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1. Introduction

This thesis concerns certain manifolds that fall into the special class of homogeneous
spaces known as generalized flag manifolds. In the 1950’s, it was realized that
generalized flag manifolds possess remarkable properties, particularly from the point
of view of complex geometry. Indeed, they are distinguished among compact, simply
connected homogeneous spaces by the fact that they carry an invariant complex
structure which even admits a compatible, invariant Kähler-Einstein metric.

Other interesting geometric structures on generalized flag manifolds include other
Einstein metrics, and almost complex structures (not necessarily integrable), which
were studied by Borel and Hirzebruch in a famous series of papers. They gave
a method to compute the corresponding Chern numbers and pointed out that, in
some examples, the Chern numbers distinguish different invariant almost complex
structures on a flag manifold. This phenomenon relates to the question of which
sets of Chern numbers can be realized on a single smooth manifolds, which is of
independent interest.

It is natural to study these invariant structures by means of Lie theory, leveraging the
homogeneity to reduce geometric questions to algebraic ones. This has historically
been the most popular approach. However, in taking it one relinquishes the use
of geometric intuition, making it harder to give a concrete interpretation of the
invariant geometric structures. This motivates the complementary approach taken
in this work: We study certain examples of generalized flag manifolds, namely those
which are homogeneous under the exceptional Lie group G2, from a geometric point
of view. Avoiding the use of Lie theory, we rely on differential-geometric methods
instead.

In developing our geometric understanding of these spaces, we highlight the various
branches of (almost) complex and Riemannian geometry that play a role in the study
of generalized flag manifolds. In the process, we uncover surprising connections to a
variety of topics ranging from the existence of complex structures on the six-sphere
to rigidity theorems for Kähler manifolds. Our methods enable us to recover, and
give an interpretation of, all the invariant almost complex structures—including the
invariant Kähler-Einstein metric—of the manifolds we study. We then use our geo-
metric description to compute the corresponding Chern numbers without appealing
to Lie theory.

The presence of several interesting geometric structures, which interact in non-trivial
ways, ensures that techniques from many different areas of mathematics find applica-
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1. Introduction

tion in the study of generalized flag manifolds. By means of our detailed exposition
of a few examples, we hope to convey some of its beauty to the reader.

In the first three chapters, we discuss background material. Chapter 2 contains
some basic information on homogeneous spaces and invariant geometric structures,
while chapter 3 is an exposition of the fundamentals of the theory of quaternionic
Kähler manifolds, with emphasis on the associated twistor spaces. In chapter 4,
we review classical rigidity theorems for the complex projective spaces and quadric
hypersurfaces, in anticipation of a result that appears in chapter 6. The last two
chapters are dedicated to the study of G2 flag manifolds, which we introduce after
discussing octonionic linear algebra in chapter 5. The sixth and final chapter contains
our main results, namely computations of the Chern numbers associated to invariant
almost complex structures, as well as a rigidity theorem for one of the manifolds
under consideration.

Naturally, our choices regarding which pieces of background material to include
and which to leave out reflect the prior knowledge of the author. Thus, we do not
assume much background in Riemannian geometry beyond an introductory course,
but nevertheless expect the reader to be familiar with the fundamentals of complex
geometry and the theory of characteristic classes, as well as algebraic topology. We
intend this work to be readable for geometrically-minded graduate students.
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the same without you.
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2. Homogeneous spaces and invariant
geometric structures

In this chapter, we collect some facts from Riemannian geometry that will be of
use to us, but may not be covered in standard introductory texts on the subject.
We claim no originality in our discussion: This chapter largely follows parts of
Besse’s book on Einstein manifolds [15], though the textbooks of Petersen [88] and
Kobayashi and Nomizu [60, 61] offer important alternatives.

2.1. Homogeneous spaces

Given a Riemannian manifold (M, g) it is natural to consider its group of isometries,
which we will denote by I(M, g). Myers and Steenrod established the most funda-
mental properties of the isometry group; we recall their results without proof.

Theorem 2.1 (Myers-Steenrod [79]). The isometry group I(M, g) of a connected,
Riemannian manifold (M, g) is a Lie group acting smoothly on M . If M is com-
pact, then I(M, g) is also compact. Furthermore, the isotropy subgroup Ix(M, g) of
isometries that fix x ∈ M is closed, and the map ρ : Ix(M, g) → GL(TxM) which
sends f to Dxf defines an isomorphism onto a closed subgroup of O(TxM). Hence
Ix(M, g) is compact.

In this work, we study spaces on which the isometry group acts transitively.

Definition 2.2. A Riemannian manifold (M, g) is called a (Riemannian) homoge-
neous space if its isometry group I(M, g) acts transitively. If G ⊂ I(M, g) is a
closed subgroup that acts transitively, we call (M, g) G-homogeneous. The underly-
ing smooth manifold M is called a (G-)homogeneous space.

When speaking about homogeneous spaces, we will typically think of the underly-
ing smooth manifold, which may then be equipped with (possibly several distinct)
metrics that turn it into a Riemannian homogeneous space. Observe that M may
be G-homogeneous under more than one Lie group.

We also note that our definition, strictly speaking, requires the action of G to be
effective. However, there are many natural examples where G does not effectively
on a homogeneous space M = G/H (H is the compact isotropy subgroup of G).
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2. Homogeneous spaces and invariant geometric structures

In this case, there exists a (non-trivial) normal subgroup N of H, which may cause
the isotropy representation of H—to be introduced shortly—to fail to be faithful.
Note, however, that G′ = G/N still acts transitively on G/H, with isotropy group
H ′ = H/N . Now, the action on G/H = G′/H ′ is effective, so we may pass to this
situation. In all examples of interest to us, this will not cause any problems because
G will always act nearly effectively, meaning that H contains at most a discrete
normal subgroup N . Thus, passing to G′ will not affect the Lie-algebraic data such
as the isotropy representation and we can disregard this technical point.

Proposition 2.3. Any Riemannian homogeneous space (M, g)is complete.

Proof. Given any x ∈ M , there exists a closed ball B̄ε(0) of radius ε > 0 around
the origin in TxM such that expx : TxM → M is defined on all of B̄ε(0). Now let
γ : [0, a]→M be a unit speed geodesic starting at x. By homogeneity, there exists
an isometry ϕ ∈ I(M, g) such that ϕ(x) = γ. Then Dγ(a)ϕ

−1(γ̇(a)) = v for some
unit vector v ∈ TxM . Set γ(a + t) = ϕ(expx(tX)), 0 ≤ t ≤ ε. This extends the
original geodesic γ by time ε.

Any homogeneous space M is (equivariantly) diffeomorphic to a coset space G/H,
and we will think of it as such. Here, H is the stabilizer of a point in M ; it is a closed
(hence compact, since G is closed) subgroup. Since for h ∈ H, left-multiplication
Lh fixes the coset eH, we have the following important representation of H:

Definition 2.4. Let G/H be a homogeneous space.

(i) The (linear) isotropy representation of G/H is the homomorphism

χ : H GL(TeHG/H)

h DeHLh

(ii) G/H is called isotropy irreducible if χ is an irreducible representation.

Let G/H be a homogeneous space. If h denotes the Lie algebra of H and π : G →
G/H the canonical projection, then kerDeπ = h, hence TeHG/H ∼= g/h. In case G
is a compact Lie group, g admits an AdG-invariant inner product; we then have a
decomposition g = h ⊕ m, where m = h⊥ is the orthogonal complement of h with
respect to such an AdG-invariant inner product. In particular, for any h ∈ H we
have Ad(h)m ⊂ m; such a homogeneous space is called reductive.

Observe that, in this setting, TeHG/H ∼= m: The isomorphism is given by Deπ.
Consider the representation AdG/H : H → GL(m), obtained by restricting AdG(H)
to m.

Proposition 2.5. Let G/H be a reductive homogeneous space. Then the isotropy
representation χ : H → GL(TeHG/H) is equivalent to AdG/H : H → GL(m), i.e. the
map Deπ

∣∣
m

: m→ TeHG/H is an H-equivariant isomorphism.
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2.1. Homogeneous spaces

Proof. We already know that Deπ
∣∣
m

is a linear isomorphism, so we only need to show
that for X ∈ m and h ∈ H, Deπ(AdG(h)X) = Deπ(AdG/H(h)X) = χ(h)(Deπ(X)).
Note that the left-hand side is well-defined because of the reductivity condition.
This follows from the naturality of the exponential map:

Deπ(AdG(h)Y ) =
d

dt

∣∣∣
t=0

π(exp(tAdG(h)Y )) =
d

dt

∣∣∣
t=0

exp(tAdG(h)Y )H

=
d

dt

∣∣∣
t=0

Lh exp(tY )h−1H = DeHLh

(
d

dt

∣∣∣
t=0

exp(tY )H

)
= χ(h)(Deπ(Y ))

This proves the claim.

Hence, we may use the representations χ and AdG/H interchangeably. Observe that,
under the decomposition g = h ⊕ m, we have AdG(H) = AdH ⊕AdG/H : This may
be used to explicitly determine the isotropy representation in many cases.

2.1.1. Symmetric spaces

Symmetric spaces are a special kind of homogeneous spaces, which admit a geodesic-
reversing “symmetry” around every point. They were classified in the 1920’s by Élie
Cartan, who made heavy use of the theory of Lie algebras developed by himself. We
give a brief introduction here, since they will be relevant in the later chapters.

Definition 2.6. A connected Riemannian manifold (M, g) is called a (Riemannian)
symmetric space if, for every x ∈ M , there exists an isometry σx ∈ I(M, g) such
that σx(x) = x and Dxσx = − idTxM . σx is called the symmetry around x.

Remark 2.7.

(i) Since isometries on connected Riemannian manifolds are determined by their
image and derivative at a single point, σx is unique.

(ii) Weakening the above definition by only requiring the isometries σx to be locally
defined (i.e. not necessarily a global isometry), one obtains the concept of a
locally symmetric space.

Proposition 2.8. A symmetric space is homogeneous (and hence complete).

Proof. We will first prove completeness directly: Let γ : [0, a] → M be a geodesic
with γ(0) = x and γ(a) = y. Now set γ(a + t) = σy(γ(a − t)) for 0 ≤ t ≤ a: This
defines an extension of the geodesic γ.

Using completeness and connectedness, we can find a geodesic connecting any two
points. Then, the symmetry around the middle point (in the metric sense) of this
geodesic is an isometry which interchanges the end points. Hence the isometry group
acts transitively.
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2. Homogeneous spaces and invariant geometric structures

There are two important alternative points of view on symmetric spaces. The first
of these stems from the observation that symmetric spaces have parallel curvature
tensor. Indeed, for X,Y, Z,W ∈ TxM we have

Dσx((∇XR)(Y,Z)W ) = −(∇XR)(Y,Z)W

= (∇DσxXR)(DσxY,DσxZ)DσxW

= (∇XR)(Y, Z)W

A classical theorem due to Cartan gives a precise, partial converse (see [88] or [46]
for a proof).

Theorem 2.9 (É. Cartan). If a Riemannian manifold (M, g) has parallel curvature
tensor, then for each x ∈M there exists an isometry σx defined on a neighborhood
of x such that σx(x) = x and Dxσx = − idTxM . If (M, g) is simply connected and
complete, then every σx can be globally defined and (M, g) is symmetric.

Thus, Riemannian manifold with parallel curvature tensors are locally symmetric
and the Riemannian universal covering of a complete locally symmetric space is
symmetric.

Finally, the structure of symmetric spaces may be encoded in terms of certain data
on the Lie algebra of its isometry group. We will not try to describe this point of view
here, and refer the interested reader to Helgason’s classic textbook [46]. However,
this point of view was the most useful for Cartan in his work on the classification of
symmetric spaces.

Note that a Riemannian homogeneous space G/H is symmetric as soon as we find a
symmetry around a single point gH, since if f is an isometry taking gH to g′H, we
may define σg′H = f ◦ σgH ◦ f−1. For example, compact Lie groups equipped with
a bi-invariant metric are symmetric: The symmetry around the identity element is
simply the inversion map.

However, compact Lie groups with bi-invariant metrics are not the only symmetric
spaces. Very roughly, the classification of (simply connected) symmetric spaces can
be sketched as follows (for details, see Helgason [46]). Using the Lie-algebraic de-
scription, Cartan first showed that a simply connected symmetric space decomposes
as a Riemannian product of a Euclidean space with a finite number of irreducible
symmetric spaces. A symmetric space is called irreducible if its isotropy representa-
tion is irreducible. It remains to classify the simply connected, irreducible symmetric
spaces.

Cartan’s detailed study revealed a natural division into four types. The first two
correspond to compact manifolds, while the remaining two types are non-compact.
In fact, there is a duality relating the compact and non-compact types: This gives
rise to the notion of a “(non-)compact dual” of a symmetric space. Using his own
classification results on Lie groups, Cartan was able to understand all four types
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2.2. Invariant geometric structures on homogeneous spaces

and produce a complete classification. Lists detailing the final results are available
(for example in [46, Ch. 10]).

2.2. Invariant geometric structures on homogeneous spaces

2.2.1. Invariant Einstein metrics

Recall that on a Lie group G, G-invariant objects are described by Lie-algebraic data.
This philosophy naturally generalizes to reductive homogeneous spaces G/H, where
G-invariant objects correspond to AdG/H -invariant objects on m (or χ-invariant
objects on TeHG/H). We first discuss invariant metrics:

Definition 2.10. Let G/H be a homogeneous space. A metric g on M is called
G-invariant (sometimes homogeneous) if for every k ∈ G, left-multiplication by k,
denoted by Lk, is an isometry.

Now, assume that G/H is reductive (e.g. G is a compact Lie group, the case of main
interest to us). Here, the above principle concretely manifests itself as follows:

Proposition 2.11. Let G/H be a reductive homogeneous space, where G has the Lie
algebra g = h⊕m. Then the following objects are in bijective correspondence:

(i) G-invariant metrics on G/H.

(ii) χ-invariant scalar products on TeHG/H or equivalently AdG/H -invariant scalar
products on m.

Proof. Restricting a G-invariant metric on G/H to eH, we obtain an χ-invariant
scalar product since Lh (h ∈ H) is an isometry. Conversely, if 〈−,−〉 is a χ-
invariant scalar product on TeHG/H, we define a manifestly G-invariant metric
by gaH(X,Y ) = 〈DaLa−1X,DaLa−1Y 〉. This is independent of the choice of repre-
sentative of aH, since if b = ah for some h ∈ H, we have

〈DbLb−1X,DbLb−1Y 〉 = 〈DahLh−1a−1X,DahLh−1a−1Y 〉 = 〈DaLa−1X,DaLa−1Y 〉

by χ-invariance.

The most important takeaway is that the Riemannian data of G/H, equipped with a
G-invariant metric, are determined by the associated AdG/H -invariant inner product
on m, together with the Lie algebraic data of g. The invariance of the curvature
tensor under isometries means it is determined by its value at eH. By the same
token, the fact that H acts by isometries implies that the curvature is χ-invariant.

Now consider a homogeneous space G/H, where G is compact and semisimple. Then
the Killing form B on g is an AdG-invariant scalar product on g, and we identify

7



2. Homogeneous spaces and invariant geometric structures

TeHG/H ∼= m, where m = h⊥ is the orthogonal complement of h with respect to B.
We have seen that G-invariant metrics correspond to inner products on m invariant
under the isotropy representation.

Decompose TeHG/H ∼= m into irreducible summands under the isotropy represen-
tation: m = m1 ⊕ · · · ⊕ms. If the mj are pairwise non-equivalent, then this decom-
position is unique. This is the case of interest to us. By a variant of Schur’s lemma,
the restriction of an invariant inner product to a summand mj must be a multiple
of (minus) the Killing form, restricted to mj :

Lemma 2.12. Let ρ : G → GL(V ) be an irreducible representation. Then any two
ρ-invariant scalar products on V are proportional.

Proof. Let 〈−,−〉i, i = 1, 2 be ρ-invariant scalar products and define gi : V → V ∗ by
v 7→ 〈v,−〉i. Now set L = g−1

2 ◦ g1. This linear map is easily seen to be symmetric
with respect to the inner products and ρ-equivariant, hence its eigenspaces are ρ-
invariant. Irreducibility then implies that L = λ · idV for some λ ∈ R.

Remark 2.13. Actually, if 〈−,−〉 is an invariant scalar product and A is an invariant,
symmetric bilinear form, the exact same proof goes through to show that A is
proportional to 〈−,−〉, if one defines a : V → V ∗, v 7→ A(v,−) and sets L = g−1 ◦a.

Hence, in the above setup, homogeneous metrics are in bijective correspondence with
inner products of the form

〈 , 〉 = x1(−B)|m1 + · · ·+ xs(−B)|ms xj > 0 ∀j (2.1)

Such G-invariant metrics, which are called diagonal, are determined by the positive
constants x1, x2, . . . , xs. In particular, if G/H is isotropy irreducible, then it admits
a unique G-invariant metric, up to homothety.

G-invariant metrics are privileged, but not as privileged as G-invariant Einstein
metrics.

Definition 2.14. A Riemannian manifold (M, g) is called Einstein if rg = λg for
some constant λ ∈ R, where rg denotes the Ricci curvature of g.

Remark 2.15. Let M be a compact manifold. It has been known since 1915 that
Einstein metrics are precisely the critical points of the total scalar curvature func-
tional

S(g) =

∫
M
sg volg

This fact, due to Hilbert, is used to formulate the variational approach to Einstein’s
theory of general relativity (physicists call this functional the Einstein-Hilbert ac-
tion). This explains why these manifolds are called Einstein.
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2.2. Invariant geometric structures on homogeneous spaces

Wolf observed that, if the isotropy representation is irreducible, invariant metrics
are automatically Einstein:

Proposition 2.16 (Wolf, [107]). IfG/H is an isotropy irreducible homogeneous space,
then G/H admits a unique (up to homothety) G-invariant metric, which is Einstein.

Proof. We have already established that all G-invariant metrics are proportional in
this case; pick one of them an denote the induced inner product on TeHG/H by
〈−,−〉. The Ricci curvature corresponds to a χ-invariant, symmetric bilinear form
on TeHG/H and therefore must also be proportional to 〈−,−〉. By homogeneity,
they must be proportional at every point.

This is certainly the simplest situation, but in other special cases G-invariant Ein-
stein metrics can be studied directly as well. For instance, Wang and Ziller [104]
considered so-called standard homogeneous spaces. These are homogeneous spaces
G/H (G compact, connected and semisimple) equipped with the G-invariant metric
derived from the Killing form on G. In this simple and natural case, they were able
to determine the necessary and sufficient condition for the standard homogeneous
metric to be Einstein, using Lie-algebraic methods.

In [105] (see also the follow-up paper [16]), Wang and Ziller approached the problem
from a different angle, outlining a variational approach for general compact homo-
geneous spaces based on the characterization of Einstein metrics as critical points
of the total scalar curvature functional. Restricting this functional, which we called
S before, to the space M 1

G of G-invariant metrics of volume 1, sg is constant and
equal to S(g); the critical points are exactly the G-invariant Einstein metrics.

Decompose TeHG/H into isotropy irreducible summands mi. As mentioned before,
we are primarily interested in the case where this decomposition is unique. Then
all G-invariant metrics are diagonal with respect to this decomposition, i.e. given by
χ-invariant inner products on of the form

Q = x1Q
∣∣
m1

+ · · ·+ xsQ
∣∣
ms

xj > 0 ∀j

In this setup, Wang and Ziller give an explicit, algebraic expression for the scalar
curvature in terms of Lie-algebraic data of m. This formula and its extensions were
used by several authors to classify G-invariant Einstein metrics in many examples
where the isotropy representation has only a few irreducible summands, when the
equations are algebraically tractable (e.g. [34, 57, 85]). This includes many “gener-
alized flag manifolds”, which will be the focus of this work (see chapters 5 and 6).

If one is interested in Einstein metrics in general, without necessarily requiring
invariance, then there are several other approaches. One of them, which will be
relevant to us later, uses the theory of so-called Riemannian submersions. In par-
ticular, the notion of “canonical variation” gives an efficient way of generating new
Einstein metrics from old ones; this procedure also preserves invariance and can
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2. Homogeneous spaces and invariant geometric structures

therefore be applied to obtain new invariant Einstein metrics from a given one. We
have given a brief account of this framework, which will also be of use in chapter 3,
in appendix A.

2.2.2. Invariant almost complex structures

The invariant objects that take center stage in this work are not metrics, but almost
complex structures. Here, we immediately give the definition in terms of data on
TeHG/H instead of giving a “global” definition (in terms of a G-invariant tensor
field on G/H) and showing equivalence:

Definition 2.17. An almost complex structure J on a homogeneous space G/H is
called G-invariant if JeH commutes with the isotropy representation.

The study of invariant complex structures for specific classes of manifolds was initi-
ated in the 1950’s with papers by Wang, Koszul and Borel [20, 64, 103]; in chapter 5
we will discuss some of their results, in particular those concerning generalized flag
manifolds.

Not long after these pioneering works, Borel and Hirzebruch published a series of
seminal papers, in which they gave a comprehensive treatment of invariant almost
complex structures on general homogeneous spaces [18]. Their results include a
recipe to enumerate invariant almost complex structures, a criterion for integrability
and a method to compute characteristic classes in terms of purely Lie-algebraic data
associated to the homogeneous space. They also gave many applications, often to
generalized flag manifolds.

