: Moduli in type IIB orientifold compactifications from [18].

Summary

At the end of this chapter we briefly want to put the most important results together.
In order to acquire a phenomenologically attractive N = 1 supersymmetric theory in 4d
after compactifying type IIB string theory on Calabi-Yau manifolds, we introduced O3-
and O7-planes. The associated orientifold projection restricted the structure of the moduli
space, such that it is eventually described by the moduli fields collected in table 2.2.

The convention of the real part of the moduli was chosen such that for all moduli holds

Modulus = Saxion + i · Axion. (2.2.36)

Let us postpone the justification for speaking of axions and saxions to section 5.2. More-
over, adding up equations (2.2.17), (2.2.34) and (2.2.35), the full Kähler potential (for
h1,1

+ = h1,1
− = 1) is given by

K = − ln

(
i

∫
M

Ω3 ∧ Ω3

)
− ln(S + S)− 2 lnV

= − ln
[
−i
(
XΛF̄Λ − X̄ΛFΛ

)]
− ln(S + S)− 3 ln

(
(T + T ) +

κ

4 (S + S)
(G+G)2

)
.

(2.2.37)

F is the prepotential 2.2.19 since the complex structure part of the Kähler potential can
be expressed via special geometry.
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Chapter 3

Fluxes and Moduli Stabilization

Having explained the concept of moduli, let us now discuss the idea of moduli stabilization
and how to make the moduli massive. Hence, we introduce background fluxes that generate
a scalar potential containing a mass term for the moduli. Compactifications including field
strength fluxes or their generalizations are known as flux compactifications. Fluxes obey
a useful quantization condition and can be described via the famous Gukov-Vafa-Witten
superpotential. Employing T- and S-duality leads to even more fluxes which have an
interesting geometric or non-geometric interpretation. In the end of this chapter, we will
comment more on the scalar potential and the different properties of its flux minima.
Finally we state the precise objective in our moduli stabilization models and explain the
difference to other scenarios which involve perturbative and non-perturbative corrections.

3.1 10d Effective Supergravity Action and 3-form Fluxes

Recalling the bosonic field content of type IIB string theory as listed in section 2.1, the
10d low-energy effective type IIB supergravity action reads [12,13]

SIIB =
1

2κ2
10

∫
d10x

√
−g
(
R− ∂MS∂

M S̄

2 (Re(S))2 −
1

2

|G3|2

Re(S)
− 1

4
|F̃5|2

)
+

1

2κ2
10

∫
1

4i Re(S)
C4 ∧G3 ∧ Ḡ3 + Slocal .

(3.1.1)

Here we are working in Einstein frame, thus we have redefined the 10d metric g̃MN in string
frame with help of the dilaton φ

gMN = e−
φ
2 g̃MN . (3.1.2)

The second integral is arising from Chern-Simons interactions and the last part Slocal

contains local source terms of 10d supergravity fields present in the compactification, e.g.
D3-branes or O3-planes [14].
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Moreover, recall our definition (2.2.31) of the axio-dilaton S and the gravitational
coupling 2κ2

10 = (2π)7(α′)4 with the fundamental string tension 1/(2πα′). R is the 10d
Ricci curvature scalar.

The field strengths Fp+1 = dCp are combined with the NS-NS 2-form B2, cf. [13]:

F1 = dC0, F̃3 = dC2 − C0 dB2,

F̃5 = dC4 −
1

2
C2 ∧ dB2 +

1

2
B2 ∧ dC2.

(3.1.3)

Note also that we have employed the notation |Fp|2 = 1
p!
FM1...MpF

M1...Mp and imposed the

important self-duality constraint1 F̃5 = ∗10F̃5 in type IIB by hand.
Our next task is to clarify the origin of G3 in the effective action (3.1.1). At this point

it is suitable to introduce fluxes:

Definition: A field strength with non-trivial vacuum expectation value is called back-
ground flux.

In the end we will deal with several fluxes showing quite different features, but let us
begin with the NS-NS 3-form flux H = 〈dB2〉 and the R-R 3-form flux F = 〈dC2〉. These
two fluxes are usually joined together to

G3 = F− iSH. (3.1.5)

By turning on fluxes, i.e. choosing F and H unequal to zero, a mass term for the mod-
uli fields can be generated. This procedure belongs to moduli stabilization and will be
discussed later on. Useful references for flux compactification and moduli stabilization
are [15, 28].

We want to remark that there is alternatively a so-called democratic formulation of the
type IIB supergravity action (3.1.1). This approach includes for every Cp form a C8−p dual
form and hence treats electric and magnetic branes on equal footing. Even though this
formulation is convenient for flux compactification, we refer the reader to the literature,
e.g. [29].

3.1.1 Quantization of Fluxes

An important property of fluxes is the fact that they are quantized and their charges satisfy
a Dirac quantization condition. This can be proven as follows [14]:

Start with a q-cycle Σq containing a trivial (q − 1)-cyclce Πq−1 as depicted in figure
3.1. Πq−1 splits the q-cycle Σq in the two parts Σ+ as well as Σ−, obeying the conditions

1∗10 denotes the 10d Hodge-star operator. It is useful to know the symmetric inner product∫
M
Fp ∧ ∗10Fp =

1

p!

∫
M
d10x

√
−gFµ1...µpF

µ1...µp ≡
∫
M
d10x |Fp|2 . (3.1.4)
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Σq

Σ+

Σ−

Πq−1

Figure 3.1: Dirac quantization of fluxes from the appendix of [14]

∂ Σ+ = ∂ Σ− = Πq−1 and Σ+ − Σ− = Σq where the latter minus sign is caused by the
orientation flip to glue both pieces.

Now consider a (q − 2)-brane2 electrically charged under Cq−1 and sweeping out a
(q− 1)-dimensional space Wq−1 as it evolves in time. Then its electric coupling is given by

Selectric = Qe

∫
Wq−1

Cq−1 (3.1.6)

with the electric charge Qe. If such a (q − 2)-brane wraps the (q − 1)-cycle of figure 3.1,
the quantum amplitude of this process yields

exp

(
iQe

∫
Σq−1

Cq−1

)
= exp

(
iQe

∫
Σ±

Fq

)
. (3.1.7)

Equality holds due to Stokes theorem with the flux Fq = dCq−1 and consequently dFq = 0.
However, there is an ambiguity in this expression as the two parts Σ+ and Σ− can differ
by a phase:

Qe

(∫
Σ+

Fq −
∫

Σ−

Fq

)
= 2πZ . (3.1.8)

In order to guarantee that Σ+ and Σ− give the same amplitude (3.1.7), we are apparently
led to the flux quantization condition

Qe

∫
Σq

Fq ∈ 2πZ . (3.1.9)

For the flux Fq there exists a dual field strength Fd−q = dCd−q−1 in d-dimensions according
to Poincaré duality. A (q− 2)-brane is said to be magnetically charged under Cd−q−1 with
charge Qm. Using equation (3.1.9) with Σq being a sphere Sd−q, one can easily derive a
Dirac quantization condition relating electric and magnetic charge, see [14]:

QeQm ∈ 2πZ. (3.1.10)

2p-branes are non-perturbative objects with p-spatial dimensions plus time and correspond to solutions
to the effective supergravity equations of motion describing the interaction of Dp-branes and closed strings.
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To apply the quantization to the 3-form fluxes F and H from definition (3.1.5), we have
to take for Σq the 3-cycles {AΛ, BΛ} (Λ = 0, . . . , h2,1) representing a basis of H3 as defined
in (2.2.12). In this case the flux quantization condition (3.1.9) reads∫

AΛ

F = 2πf̃Λ ∈ 2πZ,
∫
BΛ

F = 2πfΛ ∈ 2πZ,∫
AΛ

H = 2πh̃Λ ∈ 2πZ,
∫
BΛ

H = 2πhΛ ∈ 2πZ.
(3.1.11)

Employing in addition the dual cohomology 3-form basis {αΛ, β
Λ} (Λ = 0, . . . , h2,1) set by

equations (2.2.13), the fluxes F, H can be expanded

F = −f̃ΛαΛ + fΛβ
Λ , H = −h̃ΛαΛ + hΛβ

Λ . (3.1.12)

Throughout this thesis one should keep in mind that f̃Λ, fΛ, h̃Λ, hΛ ∈ Z. It will turn out
that geometric and non-geometric fluxes are quantized in a similar way.

3.1.2 Gukov-Vafa-Witten Superpotential

Our task is now to deduce the flux superpotential as it will be the starting point for the
construction of the various models discussed in chapter 4. Thus we have to perform a
dimensional reduction from the 10d type IIB to a 4d supergravity.

Consider again the 10d low-energy effective supergravity action (3.1.1) and focus on
the first integral3. Assuming a constant axio-dilaton S = e−φ − iC0, we have F1 = 0 and
∂MS = 0. We may also neglect so-called warping effects as they are subleading at large
volume and thus F̃5 = 0 4. The interesting part of the supergravity action that is left over
reads

1

2κ2
10

∫
d10x

√
−g
(
R− 1

2

|G3|2

Re(S)

)
(3.1.14)

The next step is to decompose the 10d metric in a 4d part g(4) and a metric g(6) of the 6d
internal manifold. Since fluxes carry tension and charge they act similar to a distribution
of D3-brane charges and hence suggest a supergravity solution ds2

10 which would involve a
warp factor [14]:

ds2
10 = e2A(y) g(4)

µν dx
µdxν︸ ︷︷ ︸

4d spacetime

+e−2A(y) g(6)
mndy

mdyn︸ ︷︷ ︸
6d Calabi-Yau

.
(3.1.15)

3We restricted our work solely to the first integral of the action (3.1.1). New interesting features might
arise from including the open string sector via D-branes, see for instance [30].

4It can be shown that α = e2A(y) expresses not only the warping, but additionally the size of the 5-form
flux:

F̃5 = (1 + ∗10)
[
dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3

]
. (3.1.13)

Therefore, neglecting warping effects implies a vanishing 5-form F̃5.
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Here, e2A(y) parametrises the warping and is determined by Laplace equations sourced
by fluxes. For completeness let us mention that one could derive the imaginary self-dual
condition ∗6G3 = iG3 at this point. However, we will neglect the warp factor in the
following as emphasized above.

By using the metric (3.1.15) we can now perform the dimensional reduction of the
action (3.1.14) and obtain [31]∫

d4x
√
−g(4)R(4)V −

∫
d4x

√
−g(4)

(∫
d6x

√
g(6)

|G3|2

2Re(S)

)
︸ ︷︷ ︸

Vflux

(3.1.16)

with the 4d Ricci curvature scalarR(4) and the volume V of the Calabi-Yau manifold. After
a redefinition of g(4) and R(4), the first integral corresponds to the well-known Einstein-
Hilbert action SEH ∼

∫
d4x
√
−gE RE.

The second integral of (3.1.16) describes a 4d supergravity action and is denoted by Vflux.
Compare this to the standard form of a 4d N = 1 supergravity action which is entirely
governed by a Kähler potential K, a holomorphic superpotential W and a holomorphic
gauge-kinetic function f [17]:

Vflux
!

=

∫
d4x
√
−gE

[
eK
(
KIJ̄DIWDJ̄W̄ − 3|W |2

)
+

1

2

(
(Re f)−1

)κλ
D̂κD̂λ + Vtad

]
.

(3.1.17)

Let us postpone further explanations of this scalar potential to section 3.4. Nevertheless
note that the first piece of (3.1.17) is called F-term potential and the latter D-term potential
in accordance with their origin from auxiliary fields. In addition we have the usual NS-NS
tadpole contribution denoted by Vtad.

So, the question is whether there exists a superpotential W , such that equality holds
in equation (3.1.17). Remarkably the famous Gukov-Vafa-Witten superpotential WGVW

[32, 33] does indeed satisfy this equation with a vanishing D-term D̂κ = 0:

WGVW =

∫
M

G3 ∧ Ω3 (3.1.18)

where Ω3 is the holomorphic (3, 0)-form defined in (2.2.16) and we are integrating over the
Calabi-Yau 3-fold M. Alternatively to the dimensional reduction, WGVW can as well be
found via domain walls with NS5/D5-brane charge.

Employing equations (3.1.5)and (2.2.16), together with the expansion (3.1.12) and the
symplectic basis (2.2.13), one can expresses the Gukov-Vafa-Witten superpotential in terms
moduli and fluxes:

WGVW =

∫
M

G3 ∧ Ω3 =

∫
M

(F− iSH) ∧
(
XΛαΛ − FΛβ

Λ
)

=

= −
(
fΛX

Λ − f̃ΛFΛ

)
+ iS

(
hΛX

Λ − h̃ΛFΛ

)
.

(3.1.19)
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3.2 Geometric and Non-Geometric Fluxes

One of the most astonishing concepts of string theory are string dualities as for instance
T-duality. Thus it is natural to propose the question what happens with our fluxes if
we perform T-duality transformations. It will turn out that string dualities, in particular
T-duality produces new fluxes of totally different character. This is going to be explained
in sections 3.2 and 3.3 following closely the approach by [34–36].

3.2.1 T-duality and Fluxes

The idea of T-duality is easy to visualize by considering the mass spectrum of a bosonic
string theory compactified on a circle S1 with radius R. Surprisingly, there is a physically
equivalent S1 compactification, i.e. the same mass spectrum, with a new radius α′

R
and

simultaneous exchange of winding and momentum modes. Taking furthermore the mode
expansion of the strings into account, T-duality acts like an asymmetric Z2 reflection
of the right-moving states on the world-sheet, leaving the left-moving states invariant. In
superstring theories of type II, T-duality alters the sign of the right-moving GSO-projection
in the Ramond sector and we obtain the following relation:

type IIB on S1 with radius R
T-duality←→ type IIA on S1 with radius α′

R
.

To make T-duality more practicable, it must be extended to more general backgrounds.
In fact, a T-duality transformation is possible for any background if there is an isometry,
which we choose to be in θ-direction. Here we just state the results without presenting the
prove [13].

After applying T-duality in θ-direction, the new background G′µν , B
′
µν , φ

′ in terms of
the original background Gµν , Bµν , φ reads

G′θθ =
1

Gθθ

, G′θi =
1

Gθθ

Bθi, B′θi =
1

Gθθ

Gθi,

G′ij = Gij −
1

Gθθ

(GθiGθj −BθiBθj), B′ij = Bij −
1

Gθθ

(GθiBθj −BθiGθj),

φ′ = φ− 1

4
ln

∣∣∣∣Gθθ

G′θθ

∣∣∣∣ .
(3.2.1)

The generalized T-duality transformations (3.2.1) have first been developed by T.H. Buscher
[37] and are therefore called Buscher rules. Next, we want to connect T-duality via Buscher
rules with flux compactification.

First of all, R-R forms are not affected by Buscher rules and hence we focus merely on
NS-NS fluxes.

A didactic example to T-dualize is a torus T 3 with H-flux. This is indeed a reasonable
model because a Calabi-Yau manifold can in a certain limit be view as a T 3 fibred over
some base manifold according to [38]. In this limit mirror symmetry acts like T-duality on
the T 3 fibre without changing the base.
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Begin with a simple metric on T 3:

ds2 = dx2 + dy2 + dz2 (3.2.2)

and N ∈ Z units of H-flux, Hxyz = N . In order to satisfy the quantization condition∫
T 3 H = N , we may choose the gauge Bxy = Nz. As nothing depends on the x, y-

coordinates, they represent isometries we are allowed to T-dualize. Applying Buscher rules
at first in x-direction modifies the background to

ds2 = (dx−Nzdy)2 + dy2 + dz2 and B = 0 , (3.2.3)

where N is usually renamed F x
yz. This metric is globally well-defined and produces a space

topologically distinct from T 3: a so-called twisted torus. We can figuratively imagine a
twisted torus as follows: View a T 3 as a torus T 2 in x, y-directions fibred over S1 in
z-direction. The T-dualized metric (3.2.3) implies that the fibre T 2 undergoes a shift in
complex structure τ → τ + F x

yz while one circles around the base S1. Due to the fact
F x
yz ∈ Z, we certainly get an equivalent fibre after traversing S1.