As mentioned in the introduction, our aim in this work is to avoid the Lie-theoretic
framework and to give a more geometric treatment of certain examples which may
alternatively be investigated by the methods of Borel and Hirzebruch. Therefore, we
will not give an extended discussion of their results here. For a succinct summary
of their treatment of generalized flag manifolds, we refer to Kotschick and Terzić’s
paper [65, Sec. 2].

We describe only one piece of information, namely how to enumerate invariant almost
complex structures (cf. [18, §13.4–5]); this will be useful to us later. Consider a
homogeneous space G/H which we assume admits at least one invariant almost
complex structure. Decompose TeHG/H = m1⊕· · ·⊕mk into irreducible summands
under the isotropy representation. Then invariant almost complex structures must
respect this decomposition, and the restrictions of any two invariant almost complex
structures J1, J2 to mj must be equal up to conjugation. This follows from a
variant of Schur’s lemma: Mimicking the proof of lemma 2.12 on the complexification
of TeHG/H (to ensure that J−1

2 ◦ J1 has an eigenvalue, which must be ±1) and
restricting to the conjugation-invariant (i.e. real) subspace shows that J−1

2 ◦ J1 =
± idTeHG/H , which proves the claim.

10



2.2. Invariant geometric structures on homogeneous spaces

Hirzebruch and Borel prove that each summand mj indeed admits exactly one almost
complex structure up to conjugation. Thus, k irreducible summands give rise to 2k−1

distinct invariant almost complex structures, after identifying conjugate structures.
This result applies to the spaces we focus on in this work, i.e. generalized flag
manifolds, since these always admit an invariant (almost) complex structure (see
chapter 5).
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3. Quaternionic Kähler manifolds and
twistor spaces

In this chapter, we discuss quaternionic Kähler manifolds and their twistor spaces.
There are a number of distinct approaches to this topic, corresponding to different
motivations for studying quaternionic Kähler manifolds. We will roughly follow
the discussion of Salamon in [95], though some of the proofs are taken from [15]
(again, we claim no originality). For alternative points of view, see for instance [12,
91, 92] and the review [94]. Quaternionic Kähler manifolds have also attracted
attention from physicists in the context of supergravity theories (see for instance
the original reference [11] or the recent book [30]). However, we will not investigate
the connections to physics in this work.

3.1. What is a quaternionic Kähler manifold?

The classification of holonomy groups provides one of the motivations for study-
ing quaternionic Kähler manifolds. To explain this, we will briefly discuss (without
proofs) a few important results regarding holonomy groups; details can be found
in [15, 56, 60]. Recall that the holonomy group of a connected Riemannian mani-
fold (M, g), denoted by Hol(g), is the compact (this is a theorem!) Lie subgroup
of O(TpM) generated by parallel transport along all loops based at p ∈ M . Since
changing the base point yields a conjugate subgroup, the choice of base point is im-
material (we will henceforth speak implicitly about conjugacy classes of subgroups).
Restricting to null-homotopic loops yields the restricted holonomy group Hol0(g).

According to whether the holonomy representation on the tangent spaces is reducible
or not, we call (M, g) reducible or irreducible. In the former case, one obtains two
complementary subbundles of TM . They are integrable (in the sense of Frobenius’
theorem) and one may prove that M is then locally isometric to a Riemannian prod-
uct. If there is a subbundle on which Hol(g) acts trivially, then the corresponding
integral manifold is locally isometric to a Euclidean space. From now on, we will
assume that M is complete. Then, after possibly passing to the universal covering
space (M̃, g̃), a famous theorem due to De Rham yields a unique way to decompose
it into irreducible manifolds:

13



3. Quaternionic Kähler manifolds and twistor spaces

Theorem 3.1 (De Rham, [60, Sec. IV.6]). A connected, simply connected, complete,
reducible Riemannian manifold is isometric to a Riemannian product of connected,
simply connected and complete Riemannian manifolds.

Proceeding inductively, one finds:

Theorem 3.2 (De Rham Decomposition Theorem). A connected, simply connected,
complete Riemannian manifold is isometric to a Riemannian product of connected,
simply connected, complete and irreducible Riemannian manifolds with a Euclidean
space (possibly of dimension zero). This decomposition is unique up to order.

When studying the restricted holonomy group, one can work under the assumption
of simple connectedness without loss of generality. Indeed, null-homotopic loops
based at p are precisely the images of loops in the universal covering (M̃, g̃) (based
at a fixed lift of p), hence Hol0(g) = Hol0(g̃) = Hol(g̃).

In the early twentieth century, Élie Cartan succeeded in classifying the irreducible,
simply connected symmetric spaces and computing their holonomy groups. Recall
from chapter 2 that symmetric spaces are Riemannian homogeneous spaces, i.e. of
the form M ∼= G/H where G is a Lie group and H a compact subgroup. It follows
from Cartan’s classification that, although M may be homogeneous under differ-
ent groups, there is only one combination (G,H) (called a symmetric pair) which
turns M into a symmetric space. It turns out that the holonomy group is given by
the isotropy group H itself. By our above remark, this determines the restricted
holonomy groups of locally symmetric spaces.

This begs the question: What about the holonomy of Riemannian manifolds which
are not locally symmetric? That question was answered by Berger in 1955:

Theorem 3.3 (Berger, [13]). Let (M, g) be a complete, connected, simply connected
and irreducible Riemannian manifold which is not symmetric. Then its holonomy
group occurs in the following list:

Dimension Holonomy Group

n SO(n)
n = 2m, m ≥ 2 U(m)
n = 2m, m ≥ 2 SU(m)
n = 4m, m ≥ 2 Sp(m) · Sp(1)
n = 4m, m ≥ 2 Sp(m)
n = 8 Spin(7)
n = 7 G2

where Sp(m) · Sp(1) = (Sp(m)× Sp(1))/Z2, where (± id,±1) are identified.

Remark 3.4.
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3.1. What is a quaternionic Kähler manifold?

(i) The original list of Berger included the case n = 16, with holonomy group
Spin(9). Alekseevskĭı [1] showed that such a manifold is always locally sym-
metric. A few years later, Brown and Gray [23] gave an independent proof of
this fact.

(ii) SO(n), the largest holonomy group, is known as the “generic” case; any ori-
ented Riemannian manifold has holonomy group contained in SO(n). Among
the reduced holonomy groups, the most famous case is the group U(m): This
corresponds to Kähler manifolds. The inclusions of SU(2m) and Sp(m) into
U(2m) show that the corresponding manifolds, called Calabi-Yau and hyper-
Kähler, respectively, are special types of Kähler manifolds.

(iii) Besides giving the holonomy group, one should really specify how it acts. One
may then observe that the above actions are always transitive on the unit
spheres in the tangent spaces. This fact has been the focus of a lot of attention;
direct proofs have been provided by Simons [98] and more recently Olmos [83],
whose proof is geometric (rather than algebraic) in nature.

It is natural to expect, for instance by taking inspiration from the Kähler case, that
each possible holonomy group corresponds to a distinct “flavor” of geometry. This
provides a strong motivation for studying the geometric structures that arise for
each holonomy group. Furthermore, Berger did not address the natural question
whether there actually exist manifolds whose (global!) holonomy groups coincide
with the groups that appear in his list. It took thirty more years to prove that this
is indeed the case and there is considerable interest in constructing new examples,
which are often relatively scarce. Thus, one is naturally led to study the following
class of manifolds:

Definition 3.5. A quaternionic Kähler manifold (M, g) is an (oriented) manifold of
dimension 4n, n ≥ 2, whose holonomy group is contained in Sp(n) · Sp(1).

The case n = 1 is excluded because Sp(1) · Sp(1) ∼= SO(4). To see this, observe
that Sp(1) ∼= SU(2). Indeed, under the standard identification of H with C2, right-
multiplication with a unit quaternion q = a+bi+cj+dk (where a2 +b2 +c2 +d2 = 1)
corresponds to left-multiplication by

(
a+bi −c+di
c+di a−bi

)
, which is precisely the general form

of an element of SU(2). Now, our assertion follows from the well-known fact that
(SU(2)× SU(2))/Z2

∼= SO(4).

More generally, Sp(n)·Sp(1) is realized as a subgroup of SO(4n) as follows: Consider
R4n as a right H-module by identifying it with Hn, on which H acts from the right.
The action of the unit quaternions then induces an embedding of Sp(1) into SO(4n).
We identify GL(n,H) with the subgroup of GL(2n,C) formed by block-matrices of

the form
(
A −B̄
B Ā

)
. Since Sp(n) is defined as those elements of GL(n,H) that preserve

the standard (symplectic) inner product on Hn, which corresponds to that of C2n

under the natural identification, we see that Sp(n) ⊂ U(2n).
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3. Quaternionic Kähler manifolds and twistor spaces

In fact, Sp(n) ⊂ SU(2n); this is easiest seen by noting that elements of its Lie
algebra are automatically traceless and skew-Hermitian. Thus, after embedding
SU(2n) into SO(4n), we also obtain an embedding of Sp(n) into SO(4n). The
image is the subgroup of SO(4n) that commutes with the image of the embedding
of Sp(1), since it is precisely these elements that come from H-linear maps. Abusing
notation, we identify Sp(1) and Sp(n) with their images in SO(4n) and form the
product Sp(n)·Sp(1), which is easily seen to be isomorphic to (Sp(n)×Sp(1))/Z2.

Remark 3.6.

(i) The name “quaternionic Kähler manifold” suggests that these manifolds are
the quaternionic analogs of Kähler manifolds. This may initially sound surpris-
ing, since the naive quaternionic analog of U(n)-holonomy is Sp(n)-holonomy.
However, the inclusion Sp(n) ⊂ SU(2n) shows that such (hyper-Kähler) ma-
nifolds are even Calabi-Yau, and thus correspond to a very special subclass of
Kähler manifolds.

The analogy with Sp(n) · Sp(1), which includes hyper-Kähler manifolds as a
special case, is better: Indeed, we will soon encounter a four-form Ω which
plays a role similar to that of the Kähler form. Moreover, we will shortly see
that there is a natural way to associate a complex manifold to a quaternionic
Kähler manifold, which is in some cases even Kähler, so that Kähler geometry
plays a role in the theory as well.

(ii) The reader should be warned that, despite this analogy and the name, quater-
nionic Kähler manifolds are not complex or even almost complex in gen-
eral, let alone Kähler. Consider the quaternionic projective spaces HPn ∼=
(Sp(n + 1)/Z2)/Sp(n) · Sp(1), which are symmetric spaces. This means that
they have holonomy Sp(n) · Sp(1) and hence are quaternionic Kähler. How-
ever, it can be shown using characteristic classes that HPn cannot be almost
complex for any n ∈ N [48, 73].

To understand the connection between quaternionic geometry and holonomy Sp(n) ·
Sp(1) more clearly, we first have to do some linear algebra (following Kraines [66]).
Consider Hn as a right-module over H and recall the symplectic inner product which
sends P,Q ∈ Hn to 〈P,Q〉 :=

∑n
a=1 paq̄a.

Now define a new inner product (P,Q) := 1
2(〈P,Q〉+ 〈Q,P 〉) (which will correspond

to a Riemannian metric) and the three two-forms

ΩI(P,Q) := (Pi,Q) ΩJ(P,Q) := (Pj,Q) ΩK(P,Q) := (Pk,Q)

It is clear that i∗ΩI = ΩI = ΩI , j
∗ΩJ = ΩJ and k∗ΩK = ΩK (remember that i, j, k

act by right-multiplication). More generally, a (tedious) computation shows:
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3.1. What is a quaternionic Kähler manifold?

Lemma 3.7. Let λ = a+ bi+ cj + dk ∈ Sp(1). Then

λ∗ΩI = (a2 + b2 − c2 − d2)ΩI + 2(ad+ bc)ΩJ + 2(bd− ac)ΩK

λ∗ΩJ = 2(bc− ad)ΩI + (a2 − b2 + c2 − d2)ΩJ + 2(ab+ cd)ΩK

λ∗ΩK = 2(ac+ bd)ΩI + 2(cd− ab)ΩJ + (a2 − b2 − c2 + d2)ΩK

Now, we define the four-form Ω = ΩI ∧ΩI + ΩJ ∧ΩJ + ΩK ∧ΩK . The above lemma
guarantees that λ∗Ω = Ω. Sp(n)-invariance of the inner product 〈−,−〉 shows that
Ω is in fact Sp(n) · Sp(1)-invariant.

Now, starting from a quaternionic Kähler manifold, we may identify its tangent space
over a given point with Hn. This identification will in general not be preserved when
passing to a different chart with overlapping domain, but since we may choose the
transition functions to take values in Sp(n) ·Sp(1) the form Ω (initially defined with
respect to a specific identification) is well-defined. Moreover, Sp(n)·Sp(1)-invariance
shows that Ω is invariant under parallel transport along any loop, so we obtain:

Proposition 3.8. A quaternionic Kähler manifold admits a non-vanishing, parallel
four-form.

In fact, with a little more effort one may prove that Ω is non-degenerate and use
this in the study of the cohomology of M ; one immediate corollary is that the Betti
numbers b4n(M) are nonzero since any parallel form (such as Ωn) is closed and
co-closed. Other applications include an analog of the Lefschetz decomposition on
Kähler manifolds (see [66]).

In the differential-geometric setting, lemma 3.7 means that a quaternionic Kähler
manifold locally admits three two-forms ΩI,J,K whose covariant derivatives are linear
combinations of ΩI,J,K at each point. Since the Levi-Cività connection is compatible
with the metric, (∇XΩI)(Y, Z) = g((∇XRI)Y,Z), where RI is the endomorphism
(locally defined!) that corresponds to right-multiplication by i ∈ H.

Thus, we may equivalently say that the covariant derivatives of RI,J,K can be ex-
pressed in terms of the RI,J,K themselves, i.e. the three-dimensional bundle of en-
domorphisms they span is preserved by covariant differentiation. This shows that
quaternionic Kähler manifolds can be equipped with a covering by special charts (in
the following, we identify RI,J,K with I, J , K):

Proposition 3.9. A quaternionic Kähler manifold (M, g) admits an open covering
{Ui} with the following properties:

(i) On each Ui, there exist two almost complex structures I and J such that
IJ = −JI.

(ii) On Ui, g is Hermitian with respect to I and J defined with respect to Ui.
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3. Quaternionic Kähler manifolds and twistor spaces

(iii) The covariant derivatives of I and J are (pointwise) linear combinations of I,
J and K = IJ .

(iv) For every x ∈ Ui ∩ Uj , the subspace of End(TxM) spanned by I, J and K is
independent of whether I and J are defined with respect to Ui or Uj . In other
words, they define a three-dimensional subbundle of EndTM .

Proof. The first three points follow from out discussion above. The final point is a
consequence of the fact that Sp(n) · Sp(1) ⊂ SO(4n) preserves (under conjugation)
the vector subspace of endomorphisms of R4n = Hn generated by multiplication by
i, j, k. To see this, let L ∈ Sp(n) · Sp(1) be given by v 7→ (Av)q, where A ∈ Sp(n),
q ∈ Sp(1). Now let p ∈ ImH (acting from the right); then L−1 ◦ p ◦ L(v) = vq−1pq.
Since q−1pq ∈ ImH, Sp(n) · Sp(1) indeed preserves the subspace of endomorphisms
induced by ImH.

Remark 3.10.

(i) In fact, it is possible to prove (though we will not do so) that a manifold
that admits such a covering must be quaternionic Kähler, thus providing an
alternative characterization of quaternionic Kähler manifolds.

(ii) Using the quaternionic relations between I, J and K we find that the third
condition is equivalent to the existence of locally defined one-forms α, β and γ
such that:

∇XI = α(X)J − β(X)K

∇XJ = −α(X)I + γ(X)K

∇XK = β(X)I − γ(X)J

To see that ∇XI has no term proportional to I (and the same holds for J ,
K), one must consider ∇X(I2) = 0 and work out the left-hand side using the
Leibniz rule. The relations between the coefficient one-forms are determined in
analogous fashion, starting from ∇X(JK) = ∇XI and its cyclic permutations.

Reduced holonomy typically implies heavy restrictions on curvature. In fact, of
the holonomy groups that appear in Berger’s list, U(m) and Sp(m) · Sp(1) are the
only ones that allow for manifolds that are not necessarily Ricci-flat. However, for
quaternionic-Kähler manifold we do have the following:

Theorem 3.11 (Berger, [14]1). Every quaternionic Kähler manifold is Einstein.

1We were unable to consult this source in person; the theorem is credited to this paper by several
independent sources.
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3.1. What is a quaternionic Kähler manifold?

Proof. We reproduce the elementary proof due to Ishihara [55] (see also [15]). Since
the Einstein condition is local, we may work inside one of the charts from proposi-
tion 3.9. Using R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] and the above expression for
∇XI, we find:

[R(X,Y ), I] =
(
∇X(∇Y I)−∇Y (∇XI)−∇[X,Y ]I

)
=
(
d(α(Y ))(X)− d(α(X))(Y )− α([X,Y ])

)
J

−
(
d(β(Y ))(X)− d(β(X))(Y )− β([X,Y ])

)
K

+ α(Y )∇XJ − α(X)∇Y J − β(Y )∇XK + β(X)∇YK

The terms featuring covariant derivatives of J and K cancel, so we find that

[R(X,Y ), I] = α(X,Y )J − β(X,Y )K (3.1)

where α(X,Y ) := d(α(Y ))(X) − d(α(X))(Y ) − α([X,Y ]) is a two-form and β is
defined analogously. In similar fashion, one finds that

[R(X,Y ), J ] = −α(X,Y )I + γ(X,Y )K (3.2)

[R(X,Y ),K] = β(X,Y )I − γ(X,Y )J (3.3)

Now we need a computational lemma:

Lemma 3.12. The forms α, β, γ are related to the Ricci curvature r via:

α(X,Y ) =
1

n+ 2
r(KX,Y )

β(X,Y ) =
1

n+ 2
r(JX, Y )

γ(X,Y ) =
1

n+ 2
r(IX, Y )

where n = dimM/4.

Proof of Lemma. Starting from (3.3), we have:

g([R(X,Y ),K]Z, JZ) = g(β(X,Y )IZ, JZ)− g(γ(X,Y )JZ, JZ)

= −γ(X,Y )|Z|2

Using the quaternionic relations and the symmetries of R on the left-hand side, this
becomes

g(R(X,Y )JZ,KZ) + g(R(X,Y )Z, IZ) = γ(X,Y )|Z|2 (3.4)

Now we pick a local orthonormal basis {Xi} of TM , adapted to the quaternionic
coordinates in the sense that if Xi is a basis element, then IXi, JXi and KXi are
too (up to sign). This means that the set of pairs (Xi, IXi) is at the same time the
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3. Quaternionic Kähler manifolds and twistor spaces

set of pairs (JXi,KXi); the above identity for Z = Xi yields, when summed over i,
the identity

2nγ(X,Y ) =
4n∑
i=1

g(R(X,Y )Xi, IXi)

The first Bianchi identity applied to the last three entries of the right-hand side
yields

2nγ(X,Y ) =
4n∑
i=1

(
g(R(X,Xi)Y, IXi)− g(R(X, IXi)Y,Xi)

)
Both terms contribute equally so we find

nγ(X,Y ) =
∑
i

g(R(X,Xi)Y, IXi) = −
∑
i

g(IR(X,Xi)Y,Xi)

Now we can use (3.1):

nγ(X,Y ) =
∑
i

(
− g(R(X,Xi)IY,Xi) + α(X,Xi)g(JY,Xi)− β(X,Xi)g(KY,Xi)

)
= −r(X, IY ) + α(X, JY )− β(X,KY )

Replacing Y by IY , this means that

nγ(X, IY ) + β(X, JY ) + α(X,KY ) = r(X,Y )

Carrying out identical calculations for cyclic permutations of {I, J,K}, one obtains

γ(X, IY ) + nβ(X, JY ) + α(X,KY ) = r(X,Y )

γ(X, IY ) + β(X, JY ) + nα(X,KY ) = r(X,Y )

Since n ≥ 2, this suffices to conclude that

γ(X, IY ) = β(X,JY ) = α(X,KY ) =
1

n+ 2
r(X,Y )

from which the claim easily follows.

Now it is not hard to finish the proof of the theorem. Note that

r(X,Y ) = r(IX, IY ) = r(JX, JY ) = r(KX,KY )
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3.1. What is a quaternionic Kähler manifold?

and therefore, using (3.4), we find:

2|Z|2

n+ 2
r(X,X) =

|Z|2

n+ 2
(r(X,X) + r(JX, JX))

= g(R(X, IX)Z, IZ) + g(R(X, IX)JZ,KZ)

+ g(R(JX,ZX)Z, IZ) + g(R(JX,ZX)JZ,KZ)

for any X,Z. But the last expression is symmetric under exchanging X,Z and
therefore we find that

r(X,X)|Z|2 = r(Z,Z)|X|2

and therefore r(X,X)/|X|2 is independent of X, hence simply a constant. This
means that r(X,X) = λ|X|2: We have proven that our manifold is Einstein.

Remark 3.13. Salamon [95] gave a different proof, using representation theory. In
fact, his method determines the precise form of the curvature tensor, relating it to
the curvature tensor of HPn. As a corollary of his analysis one can prove, among
other things, that a quaternionic Kähler manifold with nonzero scalar curvature
is not (even locally) reducible in the sense of De Rham’s theorem (cf. [15, Thm.
14.45]).

Corollary 3.14. A quaternionic Kähler manifold has vanishing Ricci curvature if and
only if it is locally hyper-Kähler.

Proof. The Ricci curvature vanishes precisely if the two-forms α, β and γ introduced
above all vanish. Then the locally defined endomorphisms I, J and K are parallel;
the existence of such parallel almost complex structures is one of the standard ways
of defining a hyper-Kähler structure.

By the reduction theorem, the reduced holonomy of a quaternionic Kähler manifold
(M, g) is equivalent to a reduction of the frame bundle of M to a principal Sp(n) ·
Sp(1)-bundle P , along with a reduction of the Levi-Cività connection to a connection
on P .

Locally, there is no obstruction to lifting such an Sp(n) · Sp(1)-structure to an
Sp(n) × Sp(1)-structure, obtaining a principal Sp(n) × Sp(1)-bundle P̃ . Thus, a
representation ρ of Sp(n)×Sp(1) on a vector space V locally yields a vector bundle
P̃ ×ρ V . V may fail to be globally defined: It can be constructed globally if the
representation factors through Sp(n) · Sp(1) or if the lift P̃ exists globally.

Now consider the standard representations of Sp(n) and Sp(1) on C2n and C2;
we denote them by E and H. Right-multiplication by j ∈ H yields a quaternionic
structure JE , JH , and using the standard Hermitian product 〈−,−〉 we obtain a two-
form ωH(v, w) = 〈JHv, w〉 which satisfies ωH(Jv, Jw) = ωH(v, w) and ωH(v, Jv) ≥ 0
(and analogously for E). They induce identifications H ∼= H∗ (E ∼= E∗). Since these
representations are therefore faithful and self-dual, the Peter-Weyl theorem implies
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3. Quaternionic Kähler manifolds and twistor spaces

that every irreducible representation of Sp(n)×Sp(1) is contained in (⊗pE)⊗(⊗qH)
for some p, q ≥ 0 (cf. [21, Thm. III.4.4]). Note that these factor through Sp(n)·Sp(1)
precisely if p + q is even, since then the elements (± id,± id) are sent to the same
automorphism.

All of this carries over to the associated vector bundles of P̃ and P . The quaternionic
structure of the fibers gives us a notion of complex conjugation; fiberwise taking
the subspace of invariant elements yields a real vector bundle of rank equal to the
(complex) rank of the original associated bundle. We will from now on discuss these
real vector bundles and denote them by the same letters as the representations that
give rise to them. The fundamental representation of Sp(n) · Sp(1), E ⊗H, defines
the (co)tangent bundle. We take the convention that T ∗M = E ⊗H.

Clearly, a basic invariant of an Sp(n) ·Sp(1)-structure on M is whether or not it lifts
to an Sp(n) × Sp(1)-structure. It turns out that this can be related to the bundle
S2H. The short exact sequence

0 Z2 Sp(n)× Sp(1) Sp(n) · Sp(1) 0 (3.5)

induces a long exact sequence and in particular a coboundary homomorphism

δ : H1(M ;Sp(n) · Sp(1)) H2(M ;Z2)

The image of the Sp(n) · Sp(1)-principal bundle P under δ is the obstruction to
lifting P to a Sp(n) × Sp(1)-principal bundle P̃ . This class, which we will denote
by ε, is equivalently the obstruction to the global existence of the vector bundles E
and H. There is another short exact sequence

0 Z2 Sp(1) SO(3) 0 (3.6)

and the (three-dimensional) representation S2H of Sp(n) · Sp(1) determines a ho-
momorphism from (3.5) to (3.6). On the level of the long exact sequence, we have
a commutative ladder

. . . H1(M ;Sp(n)× Sp(1)) H1(M ;Sp(n) · Sp(1)) H2(M ;Z2) . . .

. . . H1(M ;Sp(1)) H1(M ;SO(3)) H2(M ;Z2) . . .

δ

=

δ′

The middle vertical map sends P to S2H, and δ′(S2H) = w2(S2H), so we may
identify ε = w2(S2H). Using spectral sequences, Salamon relates this class to the
characteristic classes of TM (see Marchiafava & Romani [72] for an alternative
approach). We state the result without proof:
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Proposition 3.15. If (M4n, g) is quaternionic Kähler, then w2(M) = nε. In partic-
ular, 8n-dimensional quaternionic Kähler manifolds are spin.

3.2. Examples of quaternionic Kähler manifolds

We already saw that the quaternionic Kähler manifolds include both hyper-Kähler
manifolds and the (not even almost complex) quaternionic projective spaces HPn.
Since quaternionic Kähler manifolds are Einstein, they are naturally divided into
three categories according to the sign of the scalar curvature sg. In the following,
we will focus on the case sg 6= 0, as sg = 0 implies that the manifold is locally
hyper-Kähler.

Though we will mainly be interested in the case sg > 0, we briefly comment on the
negative scalar curvature case. Besides the examples due to Wolf, which we discuss
below, there is a family of homogeneous but not always symmetric spaces that were
first discovered by Alekseevskĭı; their classification was completed by Cortés [29].
More examples arose in the context of supergravity theories in physics; see e.g. [3,
30]. One interesting fact is that all compact examples constructed thus far are at
least locally symmetric.

In the case of positive scalar curvature, Myers’ theorem shows that complete exam-
ples must be compact. Here, too, there is a shortage of non-symmetric examples.
In fact, the only known examples of quaternionic Kähler manifolds with sg > 0 are
symmetric spaces, which were constructed by Wolf [106]. Wolf classified the sym-
metric quaternionic Kähler manifolds, which are called Wolf spaces in his honor. As
remarked in the previous section, quaternionic Kähler manifold with nonzero scalar
curvature are irreducible, hence the symmetric examples can be found from Cartan’s
classification of irreducible symmetric spaces.

Representation-theoretic arguments can be used to pick out the correct entries from
Cartan’s classification (for details, see [15, §14.50]). Since the irreducible symmetric
spaces come in pairs (of the form G/K, G∗/K, where G is a compact Lie group
and G∗ is its non-compact dual), the Wolf spaces do too. In each pair, the compact
example has sg > 0 and the non-compact one sg < 0. Thus, we can associate a
compact, simple Lie group G to each pair. The compact Wolf spaces are then of
the form (G/Z(G))/H, where Z(G) denotes the center of G. They are listed in
table 1.

If one allows for n = 1 in the three infinite families of table 1, one finds to obtain
a correspondence with all compact, simple Lie groups (except SU(2)). The four-
dimensional Wolf spaces are

Sp(2)/Z2

Sp(1) · Sp(1)
∼= HP1 = S4 ∼=

SO(5)

S(O(1)×O(4))
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dimM G H

4n Sp(n+ 1) Sp(n) · Sp(1)
4n SU(n+ 2) S(U(n)× U(2)) ∼= U(n) · Sp(1)
4n SO(n+ 4) S(O(n)×O(4)) ∼= (SO(n)× Sp(1)) · Sp(1)
8 G2 SO(4) ∼= Sp(1) · Sp(1)
28 F4 Sp(3) · Sp(1)
40 E6 SU(6) · Sp(1)
64 E7 Spin(12) · Sp(1)
112 E8 E7 · Sp(1)

Table 1

and
SU(3)

S(U(1)× U(2)
= CP2

Note that, except for HPn ∼= Sp(n+1)/(Sp(n)×Sp(1)) and SO(5)/(Sp(1)×Sp(1)),
none of these spaces can be written as G/(Sp(n)×Sp(1)) and therefore the obstruc-
tion class ε does not vanish for most Wolf spaces.

The difficulty in finding other examples of complete quaternionic Kähler manifolds
with positive scalar curvature led to the following conjecture:

Conjecture (LeBrun-Salamon [69]). The compact Wolf spaces are the only complete
quaternionic Kähler manifolds with positive scalar curvature.

An early theorem due to Alekseevskĭı [2] shows that every compact, homogeneous
quaternionic Kähler manifold with nonzero scalar curvature is a Wolf space. Further
progress was made by Poon and Salamon [89], who proved the conjecture in dimen-
sion eight. A proof in dimension twelve was offered by Herrera and Herrera [47],
but recently retracted. There are partial results in higher dimensions (cf. [5] and
references therein).

Finally, a further comment on the work of Wolf is in order. Besides noting that
compact, symmetric quaternionic Kähler manifolds correspond to compact, simple
Lie groups, Wolf observed that there is another type of manifolds whose classification
takes on a similar form:

Definition 3.16. A complex manifold M of odd (complex) dimension 2n+ 1 is said
to admit a holomorphic contact structure if there exists a family {(Ui, ωi)} with the
following properties:

(i) {Ui} is an open covering of M and ωi is a holomorphic one-form on Ui such
that ωi ∧ (dωi)

n is a nowhere-vanishing local section of the canonical bundle
KM .
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3.3. The twistor space

(ii) If Ui ∩ Uj 6= ∅, there exists a holomorphic function fij on Ui ∩ Uj such that
ωi = fijωj .

The ωi are then called (local) holomorphic contact forms. M is called a homo-
geneous holomorphic contact manifold if the group of biholomorphic contactomor-
phisms (i.e. biholomorphisms f : M → M such that f∗ωi is a local holomorphic
contact form) acts transitively.

Boothby classified the compact, simply connected, homogeneous holomorphic con-
tact manifolds in [17]. Just as the compact Wolf spaces, they correspond bijectively
to compact, simple Lie groups G via a quotient: M = (G/Z(G))/L where L is
uniquely determined up to conjugacy and of the form L1 ·U(1). Moreover, Boothby
proved that these manifolds admit a Kähler metric.

Compact Wolf spaces are of a similar form, namely (G/Z(G))/K where K = K1 ·
Sp(1). Wolf proved that L1 = K1 and that the U(1)-factor embeds into Sp(1),
establishing a correspondence between the compact, simply connected, homogeneous
holomorphic contact manifolds and compact Wolf spaces. This correspondence is
given by a fiber bundle π : G/L→ G/K with fiber Sp(1)/U(1) = CP1. Thus, every
compact Wolf space has a canonically associated S2-bundle over it, the total space of
which is a Kähler manifold. This motivates, and is generalized by, the construction
of the twistor space associated to a quaternionic Kähler manifold, which we will
discuss next.

3.3. The twistor space

In order to introduce the twistor space of a quaternionic Kähler manifold M , we
give another way to view the bundle S2H over M (due to Salamon), which plays
a fundamental role. Since Sp(1) consists of automorphisms of H, we may regard
its Lie algebra sp(1) = su(2) as a subset of H ⊗H∗. Under the identification with
H ⊗H provided by ωH , su(2) corresponds precisely to S2H. There is an action on
the tangent bundle TM = E∗ ⊗H∗ given by the composition

TM ⊗ S2H (E∗ ⊗H∗)⊗ (H⊗H∗) TM

Moreover, for J,K ∈ S2H ⊂ H ⊗H we have the identity JK +KJ = −〈J,K〉 id as
endomorphisms, where the inner product 〈−,−〉 is induced by the standard Hermi-
tian product on H. Therefore, we may think of S2H as a “bundle of quaternionic
coefficients”, acting by quaternionic multiplication from the right. Locally, it has a
basis {I, J,K} that satisfies the standard quaternionic relations. Of course, what
we are describing is nothing but the three-dimensional (sub)bundle of endomor-
phisms that features in the characterization of quaternionic Kähler manifolds given
in proposition 3.9.
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3. Quaternionic Kähler manifolds and twistor spaces

Definition 3.17. The twistor space Z associated to a quaternionic Kähler manifold
(M, g) is the unit sphere bundle of S2H.

Remark 3.18. Locally, we may pick a frame for S2H and describe the twistor space
as the bundle of unit length quaternions, acting on TM by right-multiplication. The
fiber Zx over a point x ∈M then consists of those almost complex structures of TxM
that are compatible with the Sp(n) · Sp(1) structure.

To make this more precise, recall that on an even-dimensional, oriented Riemannian
manifold M2n, the space of almost complex structures on TxM compatible with the
metric and orientation is SO(2n)/U(n). Analogously, the space of almost complex
structures compatible with the Sp(n) · Sp(1) structure of a quaternionic Kähler
manifold M4n is

Sp(n) · Sp(1)

U(2n) ∩ (Sp(n) · Sp(1))
∼=
Sp(n) · Sp(1)

Sp(n) · U(1)
∼=
Sp(1)

U(1)
∼= CP1

Because of the identity JK + KJ = −〈J,K〉 id, the unit length quaternions corre-
spond to those J ∈ S2H of length

√
2 with respect to the inner product 〈−,−〉, but

we may of course rescale our inner product to describe Z as the unit sphere bundle.

We give yet another way of viewing the twistor bundle, which provides a clear way of
seeing that it is a bundle of almost complex structures. Over a quaternionic Kähler
manifold M , we may locally define the vector bundles E and H. Any element
h ∈ Hx \ {0} defines a subspace of (1, 0)-forms (and therefore an almost complex
structure): ∧1,0

x
M = Ex ⊗ Ch ⊂ T ∗xM ⊗R C

Complex conjugation shows that
∧0,1
x M = Ex ⊗ Ch̃, where h̃ satisfies ωH(h, h̃) =

1. The induced almost complex structure is unchanged if we consider a complex
multiple of h instead, hence the space of almost complex structures can be identified
with P(H), the projectivized bundle. Since the bundle of almost complex structures
is the twistor space Z, we find that Z = P(H) (of course, this characterization is
only local, as H is not globally defined in general).

3.4. Properties of the twistor space

The usefulness of the twistor space construction mainly derives from the following
fundamental theorem:

Theorem 3.19 (Salamon [95]). The twistor space π : Z → M of a quaternionic
Kähler manifold admits an (integrable!) complex structure such that the fibers are
complex submanifolds.
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3.4. Properties of the twistor space

Proof. Recall that we may view Z as the bundle whose fibers Zx consist of the
almost complex structures of TxM compatible with the Sp(n) · Sp(1) structure,
i.e. Sp(n) · Sp(1)/(U(2n) ∩ Sp(n) · Sp(1)) ∼= CP1. Since this bundle is associated to
the (reduced) principal Sp(n) · Sp(1) frame bundle, the Levi-Cività connection on
M induces a connection on Z, hence a splitting TZ = H⊕ V, where V = Tπ is the
vertical distribution of tangent vectors along the fibers.

We know that, locally, Z = P(H) and therefore we equip the fibers with the standard
complex structure on CP1, induced by Hx = C2. This defines an almost complex
structure Jv on V. Now, we use the fact that p ∈ Zx is an almost complex structure
on the tangent space TxM . Dπ induces an isomorphism Hp ∼= TxM and therefore
we find an almost complex structure on Hp. Doing this in every point, we find a
tautological almost complex structure Jh on H (it is clear that Jh depends smoothly
on the point in Z, because it essentially is the point). Using the splitting TZ =
H ⊕ V, we define the almost complex structure on TZ by J = Jh ⊕ Jv. Note that
the fibers are automatically (almost) complex submanifolds.

Now, we have to prove integrability of J . The celebrated Newlander-Nirenberg
theorem [81] reduces this to showing that the Nijenhuis tensor NJ associated to J
vanishes. The Nijenhuis tensor is the (1, 2)-tensor field given by

NJ(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ] X,Y ∈ TpZ

Using the decomposition TZ = H ⊕ V, it suffices to show that NJ(H,H) = 0,
NJ(H,V) = 0 and NJ(V,V) = 0. The last of these is the easiest: Since the fibers
are (almost) complex submanifolds, [V,V] ⊂ V and JV = JvV ⊂ V. This means that
NJ

∣∣
Vx = NJv is simply the Nijenhuis tensor on CP1 associated with the (standard)

complex structure, which is of course integrable. Hence NJ(V,V) = 0.

To prove the vanishing of the remaining components of the Nijenhuis tensor, we
will need some notions from the theory of Riemannian submersions, introduced in
appendix A, in particular that of a basic vector field. A vector field X is called basic
if it is horizontal an π-related to a vector field X̌ on M . An important property is
that, if U is a vertical vector field, then [X,U ] is vertical.

Our next step is to prove that for NJ(H,V) = 0. Given a horizontal and a vertical
tangent vector, we extend them to a basic and a vertical vector field, which we call X
and U . The action of Sp(n) · Sp(1) on the locally defined bundle H factors through
U(2) and therefore the horizontal transport associated to H leaves the Fubini-Study
metric on Zx = P(Hx) = CP1 invariant, as well as the orientation. Jv is uniquely
determined in terms of these data, hence must be preserved as well. This means that
[X, JU ] = J [X,U ] (we used that the term (JU)X on the left hand side does not
contribute, as [X, JU ] is vertical). Thus, the first and third terms of the Nijenhuis
tensor cancel.

To investigate the second and fourth terms, we fist consider the vertical projection
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3. Quaternionic Kähler manifolds and twistor spaces

VNJ(X,U) = V(J [JX,U ] − [JX, JU ]). Though JX is not necessarily basic, the
vertical projection ensures that we still have V[JX, JU ] = VJ [JX,U ] = JV[JX,U ],
hence VNJ(X,U) = 0. Now consider HNJ(X,U), which vanishes if and only if its
projection to the base does. Define a map ϕ : Z → EndTM by sending z ∈ Zx to the
corresponding complex structure on TxM . Expanding in local coordinates adapted
to the local product structure of Z, we see that the following holds pointwise:

Dπ(H[JX,U ]) = −Dϕ(U)X̌

where X̌ = Dπ(X) is π-related to X. The identity Dzϕ((JU)z) = ϕ(z) ◦Dzϕ(Uz),
which holds for all vertical vectors U , then shows that the projection to the base
vanishes. Indeed:

Dzπ(HNJ(X,U)z) = Dzπ(HJ [JX,U ]z)−Dzπ(H[JX, JU ]z)

= Dzπ(JhH[JX,U ]z) + ϕ(z) ◦Dzϕ(Uz)X̌π(z)

= −ϕ(z) ◦Dzϕ(U)X̌π(z) + ϕ(z) ◦Dzϕ(Uz)X̌π(z) = 0

In the last line we used that, for X horizontal, Dzπ(JhXz) = ϕ(z) ◦Dzπ(Xz) essen-
tially by definition of Jh.

Finally, we have to prove that NJ(H,H) = 0. Regard Z as a subspace of the rank
three bundle p : S2H → M and take any point z ∈ Z. We can find a section s
of π : Z → M , defined on a neighborhood V of π(z), that passes through z and
is parallel at that point with respect to ∇, induced on S2H by the Levi-Cività
connection ∇̌ on M . Then s defines an almost complex structure S on V and on its
image s(V ), Dπ(HNJ(H,H)) equals NS . Since (∇S)π(z) = 0 and ∇ is torsion-free,
NS vanishes identically at π(z). We may do this for any point z ∈ Z and therefore
we conclude that HNJ ≡ 0.

It remains to prove that VNJ(H,H) vanishes. On S2H, we define A : H×H → V,
AXY = 1

2V[X,Y ] (compare with O’Neill’s A-tensor from appendix A). It measures
the obstruction to integrability ofH and, after identifying VTzS2Hπ(z) with S2Hπ(z),

it is related to the curvature via (AXY )s(x) = −1
2R
∇(Dp(X), Dp(Y ))s(x) for any

section s ∈ Γ(S2H). Since S2H is a bundle of endomorphisms, we may consider
AXY as an endomorphism (this amounts to applying ϕ to it), and R∇ as the cur-
vature naturally induced on EndTM by ∇̌. The equation now becomes:

ϕ(AXY ) = −1

2
[R∇̌(Dπ(X), Dπ(Y )), S]

where S ∈ EndTM is the image of the section s as before, and we used that
REndE(a) = [RE , a] for a vector bundle E and a ∈ EndE. We also replaced Dp by
Dπ, which is allowed since X is a vector field on Z ⊂ S2H. VNJ(H,H) vanishes if
and only if ϕ(VNJ(H,H) does. By the above, we may express this as follows:

−[R∇̌(X̌, Y̌ ), S]− S[R∇̌(SX̌, Y̌ ), S]− S[R∇̌(X̌, SY̌ ), S] + [R∇̌(SX̌, SY̌ ), S] = 0
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3.4. Properties of the twistor space

Here, S is the complex structure on TxM corresponding to s(x) ∈ Zx and X̌, Y̌
correspond to basic vector fields on Z. To prove this identity, we use equations (3.1)
to (3.3) and lemma 3.12. They imply that, if S = aI + bJ + cK, then

(n+2)[R∇(X,Y ), S] = (bK−cJ)r(IX, Y )+(cI−aK)r(JX, Y )+(aJ−bI)r(KX,Y )

where we have suppressed the accents for simplicity. Using the analogous equations
for R∇(SX, Y ) etc., as well as the equations r(SX,SY ) = r(X,Y ), r(ISX, Y ) =
r(IX, SY )− 2ar(X,Y ) and its analogs for J and K, we can write our expression in
terms of r(X,Y ), r(IX, Y ), r(IX, SY ) and similar terms for J and K.

Now, it is a tedious but in principle simple process to eliminate all occurrences of
S, using relations such as S(bK − cJ) = (b2 + c2)I − abJ − acK and r(IX, SY ) =
ar(X,Y ) + br(KX,Y )− cr(JX, Y ), as well as the fact that a2 + b2 + c2 = 1. Once
this task has been completed, all terms cancel and the expression vanishes.

This important result allows one to study the geometry of quaternionic Kähler ma-
nifolds though the complex geometry of the twistor space, although we will not use
the twistor space for these purposes in this work.