To conclude, these F x
yz give rise to additional rigid structure of the background metric

and hence non-trivial changes of the manifold. For this reason, F x
yz is called (geo)metric

flux F .
Back to the torus T 3 where we applied so far one T-duality in x-direction. Since the y-

direction is an isometry as well, let us check what the Buscher rules yield when T-dualizing
also this direction. For the once T-dualized background (3.2.3), the Buscher rules (3.2.1)
lead to

ds2 =
1

1 +N2z2
(dx2 + dy2) + dz2 and Bxy =

Nz

1 +N2z2
. (3.2.4)

Again, N is usually renamed and here we have N = Qxy
z . Note that this transformation

mixes metric and B-field. Moreover, it is apparently only locally well-defined, i.e. locally
geometric , but globally no longer a manifold. That is why we speak of non-geometric
backgrounds characterized by a non-geometric flux Q. The space we have achieved is
knows as T -fold.

So what about a third T-duality that acts in z-direction? Analogously, to the procedure
so far, one might guess an additional T-duality transformation in z-direction raises another
index of Qxy

z and we end up with a final mysterious quantity that we call Rxyz. However,
great care has to be taken of the existence of this R-flux as there is actually no isometry for
the final T-duality and Buscher rules are not applicable at a first glance! R-fluxes are not
yet completely understood and are part of current research. Nevertheless we will be working
with R-fluxes in this thesis without studying their physical origin in more details. [39]
demonstrates why R-fluxes lack even locally of any geometric description and are thus
truly non-geometric objects. A more mathematical investigation of R-flux culminates in
so-called non-associative geometry, which is studied for instance in [40,41].

To summarize, we found new fluxes via applying T-duality (Buscher rules) on a 3-torus
as depicted in the following:
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Habc

Tc
←−→ F c

ab

Tb
←−→ Qbc

a

Ta
←−→ Rabc

↓ ↓ ↓ ↓
NS-NS flux geometric flux non-geom. flux non-geom. flux

↓ ↓ ↓ ↓
flux background twisted torus T-fold non-associative

3.2.2 Generalized Superpotential

It remains to include geometric and non-geometric fluxes in the superpotential (3.1.18) or
to put it in another way, find a superpotential invariant under T-duality. For this purpose,
we introduce the formalism for generalized N = 1 orientifold compactifications proposed
in [42,43]:

W =

∫
M

[
F + dHΦev

c

]
3
∧ Ω3 , (3.2.5)

where in present conventions, the complex multi-form of even degree Φev
c is defined by

Φev
c = iS − iGaωa − iTα ω̃α . (3.2.6)

The subscript on the parentheses in (3.2.5) means that the 3-form part of a multi-form
should be selected, and the operator dH is defined as dH = d−H∧. Evaluating then (3.2.5)
leads to the familiar Gukov-Vafa-Witten superpotential [33].

Given this formalism, the authors of [36] suggested a natural extension of the differential
operator dH to incorporate geometric and non-geometric fluxes:

dH −→ D = d−H ∧ −F ◦ −Q • −R x (3.2.7)

where the operators appearing in (3.2.7) implement the mapping

H ∧ : p-form → (p+ 3)-form ,

F ◦ : p-form → (p+ 1)-form ,

Q • : p-form → (p− 1)-form ,

R x : p-form → (p− 3)-form .

(3.2.8)

Another motivation for this generalized differential arises from tadpole cancellation con-
straints and Bianchi identities on fluxes in general compactifications, see [39].

If we act with the extended differential D from (3.2.7) on the multiform Φev
c and keep

eventually only 3-forms, the superpotential invariant under T-duality reads

W =

∫
M

[
F +DΦev

c

]
3
∧ Ω3

=

∫
M

[
F− iSH + iGa (F ◦ ωa) + iTα

(
Q • ω̃α

)]
3
∧ Ω3 .

(3.2.9)
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One should observe that there is no R-flux in the superpotential (3.2.9) since R xΦev
c cannot

yield a 3-form.
In order to actually carry out the integral in (3.2.9), we need one more valuable ingre-

dient. Recalling the cohomology bases in table 2.1, due to the operator mapping (3.2.8) it
is obvious to make the general ansatz:

DαΛ = qΛ
AωA + fΛAω̃

A , DβΛ = q̃ΛAωA+ f̃Λ
Aω̃

A ,

DωA = f̃Λ
AαΛ− fΛAβ

Λ , Dω̃A = −q̃ΛAαΛ + qΛ
AβΛ .

(3.2.10)

Here, fΛA and f̃Λ
A denote the geometric fluxes, while qΛ

A and q̃ΛA are the non-geometric
ones. Moreover, we use the following convention for the H- and R-flux

fΛ0 = hΛ , f̃Λ
0 = h̃Λ ,

qΛ
0 = rΛ , q̃Λ0 = r̃Λ .

(3.2.11)

Imposing then a nilpotency condition of the form D2 = 0 leads to the well-known Bianchi
identities for the fluxes [35]

0 = q̃ΛAf̃Σ
A − f̃Λ

Aq̃
ΣA , 0 = qΛ

AfΣA − fΛAqΣ
A ,

0 = qΛ
Af̃Σ

A − fΛAq̃
ΣA , 0 = f̃Λ

AqΛ
B − fΛAq̃

ΛB .

0 = f̃Λ
AfΛB − fΛAf̃

Λ
B , 0 = q̃ΛAqΛ

B − qΛ
Aq̃ΛB .

(3.2.12)

With help of these relations and definition of the Ω3 (2.2.16), the explicit calculation of
the superpotential including geometric and non-geometric fluxes is straightforward.

3.3 S-Dual Completion of Non-Geometric Fluxes and

Full Superpotential

In the last section we took advantage of a string duality to acquire new fluxes. Now we will
extend this idea to the non-perturbative S-duality which was first proposed by A. Sen [44]
in 1994. In short, 10d type IIB string theory with string coupling gs is S-dual to the same
10d type IIB string theory with coupling 1

gs
. Due to the inversion of the coupling, we speak

of a non-perturbative duality. Note that S-duality is not limited to type IIB string theory,
but also applicable to other string theories.

Before we are more precise about S-duality in type IIB string theory, let us stress
that an extensive discussion of the following is presented in [45]. It is well-known that
the 10d low-energy supergravity action5 (3.1.1) in Einstein frame is invariant under the
transformation6

S → aS − ib
icS + d

and

(
C2

B2

)
→
(
a b
c d

)(
C2

B2

)
(3.3.1)

5We are not taking the Chern-Simons term and Slocal into account at this point.
6The unusual factors of i in the transformation of S result from our definition S = e−φ − iC0.
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with ad − bc = 1. The matrix with components a, b, c, d belongs to the discrete sym-
metry group SL(2,Z). Notice that it cannot be the continuous group SL(2,R) due to
charge quantization. The RR scalar C0, 4-form C4 and (Einstein) metric do not trans-
form. SL(2,Z) is actually a generalization of the S-duality transformation and not merely
a symmetry of the effective supergravity action, but indeed of the full IIB string theory.

We encountered in section 3.1 that the 10d type IIB supergravity action (3.1.1) leads
to a 4d scalar potential. Hence, if the 10d supergravity action is invariant under S-duality
transformations (3.3.1), the 4d F-term scalar potential should be invariant as well. Since
the scalar potential can be expressed in pure supergravity formalism, see equation (3.1.17),
we better check how the Kähler potential K and superpotential W transform.

One can readily guess the transformation of the Kähler potential (2.2.37)

K → K + ln
(
|icS + d|2

)
. (3.3.2)

Recalling the scalar potential VF = eK
(
KIJ̄DIWDJ̄W̄ − 3|W |2

)
, the transformation of

the Kähler potential 3.3.2 renders the superpotential W to behave as follows under S-
duality [46]

W → 1

icS + d
W. (3.3.3)

Concerning the moduli, it is easy to deduce their transformations from definitions (2.2.32)
and (2.2.33):

Ga → 1

icS + d
Ga, Tα → Tα +

i

2

c

icS + d
καbcG

bGc . (3.3.4)

In spite of those transformations, lnV in the Kähler potential does not change. That was
expected as V = 1

3!
κABCt

AtBtC depends solely on the invariant 2-cycle volumina tA.
However, this is not the full story if we include the geometric flux F and the non-

geometric fluxes Q, R in the superpotential. Then the superpotential does in fact not
transform covariantly under these fluxes and in particular Q-flux spoils the invariance of
the scalar potential! This issue is resolved by introducing a so-called P -flux [45] similar to
the Q-flux:

P• : p-form → (p− 1)-form . (3.3.5)

The transformation under SL(2,Z) is given by(
Q

P

)
→
(
a b
c d

)(
Q

P

)
(3.3.6)

and analogous to the Q-flux, we extend (3.2.10)

−P • αΛ = pΛ
A ωA , −P • βΛ = p̃ΛA ωA ,

−P • ωA = 0 , −P • ω̃A = −p̃ΛA αΛ + pΛ
A βΛ .

(3.3.7)
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We require the superpotential including geometric and non-geometric fluxes to transform
like equation (3.3.3), which results in additional terms as suggested by [47] and [48]:

W =

∫
M

[
F− iSH

+iGa (F ◦ ωa)

+iTα
(
[Q− iSP ] • ω̃α

)
+

1

2
καbcG

bGc
(
P • ω̃α

) ]
3
∧ Ω3 .

(3.3.8)

Plugging in Ω3, (3.2.10), (3.3.7), we finally obtain a convenient form of the superpotential:

W = −
(
fλ X

λ − f̃λ Fλ
)

+ iS
(
hλ X

λ − h̃λ Fλ
)

− iGa
(
fλaX

λ − f̃λaFλ
)

+ iTα
(
qλ
αXλ − q̃λαFλ

)
+
(
STα + 1

2
καbcG

bGc
)(
p α
λ Xλ − p̃λα Fλ

)
.

(3.3.9)

We want to remark some interesting features regarding the full superpotential (3.3.9):

• There appears no R-flux in W .

• Geometric fluxes F couple to odd moduli Ga.

• Aside of P -flux, all terms in W depend only linearly on moduli S, Ga, Tα.

• P -flux involves non-linear terms STα as well as GaGb.

• STα and GaGb come always together when P -fluxes are turned on.

• The term involving the geometric flux F transforms covariantly under SL(2,Z), and
therefore no additional flux parameters have to be introduced. This observation is
particularly interesting, because it contradicts the common expectation that for every
known flux one has to introduce a dual flux, when constructing a duality-invariant
theory. One explanation might be that the geometric flux involves solely the metric
which does not transform under S-duality.

3.4 Scalar Potential and Flux Vacua

Let us now be more concrete about moduli stabilization. In chapter 2 we compactified 10d
type IIB string theory on orientifolds to end up with a 4d N = 1 supergravity theory. As
a consequence the massless spectrum in 4d contained a large number of moduli. We have
already emphasized in the introduction that any realistic string theory model has to face
a serious challenge [1]:
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Problem: Many quantities (e.g. Yukawa couplings) of the low energy effective theory
depend on the moduli but should be fixed. Besides, moduli would give rise to fifth
forces or modify successful predictions of Big Bang Nucleosynthesis.

Solution: Generate a scalar potential fixing the vacuum expectation value (vev) of the
moduli fields, that is, giving them a mass large enough to overcome the problems
above. This technique is know as moduli stabilization.

Fixing the vevs of moduli fields can be realized via turning on non-trivial backgrounds of
the other 10d fields. These backgrounds are apparently given by the fluxes introduced in
this chapter.

F-term Scalar Potential

Recall the scalar potential from equation (3.1.17) coinciding with the standard form of 4d
N = 1 supergravity. In all of the models presented in this thesis we choose a vanishing
D-term and restrict ourselves to the F-term scalar potential:

VF =
M4

Pl

4π
eK
(
KIJ̄DIWDJ̄W − 3

∣∣W ∣∣2) , (3.4.1)

where W is the holomorphic superpotential (3.3.9), K the real Kähler potential (2.2.37) and
we sum over all moduli of table 2.2. Besides, we employed the Kähler-covariant derivative

DIW = ∂IW + (∂IK)W. (3.4.2)

GIJ̄ in the scalar potential is the inverse of the positive definite Hermitian Kähler metric
GIJ̄ = ∂I∂J̄K defined in section 2.2. We speak of a F-term potential because it involves
the F-terms [49]

F I = e
K
2 KIJ̄DJ̄W. (3.4.3)

We furthermore observe that the Kähler potential (2.2.37) satisfies a so-called no-scale
relation [17]

KIJ̄(∂IK)(∂J̄K) = 4 , (3.4.4)

where the sum runs over the axio-dilaton S, and the even and odd moduli Tα and Ga.
This relation plays an important role in supersymmetry breaking and mediation to the
standard model [51]. However, perturbative corrections from loop effects or from the
Kähler potential, see subsection 3.4.1, would spoil this no-scale structure.

Moduli stabilization corresponds to fixing the vevs of the moduli by turning on fluxes
and hence our next task is to compute the minima of the scalar potential. So, a moduli
field M I is stabilized if there exists a solution to ∂IV = 0. Such solutions are called flux
vacua and categorized by different features. More precisely a flux vacuum is said to be
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• supersymmetric if DIW = 0 for all moduli M I .
This is a general condition in supergravity [52].

• tachyonic if there are negative mass eigenstates.
As we will encounter later on, the mass matrix is M I

J =
KIJVIJ with the second derivative of the scalar potential VIJ = ∂I∂JV . KIJ is
positive definite and thus VIJ < 0 corresponds to tachyons. Minima without tachyons
are often called stable minima.

• AdS if V |Minimum < 0.
AdS space has by definition a negative cosmological con-

stant which is proportional to the vacuum energy density and consequently to the
minimum of the scalar potential [53, 54]. If we instead have V |Minimum = 0 or
V |Minimum > 0, we obtain a Minkowski or dS space, respectively.

Let us remark that supersymmetric minima have DIW = 0 for all moduli fields M I , such
that the scalar potential reduces to VF = −eK |W |2 ≤ 0. Thus supersymmetric vacua are
always AdS.

Objective

Following our original motivation as stated in the introduction, we are trying to implement
moduli stabilization while keeping one axion massless. Afterwards we apply our models of
moduli stabilization to axion monodromy inflation, see chapter 5. We basically intend to
continue the work of [10]. However, there is a powerful no-go theorem found by J. Conlon
in [11]:

No-Go theorem: There does not exist any tachyon-free supersymmetric minimum of
the F-term potential consistent with stabilized moduli and unfixed axions.

Although Conlon mentions a few loopholes to this no-go theorem, for instance correc-
tions to the Kähler potential or D-term contributions, we will not discuss those possibilities
further. Therefore, in order to apply our models to string phenomenology and string cos-
mology, we focus on flux vacua equipped with the following properties:

1. Vacua should be non-supersymmetric and tachyon-free, so that after uplifting they
can lead to stable de Sitter vacua.

2. The moduli should be stabilized in the perturbative regime, i.e. at weak string
coupling and large radius.

3. All saxionic moduli should be stabilized with axions providing candidates for the
inflaton and possibly dark radiation.
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Proposition 3 takes care of the existence of massless (light) axions allowing for axion
monodromy inflation. Moreover, due to proposition 1 we are able to circumvent the no-go
theorem by Conlon. Further information about the uplift to stable dS vacua in presented
in [18].

3.4.1 Corrections and the LARGE Volume Scenario

Another essential condition on our models is proposition 2. Postulating weak string cou-
pling gs = eφ = 1/s � 1, requires the real part s of the axio-dilaton to be large in all of
our flux vacua. Consequently, we do not have to worry about string loop calculations.