In forming expectations of what one may be able to prove about quaternionic Kähler
manifolds, some guidance is provided by the Wolf spaces. Recall that each Wolf space
comes with a homogeneous holomorphic contact manifold fibering over it with fiber
CP1: This is precisely the twistor space. Thus, the above theorem generalizes Wolf’s
result regarding the complex structure. Our next aim is to prove that a large class
of twistor spaces carry a holomorphic contact structure. To this end, we first give
some more information about holomorphic contact manifolds.

The kernels of the local contact forms on a holomorphic contact manifold X of
complex dimension 2n+ 1 (cf. definition 3.16) unambiguously define a codimension
one distribution D. Picking a complementary complex line bundle F , the non-
degeneracy condition on the ωi’s is equivalent to the statement that (dωi)

n
∣∣
D

is

nowhere vanishing. Because ωi
∣∣
D

= 0, we have dωi
∣∣
D

= fijdωj
∣∣
D

, hence we get an
up to a multiple well-defined two-form of maximal rank on D.

Note that ωi ∧ (dωi)
n = fn+1

ij ωj ∧ (dωj)
n, hence sections of the canonical bundle

KX transform under transition functions via multiplication by fn+1
ij . This means

that the canonical bundle is defined by the transition functions
{
f
−(n+1)
ij

}
. On the

other hand, the line bundle F is defined by {fij} and therefore KX
∼= F−(n+1). This

means that c1(X) = (n+ 1)c1(F ). Thus, we have proven:

Proposition 3.20 (Kobayashi [59]). If X is a complex manifold of dimension 2n+ 1
which admits a holomorphic contact structure, then c1(X) is divisible by n+ 1.

There is a global alternative for the (local) definition of a holomorphic contact mani-
fold that we have used thus far. Consider a complex manifold X of dimension 2n+1
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3. Quaternionic Kähler manifolds and twistor spaces

which admits a (complex) codimension one holomorphic distribution D ⊂ TX. The
quotient TX/D yields a holomorphic line bundle F :

D TX Fα

and we may regard the projection α as a holomorphic one-form with values in F ,
i.e. a global section of Ω1(X) ⊗ F . Note that it is nowhere vanishing (since F is
of constant rank one). Now, D defines a holomorphic contact structure on X if it
satisfies a condition known as maximal non-integrability. Concretely, this translates
to the condition α∧ (dα)n 6= 0 (via a variant of Frobenius’ theorem) on the form α.
Note that, although the exterior derivative of this bundle-valued form depends on a
choice of connection, the contact condition does not.

The definition of a holomorphic contact structure in terms of local contact forms
is recovered upon picking local trivializations of F : The globally defined form α,
which takes values in F , can then be viewed as a collection of locally defined forms αi
(complex-valued) on TZ of the form αi = π∗ωi, where π : TZ → Z is the projection.
The locally defined forms ωi on Z then satisfy the conditions of definition 3.16. We
use this global point of view to prove that twistor spaces over quaternionic Kähler
manifolds with nonzero Einstein constant are holomorphic contact manifolds:

Theorem 3.21 (Salamon [95]). The twistor space π : Z → M of a quaternionic
Kähler manifold with nonzero scalar curvature admits a holomorphic contact struc-
ture.

Proof. Using the splitting TZ = V ⊕ H induced by the Levi-Cività connection, we
can view the projection onto V (also denoted by V) as a V-valued holomorphic one-

form α on Z. It suffices to show that d∇̂α is nowhere vanishing and of maximal rank,
when restricted to H. Here, ∇̂ is the connection on V induced by the Fubini-Study
metric on each fiber.

Let X,Y be horizontal tangent vectors. A short, local computation shows that

(d∇̂α)(X,Y ) = −2α(AXY ), where AXY := 1
2V[X,Y ]. We will now express AXY ,

which we view as an endomorphism, in terms of the Ricci curvature (and hence the

metric) and use this to prove that A is non-degenerate. Then d∇̂α is non-degenerate

and hence α ∧ (d∇̂α)n 6= 0, i.e. Z is a holomorphic contact manifold.

To this end, recall the following identity from the proof of theorem 3.19:

2ϕ(AXY ) = −[R∇̌(X̌, Y̌ ), S]

Here, we identify AXY ∈ V with an element of S2H, or we may alternatively apply
Dϕ. Furthermore, ∇̌ is the Levi-Cività connection on M and S = ϕ(z) is the point
in which we are computing, regarded as an endomorphism. Setting S = aI+bJ+cK,
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equations (3.1) to (3.3) and lemma 3.12 show that

2(n+2)ϕ(AXY ) = −λ
[
(bK−cJ)g(IX̌, Y̌ )+(cI−aK)g(JX̌, Y̌ )+(aJ−bI)g(KX̌, Y̌ )

]
where λ ∈ R is the Einstein constant. As long as λ 6= 0, the right-hand side is
manifestly non-degenerate; it shows that AX(IX), AX(JX) and AX(KX) cannot
simultaneously vanish.

In case the underlying quaternionic Kähler manifold has positive Einstein constant,
we can say even more about the twistor space:

Theorem 3.22 (Salamon [95], Bérard-Bergery (unpublished)2). If (M, g) is a quater-
nionic Kähler manifold with positive scalar curvature, then its twistor space Z ad-
mits a Kähler-Einstein metric with positive scalar curvature, such that π : Z → M
is a Riemannian submersion with totally geodesic fibers3.

Proof. Since the base space (M, g) is Einstein, we may rescale to obtain r = (n+2)g.
As usual, we use the splitting TZ = H ⊕ V induced by the Levi-Cività connection
of (M, g). Equip the fibers, which are copies of CP1, with the Fubini-Study metric
(with constant sectional curvature equal to one), and define the metric g̃ on Z to
agree with it on vertical tangent vectors.

Furthermore, declare horizontal and vertical tangent vectors to be orthogonal with
respect to g̃ and define the metric on horizontal tangent vectors X,Y via g̃(X,Y ) =
π∗g(X,Y ), so that (Z, g̃) becomes a Riemannian submersion; the fibers are automat-
ically totally geodesic. This turns Z, equipped with its natural complex structure
J , into a Hermitian manifold (by definition of J). Now, we must verify that this
defines a Kähler-Einstein metric. In order to do so, we need another computational
lemma:

Lemma 3.23. Let U be vertical and X,Y basic vector fields on Z ⊂ S2H. Let A be
O’Neill’s A-tensor. Then:

(i) ∇U (JX) = JAXU .

(ii) JAXU = AX(JU) and JAXY = AX(JY ).

(iii) g̃(AX , AX) = 1
2 g̃(X,X) and g̃(AU,AU) = ng̃(U,U), where n = dimM/4.

For the relevant definitions, see appendix A.

We have omitted the (lengthy) proof, which consists of repeated application of a

number of identities: 2Dϕ(AXY ) = −[R∇̌(X̌, Y̌ ), S] and Dπ(H[JX,U ]) = −SX̌,
the equations (3.1) to (3.3), the fact that Dπ(JX) = SDπ(X) for any horizontal X
and the relation r = (n+ 2)g between the Ricci and metric tensors of M .

2See [15, Thm. 14.80] for a more precise reference.
3See appendix A for a brief introduction to Riemannian submersions and related concepts.
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3. Quaternionic Kähler manifolds and twistor spaces

Now, we will prove that ∇̃J = 0. If U, V are vertical then (∇̃UJ)V = 0 since
the fibers are Kähler. Now let X be a horizontal vector. Since O’Neill’s T -tensor
vanishes, V∇̃UX = 0 and since we may extend X to a basic vector field, H∇UX =
H∇̃XU = AXU . Thus, (∇̃UJ)X = ∇̃U (JX)− J∇̃UX = 0 by our lemma.

Now, we prove that (∇̃XJ)U = 0. Note that V(∇̃XU) = V(∇̃UX + [X,U ]) =
V[X,U ] = [X,U ] since X is basic. Similarly, V(∇̃X(JU)) = V([X, JU ] + ∇̃JUX) =
[X, JU ] = J [X,U ]. This proves that V(∇̃XJ)U = 0. The fact that H(∇̃XJ)U =
AX(JU)− J(AXU) = 0 follows from the second claim of the lemma.

Finally, we consider (∇̃XJ)Y . Its vertical projection vanishes due to part two of the
lemma (as above), while H(∇̃XJ)Y vanishes by an argument analogous to what we
used to prove that HNJ(H,H) = 0 in the proof of theorem 3.19. This completes
the proof that (Z, g̃, J) is Kähler.

To show that (Z, g̃) is Einstein, we use the criteria provided by proposition A.16 and
see that the Ricci curvature r̃ satisfies r̃ = (n+ 1)g̃.

Recall that a compact Kähler manifold with positive first Chern class is called a
Fano manifold and the divisibility of its first Chern class is known as the Fano
index. Here, a positive cohomology class is one that may be represented by a real
(1, 1)-form ω such that for every v ∈ T 1,0

C X, −iω(v, v̄) > 0. The archetypal example
is the Kähler class associated to a Kähler metric.

The existence of a Kähler-Einstein metric with positive scalar curvature on the
twistor space implies that it is Fano. To see this, recall that on a Kähler manifold
(X, g, J) the isomorphism of complex vector bundles (TX, J) ∼= T 1,0

C X (where the
latter underlies the holomorphic tangent bundle T X) identifies the Chern connection
∇ on T X with the Levi-Cività connection D on TX, as well as the corresponding
curvature tensors F∇ and R.

Defining the Ricci form ρ(X,Y ) := r(JX, Y ), a standard computation with respect
to a local frame of TX, {x1, Jx1, . . . , xn, Jxn}, shows that ρ = i trC(F∇) (where
trC traces over the endomorphism-part of F∇). Using Chern-Weil theory, we see
that 1

2πρ represents the first Chern class c1(X). The fact that the Ricci curvature
is proportional to the metric with positive constant of proportionality means that ρ
is a positive form. Thus, c1(X) is positive and X is Fano.

Corollary 3.24. If (M4n, g) is quaternionic Kähler with positive scalar curvature,
then its twistor space Z is a Fano manifold with Fano index a multiple of n+ 1.

Proof. By virtue of theorem 3.22 and the above discussion, Z is Fano. The proof of
theorem 3.21 shows that it carries a holomorphic contact structure, defined by the
projection onto the line bundle V. By proposition 3.20, c1(Z) = (n+ 1)c1(V). Thus,
c1(Z) is divisible by n+ 1.
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manifolds

In this chapter, we review a few classical rigidity results of complex geometry. The
smooth manifold underlying a complex manifold generically admits not just one, but
a large set of complex structures. Indeed, there is a vast literature on these so-called
moduli spaces of complex structures. Analogously, given a complex manifold that
admits a Kähler metric—we will call such complex manifolds Kählerian—one may
study the space of complex structures which admit a compatible Kähler metric. In
some very special cases, it is possible to prove a uniqueness theorem for Kählerian
complex manifolds, which are thereby shown to exhibit a certain rigidity. The
material presented in this chapter is intended to provide context for a similar result
which we will prove in chapter 6.

4.1. Background information

In the following, we assume that the reader is comfortable with characteristic classes
at the level of Milnor & Stasheff’s classic book [76]. Furthermore, we will freely
make use of some fundamental results of complex geometry, assuming roughly the
material that appears in Huybrechts’ introductory text [54]. We will now recall the
statements of the main results that we will use, starting with two theorems due to
Lefschetz:

Theorem 4.1 (Lefschetz Theorem on (1, 1)-Classes). On a compact Kähler manifold
X, define

H1,1(X;Z) := im(H2(X;Z)→ H2(X;C)) ∩H1,1(X)

Then the map Pic(X)→ H1,1(X;Z), given by the first Chern class, is surjective.

Theorem 4.2 (Lefschetz Hyperplane Theorem). Let X be a compact Kähler manifold
of dimension n and Y ⊂ X is a smooth hypersurface such that the corresponding
line bundle O(Y ) is a positive line bundle. Then the canonical restriction maps
Hk(X;Z) → Hk(Y ;Z) are isomorphisms for k < n− 1 and injective for k = n− 1.
Similarly, the natural maps Hk(Y ;Z) → Hk(X;Z) are isomorphisms for k < n − 1
and surjective for k = n− 1.
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A central role in the following will be reserved for a celebrated theorem of Hirze-
bruch:

Theorem 4.3 (Hirzebruch-Riemann-Roch Theorem; Hirzebruch [49]). Let X be a com-
pact, complex manifold and π : E → X a holomorphic vector bundle over X. Then
the Poincaré-Euler characteristic

χ(X,E) =
rankE∑
k=0

(−1)k dimHk(X,E)

can be expressed as follows:

χ(X,E) =

∫
X

ch(E) td(X)

Here, ch(E) denotes the Chern character of E and td(X) the Todd class of X. The
integral is (implicitly) over the degree-2n part of ch(E) td(X).

Remark 4.4. Hirzebruch proved this theorem under the assumption that X is projec-
tive. Its validity for arbitrary compact, complex manifolds follows from the Atiyah-
Singer index theorem.

The Todd class can be defined by a multiplicative sequence of polynomials in the
Chern classes (see e.g. [76] or the original reference [49]) and in this formulation it
is not hard to show that it satisfies the identity

td(c(E)) = e
1
2
c1(E)Â(p(E)) (4.1)

Here, Â is the multiplicative sequence of polynomials (in the Pontryagin classes

pj(E) of E) determined by the power series f(t) =

√
t/2

sinh
√
t/2

. This shows that the

Todd class only depends on the Pontryagin classes and the first Chern class, a fact
that will be soon be of use.

Besides the Hirzebruch-Riemann-Roch theorem, we will make use of a famous the-
orem due to Kodaira:

Theorem 4.5 (Kodaira Vanishing Theorem; Kodaira [63]). Let X be a compact Kähler
manifold of dimension n and L a positive line bundle over X, i.e. a line bundle with
positive first Chern class. Then, if p+ q > n, Hp,q(X,L) = Hq(X,Ωp

X ⊗L) = 0. By

Serre duality, this is equivalent to Hn−q(X,Ωn−p
X ⊗ L−1) = 0.

We will usually employ the special case p = n:

Corollary 4.6. If X is a compact Kähler manifold of dimension n and L a positive
line bundle over X, then Hk(X,KX ⊗L) = 0 or equivalently Hn−k(X,L−1) = 0 for
every k > 0.
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4.2. Rigidity of complex projective spaces

4.2. Rigidity of complex projective spaces

The most famous—and oldest—rigidity result for complex manifolds of arbitrary
dimension concerns the complex projective spaces. In proving it, we do not take the
historical route. Instead, we rely on a characterization of CPn due to Kobayashi
and Ochiai. This method of proof was also used by Tosatti in a recent expository
paper [102].

Theorem 4.7 (Kobayashi-Ochiai [62]). Let X be a compact, connected, complex
manifold of dimension n, equipped with a positive line bundle L such that the
following conditions hold:

(i)

∫
X
cn1 (L) = 1.

(ii) dimH0(X,L) = n+ 1.

Then X is biholomorphic to CPn.

Proof. Let {s1, . . . , sn+1} be a basis of H0(X,L), and denote the corresponding
divisors by Dj = {sj = 0} ⊂ X. Note that Dj 6= ∅ because a non-vanishing section
would trivialize L, and the trivial line bundle O satisfies dimH0(X,O) = 1. We
may choose the sj ’s to be transverse to the zero section, so that the divisors Dj are
Poincaré dual to the Euler class c1(L) of L. We need the following lemma:

Lemma 4.8. Set Xn = X and Xn−j = D1 ∩ · · · ∩Dj for 1 ≤ j ≤ n. Then, for every
0 ≤ k ≤ n, the following hold:

(i) Xn−k is irreducible, has dimension n− k and is Poincaré dual to ck1(L).

(ii) The sequence

0 span(s1, . . . , sk) H0(X,L) H0(Xn−k, L)

is exact.

Proof of Lemma. We proceed inductively. The base case k = 0 is trivial. Now,
assume the assertions hold for k − 1. The short exact sequence

0 span(s1, . . . , sk−1) H0(X,L) H0(Xn−k+1, L)

implies that sk does not vanish on all of Xn−k+1, i.e. the subset {sk = 0} ⊂ Xn−k+1

defines an effective divisor, which we can write as a sum of irreducible analytic
subvarieties of dimension n− k.

35



4. Rigidity theorems for Kählerian manifolds

By induction assumption, Xn−k+1 is dual to ck−1
1 (L). Since Dk is dual to c1(L) and

intersection is dual to the cup product in cohomology, Dk ∩Xn−k+1 = Xn−k is dual
to ck1(L). This duality also implies that∫

X
cn1 (L) =

∫
X
ck1(L)cn−k1 (L) =

∫
Xn−k

cn−k1 (L)

Now, assume that Xn−k is reducible, i.e. Xn−k = V1 ∪ V2, where V1 and V2 are
non-empty analytic subvarieties. Then

1 =

∫
X
cn1 (L) =

∫
Xn−k

cn−k1 (L) =

∫
V1

cn−k1 (L) +

∫
V2

cn−k1 (L)

This is a contradiction, however, since both terms on the right hand side are positive
integers. Thus, the first claim is proven. For the second, we observe that the map
µ : OXn−k+1

→ OXn−k+1
⊗ L given by multiplication by sk induces a short exact

sequence

0 OXn−k+1
OXn−k+1

⊗ L OXn−k
⊗ L 0

µ

where the sheaf OXn−k
is the quotient of OXn−k+1

by the holomorphic functions that
vanish along Xn−k ⊂ Xn−k+1 (which we may think of as simply the restriction of O
to Xn−k). The induced long exact sequence starts with:

0 H0(Xn−k+1,O) H0(Xn−k+1, L) H0(Xn−k, L) . . .
µ

Since the first map is multiplication by sk, we see that the kernel of the restriction
map H0(Xn−k+1, L) → H0(Xn−k, L) is spanned by sk. Combined with the exact
sequence from the induction hypothesis

0 span(s1, . . . , sk−1) H0(X,L) H0(Xn−k+1, L)

it is clear that we have an exact sequence

0 span(s1, . . . , sk) H0(X,L) H0(Xn−k+1, L)/ span(sk) = H0(Xn−k, L)

This is what we wanted to show.

Applying the lemma for k = n shows that X0 is a single point, and that sn+1 is
non-zero at this point. This shows that L has no base points. Now, we define
a holomorphic map f : X → CPn = P(H0(X,L)∗) by sending x ∈ X to the
hyperplane {s ∈ H0(X,L) | s(x) = 0} ⊂ H0(X,L). The fact that L has no base
points guarantees that the image of any point is indeed a hyperplane.

To see that f is a bijection, consider a hyperplane H in H0(X,L), spanned by
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4.2. Rigidity of complex projective spaces

{s′1, . . . , s′n}. Then f(x) = H precisely if s′1(x) = · · · = s′n(x) = 0. By applying the
lemma once more for k = n and a basis of H0(X,L) obtained by adding a linearly
independent section to the set {s′j} shows that there is exactly one such point. Thus,
f is a holomorphic bijection and therefore a biholomorphism.

Corollary 4.9. If X is a compact, connected, complex manifold of dimension n
equipped with a positive line bundle L such that c1(X) = (n + 1)c1(L), then X
is biholomorphic to CPn.

Proof. We will show that, under these assumptions, dimH0(X,L) = n + 1 and∫
X c

n
1 (L) = 1.

Let O(1) be the hyperplane bundle over CPn, whose first Chern class is the positive
generator α ∈ H2(CPn;Z). Its tensor products will, as is usual, be denoted by
O(1)k = O(k) for k ∈ Z. Set

P (k) := χ(X,Lk) Q(k) := χ(CPn,O(k))

The Hirzebruch-Riemann-Roch theorem implies that P and Q are polynomials in k:

χ(X,Lk) =

∫
X
ekc1(L) td(X)

=

∫
X

(
[td(X)]2k + kc1(L)[td(X)]2k−2 + · · ·+ kncn1 (L)

n!

)
where [· · · ]k denotes the degree-k component of a mixed cohomology class. Thus

P (k) = td[X] + a1k + · · ·+ ank
n n!an =

∫
X
cn1 (L)

and analogously

Q(k) = td[CPn] + b1k + . . . bnk
n n!bn =

∫
X
cn1 (O(1)) = 1

We will show that these polynomials are identical by showing that they coincide at
n + 1 points, namely k = 0,−1, . . . ,−n. We will do so by repeated application of
the Kodaira vanishing theorem. This is possible because the positivity of L implies
that X admits a Kähler metric (the Kähler form being a representative of c1(L)).

For k = 0, the fact that c1(X) is a positive class implies that K−1
X is a positive line

bundle, hence the vanishing theorem asserts Hk(X,O) = 0 for every k > 0. This
means that P (0) = dimH0(X,O) = 1 and similarly Q(0) = 1.

For k > 0, Lk is positive, hence by the vanishing theorem

Hj(X,L−k) = 0 k > 0, 0 ≤ j < n
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4. Rigidity theorems for Kählerian manifolds

To obtain the same conclusion for j = n, note that c1(X)−kc1(L) is a positive class
for every k ≤ n. Therefore KX ⊗ Lk is negative and

Hn(X,L−k) ∼= H0(X,KX ⊗ Lk)∗ = 0 k ≤ n

In conclusion, Hj(X,L−k) = 0 for every 0 < k ≤ n and every 0 ≤ j ≤ n. The exact
same reasoning applies to Hj(CPn,O(−k)). We deduce that

P (−k) = χ(X,L−k) = 0 = χ(CPn,O(−k)) = Q(−k) 0 < k ≤ n

This establishes that P (k) = Q(k) for every k. For k ≥ 0, the vanishing theorem
tells us that Hj(X,Lk) = Hj(CPn,O(k)) = 0 for every j > 0. This means that

P (k) = dimH0(X,Lk) = dimH0(CPn,O(k)) = Q(k) k ≥ 0

It is well-known thatH0(CPn,O(k)) is the space of homogeneous polynomials in n+1
variables. In particular, dimH0(CPn,O(1)) = n+ 1 = dimH0(X,L). Furthermore,
since P = Q, we find in particular that

n!bn =

∫
CPn

cn1 (O(1)) = 1 = n!an =

∫
X
cn1 (L)

This shows that the assumptions of theorem 4.7 are indeed satisfied.