Let us concisely comment on other possible corrections to the setup we are considering.
The leading contributions with effects on the scalar potential are given by:

• perturbative (α′)3-corrections to the Kähler potential [31, 55,56]

KKähler = −2 ln

(
V +

ξ

2

(
S + S̄

2

)3/2
)

(3.4.5)

with ξ = χ(M) ζ(3)
2(2π)3 . Moreover, χ(M) is the Euler number of the manifold M and

ζ(3) ≈ 1.202 Apéry’s constant. These corrections have their origin in the dimensional
reduction of the 10d curvature term R.

• non-perturbative corrections to the superpotential

W = W0 +

h1,1
+∑
i=1

Ai e
−aiTi (3.4.6)

where W0 is the standard superpotential, Ai are model dependent constants and Ti
Kähler moduli. These corrections can be generated either by D3-brane instantons
(ai = 2π) [57] or gaugino condensation from wrapped D7-branes (ai = 2π

N
) [58, 59].

Such corrections have been successfully used for moduli stabilization. In the well-known
KKLT scenario [60] the authors took advantage of non-perturbative corrections to the
superpotential, as we briefly describe now. The KKLT approach is actually a two-step
procedure. First, they stabilize complex structure moduli and the axio-dilaton viaG3-fluxes
and second they utilize non-perturbative effects to fix the Kähler moduli. The minimum is
then supersymmetric as well as AdS, but can be uplifted to a positive cosmological constant
by adding anti-D3-branes. The KKLT scenario is definitely impressive, even though it
involves also some shortcomings. For instance, α′-corrections are entirely neglected and it
has been pointed out that this two-step procedure is not always justified.

Some of the problems of KKLT are cured in the so-called LARGE volume scenario
(LVS) [61, 62]. Most important, in this scenario α′-corrections are indeed taken into ac-
count. Furthermore, the overall volume V of the compactification manifold is assumed to
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be very large compared to the string length:

1

V
� 1. (3.4.7)

This limit suggests to expand various quantities in powers of 1/V . Hence, the LVS ap-
proach starts similar to KKLT by stabilizing complex structure moduli and the axio-dilaton
with the usual Gukov-Vafa-Witten superpotential at order 1/V in the scalar potential. Af-
terwards they consider order 1/V3-contributions of the F-term scalar potential including
non-perturbative corrections of W and α′-corrections to K which finally stabilizes the
Kähler moduli.

Let us be more specific about the compactification manifold. [31] assumed that the
overall volume V can be expressed in terms of 4-cycle volumina τi:

V = abτ
3/2
b −

h1,1
+ −1∑
i=1

aiτ
3/2
i

(3.4.8)

with {ab, ai} being constants. If we take the well-defined limit τb � τi ∀i = 1, . . . , (h1,1
+ −1),

τb may be approximately thought of as the overall volume and τi as internal little holes.
For this reason, we speak of swiss-cheese manifolds. However, the LVS is also possible for
a certain class of more general geometries, as demonstrated in [63].

Back to our models: In the following we demand the overall volume of the internal
manifold, i.e. the real part τα of the Kähler moduli, to be large. Therefore, perturbative
and non-perturbative corrections to our models are suppressed and may be neglected. Note
that there is no need to insert these corrections since we are able to stabilize the Kähler
moduli without taking subleading orders of the scalar potential into account.

An advantage of not using non-perturbative effects is the fact that Kähler moduli can
be stabilized at the same mass scale as all other moduli. This is crucial for the mass
hierarchy explained in section 5.3.
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Chapter 4

Flux-Scaling Scenarios with
Non-Supersymmetric Vacua

In this chapter we want to illustrate several models of moduli stabilization in detail. How-
ever, we will not be completely specific about the concrete Calabi-Yau 3-fold, but rather
work at the level of supergravity. In the beginning we present a systematic way to construct
new scenarios by using a certain scaling property. Thereby various vacua of the broad flux
landscape are investigated with increasing complexity. We evaluate the induced mass hi-
erarchy that is necessary for a controlled string compactification in the final section. Note
that the names ’model A’ and ’model C’ have been chosen to stay in accordance with [18].

4.1 Construction Strategy

What we need for moduli stabilization is a flux induced scalar potential as explained in
section 3.4. However, in our work the scalar potential was not derived from a specific
Calabi-Yau manifold including orientifolds, since such a procedure would require a better
understanding of the backreaction of the fluxes on the geometry we are compactifying
on. We rather make a supergravity ansatz, investigate various scalar potentials and may
question its stringy motivation afterwards. At the level of supergravity the scalar potential
of a certain amount of moduli consists of only two ingredients: Kähler potential and
superpotential. See section 3.4 for explanations.

Analyzing a few exemplary models, one realizes soon that it is often quite difficult to
solve for the minima of the scalar potential analytically. Furthermore, in many cases there
are actually no solutions to the minima conditions. Having found some working models,
an interesting commonality became apparent: All of the models obey a novel scaling
behaviour with the fluxes. Employing this flux-scaling property, it becomes straightforward
to construct new models and even easy to read off from the superpotential how the minima
scale with the fluxes.

To be more precise, the defining property of the models is a common flux scaling of
the superpotential W which in turn implies a common flux scaling of the scalar potential
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V and the moduli masses. So the strategy is to choose a superpotential dictated by a
particular scaling. In practice this means that only a subset of the allowed fluxes is turned
on to ensure that the moduli vevs scale in a simple way. Let us consider some concrete
examples in order to shed more light on the scaling property. If we demand that every term
in the superpotential scales the same, we are immediately led to two useful observations:

• One can simply read off how the moduli scale at the extremum, e.g.:

W = i f̃0 + i h0 S =⇒ scaling at the extremum: W0 ∼ f̃0

=⇒ s ∼ f̃0

h0

at the extremum
(4.1.1)

We will also take the imaginary part c of the axio-dilaton S into account, when we
revisit this superpotential in section 4.2.
Using this technique one can step by step determine the full minimum solution of
the scalar potential up to some numerical prefactors.

• It also implies a strong restriction on the possible terms in the superpotential (3.3.9).
For instance, take a superpotential containing complex structure moduli

W = − f0 + 3 f̃1 U2 =⇒ scaling at the extremum: W0 ∼ f0

=⇒ v2 ∼ f0

f̃1
at the extremum

(4.1.2)

The general form of the superpotential (3.3.9) allows as well for the term (−i f1 U).
But, such a term breaks the scaling because of

−i f1 U
v2∼ f0

f̃1

−−−−−−→ −i f1 ·

√
f0

f̃1
� f0 ∼ W0 for arbitrary f1 ∈ Z. (4.1.3)

Consequently we exclude such a term in the superpotential. This is a powerful
constraint on the construction of flux-scaling scenarios.

Generically, for n complex moduli it suffices to switch on n + 1 flux parameters. For
instance, to stabilize Tα we include one flux of type qαλ or one of type q̃αλ . Similarly, for
S we take one hλ or one h̃λ. For the complex structure moduli we need one R-R flux of
type fλ and one f̃λ. Of course, we have to be careful that the chosen NS-NS, R-R and non-
geometric fluxes satisfy the Bianchi identities. We observe that in the studied examples
an off diagonal Kähler metric did not spoil the scaling property.

Aside from that, there is in fact another valuable guideline for constructing new scaling
scenarios when including complex structure moduli. It seems like only superpotentials with
every term containing either an even or odd number of moduli work. Considering again
the superpotential (4.1.2), all terms are apparently even in the number of moduli. Thus
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the term (−i f1 U), which has an odd number of moduli, is not allowed. Notice that also
superpotentials like

W = i f̂1U − i f̃0U3 + 3ih̃1U2S + 3i q̃1U2T (4.1.4)

are perfectly solvable as all terms have an odd number of moduli. This constraint was
found on an empirical basis and its conceptual explanation remains an open question.

Let us stress that the flux scaling property is not only helpful to engineer new sce-
narios, but in particular useful to achieve parametric control over the hierarchies among
the relevant scales Ms, MKK and the moduli masses. On the other hand, parametrically
controlled hierarchies among the different moduli masses are then impossible. We will try
to circumvent this problem by introducing additional fluxes in W that break the scaling,
cf. section 4.6.

Note that in all our models the fluxes allow for the existence of supersymmetric AdS
vacua which often contain tachyons above the Breitenlohner-Freedman bound. Moreover
we have found scenarios with non-supersymmetric, non-tachyonic AdS vacua. Those can
be applied to axion monodromy inflation, see chapter 5. For other string phenomenological
studies concerning particle physics predictions we refer to [18]. A detailed computation of
the tadpoles and constraints from so-called Freed-Witten conditions1 are part of [18], too.

4.2 Model A: No Complex Structure Moduli

This model should be considered as our simplest prototype example and we will come back
to it throughout this thesis. Furthermore, we will show in this section that tachyonic vacua
can still be stable (Breitenlohner-Freedman bound) and in the end emphasis a possible
extension of this model to two Kähler moduli.

Setup:

Let us assume a particularly simple Calabi-Yau manifold with Hodge numbers h1,1
− =

h2,1
− = 0 and h1,1

+ = 1, i.e. with a single Kähler modulus and neither complex structure
nor axionic-odd moduli. Such a geometry can be viewed as an isotropic 6-torus T 6 with
frozen complex structure modulus. In this situation the Kähler potential (2.2.37) takes the
succinct form

K = −3 ln(T + T )− ln(S + S) . (4.2.1)

Furthermore, we turn on only three fluxes: the NS-NS flux h0 = h, the non-geometric flux
q0

1 = q, and the R-R 3-form flux f̃0 = f̃. These fluxes satisfy the Bianchi identities (3.2.12),

1Freed-Witten anomalies arise if fluxes and D-branes are used simultaneously and ensures that a cycle
wrapped by a D-brane is still closed in the geometry deformed by the fluxes.
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and are subject to the quantization condition f̃, h, q ∈ Z according to section 3.1. From
(3.3.9) we determine the corresponding superpotential:

W = i f̃ + ihS + iqT , (4.2.2)

where we have set X0 = 1 and F0 = i.

Flux Vacua of the Scalar Potential:

It is easy to compute the inverse Kähler metric from the Kähler potential K above:

(KIJ̄)−1 =
(
∂I ∂̄JK

)−1
=

(
4τ2

3
0

0 4s2

)
. (4.2.3)

In the case of more involved models one has to pay attention to obtain the correct, real
and positive definite matrix.

Together with the Kähler potential K and superpotential W , the resulting scalar po-
tential (3.4.1) is given by

V =
M4

Pl

4π · 24

[
(hs− f̃)2

sτ 3
− 6hqs+ 2qf̃

sτ 2
− 5q2

3sτ
+

1

sτ 3
(hc+ qρ)2

]
. (4.2.4)

Notice that this scalar potential depends merely on the following linear combination of
axions

θ = hc+ qρ . (4.2.5)

Hence, the orthogonal linear combination (qc− hρ) of the axions c and ρ is not stabilized
by the potential (4.2.4). We will try to stabilize this modulus later on by introducing
additional fluxes. The goal is to keep it parametrically lighter than s, τ and θ in order to
make this scenario applicable to inflation. It will turn out to be not possible here, but in
fact doable in other models.

The extremal points of (4.2.4) are obtained by solving for ∂sV = ∂τV = ∂θV = 0, and
we find the three solutions shown in table 4.1. Note that the fluxes must be chosen so that
the values of s and τ are inside the physical domain s, τ > 0.

Evaluation of the Flux Vacua:

• The first solution in table 4.1 is the supersymmetric one, since in this case DTW =
DSW = 0. As W does not depend on one axionic direction, the no-go theorem of [11]
implies that the saxionic partner is tachyonic, which can indeed be confirmed for this
minimum.

The extremum corresponds to AdS space as it was expected for the supersymmetric
case. However, this extremum is stable even if the Hessian of the potential has
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solution (s, τ, θ) susy tachyons Λ

1 (− f̃
2h
,− 3̃f

2q
, 0) yes yes AdS

2 ( f̃
8h
, 3̃f

8q
, 0) no yes AdS

3 (− f̃
h
,− 6̃f

5q
, 0) no no AdS

Table 4.1: Extrema of the scalar potential (4.2.4) for model A. Λ denotes the cosmological
constant, which indicates whether we end up in dS, Minkowski or AdS space.

negative eigenvalues. Indeed, as it is well known, for AdS vacua tachyonic fluctuations
are stable provided they satisfy the Breitenlohner-Freedman bound [64]

m2M2
Pl ≥

3

4
V0 , (4.2.6)

where V0 is the value of the potential at the extremum and m2 is the physical mass.
For supersymmetric extrema the bound is always guaranteed, which can be verified
in our scenario.

• Solution three of table 4.1 is non-supersymmetric and has no tachyonic directions.
This is precisely the strictly stable vacua we are looking for!

As the minimum belongs to AdS space, it is necessary to eventually come up with
an uplift mechanism to dS space. Moreover, for |̃f/h| � 1 and |̃f/q| � 1 we obtain
weak string coupling and large radius, so that it is justified to ignore higher-order
corrections to the scalar potential.

Note that the scaling of the stabilized moduli with the fluxes implies that all terms
in the superpotential are of the same order.

For θ = 0 , the potential has the shape shown in figure 4.1.

Masses of the Moduli:

We finally compute the mass eigenvalues and eigenstates for the moduli and compare them
in section 4.6 to the string and Kaluza-Klein scales. The squared physical masses for the
canonically normalized fields are given by the eigenvalues of the mass matrix

(M2)ij = KikVkj (4.2.7)

with Vkj = 1
2
∂k∂jV , evaluated at the extremum of the potential V , cf. [65].

Computing then the physical mass matrix for the non-supersymmetric tachyon-free
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V

s

τ

Figure 4.1: The scalar potential V in units of
M4

Pl

4π·24 for h = q = 1, f̃ = 10, showing the
expected stable minimum at s0 = 10 and τ0 = 12.

minimum (solution 3 of table 4.1) gives

M2 =
M2

Pl

4π · 24

5q2

54 f̃2


60hq 12h2 0 0
25 q2 25hq 0 0

0 0 12hq 12h2

0 0 25q2 25hq

 . (4.2.8)

The mass eigenvalues can be written as

M2
mod,i = µi

hq3

f̃2
M2

Pl

4π · 24
, (4.2.9)

with the numerical values

µi =

(
25(17 +

√
97)

108
,
25(17−

√
97)

108
;

185

54
, 0

)
≈ (6.2, 1.7 ; 3.4, 0) . (4.2.10)

The eigenvectors of the first (last) two masses are combinations of saxions (axions) and
the massless state corresponds to the unfixed axionic combination (qc− hρ).

A remarkable feature, which we observe in all our models, is the fact that all moduli
are parametrically of the same mass. Therefore we are able to control all moduli masses
at once, which is useful to achieve the correct mass hierarchy (4.6.1).

Let us stress that one can also compute the gravitino mass M 3
2
:

M2
3
2

= eK0 |W0|2
M2

Pl

4π
, (4.2.11)

with K0 and W0 denoting the value of the Kähler potential and superpotential at the
minimum. The gravitino mass is useful as it indicates the scale of supersymmetry breaking
[66]. Interestingly, in our model A the gravitino shares the same flux dependence as
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the moduli (4.2.9) with the numerical prefactor µ 3
2

= 5
6
≈ 0.833. The supersymmetry

breaking scale is therefore only slightly below the moduli masses. Due to the idea of moduli
stabilization, the moduli masses and are obliged to be at a high scale. Consequently, our
flux-scaling scenario predicts high-scale supersymmetry breaking. This is one of the major
results of our work.

It remains to generate a parametrically-light mass for the axionic combination (qc−hρ)
that has not been stabilized so far. If that can be achieved, this axion is a good candidate
for realizing F-term axion monodromy inflation. The way of proceeding is to turn on
supplementary fluxes causing new terms in the superpotential.

From equation (3.3.9) we determine the most general superpotential (without P -flux)
as follows

W = −f + i f̃ + i(h− ih̃)S + i(q − i q̃)T , (4.2.12)

with f = f0, h̃ = h̃0 and q̃ = q̃01. The only non-trivial Bianchi identity following from
(3.2.12) reads

h̃ q − h q̃ = 0 , (4.2.13)

so that the superpotential (4.2.12) reduces to

W = −f + i f̃ +

(
1− i q̃

q

)
i(hS + qT ) . (4.2.14)

Therefore, W still depends only on the linear combination of axions (4.2.5), so that the
orthogonal direction remains unfixed! In fact, the vacua of the superpotential (4.2.14)
can be determined analytically and share the same qualitative structure of the three ex-
trema shown in table 4.1. Consequently model A cannot enable F-term axion monodromy
inflation via this procedure.

4.2.1 Extension to Models with Two Kähler Moduli

New intriguing features arise when adding one more Kähler modulus, in particular, we
obtain new tachyons in the flux vacua. However, we will solely present the basic idea
and conceptually new results in this thesis. The reader is referred to [18] for a detailed
investigation of these scenarios. Let us consider two different models with h1,1

+ = 2, while
keeping h1,1

− = h2,1
− = 0 for simplicity:

K3-fibration The most easy extension of model A is given by P1,1,2,2,2[8] (cf. [67]) whose
intersection numbers of the Kähler sector are such that the Kähler potential splits into
sums

K = −2 ln(T1 + T 1)− ln(T2 + T 2)− ln(S + S) . (4.2.15)



42 4. Flux-Scaling Scenarios with Non-Supersymmetric Vacua

Swiss cheese Alternatively, one may start with a swiss-cheese manifold P1,1,1,6,9[18] that
we biefly discussed in section 3.4. Its Kähler potential is of the following form [31]

K = − ln(S + S)− 2 ln
(

(T1 + T 1)3/2 − (T2 + T 2)3/2
)
. (4.2.16)

For both cases we enlarge the superpotential (4.2.2) only minimally by turning on one
more flux:

W = i f̃ + ihS + iq1T1 + iq2T2 . (4.2.17)

For the K3-fibration as well as the swiss-cheese manifold the scalar potential shows four
AdS vacua, where three of them generalize the solutions of the ordinary model A collected
in table 4.1. The stabilized axion is in both cases θ = q1ρ1 + q2ρ2 + hc, leaving the two
orthogonal axionic combinations unfixed.

The new attribute comes from the two saxions τ1 and τ2. Calculating the physical
mass states we find a saxionic combination that corresponds to a tachyon below the
Breitenlohner-Freedman bound. To make this scenario plausible, it is inevitable to get
rid of this tachyonic state. Fortunately, there exists a novel uplift mechanism based on
adding a D-term contribution to the scalar potential. See [18] for details.

Having lifted the tachyon, extensions of model A by an additional Kähler modulus lead
to suitable flux scaling scenarios.

4.3 Model C: Including One Complex Structure Mod-

uli

In this this section we revisit model A including one complex structure modulus. There
will be again a strictly stable, non-supersymmetric flux vacua of the scalar potential with
one modulus unfixed. Besides, we will encounter a useful transformation one may employ
in order to construct new scenarios.

Setup:

Consider again a Calabi-Yau manifold with h1,1
+ = 1 and h1,1

− = 0, but unlike model A
set h2,1

− = 1. Thus model C contains one Kähler modulus T and one complex structure
modulus U , which can once again be viewed as an isotropic 6-torus T 6. Following section
2.2.1 and the conventions in [28], the complex structure moduli space of the isotropic limit
of toroidal orbifold models is described by homogeneous coordinates XΛ = (1, iU). In the
large complex structure limit the prepotential is given by equation (2.2.20)

F = − 1

3!
κijk

X iXjXk

X0
= −(X1)3

X0
= iU3, (4.3.1)

where U3 denotes (U)3. The derivatives of the prepotential are then found to be

FΛ =
(
−iU3 , 3U2

)
(4.3.2)
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and consequently equation (2.2.17) leads us to the Kähler potential for the complex struc-
ture part:

KU i = − ln
[
−i
(
XΛF̄Λ − X̄ΛFΛ

)]
= − ln

[(
U + Ū

)3
]
. (4.3.3)

Taking also the Kähler modulus and axio-dilaton into account, the full Kähler potential
reads

K = −3 ln(T + T )− ln(S + S)− 3 ln
(
U + U

)
. (4.3.4)

In the superpotential there are now more fluxes available, which of course have to satisfy
the Bianchi identities. For the flux superpotential (3.3.9) we choose

W = −f0 − 3 f̃1U2 − hU S − qU T , (4.3.5)

where h := h1 and q := q1.

Flux Vacua of the Scalar Potential:

Apparently the superpotential depends only on the linear combination θ = hc+ qρ of the
axions c, ρ and hence the scalar potential will only depend on this combination as well.
Analogously to model A its orthogonal complement (qc − hρ) remains unstabilized. If it
is possible to generate a parametrically-light mass for the latter by turning on additional
fluxes, this axionic combination is likely to embody the inflaton field. We will examine this
possibility in section 5.3. In the end it will turn out that model C is indeed appropriate to
realize axion monodromy inflation.

Analyzing the scalar potential following from (4.3.4) and (4.3.5), we find two interesting
extrema shown in table 4.2. There are actually more extrema, but they either have a non-
vanishing imaginary part or are related to table 4.2 by adding a minus sign to the fluxes.
Moreover, we have to emphasize that there might be further extrema with u 6= 0, however,
those exceeded our computational capabilities.

solution (s, τ, v2, u, θ) susy tachyons Λ

1 (−6v f̃1

h
,−18v f̃1

q
, 1

9
f0
f̃1
, 0, 0) yes yes AdS

2 (−12v f̃1

h
,−15v f̃1

q
, 1

3
√

10

f0
f̃1
, 0, 0) no no AdS

Table 4.2: Extrema of the scalar potential for model C.
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Evaluation of the Flux Vacua:

• The first solution is a supersymmetric AdS vacuum with one axion unfixed. As
expected from the no-go theorem by Conlon [11], this extremum contains tachyons.
The vacuum is nevertheless stable since the tachyons are above the Breitenlohner-
Freedman bound, cf. equation (4.2.6).

• The second minimum possesses the desired properties, that is, it is non-supersymmetric
and tachyon-free with one axionic modulus unstabilized. For h, q < 0 < f0, f̃

1, we
have s, τ > 0 and thus we are inside the physical regime. By scaling up f0, one easily
ensures to have perturbative control. Similar to model A all terms in the superpo-
tential exhibit the same scaling order f0, such that one could have guessed the scaling
of the moduli vevs already from W .

Masses of the Moduli:

The physical masses of the non-supersymmetric non-tachyonic vacuum (solution 2) in the
canonically normalized basis is given by

M2
mod,i = µi

hq3

(f0)
3
2 (̃f1)

1
2

M2
Pl

4π · 27
, (4.3.6)

with numerical values

µ ≈
(

2.1, 0.37, 0.25 ; 1.3, 0.013, 0
)
. (4.3.7)

The first three eigenstates are saxions, the last three axions and the massless eigenstate is
the axionic combination (qc− hρ). In particular, it is interesting that the lightest massive
mode is axionic, and although not parametrically light, its mass is numerically light. In
fact, it is by a factor of 1/5 smaller than the second-lightest massive state, which is purely
saxionic.

For the gravitino mass the flux dependence is the same as for the moduli masses and
the numerical prefactor is given by µ 3

2
≈ 0.152.

4.3.1 New Models from the Transformation U → 1/U

In [18] we analyzed also a scenario with the same Kähler potential as model C, but a
different superpotential

W = îf1U + i f̃0U3 + 3ih̃1U2S + 3i q̃1U2T , (4.3.8)

where we set f̂1 = −f1 for notational convenience. This scenario was called model D.
Astonishingly, model D and model C are related via the transformation U → 1/U of the
superpotentials:

WD → −
i

U3

[
−f̂1U2 − f̃0 − 3 h̃1U S − 3 q̃1U T

]
= − i

U3
WC . (4.3.9)
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Hence, eK |WD|2 = eK |WC |2 and the resulting scalar potential is basically the same as
in model C because WC has the same form as the superpotential in (4.3.5). Indeed,
one can show that the vevs in both models match under U → 1/U and appropriate
redefinition of the fluxes involved. This kind of transformation was exploited in [68, 69]
to classify the allowed superpotentials induced by non-geometric fluxes. Moreover, duality
symmetries in moduli space allow to fix the moduli vevs, thereby simplifying the search
for new vacua [70,71].

4.4 A Model with Two Complex Structure Moduli

Next we will check that scenarios with more than one complex structure modulus show
the same scaling property and obtain a non-supersymmetric vacuum with at least one
modulus unfixed. As a drawback new tachyons will emerge and an uplift mechanism of
those directions is still unknown.

Setup:

Let us assume to have a manifold with h1,1
+ = 1, h1,1

− = 0 and h2,1
− = 2, thus we extend model

C by one additional complex structure modulus. The geometry matches a non-toroidal
background and can be interpreted as the mirror dual of the Kähler sector of P1,1,2,2,2[8],
which was briefly mentioned in the end of section 4.2. We want to start again from the
prepotential, guided by section 2.2.1 and the appendix of [10]. Employing the homogeneous
coordinates XΛ = (1, iU1, iU2), consider a prepotential (2.2.20) (in the complex structure
limit) of the form

F = − 1

3!
κijk

X iXjXk

X0
= −(X1)2X2

X0
= iU2

1U2, (4.4.1)

where the index downstairs numerates the complex structure moduli and the index upstairs
gives the power of the modulus. The derivatives of the prepotential are then found to be

FΛ =
(
−iU2

1U2 , 2U1U2 , U
2
1

)
(4.4.2)

and consequently equation (2.2.17) leads us after a brief computation to the Kähler poten-
tial for the complex structure part:

K2,1 = − ln
[
−i
(
XΛF̄Λ − X̄ΛFΛ

)]
= − ln

[(
U1 + Ū1

)2 (
U2 + Ū2

)]
. (4.4.3)

Hence the full Kähler potential can be written as

K = −2 ln(U1 + U1)− ln(U2 + U2)− ln(S + S)− 3 ln(T + T ) . (4.4.4)

There are now many possibilities for the superpotential (3.3.9), which are soon rather
complicated to calculate. The following choice appeared to be relatively simple:

W = −f0 −
(
hS + qT + f̃2U1 + 2 f̃1U2

)
U1 , (4.4.5)

where we have set h1 = h and q1 = q.
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Flux Vacua of the Scalar Potential:

Now we can calculate the scalar potential from the superpotential and Kähler potential
above and check for extrema. However, since the analytical computation of the minima
appeared to be quite involved, we have set u1 = 0 for simplification and solved for the
remaining moduli. The superpotential depends consequently solely on the axionic combi-
nation θ = hc+ qρ+ 2̃f1u2, while the two orthogonal axions (2̃f1c− hu2) and (hρ− qc) are
not stabilized.

In fact, there exist numerous solutions which are in many cases related by a sign change
of the fluxes. We state only one representative minimum in table 4.3. As usual the fluxes
have to be chosen such that we are inside the physical regime.

solution (s, τ, v2
1, v

2
2, θ, u1) susy tachyons Λ

1 (2
3
f̃2
h
v1, 2

f̃2
q
v1,

f0
f̃2
, 1

3
f̃2
f̃1
v1, 0, 0) no yes AdS

Table 4.3: Extrema of the scalar potential for the model of section 4.4 including two complex
structure moduli.

Evaluation of the Flux Vacua:

This scenario has indeed non-supersymmetric vacua, but all of them contain at least one
tachyon. The tachyons of the vacua in table 4.3 are given by the saxionic combination
(hτ − qs) and (2s̃f1 − hv2). As one can show these tachyons are below the Breitenlohner-
Friedman bound and hence the minimum is clearly unstable. Unfortunately, lifting the
tachyons via the D-term mechanism, that we briefly mentioned above, is not applicable in
the case of multiple complex structure models [18]. How to get rid of the tachyons in such
a scenario remains an open issue.

Moreover, we observe a supersymmetric minimum, which has two tachyons as expected
from the no-go theorem by [11]. In this case, the tachyons lie above the Breitenlohner-
Friedman bound and thus the minimum is stable.

Masses of the Moduli:

The physical masses of the non-supersymmetric, but tachyonic vacuum shown in table 4.3
are in the canonically normalized basis found to be

M2
mod,i = µi

f̃1hq
3

(f0)
3
2 (̃f2)

3
2

M2
Pl

4π · 27
, (4.4.6)

with numerical values

µi =
(

18, 18, −2 − 2 ; 10, 10, 0, 0
)
, (4.4.7)
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where the first four eigenvalues are saxions and the others axions. Moreover, the gravitino
mass has the numerical prefactor µ 3

2
≈ 16.

4.5 A Model with All Moduli and Non-Geometric P-

Fluxes

So far no scaling scenario contained non-geometric P -fluxes. By adding them to our setup,
all moduli will be stabilized. In accordance with [18] we will proceed in two steps, more
precisely axionic-odd moduli will be considered only in the second step.

Step 1: h1,1
− = 0

Setup:

Our final flux scaling model starts out quite similar to model C with h1,2
− = 1 and h1,1

+ = 1.
The Kähler potential is given by the simple expression (4.3.4). The new ingredient is an
additional P -flux.

For the superpotential we exchange the last term (qUT ) of model C with a P -flux term,
such that we end up with the following superpotential

W = f̂− 3 f̃U2 − hSU + pST , (4.5.1)

with f̂ := −f0, f̃ := f̃1, h := h1 and p := p0.

Flux Vacua of the Scalar Potential:

We find the same structure of minima as in other examples with the same Hodge numbers.
Note that the superpotential is chosen in such a way that every modulus is stabilized.

The reason for this fact is the term pST mixing both moduli S and T . It is an important
result that in general all moduli can be stabilized if we include P -fluxes. Choosing h < 0
and f̃, p > 0, we are inside the physical regime and obtain several distinct minima. Two
illustrative solutions are shown in table 4.4. Obviously the two solutions differ just by a
sign in front of f̂ in v2. We want to remark that f̂ has to be taken positive for solution 1
and negative for solution 2.

Evaluation of the Flux Vacua:

Solution 2 is a non-supersymmetric flux vacuum, however, now all moduli are stabilized in
contrast to the models before. There is one tachyon which lies above the Breitenlohner-
Friedman bound.

As shown in table 4.4 we obtain in addition a supersymmetric AdS minimum with all
moduli fixed as well. It is stable since there are no tachyons appearing.
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solution (s, τ, v2, ρ, c, u) susy tachyons Λ

1 (−12
5

f̃
h
v, 3

2
h
p
v, 5

9
f̂

f̃
, 0, 0, 0) yes no AdS

2 (−12
5

f̃
h
v, 3

2
h
p
v,−5

9
f̂

f̃
, 0, 0, 0) no yes AdS

Table 4.4: Extrema of the scalar potential for the model of section 4.5 including P -fluxes.

Masses of the Moduli:

The superpotential (4.5.1) and the Kähler potential (4.3.4) lead to the following mass
eigenvalues for the non-supersymmetric solution 2 in the canonically normalized basis

M2
mod,i = µi

p3 (̃f)
5
2

h2 (̂f)
3
2

M2
Pl

4π · 27
, (4.5.2)

where the numerical prefactors take the values

µi = (52, 31, 15 ; 45, −3.4, 19). (4.5.3)

Here the first three eigenvalues correspond to saxionic states, whereas the last three to
axionic states. In particular, the tachyonic state is given by a linear combination of c, ρ
and u. Computing the gravitino mass, we find the numerical prefactor µ 3

2
= 10.7.