By the Lefschetz theorem on (1, 1)-classes, any class in H1,1(X;Z) comes from the
first Chern class of a line bundle. Moreover, positive classes in H1,1(X;Z) come from
positive line bundles. This allows us to rephrase the corollary without reference to
line bundles:

Corollary 4.10. Any Fano manifold of dimension n with Fano index n+ 1 is biholo-
morphic to CPn.

Remark 4.11. It was proven by Michelsohn that, in fact, the highest possible value
for the Fano index is n+ 1 (see [68, p. 366] for a proof). Thus, corollary 4.10 asserts
that CPn is the unique Fano manifold with maximal Fano index.

Now we are in a position to prove Hirzebruch and Kodaira’s rigidity theorem for the
complex projective spaces:

Theorem 4.12 (Hirzebruch-Kodaira [50]). If X is a Kählerian complex manifold that
is homeomorphic to CPn, then X is in fact biholomorphic to CPn.

Proof. Since X is homeomorphic to CPn, we know that the cohomology ring is
H∗(X;Z) ∼= Z[g2]/gn+1

2 , where g2 is a generator in degree two, which we may choose
to be a positive multiple of the Kähler class associated to a Kähler metric on X.
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4.2. Rigidity of complex projective spaces

The assumption that X is Kähler implies that hp,p = 1 and hp,q = 0 for every p 6= q
(p, q ≤ n). The long exact sequence induced by the exponential exact sequence

0 Z O O∗ 0

then shows that the mapH1(X;O∗)→ H2(X;Z), given by the first Chern class, is an
isomorphism between the group of isomorphism classes of holomorphic line bundles
and H2(X;Z). Furthermore, the Hirzebruch-Riemann-Roch theorem applied to the
trivial line bundle E = O shows that

h0,0 − h1,0 + · · · ± hn,0 = 1 = χ(X,O) =

∫
X

td(X) =: td[X]

where we use square brackets to indicate evaluation on the fundamental class.

On the other hand, (4.1) gives us an expression in terms of characteristic classes.
To evaluate it, we first determine the Pontryagin classes. For this, we need the
assumption that X is homeomorphic (and not just homotopy equivalent) to CPn:
The rational Pontryagin classes were proven to be homeomorphism invariants by
Novikov [82]. Here, the absence of torsion in the cohomology implies that even
the integral classes are homeomorphism invariants. The homeomorphism f : X →
CPn induces a pullback on cohomology which sends the positive generator α ∈
H2(CPn;Z) to ±g2. Therefore, we have

f∗p(CPn) = (1 + f∗α2)n+1 = (1 + g2
2)n+1 = p(X)

Now, we study the first Chern class. Recall that c1(CPn) = (n+ 1)α. Since the first
Chern class reduces to the second Stiefel-Whitney class modulo two, CPn is spin if
and only if n is odd. This is a topological property and therefore c1(X) = d · g2,
where d = 2k + n + 1 for some k ∈ Z. Given this expression for c1(X), the Todd
class becomes

td(X) = e
1
2

(2k+n+1)g2

(
g2/2

sinh(g2/2)

)n+1

= ekg2
(

g2

1− e−g2

)n+1

and td[X] is given by the coefficient multiplying gn2 in this power series. This is
easily computed by means of a residue integral:

td[X] =
1

2πi

∮
γ
ekz

dz

(1− e−z)n+1

where γ is a (small) loop around 0 ∈ C. Substituting u = 1− e−z, we find

td[X] =
1

2πi

∮
γ′

du

un+1(1− u)k+1
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4. Rigidity theorems for Kählerian manifolds

The answer is now obtained by solving a simple combinatorics problem. We find:

td[X] =

(
n+ k

n

)
where the generalized binomial coefficients allow for negative top entry. To reconcile
this with the fact that td[X] = 1, the only possibilities are k = 0 or, if n is even,
k = −(n + 1). This corresponds to c1(X) = ±(n + 1)g2, where the negative sign is
only possible if n is even.

The possibility c1(X) = −(n+1)g2 is ruled out as a consequence of Yau’s resolution
of the Calabi conjecture. Indeed, Yau remarked in [108] that if the canonical bundle
KX is positive, i.e. if −c1(X) is a positive class, then the following inequality holds:

(−1)n(2(n+ 1)cn−2
1 c2[X]− ncn1 [X]) ≥ 0

Furthermore, equality holds if and only if X is holomorphically covered by the unit
ball in Cn. Because of Yau’s resolution of the Calabi conjecture, we may assume
that X admits a Kähler-Einstein metric. The inequality is then derived through a
long curvature computation; we refer to Tosatti [102] for the details. Now assume
that c1(X) = −(n+ 1)g2 and n is even. Since p1(X) = (n+ 1)g2

2 = c2
1(X)− 2c2(X),

we find that 2c2(X) = n(n+ 1)g2
2. This implies:

2(n+ 1)cn−2
1 c2[X]− ncn1 [X] = n(n+ 1)n − n(n+ 1)n = 0

Since X is simply connected, Yau’s work implies that it must be biholomorphic to
the unit ball, which is a contradiction. Thus, we have shown that c1(X) = (n+1)g2.
Now, we may already invoke corollary 4.10 to conclude that X is biholomorphic to
CPn.

However, in this case, it is also simple to directly show that the hypotheses of
theorem 4.7 are satisfied. The first Chern class induces an isomorphism H1(X,O∗) ∼=
H2(X;Z), hence there exists a line bundle L with c1(L) = g2. gn2 generates the top
degree cohomology and therefore

∫
X c

n
1 (L) = 1. As for the second assumption, note

that KX
∼= L−(n+1) and therefore F = (KX ⊗L−1)−1 is a positive line bundle. The

Kodaira vanishing theorem asserts:

0 = Hk(X,KX ⊗ F ) ∼= Hk(X,L) ∀k > 0

In particular, χ(X,L) = dimH0(X,L). We apply the Hirzebruch-Riemann-Roch
theorem:

dimH0(X,L) =

∫
X

ch(L) td(X)

=

∫
X
eg2
(

g2

1− e−g2

)n+1

= n+ 1
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4.3. Rigidity of quadric hypersurfaces

where the final step is a special case of the residue integral we already computed.
This shows that the second assumption of theorem 4.7 is also satisfied.

Remark 4.13.

(i) The theorem can also be phrased as follows: There exists a unique Kählerian
complex structure in the homeomorphism class of CPn.

(ii) In their original proof, Hirzebruch and Kodaira assumed that X is diffeomor-
phic to CPn, since homeomorphism invariance of the Pontryagin classes had
not been established at the time. Furthermore, they were unable to com-
plete the proof in the case n is even, because they could not rule out the case
c1(X) = −(n + 1)g2. As explained above, this was done by Yau, using his
results on the Calabi conjecture [108].

4.3. Rigidity of quadric hypersurfaces

In 1964 Brieskorn published (part of) his doctoral thesis, written under supervision
of Hirzebruch. The main result is a precise analog of Hirzebruch and Kodaira’s
rigidity theorem, for the quadric hypersurfaces Qn ⊂ CPn+1 (n > 2). The idea and
methods used in the proof are essentially identical to those used by Hirzebruch and
Kodaira, but there are some additional technical complications. Therefore, we have
omitted some of the details in certain parts of the proof, though we always indicate
where they can be found.

The first complication is that the cohomology of Qn is slightly more subtle than
that of CPn. The Lefschetz hyperplane theorem applied to both the homology
and cohomology shows, when combined with Poincaré duality, that Hk(Qn;Z) ∼=
Hk(CPn;Z) for every k 6= n. In degree n, the universal coefficients theorem implies
that there is no torsion. Thus, the Euler characteristic χ(Qn) = cn[Qn] can be used
to determine the final cohomology group. It is computed from the normal bundle
sequence:

0 T Qn ι∗T CPn+1 ι∗O(2) 0

Here ι : Qn ↪→ CPn+1 is the inclusion, T X denotes the holomorphic tangent bun-
dle of the complex manifold X, and we used that the normal bundle of a quadric
hypersurface is ι∗O(2). This shows that

c(Qn) =
c(CPn+1)

c(O(2))
=

(1 + h)n+2

1 + 2h
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4. Rigidity theorems for Kählerian manifolds

where h is the restriction of the hyperplane class. Since Qn is a quadric, hn[Qn] = 2.
Thus, the Euler characteristic is given by twice the n-th coefficient of

(1 + h)n+2

1 + 2h
= (1 + h)n+2(1− 2h+ 4h2 − . . . )

which is given by

χ(Qn) = 2
n∑
j=0

(−2)j
(
n+ 2

j + 2

)
=

1

2

n+2∑
k=2

(−2)k
(
n+ 2

k

)
This is easily evaluated, using the binomial theorem:

n+2∑
k=0

(−2)k
(
n+ 2

k

)
= (1− 2)n+2 =⇒ χ(Qn) = n+ 2 +

1

2
((−1)n − 1)

We deduce that

Hn(Qn;Z) =

{
0 n odd

Z2 n even

The ring structure of the cohomology of Qn was determined by Ehresmann [36]. We
state the result, which may be found in Brieskorn’s paper [22], without proof:

Theorem 4.14.

(i) If n = 2m + 1 > 2 is odd, the cohomology ring of Qn is generated by two
elements, α in degree two and β in degree 2m+ 2, and is given by:

H∗(Q2m+1;Z) ∼= Z[α, β]/〈αm+1 = 2β, β2 = 0〉

(ii) If n = 2m > 2 is even, the cohomology ring of Qn is generated by three
elements, α in degree two and γ, γ̃ in degree 2m. They are subject to the
relations

αm = γ + γ̃ αγ = αγ̃ γ2 = γ̃2

as well one relation which depends on the parity of m:

γ2 = 0 if m is odd γγ̃ = 0 if m is even

Remark 4.15. For n = 1, the genus-degree formula shows that we have the two-
sphere CP1 with its trivial cohomology ring. For n = 2, recall that Q2 is diffeomor-
phic to CP1 × CP1, which makes it easy to compute the cohomology ring.

Much like the complex projective spaces, quadric hypersurfaces admits a character-
ization in terms of the existence of a special, positive line bundle:
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4.3. Rigidity of quadric hypersurfaces

Theorem 4.16 (Kobayashi & Ochiai [62]). Let X be a compact, connected, complex
manifold of dimension n, equipped with a positive line bundle L such that the
following conditions hold:

(i)

∫
X
cn1 (L) = 2.

(ii) dimH0(X,L) = n+ 2.

Then X is biholomorphic to Qn.

Sketch of Proof. We proceed as in lemma 4.8. Pick a basis {sj} of H0(X,L) and
consider the corresponding divisors Dj , which are each Poincaré dual to c1(L). Set
Xn = X and Xn−j = D1 ∩ · · · ∩Dj for 1 ≤ j ≤ n. There is some maximal integer d

such that for every j ≤ d, Xn−j is irreducible of dimension n − j, with dual cj1(L),
and we have an exact sequence

0 span(s1, . . . , sj) H0(X,L) H0(Xn−j , L)

However, d < n because if d = n then X0 would be a single point, and dual to cn1 (L).
But then

∫
X c

n
1 (L) = 1, which is a contradiction.

Thus, one has to investigate Xn−(d+1); this is first done under the assumption d ≤
n− 2. Xn−(d+1) is still dual to cd+1

1 (L), and therefore∫
X
cn1 (L) =

∫
Xn−(d+1)

c
n−(d+1)
1 (L) = 2

Xn−(d+1) is reducible, but the above shows that it has just two irreducible compo-

nents, V and V ′. c
n−(d+1)
1 (L) integrates to 1 on both, and one proves that V and

V ′ are distinct by showing that the line bundles they define on Xn−d, where they
may be regarded as divisors, are different: Denoting the line bundles by F and F ′,
we may write L ∼= F ⊗ F ′ on Xn−d. Hence

2 =

∫
X
cn1 (L) =

∫
Xn−d

cn−d1 (L) =

∫
Xn−d

(c1(F ) + c1(F ′))n−d

Since n− d ≥ 2, we find a contradiction if c1(F ) = c1(F ′). Furthermore, multiplica-
tion by sd+1 induces an exact sequence

0 H0(Xn−d,OXn−d
) H0(Xn−d,OXn−d

⊗ L) H0(Xn−d,OXn−(d+1)
⊗ L)

But that means that the kernel of the restriction H0(Xn−d, L) → H0(Xn−(d+1), L)
is spanned by sd+1. Using the exact sequence relating H0(X,L) and H0(Xn−d, L),
we see that the kernel of H0(X,L)→ H0(Xn−(d+1), L) is spanned by {s1, . . . , sd+1}.
Now, one would like to refine this result to obtain information about H0(V,L) and
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4. Rigidity theorems for Kählerian manifolds

H0(V ′, L). We will not describe this more technical discussion here and refer the
interested reader to [62] instead. The end result is that dimH0(V,L) = dimV +1 =
n− d and similarly dimH0(V ′, L) = n− d, and that H0(X,L) surjects onto each of
these vector spaces.

Now one may apply the methods of the proof of theorem 4.7, which remain valid un-
der the weaker assumptions that the spaces involved are irreducible complex spaces,
which V and V ′ are. This allows us to conclude that, when restricted to V or V ′,
L has no base points. Since H0(X,L) surjects onto H0(V,L) and H0(V ′, L), this
shows that L is base point free on X (assuming d ≤ n − 2). The absence of base
points when d = n− 1 can be proven independently.

Thus one obtains an embedding into a projective space. Since dimH0(X,L) = n+2,
we embed into CPn+1 = P(H0(X,L)∗), using the map f that sends x ∈ X to
{s ∈ H0(X,L) | s(x) = 0} ⊂ H0(X,L), which indeed defines a hyperplane or
equivalently a ray in the dual space H0(X,L)∗.

This induces a natural bundle map L → O(1): Given (x, u) ∈ L, there is a section
s ∈ H0(X,L) such that s(x) = u. This section is only uniquely determined modulo
sections that vanishes at x, i.e. modulo the hyperplane f(x) ⊂ H0(X,L). On the
other hand, given (f(x), v) ∈ O(1) we can think of v precisely as an element of
H0(X,L)/f(x). This identification yields a bundle map and shows that f∗O(1) ∼= L.
We can use this to prove that the preimage of a point is finite: Restricted to a
connected component of the preimage of a point, f∗O(1) ∼= L must be trivial, but
at the same time ample. Thus, the connected component must be a single point,
and the full preimage must be a finite set.

Therefore, the image f(X) is a closed submanifold of codimension one in CPn+1,
and f is an open mapping onto its image (since it has maximal rank everywhere).
The hypersurface f(X) intersects a generic complex line k times, where k is the
degree of the hypersurface; another way to say this is that

∫
f(X) c

n
1 (O(1)) = k. Now

let σy = |f−1(y)|. Then the preimage of the k points consists of σy1 + · · · + σyk
points in X. Correspondingly, we have:∫

X
f∗cn1 (O(1)) =

∫
X
cn1 (L) = σy1 + · · ·+ σyk = 2

where the last equality holds by assumption. This shows that k ∈ {1, 2}. But
the image of f is not a hyperplane because otherwise basis {σj} of H0(X,L) did
not consist of linearly independent sections, which is impossible. Thus, k = 2 and
σy1 = σy2 = 1. This means that σy = 1 for arbitrary, generic y ∈ f(X). Because
f is open, σy depends lower semi-continuously on y and therefore must equal 1
everywhere, i.e. f is injective and holomorphic. This means that f : X → CPn+1 is
a biholomorphism onto a complex quadric hypersurface Qn ⊂ CPn+1.
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Corollary 4.17. If X is a compact, connected, complex manifold of dimension n
equipped with a positive line bundle L such that c1(X) = nc1(L), then X is biholo-
morphic to Qn.

Proof. We will prove that dimH0(X,L) = n+ 2 and
∫
X c

n
1 (L) = 2. We will denote

the hyperplane bundle O(1) of CPn+1, restricted to Qn, by G, and set

P (k) := χ(X,Lk) Q(k) := χ(Qn, G
k)

By the Hirzebruch-Riemann-Roch theorem, they are polynomials of order (at most)
n, whose highest order coefficients determines

∫
X c

n
1 . We will show they coincide

by doing so at n + 1 points, namely k = 0,−1, . . . ,−n. We will be brief, since the
reasoning is the same as in the corresponding proof in the previous section.

Since K−1
X is positive, P (0) = Q(0) = 1. For 0 < k < n, we use that Lk and

Gk are positive, hence Hj(X,L−k) = 0 for 0 ≤ j < n. For j = n, the same
conclusion holds because c1(X) − kc1(L) is a positive class for 0 < k < n, hence
Hn(X,L−k) ∼= H0(X,KX ⊗ Lk)∗ = 0. Thus, P (−k) = 0 = Q(−k) for these values
of k.

Finally, we treat the case k = n. Note that c1(KX ⊗Ln) = 0. Since H1(X,OX) = 0
by our previous arguments, the Jacobian variety Pic0(X) consists of a single point,
hence KX ⊗ Ln ∼= OX and we see that P (n) = P (0) = Q(0) = Q(n). This shows
that P and Q are identical. Inspecting the highest order coefficients, we conclude
that ∫

X
cn1 (L) =

∫
Qn

cn1 (G) = 2

For k ≥ 0, we have Hj(X,Lk) = 0 for every j > 0 and similarly for Gk on Qn, hence
dimH0(X,Lk) = dimH0(Qn, G

k). In particular dimH0(X,L) = dimH0(Qn, G).

The global sections of O(1) over CPn+1 all restrict to non-zero global sections over
Qn, since Qn is no hyperplane. The fact that the restricted sections of O(1) con-
stitute all global sections of G is proven as follows. Qn ⊂ CPn+1 defines a divisor,
which corresponds to the line bundle O(2). Multiplication by a generic section de-
fines a sheaf homomorphism O → O(2). Dualizing this map, we obtain an injective
homomorphism O(−2)→ O whose image is precisely the ideal sheaf of holomorphic
functions that vanish along Qn. We obtain the short exact sequence

0 O(−2) OCPn+1 OQn 0

Twisting this sequence by O(1), and using the Kodaira vanishing theorem to find
H1(CPn+1,O(−1)) = 0, we deduce that the restriction map H0(CPn+1,O(1)) →
H0(Qn, G) is surjective. Therefore, dimH0(X,L) = dimH0(CPn+1,O(1)) = n+ 2,
and the assumptions of theorem 4.16 are satisfied.

Once again, the Lefschetz theorem on (1, 1)-classes allows us to reformulate this:
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Corollary 4.18. Any Fano manifold of dimension n with Fano index n is biholomor-
phic to Qn.

Thus, a Fano manifold X with (nearly) maximal Fano index I(X), or equivalently
with Fano coindex dimX + 1 − I(X) less or equal to 1, is characterized by its
dimension. This suggests that Fano manifolds with high coindex display a certain
rigidity. Indeed, classifications are known for coindex two (by Fujita [39]) and three
(due to Mukai [78]), and we will make use of the latter in chapter 6. For an informal
introduction to some of the concepts involved, see [32].

Theorem 4.19 (Brieskorn [22]). If X is a Kähler manifold that is homeomorphic to
Qn (n > 2), then:

(i) If n is odd, X is biholomorphic to Qn.

(ii) If n is even and g2 ∈ H2(X;Z) is the positive generator (i.e. a positive mul-
tiple of the Kähler class), then c1(X) = ±ng2. If the sign is positive, X is
biholomorphic to Qn.

Proof. We proceed by reducing the claim to corollary 4.18, i.e. we will determine the
first Chern class, and show that it is positive with divisibility n, unless n is even,
in which case we cannot rule out the possibility that c1(X) is negative. In doing
so, we mimic the proof of theorem 4.12. The cohomology ring of X is known, by
assumption. Denote the positive generator of H2(X;Z)—positivity being defined
with respect to the Kähler metric—by g2.