Step 2: h1,1
− = 1

Finally let us construct a flux scaling scenario including all possible moduli of table 2.2,
that is, extending the previous case with h1,1

− = 0 by one axionic-odd modulus G = ψ+ iη.
Hence we have to deal with the full Kähler potential (2.2.37):

K = −3 ln
(

(T + T ) +
κ

4(S + S)
(G+G)2

)
− ln(S + S)− 3 ln

(
U + U

)
, (4.5.4)

where κ = 2καab with α = a = b = 1. When including an axionic-odd modulus, the
superpotential (4.5.1) becomes by default

W = f̂− 3 f̃U2 − hSU + p
(
ST +

κ

4
G2
)
, (4.5.5)

with κ as in the Kähler potential. This superpotential can be easily derived from the
general ansatz (3.3.9). In doing so, it is important to notice that the G2 and ST terms are
generated by the same P -flux.

Since only the differences between the Kähler potential and superpotential from the
previous example with h1,1

− = 0 depend on terms with G, there are supersymmetric and
non-supersymmetric minima with the axionic-odd moduli stabilized at ψ = η = 0. The
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remaining moduli still take the values of table 4.4, where the supersymmetric minimum
and its non-supersymmetric counterpart differ again by a minus in front of f̂.

The G modulus decouples from S, T, U moduli in the canonically normalized mass ma-
trix, thereby leading to the same masses in the S, T, U sector as before. On the other
hand, η and ψ turn out to be eigenstates of the canonically normalized mass matrix.
The corresponding mass eigenvalues are of the form (4.5.2) with numerical prefactors
(µψ, µη) = (0,−3.4) and (0, 17), for the supersymmetric and non-supersymmetric extrema
respectively. Therefore both cases are now plagued with a tachyon and a massless sax-
ion. There exist additional extrema with unstabilized ψ 6= 0 showing the same qualitative
behavior.

To conclude, we have not been able to detect a non-supersymmetric stable flux vacuum
with one axion unfixed for the final scenario and hence this model is not suitable for
realizing axion monodromy inflation. Nevertheless we in fact presented a flux scaling
scenario stabilizing all possible moduli at tree level.

4.6 Moduli Spectroscopy

An absolutely crucial necessity for any flux-scaling vacuum to be a realistic scenario is to
guarantee the correct mass hierarchy:

MPl > Ms > MKK > Mmod , (4.6.1)

where MPl is the Planck mass, Ms the string scale, MKK the Kaluza-Klein scale and Mmod

are the moduli masses which we computed above. It will be explained how to calculate
these mass scales later on in this section. Notice that we are not taking inflation into
account at this point, otherwise there would be even more scales which have to be in
proper order. We postpone this discussion to chapter 5.

Mmod has to be smaller than Ms and MKK in order to make the four-dimensional
supergravity approximation trustable. The first two hierarchies in (4.6.1) are evident by
construction of string theory.

In this section we will calculate the mass scales for our scaling models and check whether
they have the ability to satisfy the hierarchy (4.6.1).

The Planck mass in (4.6.1) is MPl = (8πG)−1/2 ≈ 2.435 · 1018GeV in our conventions.

As usual the string mass is Ms = (α′)−
1
2 , and in terms of MPl the string and Kaluza-Klein

scales can be expressed as

Ms =

√
πMPl

s
1
4 V 1

2

, MKK =
MPl√
4π V 2

3

, (4.6.2)

where s = e−φ, cf. e.g. [72] for details. Recall that V is the volume of the Calabi-Yau
manifold in Einstein frame measured in string units, namely V = Vol/`6

s with `s = 2π
√
α′.

In the flux-scaling models we had large fluxes fL guaranteeing that the moduli are in their
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perturbative regime and other fluxes fS that we usually choose to be of order one. More-
over, there are further order one coefficients entering the Kähler potential, once we specify
a concrete Calabi-Yau manifold. The hope is now to achieve parametric control over the
mass scales, such that we can fulfill the hierarchy (4.6.1) by tuning the fluxes appropriately.
Let us now formalize what we mean by parametrical control: A scale M1 is called para-

metrically larger than a scale M2, denoted as M1
&
p
M2, if it occurs that M2/M1 → 0 for

fL → ∞. The two scales are called parametrically equal, M1'p M2, if M2/M1 → O(1) for
fL →∞. This distinguishes the case where one has parametric control over the relative size
of two mass scales from the case when their relative size is just a numerical coincidence.
It can happen that even though M1'p M2 one of the order one fluxes fS can guarantee
parametric control. If that is the case we mention it explicitly. It is also possible that in
all our examples it just happens that the numerical prefactors are such that M1 > M2. In

this case, we say that M1 is numerically larger than M2 and denote it as M1
&
n
M2.

Due to the definitions (4.6.2), MPl, Ms and MKK are highly depending on the concrete
model. So, next we want to investigate two representative scaling models.

Model A Let us start with model A of section 4.2, where solution 3 of table 4.1 corre-
sponded to a non-supersymmetric stable vacuum. The volume of an isotropic 6-torus is
given by the Kähler potential (4.2.1) and can be rewritten in terms of the real part τ of
the Kähler moduli:

V =
(
T + T

) 3
2 = (2τ)

3
2 . (4.6.3)

Then the Kaluza-Klein and string scale for the non-supersymmetric tachyon-free minimum
follow directly from definitions (4.6.2):

M2
s = µs

h
1
2 q

3
2

f̃2
M2

Pl

4π · 27
, M2

KK = µKK
q2

f̃2
M2

Pl

4π · 27
, (4.6.4)

with µs = 21 and µKK = 22. In order to check the mass hierarchy, consider at first the
ratio of the Kaluza-Klein scale to the string scale

M2
KK

M2
s

=
1

4π2

( s
2τ

) 1
2

=
1

4π2

(
5

12

) 1
2 ( q

h

) 1
2
. (4.6.5)

Therefore, to make the string scale parametrically higher than the Kaluza-Klein scale, we
would need to require h > q. This means τ > s so that α′-corrections to the tree-level
Kähler potential are indeed subleading. The ratio of the Kaluza-Klein scale to the moduli
mass scale comes out as

M2
mod

M2
KK

= 0.36 µi hq . (4.6.6)

One might think that the mass hierarchy for this model is not satisfied at all since both
ratios do not depend on the very large flux f̂ and we have Ms'p MKK'p Mmod. However, by
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choosing for the order one fluxes h > q we can at least guarantee a parametrical separation
between string and Kaluza-Klein scale. As a summary, the non-supersymmetric stable
vacuum of model A leads to the following mass hierarchy

MPl > Ms
&
p
MKK 'p Mmod . (4.6.7)

Model C Let us eventually show that in contrast to model A it is indeed possible to
realize the correct mass hierarchy in model C. Since the geometry is again described by
an isotropic 6-torus, the overall volume of the internal manifold reads V = (2τ)

3
2 . Conse-

quently, the definitions (4.6.2) for the Kaluza-Klein and string scale yield

M2
s = µs

h
1
2 q

3
2

f0 f̃1
M2

Pl

4π · 27
, M2

KK = µKK
q2

f0 f̃1
M2

Pl

4π · 27
, (4.6.8)

with µs = 84 and µKK = 1.4, for the non-supersymmetric stable vacuum of model C, that
is solution 2 in table 4.2. For the ratio of the Kaluza-Klein and the string scale we obtain

M2
KK

M2
s

= 0.016
( q
h

) 1
2
, (4.6.9)

whereas the ratio of the moduli masses and the Kaluza-Klein scale is

M2
mod

M2
KK

∼ hq (̃f1)
1
2

f
1
2
0

. (4.6.10)

A separation between the moduli and Kaluza-Klein states can obviously be ensured by
making f0 large enough. Thus for the non-supersymmetric stable minimum of model C we
can actually guarantee the desired mass hierarchy:

MPl
&
p
Ms

&
p
MKK

&
p
Mmod . (4.6.11)

Since all scales differ only by a relative factor of O(10), they are very sensitive to numerical
prefactors. For concreteness let us make the choice

f0 = 3200 , f̃1 = 1 , h = −2 , q = −1 , (4.6.12)

and analyze the moduli around the minimum with values

τ = 275 , s = 110 , v = 18 , u = c = ρ = 0 . (4.6.13)

Using MPl = 2.44 · 1018 GeV, the string and Kaluza-Klein scale come out as

Ms ∼ 1.17 · 1016 GeV , MKK ∼ 1.25 · 1015 GeV . (4.6.14)
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V

x

y

Figure 4.2: The potential V (x, y) around the minimum, where x is pointing in the direction
of the lightest axionic modulus and y in the direction of the lightest saxionic modulus.

The masses of the saxion moduli are

M sax
i ∼

(
2.9, 1.2, 1.0

)
· 1014 GeV , (4.6.15)

and the masses of the two heavy axions are

Max
i ∼

(
2.5, 0.23

)
· 1014 GeV . (4.6.16)

Note that the second axion is the lightest (massive) axion and therefore might be a possible
inflaton candidate. We will investigate this further in chapter 5. In figure 4.2 we show
the potential around the minimum, in the directions of the lightest and the second-lightest
modulus.



Chapter 5

Application to Inflation in String
Theory

The final chapter applies the flux-scaling scenarios constructed above to inflation. We
will start with a summary of inflation including a short overview of different types of
inflation. Then, the need for an embedding in an UV-complete theory leads us to string
inflation via axion monodromy. Note that the first two section follow mainly the excellent
reviews [73,74]. In the third section, the explicit inflaton potential induced by model C is
analysed analogously to [75]. Therefore we have to take backreaction effects into account
and add an uplift term. As the central result of this thesis, the final inflaton potential varies
with the backreaction. More concretely, we obtain an interpolation between polynomial
and Starobinsky-like inflation.

5.1 A Brief Review of Inflation

In the last decades cosmology fundamentally changed from a rather speculative field to one
based on high precision measurements. Important milestones are the Hubble Space Tele-
scope fixing the current Hubble parameter [76] that eventually motivated the introduction
of a small (∼ 10−122M4

Pl) cosmological constant. This effect is interpreted as dark energy
and causes late-time accelerated expansion of the universe [77,78]. Moreover, the satellite
missions WMAP [79] and PLANCK [4,5] as well as ground-based telescopes ACT [80] and
SPT [81] provide us with a sensational resolution of the temperature fluctuations of the
cosmic microwave background (CMB). These fluctuation must have a primordial origin
in the very early universe (∼ 10−34s) which presumably arise from quantum fluctuations
stretched by an inflationary expansion of the universe [82]. Such an extremely rapid early-
time accelerated expansion of our universe driven by the vacuum energy of a so-called
inflaton field is consistent with the recent experimental results and will be explained next.



54 5. Application to Inflation in String Theory

5.1.1 Horizon Problem and Cosmic Inflation

As an observational matter of fact, the universe is amazingly isotropic and homogeneous
on large scales. Moreover, its geometry matches the spatially flat Friedmann-Robertson-
Walker (FRW) metric quite well. The FRW metric employs a universal scale factor a(t)
with cosmic time t. This scale factor describes the distance between two comoving points,
that is, between points moving simultaneously with the expansion of the universe. In
standard Big Bang cosmology, tracing back the expansion of the universe, i.e. a(t) −→ 0,
we eventually reach a spacetime singularity called Big Bang. We choose the Big Bang to
happen at cosmic time t = 0. A very important definition in this context is the Hubble
parameter

H =
ȧ

a
. (5.1.1)

In accordance with usual conventions, here and in the following d
dt
≡ ˙ denotes the time

derivative. The Hubble parameter quantifies the expansion rate of the universe and is
positive for an expanding universe. Besides, H−1 is the Hubble time which corresponds to
the Hubble length in units where c = 1. The latter is commonly known as horizon because
it estimates the size of the observable universe.

In order to discuss causal structure, we define the conformal time τ as well as the
comoving distance that a particle may traverse during τ . Starting at the initial singularity,
τ is defined by

τ =

∫ t

0

dt′

a(t′)
=

∫ ln a(t)

−∞

d ln a

aH
. (5.1.2)

This is equivalent to the maximal comoving distance a particle could have traveled since
the Big Bang and thus often call particle horizon. Definition (5.1.2) gives immediately rise
to the following issue:

Horizon problem: While the universe expands, the comoving Hubble radius (aH)−1 =
(ȧ)−1 grows in time. Hence the particle horizon, i.e. the integral in (5.1.2), receives
its dominating contributions from late times. Therefore at sufficiently early time,
all observable length scales have been outside the horizon and consequently not in
causal contact! In case of the Cosmic Microwave Background (CMB), patches sepa-
rated roughly by more than one degree were causally disconnected at their creation.
However, the CMB looks sensationally uniform everywhere! To shed more light upon
this miraculous coincidence, consider figure 5.1 which depicts past light cones that
do not overlap before the Big Bang. There must be a reason why once causally
disconnected regions of space ended up in perfect agreement later on. Solving this
puzzle is knows a horizon problem.

Notice that the standard Big Bang cosmology leads to even more open issues, as for
instance the flatness problem which means that a nearly flat universe today would require
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Comoving distance

Conformal time

0

now

0

CMB

Light cone

Figure 5.1: Spacetime diagram adapted from [74] illustrating the horizon problem in co-
moving coordinates. Our past light cone contains points clearly separated at CMB creation.
As the light cones (orange) of these points do not overlap, the points have never been able
to be in causal contact.

an extreme fine-tuning at very early times. Another striking problem are unwanted relics
like magnetic monopoles (in Grand Unified Theories (GUT)), which should have been
produced in the early universe.

Let us step back to the horizon problem and figure out its solution.

Solution: Introduce an early time period where the comoving Hubble radius (aH)−1 was
decreasing while the scale factor a(t) was still increasing.

Thus comoving length scales have left the horizon at some early time and re-entered again
when the comoving Hubble radius changed to increase. If the comoving Hubble radius was
decreasing sufficiently long, the whole CMB spectrum could have been in causal contact at
some very early time, see figure 5.2. In terms of equations, a decreasing comoving Hubble
radius in an expanding universe corresponds to

d

dt

(
1

aH

)
< 0 for a very early time period. (5.1.3)

Using the definition of the Hubble parameter (5.1.1), it is easy to compute

d

dt

(
1

aH

)
= −1

a

(
1 +

Ḣ

H2

)
= − 1

(aH)2
ä (5.1.4)

Introducing then the so-called (Hubble) slow-roll parameters

ε = − Ḣ

H2
and η̃ =

ε̇

Hε
, (5.1.5)

finally leads to:
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Figure 5.2: Spacetime diagram adapted from [74] illustrating how inflation solves the
horizon problem. Now all points of the CMB have overlapping light cones and thus originate
from causally connected regions of space. Note that the standard Big Bang at τ = 0 has
been replaced by the end of inflation, i.e. a reheating phase.
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Definition: Inflation is a time period with ε < 1 or equivalently ä > 0. So, a period of
accelerated expansion of the very early universe.

Inflation does not only solve the horizon problem, but also other issues like the flatness
and magnetic monopole problems. For details we refer to the literature, for instance [83].

It remains to clarify how long inflation needed to last in order to redress these problems.
The duration of inflation is commonly quantified in the number Ne of e-foldings specifying
the growth of the scale factor:

a(tend of inflation) ' eNe a(tbegin of inflation). (5.1.6)

Comparing the largest visible cosmological scales and the GUT scale as smallest one, it
turns out that we must have Ne ≈ 60 to overcome the issues above. The end of inflation
is known as reheating as we will briefly explain now, cf. [83] for more information.

Our next task is to make out an energy source driving inflation and eventually fading
away to culminate in the standard model spectrum.

5.1.2 Realizing Inflation in Effective Field Theory

In the end we would like to achieve inflation within sting theory or more precisely we look
for an object in 10d string theory that effectively causes inflation in 4d. Here, we describe
inflation by field theory and postpone its stringy origin to sections 5.2 and 5.3.

Start with a single scalar field φ whose potential energy is displayed in figure1 5.3.
As φ moves towards the minimum, it passes a slow-rolling phase giving rise to inflation.
Eventually, when φ reaches the minimum, its kinetic energy becomes comparable to its
potential energy and inflation terminates. The remaining, large energy density of φ decays
into standard model particles and in particular radiation, i.e. reheating occurs. Quantum
fluctuations δφ at the beginning of inflation are responsible for later fluctuations in the
CMB spectrum. In the following we will often refer to the scalar field φ as inflaton field.
This is the most prevalent approach to inflation. More specifically assume a scalar field φ
minimally coupled to Einstein gravity in 4d

SInflaton =

∫
d4x
√
−g

[
1

2
R+

1

2
gµν∂µφ∂νφ− V (φ)

]
(5.1.7)

where the inflaton potential V (φ) has not to be of the form shown in figure 5.3, but may
look rather arbitrary.

The Friedmann equation and Klein-Gordon equation, cf. for instance [87], for the scalar
field φ(t) are given by

φ̈+ 3Hφ̇+ V ′(φ) = 0 and 3H2 =
1

2
φ̇2 + V (φ) (5.1.8)

1We will explain this potential more precisely when we discuss small-field inflation.
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Figure 5.3: Example of an inflaton potential V (φ) from [74].

with ()′ ≡ ∂
∂φ

(). Performing now a time derivative of the Klein-Gordon equation and
plugging in the Friedmann equation, enables us to rewrite the condition for inflation. The
Hubble slow-roll parameter then has to satisfy:

ε ≡ − Ḣ

H2
=

1
2
φ̇2

H2
< 1. (5.1.9)

This result leads to slow-roll conditions for the scalar field (again with help of equations
(5.1.8)):

φ̇2 � V (φ) and |φ̈| � |3Hφ̇|, |V ′(φ)| . (5.1.10)

The condition on the left guarantees that the potential energy of φ dominates over the
kinetic energy and thus motivates the label ’slow-roll’. Apart from that the condition on
the right implies small acceleration and ensures thereby a long enough slow-roll period.

Alternatively the slow-roll conditions for inflation can be expressed in terms of condi-
tions on the potential V (φ). For this reason we introduce the potential slow-roll parameters

ε :=
1

2

(
V ′

V

)2

� 1 and |η| :=
|V ′′|
V
� 1 (5.1.11)

which are related to the Hubble slow-roll parameters as follows [73]

ε ≈ ε and η ≈ 2ε− η̃

2
. (5.1.12)

It is convenient to formulate the slow-roll conditions as restrictions on the inflaton potential
because it is primarily the potential that distinguishes between various models of inflation.
In this sense, one redefines also the number Ne of e-foldings (5.1.6)

Ne(φ) ≡ ln
a(tend of inflation)

a(tbegin of inflation)
=

∫ tend

t0

dt′ H =

∫ φend

φ0

dφ
H

φ̇
≈
∫ φ0

φend

dφ
V

V ′
. (5.1.13)
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5.1.3 Models of Inflation

Let us now discuss some characteristic (but not completely distinct) classes of inflaton
potentials:

• Single-field slow-roll models: Such models of inflation are usually the most simple
ones. The subsequent examples on small- and large-field inflation belong to this
category.

• Modified gravity models: Additional terms in the Einstein-Hilbert action lead
to new types of inflation. For instance, one could consider higher curvature terms
or expressions non-minimally coupled to gravity. We will investigate Starobinsky
inflation as an example later in this section and encounter a similar behaviour again
in section 5.3.

• Non-slow-roll models: These models are often called K-Inflation models because
their characteristic property is a non-canonical kinetic term driving inflation [84].
As a consequence inflation can also be possible for steep potentials not obeying the
slow-roll conditions. However, we will not consider these models further.

• Multi-field models: In this case there are several fields inflating which easily allow
for a large number of possibilities for the inflationary dynamics. The final model
presented in section 5.3 will turn out to be equipped with multi-field features.

Let us now consider single-field slow-roll inflation described by the Einstein-Hilbert action
(5.1.7). It is convenient to distinguish between small and large distances that the inflaton
is allowed to move from the creation of the CMB φCMB to the end of inflation φend. In this
sense we define ∆φ := φCMB − φend measured in Planck units. φend is set by the slow-roll
conditions (5.1.11) and hence by the inflaton potential V (φ). Next, we want to spell out
typical potentials for small- and large-field inflation:

Small-field inflation: ∆φ < Mpl sub-Planckian field evolution
An example for a small-field inflation potential has already been shown in figure 5.3, which
is also know as hilltop inflation.

Such small-field scenarios originate often from spontaneous symmetry breaking and
motivate a Higgs-like potential. Usually the inflaton potential for small-field inflation
takes locally the form (p > 0; V0 and µ are model-dependent parameters)

V (φ) = V0

[
1−

(
φ

µ

)p]
+ . . . (5.1.14)

with the dots denoting higher-order terms that become important for large values of φ, i.e.
at the end of small-field inflation. Those are indeed relevant for the exact value of φend

and determine the cosmological constant at the global minimum after inflation.
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Figure 5.4: Potentials for large-field inflation from [74]. The figure on the left displays a
monomial potential corresponding to chaotic inflation. The figure on the right shows a
potential for natural inflation depending on the perodicity 2πf .

Large-field inflation: ∆φ > Mpl super-Planckian field evolution
Two prototypical examples of large-field inflation are depicted in figure 5.4. The potential
on the left corresponds to chaotic inflation and is formally described by a simple monomial
ansatz (p > 0)

V (φ) = µ4−pφp. (5.1.15)

Note that the original idea of chaotic inflation proposed by Linde [85] was actually more
general than our monomial potential.

We will encounter this model of inflation again in section 5.3, so let us in addition state
the slow-roll parameters (5.1.11) for this monomial inflaton potential

ε =
1

2

(
p

φ

)2

and η =
p(p− 1)

φ2
. (5.1.16)

Obviously ε and η do not depend on the scale µ. The number of e-foldings starting from

the CMB creation is roughly given by Ne ≈
φ2

CMB

2p
, cf. equation (5.1.13), which is often

used to rewrite ε and η.
The potential on the right of figure 5.4 is called natural inflation and described by the

following potential

V (φ) = V0

[
1 + cos

(
φ

f

)]
. (5.1.17)

Natural inflation is especially attractive if an axion is driving inflation. In this case the
parameter f represents the so-called axion decay constant which we will explain later on2.
However, our scenarios in section 5.3 will not belong to this elegant class of inflationary

2Notice that natural inflation boils down to chaotic inflation if the decay constant fulfills f �Mpl.
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models.

For later usage we briefly have to introduce another specific model of inflation which
blends into the group of large-field models:
Starobinsky inflation: In the 1980s Starobinsky considered one-loop corrections to the
Einstein-Hilbert action and focused merely on the additional R2-term [86]:

SStarobinsky =
1

2

∫
d4x
√
−g

[
R+

α

2
R2
]

(5.1.18)

where α is a normalization constant that is found to be α = 2.2× 108. After performing a

conformal transformation and defining a scalar field φ :=
√

2
3

ln(1 + αR), we arrive at an

action of the familiar form (5.1.7) with a minimally coupled scalar field φ and the following
inflaton potential (cf. [74])

V (φ) =
1

4π

[
1− exp

(
−
√

2

3
φ

)]2

. (5.1.19)

This potential leads us immediately to the slow-roll parameters3 (5.1.11):

η = −4

3
exp

(
−
√

2

3
φ

)
and ε =

3

4
η2 . (5.1.20)

5.1.4 Quantum Fluctuations

The next step is to consider quantum mechanical fluctuations of the light scalar field
driving inflation. Due to the extremely fast expansion during inflation, the wavelengths of
these fluctuations were stretched to lengths larger than the Hubble horizon. The amplitude
’freezes’ at this super-horizon stage since adiabatic fluctuations do not evolve outside the
horizon. After inflation has ended, the frozen scalar field fluctuations, which are now large,
will eventually re-enter the horizon and cause variations in the gravitational potential.
These curvature perturbations R are responsible for density fluctuations in the matter
distribution right after inflation and culminate in the large-scale structure formation of
our observable universe.

Further information and an explicit computation of quantum fluctuations during infla-
tion is most likely part of any text book on inflation. We recommend the books [74,87] and
the TASI lecture notes [73]. We restrict ourselves to a brief summary of the most relevant
results.

A crucial statistical measure of primordial fluctuations is the power spectrum PR of the
curvature perturbations R:

〈Rk Rk′〉 = (2π)3 δ(k + k′) PR(k). (5.1.21)

3Also in Starobinsky inflation one usually rewrites ε and η in terms of the number of e-foldings Ne.
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We also define a dimensionless scalar power spectrum ∆2
s which is given by4

∆2
s ≡ ∆2

R ≡
k3

2π2
PR(k) =

H2

8π2εM2
Pl

, (5.1.22)

where the right-hand side is evaluated at the horizon crossing k = aH. Scale dependence
of the power spectrum is quantified by the scalar spectral index

ns − 1 =
d ln ∆2

s

d ln k
. (5.1.23)

Note that all statistical information is entirely determined by R only if R is Gaussian.
Higher-order correlation functions, in particular the 3-point function 〈Rk Rk′ Rk′′〉, are
encoded by so-called non-Gaussianity parameters and have to obey strong experimental
limits by [5]. It turns out that non-Gaussianity is small for single-field slow-roll inflation,
but crucial in the case of multi-field inflation.

Another elementary consequence of inflation is primordial gravitational waves. They
correspond to tensor perturbations whose dimensionless tensor power spectrum reads

∆2
t ≡

k3

2π2
Pt(k) =

2H2

π2M2
Pl

. (5.1.24)

One might now define a tensor spectral index nt for the scale dependence of tensor modes
analogously to ns. Let us finally introduce an essential parameter highly constrained by
observational data, the tensor-to-scalar ratio

r =
∆2
t

∆2
s

= 16ε . (5.1.25)

We also want to mention the energy scale of inflation Einf = V
1/4

inf = (3H2
infM

2
Pl)

1/4. One
could now express the slow-roll parameters ε, η in terms of e-foldings Ne and calculate
the spectral index ns and the tensor-to-scalar ratio r, cf. the literature mentioned above.
Table 5.1 summarizes ns = 1 + 2η − 6ε, r for polynomial and Starobinsky-like inflation as
well as current experimental data.

5.2 Axion Monodromy Inflation

In contrast to most particle physics applications, the effective theory of inflation is highly
sensitive to physics above the cutoff scale, i.e. ultraviolet (UV) corrections. As string
theory is arguably the best theory to describe physical regimes approaching the Planck
scale, it is natural to check whether inflation can be embedded in the context of string
theory. We will now stress the need for a UV complete theory of inflation and afterwards
show a prospective solution via axions from string theory generating a monodromy. We
recommend [88] and once again [74].

4The definitions in this subsection actually contain in addition a ’speed of sound’ parameter cs that is
approximately 1 in the slow-roll limit.
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ns r

Polynomial Inflation 1− p+2
2Ne

4p
Ne

Starobinsky-like Inflation 1− 2
Ne

8
(γNe)2

Experimental Data 0.9667± 0.004 < 0.113

Table 5.1: Spectral index ns and tensor-to-scalar ratio r compared to experimental values.

5.2.1 Ultraviolet Sensitivity

UV corrections to the effective field theory of inflation contribute via two different effects.
On the one hand, we have to renormalize the couplings of the inflaton field, and on the
other hand, non-renormalizable higher-order operators must be addressed. Both issues
lead to a so-called eta problem which is present in any model of slow-roll inflation.

Let us briefly consider radiative corrections to make the eta problem more precise.
Start with a scalar field in a general effective field theory with cutoff scale Λ. The mass
of the scalar field can run to the cutoff if there is no symmetry preventing this. Hence
the inflaton mass receives a quantum correction ∆m2 ∼ Λ2. However, the cutoff for an
effective field theory of inflation has to be greater than the Hubble scale, that is Λ > H,
cf. the literature mentioned above for details. Recalling that m2 = V ′′ and 3H2 ≈ V/M2

Pl,
the definition (5.1.11) of the slow-roll parameter η yields

∆η ≈ ∆m2

3H2
≥ 1 . (5.2.1)

This is the well-known eta problem and contradicts the slow-roll condition! It turns out
that a global symmetry, for instance of the form φ→ φ+const., forbids a mass term of the
inflaton field φ and is therefore able to avoid the eta problem. How such a shift symmetry
arises from a consistent UV complete theory, however, is not obvious at a first glance.

Moreover, as stated in the introduction, we are focusing on large-field inflation due
to the Lyth bound. But models of large-field inflation are plagued with an additional
issue regarding UV sensitivity. Integrating out fields of mass Λ (with couplings to the
inflaton of order 1) will generically deform the inflaton potential on scales of order Λ in
the effective action. Hence the inflaton potential develops sub-Planckian structures as
demonstrated in figure 5.5. In fact, there is an infinite series of non-renormalizable higher-
dimensional operators contributing to the inflaton potential. Remember that large-field
inflation requires a smooth inflaton potential over super-Planckian distances by definition.
The problem of super-Planckian displacements is a serious drawback of large-field inflation
whose solution is a crucial task. Again, the idea to prevent the problematic contributions
is to invoke a shift symmetry:

φ → φ + const. . (5.2.2)

Note that this continuous shift symmetry holds to all orders of perturbation theory, but is
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(a)

(b)

Figure 5.5: from [74]. (a) The potential of large-field inflation needs to be smooth over
a super-Planckian range. (b) In the absence of symmetries, effective field theory predicts
that generic potentials have structure on sub-Planckian scales Λ < MPl.

non-perturbatively broken to a discrete shift symmetry5 by instantons.
Remarkably, there are plenty of fields in string theory obeying such a shift symmetry.

We call scalar fields equipped with the shift symmetry (5.2.2) axions6. In the next step,
let us explain how axions appear in string theory.

5.2.2 Axions in String Theory

In general string compactifications axions arise from integrating p-form gauge potentials
over p-cycles of the compact manifold. Considering type IIB superstring theory, for instance
integration of the NS-NS 2-form B2 over a 2-cycle Σ2 gives rise to an axion b:

b =

∫
Σ2

B2 . (5.2.3)

In addition we get axions associated to the R-R 2-form C2, 4-form C4 as well as the universal
axions C0 and 2 more from dualizing B2, C2. After orientifold projection we are left with
the axion collected in table 2.2.

The reason for the continuous shift symmetry (5.2.2) of axions is the p-form gauge
invariance of the 10d theory. More precisely, the 10d supergravity action (3.1.1) (with
vanishing fluxes) does not depend on B2, C2, C4, but instead on the corresponding field
strengths. The continuous shift symmetry holds to all orders of perturbation theory.

Non-perturbative worldsheet instantons and/or D-branes break this continuous sym-
metry to a discrete shift symmetry φ→ φ+ (2π)2 [89].

The Lagrangian of an axion a is then determined by the discrete shift symmetry:

L(a) = −1

2
f 2(∂a)2 − Λ4

[
1− cos

( a
2π

)]
+ . . . , (5.2.4)

5A discrete shift symmetry allows for desirable periodic terms in axionic inflaton potentials.
6Some authors reserve the name ’axion’ for the original QCD axion and speak of ’axion-like’ fields

otherwise. Note that we use ’axion’ for all fields satisfying the properties above.
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where Λ is a dynamically generated scale. The parameter f is the axion decay constant,
which we have already introduced above. Canonically normalizing the field φ ≡ fa leads
to the axion periodicity (2π)2f .

One might have noticed that this Lagrangian matches the potential of natural infla-
tion (5.1.17). Thus, for a consistent model of large-field inflation we must have a super-
Planckian axion decay constant. However, controlled string compactifications require un-
avoidably sub-Planckian decay constants. Current research tries to circumvent this issue
by using several axions, each with a sub-Planckian decay constant, to generate an effec-
tive super-Planckian decay constant. Such models are called aligned inflation [90] and
N-flation [91]. We choose a different approach to axion inflation via monodromy, which
we will summarize in the next subsection.