Since the odd Betti numbers vanish, while the even Betti numbers are less or equal
to two, all the cohomology is of type (p, p). This means that the first Chern class
classifies holomorphic line bundles. Furthermore, the Hirzebruch-Riemann-Roch
theorem tells us that td[X] = h0,0 = 1. Now, we use its expression in terms of
Pontryagin classes and c1(X) to constrain c1(X). Because of the absence of torsion,
the integral Pontryagin classes are homeomorphism invariants, i.e. we have p(X) =
f∗p(Qn), where f : X → Qn is the given homeomorphism and p(X) the total
Pontryagin class of X. Recall that TCPn+1 ∼= TQn ⊕ O(2) as complex vector
bundles, hence

p(Qn) =
(1 + α2)n+2

1 + 4α2

where α ∈ H2(Qn;Z) is the positive generator. Since f∗α = ±g2, we see that p(X)
is given by the same expression, with α replaced by g2. We also have

Â(p(X)) =

(
g2/2

sinh(g2/2)

)n+2 sinh g2

g2
=

1

2
gn+1

2 e−
n
2
g2 1− e−2g2

(1− e−g2)n+2

Regarding the first Chern class, the fact that c1(Qn) = nα means that Qn—and
therefore X—is spin if and only if n is even, hence c1(X) = (2k + n)g2 for some
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k ∈ Z. The Todd class is then

td(X) = e
1
2

(2k+n)g2Â(p(X)) =
1

2
gn+1

2 ekg2
1− e−2g2

(1− e−g2)n+2

Since gn2 is twice the positive generator in top degree, the Todd genus is given by

td[X] =

∮
γ
ekz

1− e−2z

(1− e−z)n+2
dz

The first term is exactly the integral we carried out in the proof of theorem 4.12.
The second term is also of this form, with k replaced by k − 2. Thus, the result is

td[X] =

(
n+ k + 1

n+ 1

)
−
(
n+ k − 1

n+ 1

)
Equating this expression with 1 leads to the conclusion that, if n is odd, c1(X) = ng2

and, if n is even, then c1(X) = ±ng2. Corollary 4.18 then yields our claims.

Remark 4.20.

(i) In this case, Yau’s Chern number inequality does not rule out negative sign
for n even. However, to the best of our knowledge no examples that satisfy
c1(X) = −ng2 are known, and it is generally believed that they do not exist.

(ii) For a proof that does not rely on the work of Kobayashi and Ochiai, we refer
the reader to Brieskorn’s paper [22] or Morrow’s review [77].

(iii) There is no analogous result for n = 2. It is well-known that the quadric hyper-
surface Q2 ⊂ CP3 is diffeomorphic to CP1 ×CP1, and Hirzebruch constructed
an infinite family of distinct complex structures on this manifold which turn
CP1×CP1 into a projective (hence Kähler) manifold [51]. This phenomenon is
related to the fact that H2(Q2;Z) ∼= Z⊕Z, which actually renders the second
claim of the theorem meaningless for n = 2.

4.4. Improvements on the classical results

In this section, we give an overview of some improvements on the original results
of Hirzebruch, Kodaira and Brieskorn. These results typically take the form of the
weakening of one or more of the assumptions.

We start by discussing improvements on the rigidity theorem for the complex pro-
jective spaces. Perhaps the easiest thing to do is to closely examine the above proof
and note exactly which assumptions are really necessary for it to go through. It
is clear that the proof relies heavily on the fact that X is compact Kähler, so this
assumption cannot easily be removed. However, one does not quite need to assume
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4. Rigidity theorems for Kählerian manifolds

that X is homeomorphic to CPn. More precisely, the proof uses only the following
pieces of information:

(i) The integral cohomology ring of X coincides with that of CPn.

(ii) The Pontryagin classes of X coincide with those of CPn.

(iii) X is spin if and only if n is odd.

(iv) X is simply connected; this is used to rule out the case c1(X) = −(n + 1)g2,
where n is even.

Li [70] observed that the assumption is in fact superfluous: The residue calculation
in the proof of theorem 4.12 works just as well if k is only half-integer, and a short
computation shows that the resulting condition

(
n+k
n

)
= 1 can only be satisfied if

k ∈ Z.

Furthermore, the assumption that X is simply connected is not needed in case n
is odd, and if n is even it suffices to assume that π1(X) is finite. Assume c1(X) =
−(n + 1)g2, where n is even. Then Yau’s Chern number inequality shows that the
universal covering of X is the unit ball, but since π1(X) is finite, the universal
covering of X must be compact, unlike the unit ball. We conclude:

Proposition 4.21 (Li [70]). If X is a compact Kähler manifold of dimension n with
the same integral cohomology ring and Pontryagin classes as CPn, then X is biholo-
morphic to CPn if n is odd, while if n is even then the same conclusion holds under
the assumption that π1(X) is finite.

There have not been any breakthroughs that allow major improvements over the
classical results and are valid for every dimension. However, several authors have
found ways to make progress in low-dimensional cases. The first result of this type
was proven by Yau, who used his resolution of Calabi’s conjecture to prove that
any complex surface homotopy equivalent to CP2 is biholomorphic to it [108]. Note
that one does not have to assume that the surface is Kähler since complex surfaces
with even first Betti number are known to be Kähler (the proof of this claim was
completed in 1983 by Siu [99], but the parts needed by Yau were already known
at the time). In fact, Debarre [33] pointed out that it suffices to assume that the
cohomology groups of the compact, complex surface coincide with those of CP2.

Using similar techniques as Yau, and relying on the classification of Fano three-folds,
Lanteri and Struppa [67] proved a similar result in dimension three: This time, one
needs to assume (as always, when n > 2) that X is Kähler, and that its cohomology
ring is the same as that of CP3. Fujita [40] investigated the cases n = 4, 5 and
showed that it suffices to assume that X is Fano and has the same cohomology ring
as CPn in these cases.

A new approach was pioneered by Libgober and Wood, who extracted previously
unknown information from the Hirzebruch-Riemann-Roch theorem:
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Theorem 4.22 (Libgober-Wood [71]). For a compact, complex manifoldX, the Chern
number c1cn−1[X] is determined by the Hodge numbers.

For a proof, we refer to their paper, cited above. This theorem was rediscovered by
Salamon in [93]. Since the Betti numbers of CPn and Qn are all lower or equal to
two, they determine the Hodge numbers, so we deduce:

Corollary 4.23. A Kähler manifold with the same Betti numbers as CPn (Qn) has
the same Chern number c1cn−1[X] as CPn (Qn).

Equipped with this information, as well as the Todd genus (which, of course, only
depends on Hodge numbers as well), they proved:

Proposition 4.24. If X is a compact Kähler manifold of dimension n ≤ 6 and ho-
motopy equivalent to CPn, then X is biholomorphic to CPn.

Proof for n = 4. Let g2 ∈ H2(X;Z) be the positive generator. The Hodge numbers
fix c4(X) = 5g4

2 and c1c3(X) = 50g4
2, as well as the Todd (or arithmetic) genus

td[X] = 1 Since the Stiefel-Whitney classes are homotopy invariants, c1(X) is an
odd multiple of g2. Because this multiple must divide 50, the only possibilities are
c1(X) = ±g2,±5g2,±25g2. Expressing the Todd class in terms of Chern classes, we
have:

3c2
2(X) + 4c2

1c2(X)− c4
1(X) = 675g2

2

We can interpret this as a quadratic equation for c2(X). Since c2(X) is an integral
multiple of g2

2, the discriminant must in any case be a perfect square multiple of
g4

2. The discriminant equals 4(7c4
1(X) + 2025g4

2) and a case-by-case check shows
that this is only a perfect square multiple of g4

2 if c1(X) = ±5g2. The possibility
c1(X) = −5g2 is ruled out by Yau’s Chern number inequality, proving c1(X) = 5g2.
The uniqueness theorem of Kobayashi and Ochiai now completes the proof.

Remark 4.25. By close inspection of the proof, Debarre [33] found that it suffices
to assume that the Kähler manifold X has the same cohomology ring of CPn in the
cases n = 3, 5 while in dimensions 4 and 6 this leaves the possibility that X is a ball
quotient.

The cases n = 5, 6 are analogous, though computationally more complicated. Thus,
the strategy is to reduce the possible values of c1(X) to a short list by means
of the known Chern numbers. These are then eliminated one by one, using fur-
ther information such as the Todd genus and other equations derived from the
Hirzebruch-Riemann-Roch theorem, whether X is spin or not, and Yau’s Chern
number inequality. This method, however, is inherently low-dimensional because
the constraints derived from the Hirzebruch-Riemann-Roch theorem become less
powerful as the number of different Chern numbers goes up—which rapidly happens
as the dimension increases.
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One advantage of the approach of Libgober and Wood is that it is not specific to CPn,
and may be applied to any Kähler manifold with sufficiently simple cohomology.
For instance, they showed in the same paper that a Kähler manifold homotopy
equivalent to the quadric Q3 is biholomorphic to it. However, as we already saw in
the previous section, the methods based on the Hirzebruch-Riemann-Roch theorem
do not quite suffice to prove the same statement for even-dimensional quadrics.
Accordingly, Libgober and Wood were only able to show that a Kähler manifold
homotopy equivalent to Q4 is either biholomorphic to Q4 or has c1(X) = −4g2,
where g2 ∈ H2(X;Z) is the positive generator. As mentioned before, the crucial
point is that Yau’s Chern number inequality does not rule out this possibility.

Finally, we briefly comment on work in a quite different direction: Attempts to
relax the Kähler assumption, which plays a crucial role in all the works we have
discussed so far. The existing literature is focused on relaxing the Kähler assumption
to the weaker assumption that Xn is Moishezon, which means that it admits n
algebraically independent meromorphic functions. Moishezon manifolds still admit
a Hodge decomposition, and therefore one can mimic some parts of the proof in the
Kähler case. Under this assumption, Peternell was able to prove that in the case n =
3, X being homeomorphic to CP3 (Q3) suffices to prove it must be biholomorphic to
CP3 (Q3) [86]. His proof relies on breakthroughs in the structure theory of complex
three-folds (the so-called minimal model program), due Mori. It appears that no
analogous results have been achieved in higher dimensions, though some headway
was made under additional technical assumptions (see e.g. [80, 87]).
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5. G2 flag manifolds

In this chapter we introduce the manifolds that will be our main objects of study.
They are examples of generalized flag manifolds. Though we provide some general
remarks on this class of manifolds in the first section, we quickly specialize to the
case of G2 flag manifolds, which will be our main focus. To define and study these
spaces we first collect some facts about the exceptional Lie group G2, which we
define as the automorphism group of the octonions. These are then used to provide
a geometric description of the generalized flag manifolds associated to G2.

5.1. Generalized flag manifolds

5.1.1. Motivation and definition

Recall that a (partial) flag is a strictly increasing sequence of subspaces of a finite-
dimensional vector space V :

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk−1 ⊂ Vk = V

At each step, the inclusion is proper, hence dimVj > dimVj−1 for every j. Setting
dj = dimVj , the dimensions are encoded by the signature (d1, . . . , dk−1). A flag is
called complete if dj = j; a partial flag can be obtained by omitting certain subspaces
from a complete flag. A flag manifold is the space parametrizing all flags of a given
signature. Typically, one considers the case V = Rn or Cn.

Example 5.1.

(i) Projective spaces and more generally Grassmannians parametrize flags that
consist of a single subspace.

(ii) Let Tn denote the n-torus U(1) × · · · × U(1). The complete flag manifold
U(n)/Tn = SU(n)/S(U(1)× · · · × U(1)) is the space of complete flags in Cn:

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Cn dimVj = j

(iii) One can impose additional conditions on the subspaces to obtain variations on
the classical flag manifolds. A simple example is the oriented Grassmannian
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G̃r2(Rn) that parametrizes oriented real 2-planes in Rn. SO(n) acts transitively
on it, with isotropy subgroup SO(2)× SO(n− 2). Hence we find that

G̃r2(Rn) =
SO(n)

SO(2)× SO(n− 2)

(iv) Consider partial flags of the form 0 = V0 ⊂ V1 ⊂ V2 ⊂ Cn, where V1 is a
complex line and V2 a 2-plane containing V1. The corresponding flag manifolds
U(n)/U(1)×U(1)×U(n− 2) were considered by Kotschick and Terzić in [65]
(in many ways, our study will mirror their discussion). Note that the stabilizer
of a point is itself not a torus, but centralizes the 3-torus given by diagonal
matrices diag(λ1, λ2, λ3, . . . , λ3), where λj ∈ U(1).

(v) More generally, a flag manifold that parametrizes partial flags in Cn takes the
form

U(n)

U(r1)× · · · × U(rk)
=

SU(n)

S(U(r1)× · · · × U(rk))
2 ≤ k ≤ n

where {r1, . . . , rk} is an ordered partition of n. Permuting the rj yields a
diffeomorphic manifold. However, the result may not be identical as an (al-
most) complex manifold: This observation is the starting point of [65], which
generalizes the “minimal example” worked out by Hirzebruch in [52].

The fact that any manifold of (partial) flags in Cn is homogeneous under SU(n)
derives from the fact that SU(n) acts transitively on the set of complex, orthonormal
bases of Cn. Our last example shows that the isotropy subgroup S(U(r1) × · · · ×
U(rk)) is always the centralizer of a torus (of dimension k − 1). This motivates the
following definition:

Definition 5.2. A (generalized) flag manifold is a homogeneous space of the form
G/C(T ), where G is a compact, connected and semisimple Lie group and C(T ) is
the centralizer of a torus T ⊂ G.

In case T is a maximal torus, T = C(T ) and G/T is called a complete flag manifold.
There is an alternative definition with a more representation-theoretic flavor to it:

Definition 5.3. A generalized flag manifold is an orbit of the adjoint action of a
compact, connected and semisimple Lie group G on its Lie algebra g.

Equivalence is established as follows:

Proposition 5.4. Let G be a compact Lie group and W ∈ g. Then we have:

(i) The closure TW of the Abelian subgroup exp(RW ) in G is a torus.
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(ii) The isotropy subgroup KW = {g ∈ G | Ad(g)W = W} is the centralizer of
TW , i.e. KW = C(TW ).

Proof.

(i) exp(RW ) is compact and Abelian, i.e. a torus.

(ii) Suppose g ∈ KW . Since the exponential map is local diffeomorphism at 0 ∈ g,
this is equivalent to g exp(tW )g−1 = exp(tW ) for sufficiently small t. But such
elements exp(tW ) generate exp(RW ), hence KW ⊂ C(exp(RW )) = C(TW )
since the centralizers of exp(RW ) and TW coincide. Conversely, if g ∈ C(TW ),
it commutes with exp(tW ) for small t and hence g ∈ KW .

The second, algebraic point of view can be used to prove many general results about
generalized flag manifolds. For instance, there is a classification in terms of so-called
painted Dynkin diagrams (see for instance [6, Ch. 7]). We will not pursue this here,
however, because our main interest is in understanding certain concrete examples of
flag manifolds rather than the general theory.

5.1.2. Invariant geometric structures on generalized flag manifolds

As any homogeneous space, a generalized flag manifold G/C(T ) admits certain priv-
ileged geometric structures, namely the G-invariant ones. We will now briefly discuss
some important general results regarding such structures, though we will not give
proofs. As mentioned above, the general theory of flag manifolds was developed
from a rather Lie-theoretic angle; we are primarily interested in giving a geometric
interpretation of the invariant structures in specific examples, and will therefore not
give a detailed exposition of the most general results.

Early papers by Borel, Matsushima and Koszul [20, 64, 74] (also note related work
by Wang [103], who gave early examples of homogeneous complex manifold which
are not Kähler) established the existence of an invariant complex structure on gener-
alized flag manifolds, which even admits a compatible Kähler-Einstein metric. More
precisely, the main result is the following:

Theorem 5.5. A generalized flag manifold G/C(T ) admits a canonical G-invariant
complex structure and a unique (up to homothety) G-invariant Kähler-Einstein met-
ric. This structure is compatible with the canonical complex structure and the metric
has positive scalar curvature.

Equipped with this complex structure, the generalized flag manifold is projective
and even rational, as proven by Goto [41]. In fact, Borel’s work [20] implies the
following: Consider a homogeneous Kähler manifold, i.e. a manifold equipped with
an invariant Kähler structure. If it is compact and simply connected, then it is
isomorphic, as a homogeneous complex manifold, to a generalized flag manifold.
This was extended by Matsushima:

53



5. G2 flag manifolds

Theorem 5.6 (Matsushima [74]). Every compact, homogeneous Kähler manifold is
the product of a complex torus (equipped with a Kähler metric) and a generalized
flag manifold.

For a description of the (lengthy) proofs of these facts, see [15, Ch. 8].

Regarding invariant almost complex structures, the general methods of Borel and
Hirzebruch (cf. chapter 2) apply. Thus, one can enumerate all invariant almost com-
plex structures based on Lie-algebraic data. In the work of Borel and Hirzebruch,
the flag manifold F2 = SU(4)/S(U(2) × U(1) × U(1)) was mentioned as an exam-
ple of an interesting phenomenon: It carries two invariant almost complex struc-
tures which may be distinguished by their Chern numbers [18, §13.9 and §24.11].
Kotschick and Terzić generalized their example by showing that the same holds true
for Fn = SU(n + 2)/S(U(n) × U(1) × U(1)), n ≥ 2. Taking inspiration from these
examples, one might hope to find invariant almost complex structures that may be
distinguished by their Chern numbers on other (generalized) flag manifolds. Indeed,
we will see further examples of this interesting phenomenon in the next chapter.

Concerning general invariant Einstein metrics, recall from chapter 2 that a vari-
ational approach due to Wang and Ziller makes it possible to study G-invariant
Einstein metrics through an explicit, algebraic equation for the scalar curvature.
The equation involves Lie-algebraic data and in particular the positive constants
x1, . . . , xs that parametrize invariant metrics on homogeneous spaces whose isotropy
representation uniquely splits into s irreducible summands (as in equation (2.1)).

Using the Lie-algebraic description, one can prove that for generalized flag manifolds,
this decomposition is indeed unique (cf. [6, Thm. 7.3]), and therefore this approach
can be used. Indeed, in a recent series of papers Arvanitoyeorgos and Chrysikos
have begun systematically classifying invariant Einstein metrics on generalized flag
manifold with a low number of isotropy summands (s ≤ 5) using this method. For
an overview of their results, see [7, 9]. Other authors, such as Kimura [58], Kerr and
Dickinson [34, 57], have also contributed.

5.2. G2 and the octonions

In this section, we carry out the preparatory work needed to introduce the flag mani-
folds associated to G2. We start at the very beginning, namely with the octonions.
For our purposes, it is most convenient to define the octonions by means of the
Cayley-Dickinson construction, as described in detail by Baez [10], whose discussion
we follow in large parts of this section. Starting from R, this construction produces
the other normed division algebras, i.e. the complex numbers, the quaternions H
and the octonions O, in that order.
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The Cayley-Dickinson construction creates a new algebra A′ with conjugation out of
an old one A (also equipped with a conjugation map a 7→ ā) by taking its elements
to be pairs (a, b) of elements a, b ∈ A. Addition is defined component-wise and the
multiplication rule is (a, b)(c, d) = (ac − db̄, ād + cb), where juxtaposition indicates
multiplication in A. Conjugation is given by (a, b)∗ = (ā,−b). It is easily checked
that this process, applied to R (with a trivial conjugation map, i.e. ā = a), yields C,
then H, then O. At each stage, some nice property of the algebra is lost: Octonion
multiplication turns out to be non-commutative and non-associative.

One can therefore view O as H⊕ `H (the pair (a, b) corresponds to a+ `b), equipped
with certain multiplication rules for `. As a real vector space, O is spanned by
{1, i, j, k, `, `i, `j, `k} = {1, e1, . . . , e7}, where {e1, . . . , e7} are imaginary units, which
square to −1, switch sign under complex conjugation and anti-commute: if i 6= j
then eiej = −ejei. They span the imaginary part ImO of the octonions. For a clear
exposition on how to efficiently manipulate octonions, see [25, Sec. 1].

If we write a general octonion as x = x01 + x1e1 + · · ·+ x7e7 (with real coefficients
xj), we have a scalar product

(x, y) =
7∑
r=0

xryr

which corresponds to the standard inner product on R8. Octonion multiplication (in-
dicated by a dot, for now, to avoid confusion with multiplication of real coefficients)
decomposes into three parts:

x · y =

(
x0y0 −

7∑
p=1

xpyp

)
1 +

7∑
p=1

(x0yp + y0xp)ep +
∑
p,q≥1
p 6=q

xpyqep · eq

=:

(
x0y0 −

7∑
p=1

xpyp

)
1 +

7∑
p=1

(x0yp + y0xp)ep + x× y

where the last expression defines the cross product of octonions, which is equivalently
expressed as x×y := 1

2(x·y−y ·x). Observe that, if x and y are imaginary octonions,
the simple relation x · y+ (x, y) = x× y holds. The cross product doesn’t quite turn
ImO into a Lie algebra, as the Jacobi identity fails. Nevertheless, the analogy with
Lie algebras can be helpful to build some intuition for the algebra (ImO,×).

Now we are ready to introduce the exceptional Lie group G2:

Definition 5.7. The exceptional Lie group G2 is defined to be the group of R-algebra
automorphisms of the octonions.

Remark 5.8. Historically speaking, this was not the original definition; the fact that
G2 can be regarded as the automorphism group of the octonions was discovered by
É. Cartan [27, p. 298].
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The non-trivial algebraic information about the octonions is essentially contained in
the cross product, hence the following is not surprising:

Proposition 5.9. The group G2 is precisely the group of automorphisms of the al-
gebra (ImO,×).

Proof. Clearly, any automorphism of O must preserve the cross product, since it is
defined in terms of octonion multiplication. Conversely, assume g is an automor-
phism of the algebra (ImO,×). The identity x× y = (x, y) + x · y, which holds for
x, y ∈ ImO, shows that g will preserve multiplication of imaginary octonions if we
can express (x, y) in terms of the cross product.

Consider the “would-be Killing form” B on ImO, defined by B(a, b) = tr(a×(b×−)).
It is invariant under automorphisms of the algebra. Now, it is tedious but easy to
check explicitly that (a, b) = −1

6B(a, b), hence the inner product is invariant. We
deduce that g preserves multiplication of imaginary octonions. Since any automor-
phism of the octonions must fix 1 ∈ O, g uniquely extends to an automorphism of
O, proving our claim.