5.2.3 Monodromy Inflation

The most easy example to visualize monodromy is the spiral staircase, where we reach
a higher level after each circuit. Analogously, we speak of a monodromy when a system
ends up in a new configuration after being transported around a closed loop in the (naive)
configuration space [74]. This effect can be used in the context of axion inflation as first
proposed by E. Silverstein and A. Westphal [8] and further developed in [9]. The basic
idea is that the inflaton travels many cycles through a fundamental period, while the
effective field evolution increases permanently. As a great advantage, the structure of the
inflaton potential is preserved due to the protection of the axion shift symmetry during
each individual cycle. In recent years, there was much progress in realizing an explicit
scenario of axion monodromy inflaton, see for instance [10, 92–95]. Next, let us at least
shed some light on the main concept of this kind of inflation.

Consider a 4d spacetime filling D5-brane in type IIB string theory that wraps a 2-cycle
Σ2 on the internal manifold. The wrapped D5-brane is described by the Dirac-Born-Infeld
action [13] which leads to a 4d effective potential for the axion b =

∫
Σ2
B2 (see equation

(5.2.3)) after integrating over the 2-cycle Σ2

SD5 ∼
∫
M4×Σ2

d6σ
√
−det(Gab +Bab) ∼

∫
M4

d4x
√
−g

√
(2π)2l4Σ2

+ b2 , (5.2.5)

where lΣ2 is the size of the 2-cycle Σ2 in string units. At first, note that the D5-brane
has spoiled the discrete shift symmetry of the axion b → b + (2π)2. Furthermore, the
potential energy is no longer a periodic function of the axion b, instead the axion exhibits
a monodromy. Hence monodromy enables a super-Planckian field range of the axion as it
circuits the fundamental domain over and over again.

For a large initial vev b� l2Σ2
, the potential boils down to a liner behaviour V (b) ∼ b and

chaotic inflation can take place. The inflaton, i.e. the axion vev, decreases during inflation
until the linear approximation of the potential fails. At this point, the inflaton begins
to oscillate around the minimum of the potential, inflation ends and eventually reheating
occurs. The important fact is that the axion shift symmetry does still protect the potential
from UV corrections in each period and hence over super-Planckian displacements.
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It remains to check whether moduli stabilization and compactification affects axion
monodromy inflation. Constructing a concrete scenario of axion monodromy inflation is
indeed rather involved and we refer to the literature (listed in the beginning of this subsec-
tion) for further information. In the scenarios investigated in this thesis axion monodromy
inflation is realized via F-term scalar potentials induced by background fluxes following [96].

5.3 From Polynomial to Starobinsky-Like Inflation

In this final section we will check whether our flux-scaling scenarios of chapter 4 are able
to realize axion monodromy inflation. Our initial motivation was to enable inflation in the
context of moduli stabilization, hence this section represents the main result of our work.
In order to make axion monodromy inflation possible, we have to handle constraints from
string theory as well as inflation. From the string theory point of view, it is unavoidable
to ensure that the moduli are lighter than Kaluza-Klein and string states. Our 4d gauged
supergravity ansatz is only reliable if we can exclude those more massive states. Recall our
discussion in section 4.6 and in particular the needful mass hierarchy (4.6.1). From the
inflation point of view, it is necessary to attain an axionic modulus lighter than all other
moduli such that we can indeed guarantee single-field inflation. The inflaton must also be
below the energy scale of inflation Einf and the Hubble constant during inflation Hinf ∼
9.14 · 1013 GeV (for large field inflation). To summarize, a flux-scaling model is eminently
suitable for realizing single-field F-term axion monodromy inflation in a controlled way if
the following mass hierarchy can be substantiated

MPl > Ms > MKK > Einf ∼Mmod > Hinf > MΘ . (5.3.1)

There are just four orders of magnitude between the Hubble-scale and the Planck-scale for
all the other scales. It is clearly a major challenge for string theory to achieve and control
such a sensitive hierarchy.

Let us now consider the flux vacua we investigated in chapter 4 of this thesis. We
have already checked in section 4.6 which models satisfy the string theory part of the
mass hierarchy. It was shown that model A is not able to separate the Kaluza-Klein scale
from the moduli masses. Due to the simplicity of the superpotential of model A, there is
no possibility to slightly extend this model without involving new moduli. Therefore we
will not try to accomplish inflation in model A. Nevertheless, this was worked out in [75].
Instead we will analyze whether one can carry out axion monodromy inflation in model
C of section 4.3. The advantage of model C is the fact that we have parametrical control
over the string theory part of the mass hierarchy, see equation (4.6.11). Hence model C is
a good candidate for realizing axion monodromy inflation and we will exclusively focus on
this model during our final section of this thesis.

Let us next approach the inflation part of the mass hierarchy (5.3.1). So far the scalar
potential of model C stabilizes just 5 out of the 6 real moduli and keeps one axionic direction
Θ unfixed. As suggested in [10], the idea is to generate a non-trivial scalar potential for
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the axion Θ by turning on the additional flux fax, while the former fluxes are scaled by a
large number λ. Thus the total superpotential reads

Winf = λW + fax ∆W . (5.3.2)

If this leads to a parametrically lighter axion mass, the inflation part of the mass hierarchy
(5.3.1) would be fulfilled and the axion Θ a strong candidate for the inflaton.

We want to remark that the deformation of the original superpotential W in the ansatz
(5.3.2) is expected not to remove the minimum solution because first, the solutions from
W were stable and second, we can regulate the deformation via the constant λ. But, one
has to take care of the inflaton backreaction onto other moduli. Due to the fact that the
inflaton is stabilized by the additional flux fax, the parameter λ in the ansatz (5.3.2) allows
to control the intensity of these backreaction effects.

Having added new fluxes to the superpotential and stabilized all moduli, while guaran-
teeing a proper mass hierarchy, the general procedure to realize inflation will be as follows:

1. Calculate the backreaction effect of the inflaton onto the other moduli.

2. Uplift the scalar potential to Minkowski space.

3. Evaluate the backreacted uplifted inflaton potential.

Unfortunately, it turned out that our computational capabilities are rather limited. In
particular, it was not possible to take every backreaction into account. Aside of that,
the expressions become much longer as soon as one includes additional fluxes according
to ansatz (5.3.2). For this reason, we perform two different approaches to realize axion
monodromy inflation for model C in the next two subsections:

• Method 1: We do not use the ansatz Winf in equation (5.3.2), but instead take the
normal superpotential W of model C. Hence one modulus remains unstabilized and
we employ the axionic combination (hc + qρ) as inflaton. We consider backreaction
effects only onto s, τ and keep u, v at the minimum.

• Method 2: In fact, here we turn on additional fluxes and implement ansatz (5.3.2).
Thereby a parametrically small mass term for the so far unfixed axion (qc− hρ) can
be generated and we interpret this modulus as inflaton field. However, regarding the
backreaction we take only τ into account.

Although method 2 is the more appropriate way concerning the physical idea, method 1
elucidates the technical procedure more pedagogically as it is analytically better accessi-
ble. In the end both methods culminate in the same result. Notice that the incomplete
backreaction is still an open issue of our scenarios.

All computations in this section are closely following [75]. However we want to stress
that their scenario has two major drawbacks in contrast to the work presented here. On the
one hand, the Kaluza-Klein scale is parametrically of the same order as the moduli masses.
On the other hand, no additional fluxes are included to stabilize the a priori unfixed axion.
Thus their analysis corresponds to our method 1 for model A.
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5.3.1 Method 1: Without Additional Fluxes

For simplification we do not turn on additional fluxes in this method, but begin with the
usual superpotential W of model C given in equation (4.3.5). The axionic combination
θ = hc + qρ plays the part of the inflaton field because one can show that it is relatively
light. As we still want to control the backreaction and the parametrical mass difference
between inflaton and all other moduli, let us mimic the effect of the deformed superpotential
(5.3.2) by introducing a flux parameter λ. In practice this means to scale all terms in the
scalar potential except the inflaton term with λ. When considering the backreaction later
on, it will turn out that it is merely possible to take s and τ into account. Hence we
further simplify the scalar potential by plugging in the values for u and v at the stable
non-supersymmetric minimum, see solution 2 of table 4.2. Eventually, the scalar potential
for model C reads

V =
5

1
4

2
19
2 3

1
2

(̃f1)
1
2

(f0)
1
2

θ2

sτ 3
+

+ λ2 ·

(
31 · 3 1

2 10
3
4

320

(f0)
1
2 (̃f1)

3
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sτ 3
− f̃1
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16sτ 3
+

3
1
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1
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(̃f1)
1
2

(f0)
1
2

h2s2 − 4hqsτ − q2τ 2

sτ 3

)
(5.3.3)

The reader should keep in mind that the axionic combination (qc − hρ) orthogonal to
θ remains unstabilized. The minimum of θ was 0 according to table 4.2. To ensure τ ,
s > 0 at the minimum, we require the fluxes to satisfy h, q < 0 < f0, f̃

1. Moreover,
f0 � f̃1, h, q ∼ O(1) guarantees weak string coupling and large radius, so we can ignore
higher-order corrections to the scalar potential.

Let us now consider the backreaction of a slowly rolling and sufficiently light axion θ,
i.e. we take into account that during the rolling the moduli s and τ adjust adiabatically.
Hence one has to solve the extremum conditions for a non-vanishing value of θ:

s0(θ) = −1

h

√
24

√
2

5
f0f̃1 +

1

2

(
θ

λ

)2

τ0(θ) = − 3
1
2

10
1
4
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1
2 (̃f1)
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2

q
−

√
48
√

10f0f̃1 + 5
(
θ
λ

)2

10
1
2 q

.

(5.3.4)

One can easily see that for θ = 0 or very large values of λ, this corresponds exactly to
the standard minimum of models C in table 4.2. Note also that for large θ, the values of
τ0 and s0 stay in the perturbative regime and we may safely neglect higher-order α′- and
gs-corrections to the scalar potential.

Our next task is to uplift the scalar potential to vanishing cosmological constant in the
minimum because so far all flux vacua belong to AdS space. In the KKLT scenario [60] and
LVS [61], such an uplift was achieved by adding anti-D3-branes providing a positive-definite
contribution to the potential

Vup =
ε

Vα
, (5.3.5)
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where α = 2 for a D3-brane in the bulk and α = 4/3 for a brane located in a warped throat.
However, following [75] we restrict our model to a constant uplift for simplification. Let us
also remark that an uplift term like (5.3.5) does not work in our model at a first glance.
Although the necessary uplift term for our model was found in [18], its physical motivation
is not clear yet.

A constant uplift stands for computing the value of the scalar potential at the minimum
V0 and adding its absolute value to the scalar potential (5.3.3). Assuming θ0 = 0 at the
minimum and using equation (5.3.4), the constant uplift term is given by

Vup = −V0 =
hλ2q3

120
√

3 4
√

10
√

(f0)3f̃1
. (5.3.6)

Putting everything together, the backreacted uplifted inflaton potential is obtained by
plugging s0, τ0 from eqation (5.3.4) into the scalar potential (5.3.3) and adding the uplift
term (5.3.6). This yields in units of (M2

Pl/4π)

Vback(θ) =
λ2hq3
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√
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(5.3.7)

Obviously the original quadratic behaviour has changed drastically. The expected flat-
tening of the potential becomes evident in figure 5.6. For small values of θ the potential
is still of quadratic form, while it looks hyperbolic as θ gets larger. In the intermediate
regime there is a turning point, where the potential grows linearly.

Evaluation of the Backreacted Uplifted Inflaton potential

The varying behaviour of the inflaton potential in figure 5.6 suggests to analyze different
regimes of θ/λ and it will turn out that one receives different types of inflation. More
precisely, the parameter λ, which controls the backreaction, interpolates between quadratic
and Starobinsky-like inflation. As a great advantage of method 1, we are able to show how
this becomes apparent from the formal point of view.

• Quadratic Inflation for large λ

Assuming θ/λ �
√

f0f̃1, the shift in the minimum (5.3.4) gets small such that one
may neglect it. Therefore, the inflaton potential is approximately given by plugging
the standard minimum of model C (solution 2 of table 4.2) into the potential (5.3.3)
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Figure 5.6: Backreacted uplifted inflaton potential Vback(θ) of equation (5.3.7) in units of
(M2

Pl/4π) for the fluxes h = −1, q = −1, f̃1 = 1, f0 = 10 and λ = 10. Apparently, the
initial quadratic behaviour changed.

and adding the uplift term (5.3.6):

Vback(θ) ≈ 1

144 · 3 1
2 · 10

7
4

h q3

(f0)
5
2 (̃f1)

3
2

θ2 . (5.3.8)

Thus for large λ the inflaton potential is of the familiar quadratic form. In order to
determine the physical inflaton field, we have to take canonical normalization into
account. The Kähler metric can be read off from equation (4.3.4) and hence the total
kinetic energy is given by

Lkin = 3

(
∂τ

2τ

)2

+

(
∂s

2s

)2

+ 3

(
∂ρ

2τ

)2

+

(
∂c

2s

)2

. (5.3.9)

To find the kinetic term for θ, we need to determine the orthogonal axionic combi-
nation σ. This can be fixed as

∂θ = h∂c+ q∂ρ, ∂σ ∼ − q

s2
∂c+

3h

τ 2
∂ρ . (5.3.10)

It is not necessary to normalize ∂σ as one can show with the equations of motion
that ∂σ = 0, so σ is not moving during the slow-roll of θ. The new basis (5.3.10)
implies the following relations

∂ρ

∂θ
=

qτ 2

3h2s2 + q2τ 2
,

∂c

∂θ
=

3hs2

3h2s2 + q2τ 2
, (5.3.11)

so that the axionic terms in (5.3.9) add up to

Lax,θ
kin =

3(∂θ)2

4(3h2s2 + q2τ 2)
, (5.3.12)
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Figure 5.7: The exact inflaton potential Vback(Θ) is given by the blue curve and the
quadratic approximation (5.3.8) for Θ by the orange curve (in units of (M2

Pl/4π)) for
the fluxes h = −1, q = −1, f̃1 = 1, f0 = 10 and λ = 100.

where we neglected the irrelevant part of ∂σ. The saxionic part of Lkin does not
contribute because the backreacted moduli s0(θ) and τ0(θ) are nearly constant in the

large-field regime θ/λ�
√

f0f̃1:

s0 ≈ −
3

1
2 2

7
4

5
1
4

√
f0f̃1

h
and τ0 ≈ −

3
1
2 5

3
4

2
1
4

√
f0f̃1

q
. (5.3.13)

Using these approximations, the kinetical term for θ can be calculated to be Lθkin ≈
1
2

√
5

73
√

2f0 f̃1
(∂θ)2. Consequently, the canonically normalized inflaton field takes the form

Θ ≈ 5
1
4

73
1
2 2

1
4

θ√
f0f̃1

. (5.3.14)

Notice that θ/λ �
√
f0f̃1 implies Θ � λ, i.e. our quadratic inflation is restricted

to a small-field region. To sum up, the backreacted inflaton potential (5.3.7) is for
sufficiently large values of λ well approximated by the quadratic potential (5.3.8) as
shown in figure 5.7. This case is an example of the general group of chaotic inflation
discussed in section 5.1.

We still have to check the mass hierarchy (5.3.1) in order to guarantee a reliable
model of single-field inflation. Recall from section 4.6 that it was indeed possible to
satisfy the stringy part of this hierarchy if there is no λ parameter. However, with
almost the same flux choice (only f0 is larger):

f0 = 40000 , f̃1 = 1 , h = −2 , q = −1 , (5.3.15)

and setting λ = 100, we obtain a different mass hierarchy:

MPl > Ms > Mmod > MKK > Hinf > MΘ . (5.3.16)
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Figure 5.8: The figure shows the exact inflaton potential Vback(θ) in blue and the quadratic
approximation (5.3.8) in orange (in units of (M2

Pl/4π)) for the fluxes h = −1, q = −1,
f̃1 = 1, f0 = 10 and λ = 10. Obviously, the exact solution separates from the quadratic
approximation for smaller λ.