On ImO, one can define a three-form by φ(x, y, z) = (x×y, z). In terms of the basis
{ωr} of (ImO)∗, dual to {er}, it is given by

φ = ω123 − ω145 − ω167 − ω246 + ω257 − ω347 − ω356

where we use the notational shorthand ωr1,...,rm for ωr1 ∧ · · · ∧ ωrm . Observe that
φ(ei, ej , ek) = f ijk, the structure constant defined by ei×ej =

∑
k f

ijkek. Therefore,
φ concisely encodes the multiplicative structure of the cross product, and it is obvious
that G2 can be equivalently defined as

G2 = {g ∈ GL(ImO) | g∗φ = φ}

Indeed, this is the definition used in [26] (note that Bryant uses a different convention
for e5, e6 and e7). There, Bryant gives a slick proof of a number of fundamental
facts about G2:

Theorem 5.10. The Lie group G2 is a compact subgroup of SO(ImO) = SO(7). It
is connected, simple and simply connected, and has dimension 14.

5.3. Homogeneous spaces and flag manifolds of G2

Now that we have set the stage, we will use the octonions to study certain G2-
homogeneous spaces. These examples are well-known, and appear scattered through-
out the literature (e.g. [25, 57, 101]). Perhaps the most famous example is the
six-sphere:
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Proposition 5.11. There is a transitive action of G2 on S6, viewed as the unit
imaginary octonions, with isotropy group isomorphic to SU(3), i.e. S6 ∼= G2/SU(3).

Proof. First, we need to see that G2 acts transitively on S6. In fact, we can say
a lot more: Consider two orthogonal unit imaginary octonions x, y. Then x × y is
orthogonal to both and the subalgebra spanned by {1, x, y, x × y} is isomorphic to
H. The span of {x, y, x× y} is called an associative subspace of ImO.

Recalling O = H⊕ `H we see that, if we find yet another unit imaginary octonion z
which is orthogonal to this associative subspace, then x, y and z generate O. There
is a unique octonion automorphism that carries x, y, z to i, j, `, hence we can identify
G2 with the space of so-called basic triples {x, y, z}. This induces a transitive action
on S6.

Now, we will determine the isotropy subgroup. Consider ` ∈ S6 and assume g
lies in the stabilizer (G2)` of `. Since G2 preserves the inner product, it preserves
orthogonal complements; denote the orthogonal complement of ` (inside ImO) by
V . We may turn V into a complex (three-dimensional) vector space by declaring
the complex structure to be left-multiplication by `. As a complex vector space, it
is then spanned by {i, j, k}. The identification with C3, equipped with its standard
Hermitian scalar product 〈z, w〉C3 = (z, w)R6 +i(z, iw)R6 , induces the scalar product

〈v, w〉V = (v, w) + `(v, `w) v, w ∈ V

Since g ∈ (G2)` preserves (−,−) and satisfies `g(w) = g(`w), it also preserves
〈−,−〉V . This means that (G2)` ⊂ U(V ) ∼= U(3). To prove that g ∈ SU(V ), we
explicitly compute its determinant. As a unitary transformation, it has an orthonor-
mal basis of eigenvectors, which we may take to be of the form u, v, u × v = uv.
Since its eigenvalues have unit norm, we can write the eigenvalues of u and v as eθ`

and eϕ` (θ, ϕ ∈ [0, 2π)).

Now, we want to show that the eigenvalue of uv is e−(θ+ϕ)`. Recall the multiplication
rule for octonions, viewed as pairs of quaternions u = (u1, u2), v = (v1, v2). In
our setup, u and v are both imaginary and orthogonal to `, which means that
u1, u2, v1, v2 ∈ ImH. The multiplication rule then simplifies to

(u1, u2)(v1, v2) = (u1v1 + v2u2,−u1v2 + v1u2) ur, vr ∈ ImH

In particular, we have `u = −u` = (u2,−u1) and urvr = −vrur. These expressions
suffice to prove the following simple identities:

(`u)(`v) = vu u(`v) = −`(uv) = (`u)v u, v ∈ V
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Now we can easily compute the eigenvalue of uv, using g(uv) = g(u)g(v) = eθ`ueϕ`v:

g(uv) = cos θ cosϕ(uv) + sin θ sinϕ(`u)(`v) + cos θ sinϕu(`v) + sin θ cosϕ(`u)v

= (cos θ cosϕ− sin θ sinϕ)(uv)− (cos θ sinϕ+ sin θ cosϕ)`(uv)

= e−(θ+ϕ)`uv

This proves that (G2)` ⊂ SU(V ) ∼= SU(3). Of course dim(G2)` ≤ dimSU(3) = 8,
but on the other hand (G2)` can be defined by six equations expressing that an
(orthonormal) basis of V stays orthogonal to R`, hence dim(G2)` ≥ 14−6 = 8. This
shows that (G2)` ∼= SU(3), since SU(3) is connected.

The octonions endow S6 with its “standard” almost complex structure, which is
already hinted at by the previous proof: Any point x ∈ S6 ⊂ ImO defines, by
left-multiplication, a linear map Lx : O → O. It preserves the plane spanned by
{1, x} and its orthogonal complement. But the latter is naturally identified with
the tangent space TxS

6. Since x2 = −1 and for x ⊥ y, x(xy) = (x2)y = −y, this
endows S6 with an almost complex structure J by setting Jx = Lx. Observe that
this almost complex structure is G2-invariant.

Soon after its discovery, it was proven by several people (e.g. [37]) that this almost
complex structure is not integrable. The question whether S6 admits an integrable
complex structure at all remains open to this day (despite numerous claimed proofs
of both existence and non-existence).

Proposition 5.12. The space of associative subspaces of ImO, or equivalently of
subalgebras of O isomorphic to H, is diffeomorphic to G2/SO(4).

Proof. An associative subspace V is determined by an orthonormal pair {x, y} such
that {x, y, x × y} spans V . The identification of G2 with the space of basic triples
shows that there are elements of G2 that send x 7→ i, y 7→ j, inducing a transitive
action.

Harvey and Lawson [45, Ch. IV, Thm. 1.8] gave an explicit description of the sta-
bilizer of the standard copy of H ⊂ O, which we will now reproduce4. Given a
pair of unit quaternions (q1, q2), let it act on (a, b) ∈ O = H ⊕ `H as follows:
(a, b) 7→ (q1aq̄1, q1bq̄2). A brief computation shows that this defines an embedding
of SO(4) = Sp(1)·Sp(1) into G2 = AutO, and it is clear that this subgroup preserves
the associative subspace ξ spanned by {i, j, k}.

Conversely, if g lies in the isotropy subgroup (G2)ξ, it must be of the form g = (g1, g2)
where g1 ∈ SO(3) = AutH and g2 ∈ O(4). The action of the embedded SO(4)-
subgroup is transitive on pairs (F, α), where F is an oriented orthonormal basis of
ξ and α is a unit vector in {0} × `H ⊂ O. Thus, after applying an element of the

4Note that Harvey and Lawson use different conventions for e.g. octonionic multiplication, hence
their formulas differ from ours.
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SO(4)-subgroup, we may take g = (id, g2), where g2 fixes 1 ∈ O. The fact that g is
an automorphism implies

g((0, a)) = (0, g2(a)) = g((ā, 0))g((0, 1)) = (ā, 0)(0, 1) = (0, a)

We conclude that g2 = id and thus, g actually lies inside the SO(4)-subgroup.

Proposition 5.13. The Lie group G2 acts transitively on the oriented Grassmannian
G̃r2(ImO) = G̃r2(R7), with stabilizer isomorphic to U(2).

Proof. Recall the characterization of an element g ∈ G2 as the unique automorphism
that send the triple {i, j, `} to a triple {x, y, z} of orthonormal imaginary octonions
such that z is orthogonal to x×y (as well as to x and y). Forgetting about the third
element of each triple, we obtain a transitive action on oriented 2-planes.

Now consider the plane defined by the oriented basis {i, j}. If g preserves the plane
(including orientation) then g(i) = i cos θ − j sin θ and g(j) = i sin θ + j cos θ for
some θ ∈ [0, 2π). Because g ∈ G2, we have g(i× j) = g(k) = g(i)× g(j) = k, hence
g fixes k, i.e. g ∈ (G2)k ∼= SU(3).

We endow the complement V of k inside ImO with a complex structure J as in the
proof of proposition 5.11. Since g preserves the complex line spanned by i (note
that Ji = ki = j) and the Hermitian scalar product of V , it also preserves the
complex plane orthogonal to it, i.e. g is an element of S(U(1) × U(2)) ⊂ SU(3).
But this subgroup is isomorphic to U(2): The isomorphism is given by ϕ : U(2) →
S(U(1) × U(2)) which maps A 7→ ((detA)−1, A). Thus, the stabilizer is contained
in a subgroup isomorphic to U(2). A dimension count shows that it has dimension

at least four: We conclude that G̃r2(R7) ∼= G2/U(2).

Since we will shortly introduce another, distinct subgroup isomorphic to U(2), we

will from now on denote the above subgroup by U(2)−, i.e. we write G̃r2(R7) ∼=
G2/U(2)−.

Remark 5.14. The subgroups SU(3), SO(4) and U(2)− are closely related. Indeed,
the stabilizer of span{i, j}must also fix 1 and k, hence U(2)− ⊂ SU(3)∩SO(4) ⊂ G2.
Conversely, any element of SU(3) ∩ SO(4) must fix 1 and k, as well as preserving
span{1, i, j, k} and therefore U(2)− = SU(3) ∩ SO(4). As a corollary, there is a
fibration SO(4)/U(2)− = CP1 ↪→ G2/U(2)− → G2/SO(4).

There is an elegant, complex-geometric description of G̃r2(ImO):

Proposition 5.15. The Grassmannian G̃r2(Rn) is (diffeomorphic to) a quadric hy-
persurface in CPn−1. In particular, it is a smooth, projective variety, which we will
denote by Q.
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5. G2 flag manifolds

Proof. Consider a positively oriented orthonormal basis {e1, e2} of a 2-plane in Rn.
Now complexify Rn to obtain Cn = Rn ⊗R C and C-linearly extend the standard
scalar product (−,−) on Rn to Cn. Then the vector z = e1 + ie2 satisfies (z, z) =
e1 · e1 − e2 · e2 = 0 and therefore defines a point in the zero quadric:

Q =

{
(z1 : · · · : zn) ∈ CPn−1

∣∣∣∣ n∑
j=1

z2
j = 0

}
⊂ CPn−1

This is independent of our choice of oriented orthonormal basis, since any other such
basis {e′1, e′2} is related to {e1, e2} by a rotation A ∈ SO(2) = U(1) and hence maps
to z′ = λz for λ ∈ U(1). This means that it defines the same point in CPn−1. The
map to Q defined in this fashion is easily seen to be bijective and smooth, as is its
inverse.

Remark 5.16. Recall that G̃r2(Rn) = SO(n)/(SO(2) × SO(n − 2)). Therefore one
may also prove the above proposition by explicitly describing an action of SO(n) on
Q with isotropy subgroup SO(2)× SO(n− 2), as done by Chern [28, p. 188].

In the proof of proposition 5.13 we saw that g ∈ G2 that preserves an oriented 2-
plane P with oriented, orthonormal basis {x, y} must fix x × y = xy. We also saw
that this assignment does not depend on the choice of oriented, orthonormal basis.
This can be used to prove the following:

Proposition 5.17. There is a diffeomorphism G2/U(2)− ∼= P(TS6), where P(E)
denotes the projectivization of a complex vector bundle E, and TS6 is regarded as a
complex vector bundle, obtained by equipping S6 with its standard almost complex
structure.

Proof. Consider an oriented plane P ∈ G2/U(2)− = G̃r2(R7) with oriented, or-
thonormal basis {x, y}. The above remark shows that there is a well-defined map
π : G2/U(2)− → S6 which sends P 7→ x× y = xy. Recall that the standard almost
complex structure J on S6 at the point u ∈ S6 is given by Lu, and that TuS

6 is
identified with the orthogonal complement Vu of Ru inside ImO.

We use these remarks to show that we can identify P with a complex line in TxyS
6.

Since x × y is orthonormal to both x and y, P can be considered as an oriented
2-plane in TxyS

6. Furthermore

(Lxyx, y) =
(
(xy)x, y

)
= (xy, yx̄) = −(xy, yx) = 1

and we can deduce that Lxyx = y. Similarly, one shows Lxyy = −x. Thus, P is a
complex line in TxyS

6 and we can can identify elements of G2/U(2)− with complex
lines tangent to S6.

Conversely we will prove that, given a complex line in TuS
6, every oriented, or-

thonormal (real) basis {α, β} satisfies αβ = u. In fact, the action of G2 allows us to
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verify this over just a single point, say k ∈ S6. To see this, assume we have proven
it for TkS

6 and consider a complex line L ⊂ TuS6, where u = g(k) for some g ∈ G2.
As a real 2-plane, L is spanned by an oriented, orthonormal basis {α, β}, which
satisfies uα = β and uβ = −α. We will prove that αβ = u.

Set x = g−1(α) and y = g−1(β). Then g(k)g(x) = g(kx) = g(y) and therefore kx =
y. Similarly, one shows that ky = −x, hence {g−1(α), g−1(β)} span a complex line in
TkS

6. Since we assumed that we showed that any oriented, orthonormal (real) basis
{x, y} of a complex line in TkS

6 satisfies xy = k, this shows that g−1(α)g−1(β) = k.
Therefore αβ = g(k) = u, as we wanted to show.

Now, we prove the claim for TkS
6: Any oriented, orthonormal (real) basis {x, y} of

a complex line in TkS
6 satisfies xy = k. Once we have established this, we see that

the fiber of π : G2/U(2)− → S6 over u ∈ S6 is precisely P(TuS
6). This exhibits

G2/U(2)− as P(TS6) with π as the base point projection.

TkS
6 is spanned, as a complex vector space, by {i, `, i`} and thus any complex line L

corresponds to a complex combination x = α1i+α2`+α3(i`),
∑

j |αj |2 = 1, unique
up to U(1)-transformation. In order to exploit R-linearity of the octonion product,
we split the coefficients into real and imaginary parts: αj = aj + kbj and write x in
terms of real multiples of the unit imaginary octonions that span (Rk)⊥ ⊂ ImO. A
real, oriented, orthonormal basis for L is given by {x, kx} and it is easily checked
that if one takes x to be any of the standard unit imaginary octonions spanning
(Rk)⊥, then x(kx) = k. The linearity of the octonion product then implies that this
holds for any x.

Remark 5.18.

(i) The diffeomorphism between G2/U(2)−, endowed with its Kähler structure
induced by the identification with the quadric, and P(TS6) is not an isomor-
phism of almost complex manifolds. Similarly, the isomorphism TS6 ∼= T ∗S6

as real vector bundles induces a diffeomorphism P(TS6) ∼= P(T ∗S6) which does
not identify them as almost complex manifolds. We will prove these claims by
computing the corresponding Chern classes and numbers in the next chapter.

(ii) The existence of this diffeomorphism was already pointed out in 1982 by
Bryant [25, p. 200], who leaves the verification as an exercise to the reader.

If the six-sphere is complex, then the projectivization of the (co)tangent bundle
endowed with the corresponding complex structure is complex as well. The total
space is diffeomorphic to the projectivization of the tangent bundle with the standard
complex structure.

To see this, it suffices to show that any almost complex structure is homotopic to
the standard one as a section of the bundle of almost complex structures (which we
can take compatible with the given orientation, without loss of generality), i.e. the
bundle with fiber GL+(6,R)/GL(3,C) associated to the GL(6,R)-frame bundle of
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TS6. Up to homotopy, we may additionally take our almost complex structure to
be a section of the bundle of almost complex structures compatible with the round
metric, which has fiber SO(6)/U(3) = SU(4)/S(U(3)× U(1)) ∼= CP3.

Now, obstruction theory dictates that the obstruction to finding a homotopy over the
k-skeleton of S6 is a class inHk(S6, πk(CP3)) [31, Ch. 7]. Therefore, the only possible
obstruction to finding a homotopy arises in H6(S6, π6(CP3)). This group vanishes,
since π6(CP3) = 0; this follows from CP3 = S7/S1 and π6(S7) = π5(S1) = 1. We
have proven:

Proposition 5.19. If S6 admits an (integrable) complex structure, then the quadric
Q5 admits at least two non-standard complex structures.

This is reminiscent of the relation between complex structures on S6 and non-
standard complex structures on CP3, obtained after blowing up a point (see, for
instance, [53]). In both cases, the exotic structures cannot be Kähler because of the
rigidity results of chapter 4.

Now recall from chapter 3 that G2/SO(4) is a Wolf space. Its twistor space, which
we will denote by Z, is also homogeneous under G2; the stabilizer of a point is
U(1)·Sp(1) ∼= U(2). We will write Z = G2/U(2)+. Our identificationG2/U(2)− = Q
casts G2/U(2)− as the space of isotropic complex lines with respect to the C-linearly
extended inner product (−,−) on ImO⊗R C. The twistor space Z similarly has an
octonionic description, as explained by Svensson and Wood [101]; we only briefly
sketch their arguments, omitting the details, as they will not be important to us in
what follows.

A point in G2/SO(4) corresponds to an associative subspace ξ ⊂ ImO, which is
endowed with a canonical orientation such that for an orthonormal pair {x, y}, the
basis {x, y, x × y} is positively oriented. Svensson and Wood identify the fiber
Zx with the space of orthogonal complex structures on ξ⊥, compatible with the
orientation induced by requiring that the Hodge dual associative subspace is canon-
ically oriented—they call these positive; the (unique) corresponding (1, 0)-subspace
of ξ⊥ ⊗R C is also called positive.

They establish that such positive (complex) 2-planes can be characterized by the
property that the C-linearly extended inner product and cross product both vanish
identically on them, and call such planes complex coassociative. Thus, the twistor
space G2/U(2)+ is identified with the space of complex coassociative or (equiva-
lently) positive, isotropic 2-planes in ImO⊗R C.

This explanation justifies the notation U(2)+, and hints at another interpretation
of G2/U(2)−. Indeed, in analogy with the above, Svensson and Wood interpret
G2/U(2)− as the space of negative, isotropic 2-planes of ImO ⊗R C, meaning that
they are the (1, 0)-spaces of negative complex structures on ξ⊥. They also give an
explicit description of the fibration of G2/U(2)−, viewed as the quadric of isotropic
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lines, over G2/SO(4). To an isotropic line ` ⊂ ImO ⊗R C, they assign the three-
dimensional subspace `⊕ ¯̀⊕(`× ¯̀). After establishing that such a subspace is always
of the form ξ⊗RC for an associative subspace ξ, one obtains the structure of a fiber
bundle.

Finally, they describe the complete G2 flag manifold G2/T
2 (maximal tori of G2 are

two-dimensional). Let ` be an isotropic line and define the annihilator `a to be the
subspace `a = {x ∈ ImO ⊗R C | x × ` = 0}; it is isotropic and three-dimensional.
Then G2/T

2 is the space of pairs (`,D) where D is a 2-plane containing `, and both
are contained in `a.

We write D = ` ⊕ q, where q is the orthogonal complement with respect to the
Hermitian scalar product inherited from the standard identification with C7. Then
a fibration of G2/T

2 over G2/SO(4) is obtained by sending (`,D) 7→ ξ, where
ξ⊗RC = q⊕ q̄⊕ (q× q̄). This can be regarded as the composition of a fibration over
the quadric G2/U(2)−, given by (`,D) 7→ q, with the map G2/U(2)− → G2/SO(4)
mentioned before. Analogously, the map factors through a fibration over G2/U(2)+

which sends (`,D) to the (unique) isotropic, complex-coassociative 2-plane P ⊂
ξ⊥ ⊗R C containing q.

We have now discussed several G2 homogeneous spaces; the relations between the
corresponding isotropy subgroups are most easily summarized in a diagram:

U(2)− SU(3) G2

T 2 SO(4) G2

U(2)+

⊂
⊂

⊂
⊂
⊂

⊂
⊂

We have also described a corresponding tower of fibrations between the homogeneous
spaces:

G2/T
2

Q = G2/U(2)− Z = G2/U(2)+

S6 = G2/SU(3) G2/SO(4)

πQp πZ

Figure 1

The map p : Q→ S6, which exhibits G2/U(2)− as P(TS6), of course has fiber CP2.
All the other fibrations have fibers diffeomorphic to CP1.
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In fact, this diagram contains all G2 flag manifolds. Of course, G2/T
2 is the complete

G2 flag manifold. The subgroups U(2)± are the centralizers of the two U(1)-factors
of a maximal torus and therefore Q and Z are also G2 flag manifolds. We will confirm
this in the next chapter, where we will describe explicit G2-invariant Kähler-Einstein
metrics on them (cf. theorem 5.6).

The fibrations of G2/T
2 over Q and Z are manifestations of a general fact:

Proposition 5.20 ([15, 8.106]). A complete flag manifold of a compact, connected
and semisimple Lie group G admits a holomorphic fibration over all generalized flag
manifolds of G, with fiber a complete flag manifold.

Note that this also implies the uniqueness (up to isomorphism of homogeneous com-
plex manifolds) of the complete flag manifold of G. More generally, if the isotropy
subgroups corresponding to two flag manifolds centralize conjugate tori, then they
are isomorphic. Thus, there are only three G2 flag manifolds and we have found all of
them. Alternatively, one may invoke the classification of generalized flag manifolds
in terms of painted Dynkin diagrams to see this.