The good news is that we can easily ensure single-field inflation for large values of
λ. Apparently, the disadvantages are the large masses of the moduli. In contrast to
the situation without λ, the moduli are now heavier than the Kaluza-Klein scale and
our supergravity ansatz is no longer trustworthy.

In order to estimate the agreement of the scenario with experimental data, let us
compute the tensor-to-scalar ratio defined in (5.1.25) as well as table 5.1:

r = 16ε ≈ 4p

Ne

≈ 0.133 , (5.3.17)

for quadratic inflation with a potential proportional to Θ2 and Ne = 60 e-foldings.
This value of r exceeds slightly the upper bound r < 0.113 by [4, 5].

• Linear Inflation for intermediate λ
If we make λ smaller, the inflaton potential becomes flatter in the large-field region of
θ. Figure 5.8 depicts the full inflaton potential (5.3.7) for λ = 10 in comparison with
the quadratic approximation (5.3.8). The reason for this is that the backreaction
effects of the inflaton onto the moduli s and τ increase.

A more precise discussion would again require a canonical normalization of the in-
flaton in the intermediate regime θ/λ ≈ 1. Unfortunately, this exceeds our compu-
tational possibilities.

Computing the mass hierarchy with the same flux choice (5.3.15), we obtain a similar
relation as before. But now the moduli masses decrease and approach the Kaluza-
Klein scale, i.e.

MPl > Ms > MKK wMmod > Hinf > MΘ . (5.3.18)

The tensor-to-scalar ratio decreases, too, and one has r ≈ 0.067 for linear inflation.
Note that this is inside the experimental predictions.
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• Starobinsky-like Inflation for small λ

Finally, let us consider the large-field regime θ/λ �
√
f0f̃1. In this case the backre-

action onto s, τ is quite strong and thus the minimum (5.3.4) can be approximated
as follows

s0(θ) ≈ − θ√
2hλ

, τ0(θ) ≈ − θ√
2qλ

. (5.3.19)

Applying these approximations to the potential (5.3.3) including the uplift (5.3.6),
the inflaton potential for small values of λ approaches

Vback ≈
1

2
13
4 · 3( 3

2
) · 5 5

4

hλ2q3

(̃f1)
1
2 (f0)

3
2

(
1− 15

√
10
λ4f0f̃

1

θ2

)
. (5.3.20)

Next one must determine the canonically normalized inflaton. Therefore, we proceed
analogous to the case of quadratic inflation and calculate the θ part of the the kinetic
Lagrangian Lkin. The difference is that we are now in the large-field regime where
we may approximate s0(θ) and τ0(θ) according to (5.3.19). If we plug these values
into Lax,θ

kin , we derive

Lax,θ
kin =

3

8
λ2

(
∂θ

θ

)2

. (5.3.21)

In the large-field regime there is additionally a contribution from the saxionic part of
(5.3.9). Using (5.3.19) leads immediately to Lsax,θ

kin = (∂θ)2/θ2, such that the overall
kinetic term for θ is given by

Lθkin =

(
1 +

3

8
λ2

) (
∂θ

θ

)2

=
2

γ2

(
∂θ

θ

)2

(5.3.22)

with γ2 = 16/(8 + 3λ2). Notice that γ is independent of the fluxes, but depends only
on λ. Now, one can canonically normalize the inflaton via

θ =

√
15
√

10λ4f0f̃1 exp
γ

2
Θ (5.3.23)

and we arrive at a Starobinsky-like potential:

Vback(Θ) ≈ λ2

2
13
4 · 3( 3

2
) · 5 5

4

hq3

(̃f1)
1
2 (f0)

3
2

(
1− e−γΘ

)
. (5.3.24)

Let us remark that this potential becomes applicable in the large-field region and
leads to an exponential behaviour in contrast to the polynomial scenario, where the
backreaction was much weaker. Figure 5.9 displays a clear Starobinsky-like shape for
λ = O(1).
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Figure 5.9: The exact inflaton potential Vback(θ) (in units of (M2
Pl/4π)) for the fluxes

h = −1, q = −1, f̃1 = 1, f0 = 10 and λ = 1 displays a Starobinsky-like shape.

Let us again consider the mass hierarchy of this scenario and compare it to the
desirable relation (5.3.1). Employing the flux choice (5.3.15) and λ = 1 yields the
following masses

Ms ≈ 3.5 · 1015GeV, MKK ≈ 1.6 · 1015GeV (5.3.25)

and the moduli are of order 1013GeV. Assuming Ne = 60 e-foldings we find for
the Hubble scale of inflation7 Hinf ≈ 9.8 · 1012GeV and the inflaton mass MΘ ≈
2.2 · 1012GeV. Altogether this scenario fulfills the mass hierarchy

MPl > Ms > MKK > Mmod & Hinf > MΘ . (5.3.26)

The moduli masses are finally disconnected from the Kaluza-Klein scale as we have
set λ to its minimal value 1. At a first glance our model seems to realize single-
field axion monodromy inflation in a controlled way. However, if we compute the
energy scale of inflation, cf. section 5.1.4, it turns out that Einf = V

1/4
inf ≈ 6.4 ·

1015GeV. Unfortunately this value is even larger than the Kaluza-Klein scale MKK

and consequently the effective theory for inflation might not be reliable anymore.

Note that the Hubble scale agrees almost with the moduli masses and for a different
flux choice we often achieve Hinf > Mmod. For this reason single-field inflation is
actually no longer appropriate and we have to face a multi-field scenario instead.

Calculating the tensor-to-scalar ratio according to table 5.1, γ2 = 16/11 and Ne = 60
e-foldings lead to r = 0.0015, which is well below the bound by the Planck results
[4, 5].

5.3.2 Method 2: With Additional Fluxes

In the end of this thesis, let us consider the fully fledged approach to realize axion mon-
odromy inflation in the framework of our flux-scaling model C. We will at first turn on

7Hinf can be obtained from the scalar power spectrum (5.1.22) for which we take the experimental value
2.142 · 10−9.
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additional fluxes in order to stabilize the so far unfixed axionic combination θ = (qc− hρ)
in accordance with ansatz 5.3.2. Notice the different definition of θ in contrast to method
1. The goal is to stabilize θ in such a way, that a parametrical mass hierarchy between θ
and all other moduli is guaranteed. Then, θ is a suitable candidate for the inflaton and
one can evaluate the backreacted uplifted potential.

The term we have to add to the superpotential stabilizing the unfixed axion θ should
include c and τ moduli. A first guess might be to turn on an additional NS-NS H- and
non-geometric Q-flux by adding the term +i(h0S + q0T ) to the superpotential (4.3.5).
However, it can be shown that the backreaction on the old minimum is substantial. As a
consequence, the effect of such a ∆W is not under parametric control and therefore not a
good candidate for a deformation. We refer to [18] for a detailed investigation.

Instead we want to work with a different deformation of the superpotential originating
from non-geometric P -flux:

Winf = λW + ∆W = λ
(
− f0 − 3̃f1U2 − h1U S − q1U T

)
− p0 S T . (5.3.27)

Next we have to calculate the mass scales and check whether we are able to achieve the
desired hierarchy (5.3.1). This is very involved for strong backreaction! Therefore, assume
that the backreaction of ∆W on the values of the moduli in the old minimum is negligible
and that the mass of the inflaton θ can be parametrically smaller than the masses of all the
other moduli. Then we can analyze the problem by first integrating out all heavy moduli
and computing an effective potential for the inflaton. We use θ ∼ c to stay in accordance
with the analysis in [18]. The enlarged superpotential (5.3.27) leads to a effective scalar
potential of the form

Veff =
1

27

(
Ac4 +B c2 + C

)
, (5.3.28)
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and

C =
2
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4

5
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4 · 3 3

2

q1(−h2
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2
1λ

2 + 21p0h1q1f̃
1λ+ 90p2
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3
2
0 (̃f1)

1
2

. (5.3.30)

For all fluxes and λ being positive, the effective potential has a global minimum at c = 0.
In this minimum the mass of the canonically normalized inflaton is computed as

M2
Θ = µΘ

p0q1(̃f1)
1
2 (20h1q1λ+ 73

√
10p0f̃

1)

h1f
3
2
0

M2
Pl

4π · 27
, (5.3.31)
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with µΘ = 1.6. Therefore, in the regime 20h1q1λ � 73
√

10p0f̃
1 the mass of the inflaton

can be made parametrically smaller than the mass of the heavy moduli

M2
Θ

M2
mod

∼ p0f̃
1

h1q1λ
. (5.3.32)

The ratio of the Kaluza-Klein scale and the moduli masses behaves as

M2
mod

M2
KK

∼ λ2h1q1(̃f1)
1
2

f
1
2
0

. (5.3.33)

For large λ, it becomes impossible to keep the Kaluza -Klein scale larger than the heavy
moduli mass, while still having a string scale of the order of the GUT scale. We can
summarize these findings for realizing inflation by

Mmod
&
p
MΘ =⇒ Mmod

&
p
MKK . (5.3.34)

Let us once again emphasis that we started the mass ratio discussion with the assumption
of small backreaction effects.

Evaluation of the Backreacted Uplifted Inflaton Potential

Analogous to method 1, we now want to explicitly compute the backreacted uplifted infla-
ton potential. However, the terms are far too long to present them in this thesis, although
they can in fact be solved analytically. Hence, we will only state the final results of our
calculation. The proceeding is entirely identical to the one of method 1.

The major obstacle of our approach is the fact that we have been able take only one
single modulus into account for backreaction effects. More precisely, we consider simply
the backreaction of the inflaton θ onto the real Kähler modulus τ and set the other moduli
u, v, s, (hc+ qρ) to their values at the old minimum, see solution 2 of table 4.2.

After solving the extremum condition for a non-vanishing θ to find τ0(θ), one can
perform a constant uplift by adding the term Vup = −V (θ = 0). Recall from the scalar
potential (5.3.28) that θ = 0 is a global minimum. We end up with the backreacted uplifted
inflaton potential

Vback(θ) = V (θ)|τ=τ0(θ) + Vup , (5.3.35)

which is plotted in figure 5.10 for different values of λ.
Figure 5.10 shows at least graphically the same result as method 1. For large λ the

inflaton potential looks quadratical, while it changes to Starobinsky-like shape for small λ.
The intermediate regime of λ interpolates between these two types of inflation. Taking the
mass hierarchy into account, the mass ratios (5.3.32) and (5.3.33) imply that polynomial
inflation (i.e. large λ) guarantees single-field inflation, but makes a separation of the
Kaluza-Klein and string states from the moduli questionable. On the other hand, the mass
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Figure 5.10: The backreacted uplifted inflaton potential Vback(θ) (in units of (M2
Pl/4π)) for

the fluxes h = −8, q = −8, f̃1 = 1, p0 = 1, f0 = 6000 and various values of λ. We find
again an interpolation between polynomial and Starobinsky-like inflation regulated by the
strength of the backreaction.

ratios (although they do truly apply for strong backreaction) suggest that Starobinsky-like
inflation (i.e. small λ) ensures a disentanglement of the Kaluza-Klein and string states with
the moduli. However, in this case a multi-field inflation scenario becomes more likely and
a concrete computation of the inflationary trajectory might be necessary. A quantitative
analysis of the mass ratios turns out to be quite involved.

For Starobinsky-like inflation, i.e. λ = 1, we computed in addition a plot of the
backreacted inflaton potential in figure 5.11. Inflation takes place on the Starobinsky-like
plateau.
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Vback
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θ

Figure 5.11: The exact inflaton potential Vback(θ) (in units of (M2
Pl/4π)) with backreaction

onto τ for the fluxes h = −8, q = −8, f̃1 = 1, p0 = 1, f0 = 6000 and λ = 1. Inflation occurs
on the Starobinsky-like plateau. When the inflaton moves further downwards the valley,
its kinetic energy increases and eventually inflation ends.



Chapter 6

Summary and Outlook

In this thesis we studied certain scenarios of moduli stabilization in string theory. More
concretely, after compactifying the 10d effective type IIB supergravity we ended up in a
4d orientifolded N = 2 gauged supergravity framework. Non-trivial background fluxes
including geometric and non-geometric fluxes generated a scalar potential for the moduli
in 4d and subsequently various models of moduli stabilization have been analyzed.

As one of the special features of our models, all moduli have been fixed at tree level
in contrast to the usual moduli stabilization scenarios KKLT and LARGE volume, which
employ non-perturbative corrections. Let us emphasize that we stabilized Kähler moduli
via non-geometric fluxes. This fact is the main reason to utilize the theoretically involved
non-geometric fluxes. Another distinctive finding are the non-supersymmetric stable flux
vacua that we discovered in most models. Such vacua allow to avoid the no-go theorem
by [11] and thus to keep one axionic modulus unfixed, which we then used for inflation.
Moreover, every minimum of the scalar potential fulfilled a novel scaling with the fluxes,
enabling us to parametrically control many properties of the vacuum. Therefore it is
straightforward to make the string coupling small and the internal volume large, which
guarantees to be inside the perturbative regime and thus no string loop or α′-corrections
are necessary. In addition we have been able to place all the moduli at one suitable scale
since their generated masses turned out to be parametrically the same. Due to the fact
that the gravitino mass (indicating the supersymmetry breaking scale) has the same flux
dependence as the moduli and the orders of the numerical prefactors agree approximately,
the supersymmetry breaking scale is really at a high-scale. Let us also stress that new
tachyons appeared as soon as we employed multiple complex structure or Kähler moduli.
Although this issue is not totally solved jet, a nice uplift mechanism for the case of two
Kähler moduli is illustrated in [18].

In the final chapter we applied our moduli stabilization scenarios to inflation, more
precisely to F-term axion monodromy inflation. The initial idea was to stabilize the so
far unfixed axion of the non-supersymmetric stable flux vacua of model C in such a way
that it is parametrically lighter than all other moduli. This is indeed possible, but tech-
nically rather involved. Instead we presented the analytical details of a similar method,
where we used the lightest axion of the already stabilized moduli as inflaton. The major
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challenge was to realize a correct mass hierarchy that guarantees on the one hand a con-
trolled string compactification and on the other hand single-field inflation. If we want the
moduli masses strictly separated from the Kaluza-Klein and string scale, we have to face a
scenario of multi-field inflation. However making the moduli more massive in order to en-
sure single-field inflation, they become usually even heavier than the Kaluza-Klein states.
Increasing the moduli masses depends on a parameter regulating the backreaction of the
inflaton onto the other moduli. This parameter turns out to interpolate between chaotic
and Starobinsky-like inflation which is probably the most important result of our work.
To summarize, weak backreaction leads to polynomial inflaton potentials, while strong
backreaction causes the exponential Starobinsky-like behaviour. Note also that since the
inflaton in our model is a linear combination of the universal axion and a Kähler axion,
we can realize the stringy reheating mechanism proposed in [93].

It would be interesting to investigate the consequences of a wrong mass hierarchy for
inflation. For instance, one could consider a multi-field inflation scenario and check the
actual trajectory of the inflaton. This includes a computation of so-called non-Gaussianity
parameters corresponding to higher-order CMB correlations, which are subject to strong
experimental bounds. Alternatively, one could add some Kaluza-Klein or string states to
the discussion from the very beginning. Another open issue of our work is given by the
AdS flux vacua. Eventually they must be uplifted to dS space to be in agreement with
cosmological observations. Perhaps, taking more fluxes into account might directly yield
dS minima in the context of non-geometric flux models. Furthermore, we did not address
the question whether the 4d effective theory with non-geometric fluxes can actually be
uplifted to true solutions of the 10d string equation of motion. We refer to [97] for more
information regarding this crucial problem.

To conclude, in the future we hope to get a better understanding of moduli stabilization
with non-geometric backgrounds and of realizing inflation in string theory. Further progress
in this field could enhance the chances of string theory to be a promising candidate towards
a ”Theory of Everything”.
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