From now on, our focus is on the (partial) flag manifolds Q and Z. Their geometric
description, which is our main aim in the remaining chapter, involves all topics
introduced thus far.
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flag manifolds

In the previous chapter, we sketched some general results regarding invariant geo-
metric structures on arbitrary flag manifolds. One particularly important example
is the unique invariant Kähler-Einstein structure which every generalized flag mani-
fold carries. Furthermore, many examples are known of generalized flag manifolds
which carry multiple invariant almost complex structures that can be distinguished
using the associated Chern numbers. In this chapter, we discuss these geometric
structures in the context of two specific examples: The G2 flag manifolds Q and
Z.

Our point of view is in some sense complementary to the Lie-theoretic approach to
generalized flag manifolds, which has historically been most popular. Instead of rely-
ing on representation theory, we study the fibrations introduced in chapter 5 and use
them to develop a geometric picture. Though we do not rely on Lie-algebraic data,
our geometric approach allows us to recover all the invariant geometric structures
mentioned above. In particular, we give a concrete interpretation of the invariant
almost complex structures, including the integrable structure and the associated
invariant Kähler-Einstein metric. Our main applications are computations of the
Chern numbers of the invariant almost complex structures, independent of the for-
malism introduced by Borel and Hirzebruch, as well as a rigidity result for the
Kählerian complex structure on the twistor space Z.

6.1. Invariant Einstein metrics

We will start by discussing G2-invariant Einstein metrics on Q and Z—the invariant
almost complex structures will be the subject of the next section. Using the methods
pioneered by Wang and Ziller (see chapter 2), the G2-invariant Einstein metrics on
Q and Z can be found algebraically.

The invariant Einstein metrics on Q were first determined by Kimura [58], who found
that there are three (up to homothety). The most interested one for our purposes
is the invariant Kähler-Einstein metric. There is one natural candidate, namely the
Kähler metric induced by restriction of the Fubini-Study metric on CP6. Indeed,
this metric is even SO(7)-invariant [100]. This is not too surprising, in view of the
fact that the defining equation of the quadric has an obvious SO(7) symmetry. This
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metric exhibits Q as SO(7)/SO(2)×SO(5), which is well known to be an irreducible
(Hermitian) symmetric space. Therefore, this metric is automatically Einstein and
thus we have found the unique G2-invariant Kähler-Einstein metric.

Regarding the other two invariant Einstein metrics, our realization of Q as the
five-dimensional quadric shows that they cannot be Kähler for any other complex
structure, by uniqueness of the Kählerian complex structure on the quadric (cf. chap-
ter 4). Kimura arrives at this conclusion by other means. Kerr [57, Rem. 5.4] further
remarks that they cannot arise from a Riemannian submersion with totally geodesic
fibers over either S6 or G2/SO(4), using proposition A.14.

On G2/U(2)+ = Z, the unique invariant Kähler-Einstein metric is of course the
canonical metric that exhibits it as the twistor space over the Wolf space G2/SO(4).
Dickinson and Kerr [34] found that there is one more invariant Einstein metric; it
can also be understood using our geometric picture of Z as the twistor space. Recall
that Z, equipped with its standard metric, gives rise to a Riemannian submersions
with totally geodesic fibers. It fulfills the hypotheses of theorem A.21 and therefore
the canonical variation contains a second Einstein metric. This metric is again
G2-invariant and Z remains a Riemannian submersion with totally geodesic fibers.
However, the second invariant Einstein metric is not Kähler for the standard complex
structure; in fact, it will follow from our results that it is not Kähler for any complex
structure.

6.2. Invariant almost complex structures

The number of irreducible summands of the isotropy representations of G2/U(2)±
was determined in several papers (e.g. [8, 42]). The isotropy representation of
G2/U(2)+ splits into two irreducible submodules, one of dimension two and one
of dimension eight. By the work of Borel and Hirzebruch, this means that there are
just two invariant almost complex structures, up to conjugation. One of them is the
integrable structure on the twistor space, which admits a compatible, G2-invariant
Kähler-Einstein metric.

Remember (cf. chapter 3) that this complex structure is of the form J = Jh ⊕ Jv,
where Jh is the (tautological) almost complex structure on the ‘horizontal’ subbun-
dle, while Jv restricts to the standard complex structure of CP1 on each fiber. Eells
and Salamon [35, 96] studied the almost complex structure J ′ obtained by “flipping
the fiber”, i.e. replacing Jv by −Jv while keeping Jh fixed. This almost complex
structure is clearly G2-invariant as well; we will soon prove that it is distinct from
the standard structure by computing the corresponding Chern numbers.

Alexandrov, Grantcharov and Ivanov [4] showed that J ′ is nearly Kählerian, by
which we mean that it admits a compatible metric such that (∇XJ ′)X = 0 for every
X ∈ TZ (where ∇ is the Levi-Cività connection). In fact, the nearly Kähler metric

66



6.2. Invariant almost complex structures

arises from the canonical variation of the standard metric (which is of course not
Kähler with respect to J ′).

Thus, the invariant almost complex structures on G2/U(2)+ are precisely those
canonically associated to a twistor space: A clear instance of the geometric picture
clarifying known results that were obtained using Lie theory. From now on, we will
exclusively use the letter Z to denote the twistor space with its standard complex
structure, while N will denote the twistor space with its nearly Kähler structure.

For G2/U(2)−, the situation is slightly more complicated. The isotropy represen-
tation splits into three irreducible summands and therefore there are four invariant
almost complex structures. One of them is the (standard) complex structure of the
quadric, compatible with the Kähler-Einstein structure induced by restriction of the
Fubini-Study metric of CP6. From now on, we will use Q exclusively to denote this
projective manifold.

We have already encountered other invariant almost complex structures. Recall
that we found diffeomorphisms G2/U(2)− ∼= P(TS6) ∼= P(T ∗S6). We will define
almost complex structures of the form Jh ⊕ Jv on the latter two manifolds. The
standard, G2-invariant almost complex structure on S6 pulls back to an almost
complex structure on the horizontal tangent vectors of P(TS6). As with the twistor
space, we induce an almost complex structure on the vertical subbundle by requiring
that it restricts to the standard complex structure on each fiber, which is just a copy
of the complex projective plane.

The representation of U(2) on the tangent spaces of P(TS6) is the standard one, and
therefore the Fubini-Study metric on CP2 is invariant under it. Since this metric
uniquely determines the standard complex structure, the latter is preserved as well.
Combining this with G2-invariance of the almost complex structure of S6, this shows
that the resulting almost complex structure is G2-invariant.

The diffeomorphism TS6 ∼= T ∗S6 is induced by complex conjugation on the fibers.
Therefore, the almost complex structure of P(TS6) naturally induces one on P(T ∗S6)
by replacing the almost complex structure acting on the vertical subbundle by its
complex conjugate. This yields another invariant almost complex structure on the
manifold G2/U(2)−. A priori, it may not be clear that these almost complex struc-
tures are distinct, but we will soon prove this by computing their Chern numbers.

Now we have found three invariant almost complex structures on G2/U(2)−. The
tangent vectors along the fibers of the two fibrations p : G2/U(2)− → S6 and
πQ : G2/U(2)− → G2/SO(4) (cf. figure 1) give rise to complex subbundles with re-
spect to all invariant almost complex structures. This follows from the fact that in
each case, at the coset of the identity element, the tangent vectors along the fibers
correspond to one of the irreducible summands under the isotropy representation
(see [57, p. 163]). Our discussion of invariant almost complex structures in chap-
ter 2 shows that any invariant almost complex structure respects this decomposition,
hence each summand gives rise to a complex subbundle.
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6. Invariant geometric structures of G2 flag manifolds

After picking a complementary complex subbundle, we may replace the subbundle of
tangent vectors along the fibers with its complex conjugate to obtain a diffeomorphic
manifold with a potentially different, but always invariant, almost complex structure.
We will refer to this procedure as flipping the fiber, in analogy with the case of the
twistor space. Note that this is precisely the prescription we gave to go from P(TS6)
to P(T ∗S6) and vice versa.

Flipping the fibers of both projections, we find the fourth and final invariant almost
complex structure: We will use Chern numbers to distinguish it from the other
three. We will denote the corresponding almost complex manifold by X. Carrying
out the various flips, one discovers that they relate all four invariant almost complex
structures to each other. The relations are most easily summarized in a simple
diagram:

Q X

P(T ∗S6) P(TS6)

flip S6-fibration

flip G2/SO(4)-fibration flip G2/SO(4)-fibration

flip S6-fibration

Figure 2

These relations are established as follows. If one knows the Chern classes of any of
the invariant almost complex structures, the description of flipping a fiber in terms
of complex subbundles makes it easy to compute the Chern classes and numbers
obtained after flipping a fiber. As remarked above, the four invariant almost complex
structures all have distinct associated Chern numbers. Thus, computing the Chern
numbers after flipping each fiber is enough to determine which invariant almost
complex structure one has obtained. These computations are the object of the next
sections.

6.3. Cohomology of G2 flag manifolds

6.3.1. The cohomology ring of G2/U(2)−

Before we are able to understand the Chern classes of the flag manifolds G2/U(2)±,
we must compute their cohomology rings. In fact, the Chern classes of Q can be
computed by the adjunction formula, without first determining the cohomology ring.
However, the cohomology ring will prove useful in determining the Chern classes
of P(TS6) and P(T ∗S6). We do so via the Leray-Hirsch theorem, which gives an
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6.3. Cohomology of G2 flag manifolds

efficient method of computing the cohomology ring of projectivized complex vector
bundles:

Theorem 6.1 (Leray-Hirsch). Let π : E → B be a fiber bundle with fiber F over a
compact manifold B. If there are globally defined cohomology classes e1, . . . , en on
E which, when restricted to each fiber, freely generate the cohomology of the fiber,
then H∗(E;Z) is a free module over H∗(B;Z) with basis {e1, . . . , en}, i.e. there is
an isomorphism H∗(B;Z)⊗Z H

∗(F ;Z) ∼= H∗(E;Z).

This applies particularly neatly to projectivized (complex) vector bundles: Let π :
E → B be a complex vector bundle of rank r and consider its projectivization
πP : P(E) → B. Then the pullback bundle π∗PE over P(E) contains a universal,
tautological subbundle of rank one: L = {(`, v) ∈ P(E)×E | v ∈ `}, where ` ∈ P(E)b
is regarded as a line in Eb. Its dual is called the hyperplane bundle and is denoted
by H.

Denote the first Chern class of H (also called the hyperplane class) by y, and let
ιb : CPr−1 ↪→ P(E) denote the inclusion of the fiber over b ∈ B. Then clearly ι∗bH
is the hyperplane bundle O(1) over CPr−1 and therefore the cohomology ring of
the fiber P(E)b is freely generated by the restrictions of the globally defined classes
1, y, y2, . . . , yr−1, so the Leray-Hirsch theorem applies.

Moreover, the projectivized bundle P(E) yields an elegant way to define the Chern
classes of E, due to Grothendieck [44] (who also establishes equivalence with other
standard definitions). The Leray-Hirsch theorem tells us that H∗(P(E);Z) is a
free H∗(B;Z)-module generated by the powers of the hyperplane class, up to the
power r− 1. In particular, yr can be expressed as a linear combination of the lower
powers:

Definition 6.2. The Chern classes of E are the coefficients (elements of H∗(M ;Z))
c1(E), . . . , cr(E) that satisfy

yr + c1(E)yr−1 + · · ·+ cr−1(E)y + cr(E) = 0

Here, we have slightly abused notation, writing ck(E) for π∗Pck(E).

In conclusion, the ring structure of the projectivized bundle P(E) is given by

H∗(P(E);Z) ∼= H∗(M ;Z)[y]/〈yr + c1(E)yr−1 + · · ·+ cr(E)〉

Proposition 6.3. The integral cohomology ring of P(TS6) is generated by two ele-
ments, x ∈ H6(P(TS6)) and y ∈ H2(P(TS6)), which satisfy the relations

x2 = 0 y3 = −2x
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6. Invariant geometric structures of G2 flag manifolds

Proof. Let α ∈ H6(S6;Z) be the orientation class. Then c3(S6) = 2α since c3(S6) =
e(S6) is the Euler class, and the Euler characteristic is χ(S6) = 2. Since S6 has
no non-trivial cohomology in any other (positive) degree, it generates the entire
cohomology ring.

Now set x = p∗α, where p : P(TS6)→ S6 is the base point projection. Then clearly
x2 = 0 for dimension reasons, while Grothendieck’s definition of Chern classes shows
that y3 + 2x = 0, where y is the hyperplane class of P(TS6). The Leray-Hirsch
theorem now tells us us that these are the only relations. Finally, note that xy2 is
the positive generator of the cohomology of top degree, since α and y are positive
generators on the base and fiber.

We can proceed similarly to write down the cohomology in terms of generators
adapted to P(T ∗S6):

Proposition 6.4. The integral cohomology ring of P(T ∗S6) is generated by two ele-
ments, x ∈ H6(P(T ∗S6)) and z ∈ H2(P(T ∗S6)), which satisfy the relations

x2 = 0 z3 = 2x

Proof. The proof is nearly identical. z is the hyperplane class of P(T ∗S6) and the
different sign in the second relation arises because ck(E

∗) = (−1)kck(E) for any
complex vector bundle E. The positive generator in top degree is xz2, as before.

6.3.2. The cohomology ring of the twistor space

The cohomology of the twistor space G2/U(2)+ is more difficult to compute. We
will view it as a sphere bundle over M = G2/SO(4) and employ the Gysin sequence.
However, this means that we should first understand the cohomology of M . Borel
and Hirzebruch determined the mod 2 cohomology of M :

Proposition 6.5 ([18, §17.3]). The mod 2 cohomology ring H∗(M ;Z2) is generated
by two elements, u in degree two and v in degree three. They satisfy the relations

u3 = v2 vu2 = 0 (2u = 2v = 0)

They furthermore use the so-called Hirsch formula5 (cf. [19, p. 192]) for the Poincaré
polynomial—that is, the polynomial whose k-th coefficient is the Betti number bk—
to determine that the Betti numbers of M are b0(M) = b4(M) = b8(M) = 1 and

5 As remarked by Borel, this formula was proven in full generality by Koszul and Leray; their
proofs are given in the book “Colloque de Topologie (Espaces fibrés)”. About the articles, Massey
wrote the following in his review of the book in the bulletin of the AMS: “[...] the exposition is so
condensed as to make reading difficult or impossible for all but those who are particularly familiar
with the recent work of the author in question. To make matters even more difficult, some of the
authors make their exposition depend heavily on results which, if published at all, have appeared
only in the form of brief announcements, with no proofs or elaboration.”
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6.3. Cohomology of G2 flag manifolds

zero otherwise. Regarding torsion of order higher than two, we invoke a theorem
from the thesis of Borel, proven using spectral sequences:

Theorem 6.6 (Borel, [19, 30.1]). Consider the homogeneous space G/H, where G is
either a classical group, or F4 or G2, and H a subgroup of equal rank, i.e. contains a
maximal torus of G. Let T be this shared maximal torus. Then the cohomology of
G/H is free of (p-)torsion if the cohomology of H,G/T and H/T is free of (p-)torsion.

In the very same paper, Borel showed that H is actually the only source of torsion:

Theorem 6.7 (Borel, [19, 29.1]). Let G be as above, and T a maximal torus. Then
G/T is torsion-free.

Applied to M = G2/SO(4), we use the well-known fact that the cohomology
of SO(4) has only 2-torsion and see that the p-torsion in H∗(M ;Z) vanishes for
p 6= 2. We will now put these pieces together in determining the cohomology
groups H∗(M ;Z). Since b1(M) = 0, the universal coefficients theorem shows that
H1(M ;Z) = 0.

We have to work a bit harder to determineH2(M ;Z). Using π1(SO(3)) = π1(RP3) =
Z2 and the long exact sequence associated to the fibration SO(3)→ SO(4)→ S3, we
find π1(SO(4)) = Z2. Now, we use the long exact sequence of the fibration SO(4)→
G2 → M . π2(G2) = π1(G2) = 1, hence Z2 = π1(SO(4)) ∼= π2(M). Similarly, we
deduce that π1(M) = 0, hence by the Hurewicz theorem π2(M) ∼= H2(M ;Z). Using
the universal coefficients theorem once more, we conclude that H2(M ;Z) = 0.

For the higher cohomology groups, we use the long exact cohomology sequence
induced by the short exact sequence

0 Z Z Z2 02·

Here, we have to apply our knowledge of H∗(M ;Z2), the absence of any (p 6= 2)-
torsion and the rational cohomology groups. As an illustration, we find the piece

0 Z2 H3(M ;Z) H3(M ;Z) Z2 . . .
β 2·

which shows that the map H3(M ;Z)
2·−→ H3(M ;Z) has kernel Z2. Since b3(M) = 0

and the only torsion is of order two, this implies that H3(M ;Z) ∼= Z2. This means

that H3(M ;Z)
2·−→ H3(M ;Z) is a trivial map, hence the next piece of the long

exact sequence is constrained. In this fashion, we determine the cohomology groups
step by step. Note that Poincaré duality already determines the cohomology in the
highest two degrees, so one can stop after finding H6(M ;Z).

Proposition 6.8. The integral cohomology ring of M = G2/SO(4) is generated by
two elements, a in degree four and b in degree three, subject to the relations

2b = 0 b3 = 0 a3 = 0 ab = 0
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6. Invariant geometric structures of G2 flag manifolds

Proof. We already showed how to determine the cohomology groups. Regarding the
ring structure, Poincaré duality dictates that the generator in degree four squares
to a generator in degree eight (we can take this to be the generator defining the
orientation), and naturality of the cup product under reduction modulo two implies
that the generator in degree 3 squares to the generator in degree 6. The relations
follow from the vanishing of the respective cohomology groups.

As announced, we will now determine the cohomology of the twistor space Z by
means of the Gysin sequence. Recall from chapter 3 that Z = S(S2H) is the
sphere bundle of an oriented rank 3 bundle over M . Since S2H has odd rank, the
Euler class e(S2H) is 2-torsion. It is a general fact that, for an oriented rank 3
bundle V , e(V ) = β(w2(V )). Here, β : H2(M ;Z2) → H3(M ;Z) is the Bockstein
homomorphism and w2(V ) is the second Stiefel-Whitney class of V (see [24, p. 79]).
In our case, we find that e(S2H) = β(ε) 6= 0, where ε = w2(S2H) 6= 0 measures
the obstruction to lifting the Sp(1)Sp(n)-structure to an Sp(1) × Sp(n)-structure
(cf. chapter 3), and generates H2(M ;Z2).

Recall that the Gysin sequence for an S2-bundle πZ : Z →M takes the form

. . . Hk−3(M ;Z) Hk(M ;Z) Hk(Z;Z) Hk−2(M ;Z) . . .^e π∗Z

This sequence, combined with the consequences of Z being the twistor space of M ,
suffice to determine the integral cohomology groups of Z. We illustrate this by
computing a few of them explicitly. For instance, consider:

0 H2(Z;Z) H0(M ;Z) = Z H3(M ;Z) . . .^e

Since Z is Kähler, we know that H2(Z;Z) 6= 0. The existence of an injective map
into Z then forces H2(Z;Z) ∼= Z. The fact that the Euler class is non-vanishing
is also of importance. Consider, for instance, the following piece of the long exact
sequence:

. . . Z2 Z2 H6(Z;Z) Z 0^e

Because e(S2H) is the generator of H3(M ;Z), which squares to the generator in
degree six, we find that H6(Z;Z) ∼= Z. Finally, there is a small subtlety in degree
eight:

0 Z H8(Z;Z) Z2 0^e ^e

Here, we cannot immediately distinguish between the possibilities H8(Z;Z) ∼= Z or
Z⊕ Z2. However, the universal coefficients theorem and Poincaré duality yield:

0 Ext(H3(Z;Z),Z) H8(Z;Z) Hom(H8(Z;Z),Z) 0
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and since H3(Z;Z) = 0 if e 6= 0, we conclude that H8(Z;Z) ∼= Z. The other coho-
mology groups are straightforward to determine from the Gysin sequence. Finally,
we obtain a simple result:

Proposition 6.9. The cohomology groups of the twistor space Z are:

Hk(Z;Z) ∼=

{
0 k odd

Z k even,≤ 10

Remark 6.10. If we had instead considered the sphere bundle S of a rank three
oriented vector bundle over M whose Euler class vanishes, we would have obtained
something significantly more messy:

Hk(S;Z) ∼=


0 k = 1, 7, 9

Z2 k = 3, 5

Z k = 0, 2, 4, 10

Z⊕ Z2 k = 6, 8

Proposition 6.11. After appropriate identifications of H2k(Z;Z) with Z, denote the
positive generators by gn. Then the ring structure of H∗(Z;Z) is determined by the
relations

g2
1 = 3g2 g1g2 = 2g3 g2

2 = 2g4 g1g4 = g5

or equivalently

g2
1 = 3g2 g3

1 = 6g3 g4
1 = 18g4 g5

1 = 18g5

Proof. A natural identification H2k(Z;Z) = Z is provided by proclaiming that the
positive generators must be positive multiples of powers of the Kähler class (af-
ter the inclusion H2k(Z;Z) ↪→ H2k(Z;R)). The Gysin sequence shows that π∗Z :
H4(M ;Z)→ H4(Z;Z) is an isomorphism, hence π∗Z(a) = ±g2, where a ∈ H4(M ;Z)
is the positive generator. In degree eight, π∗Z : H8(M ;Z) → H8(Z;Z) corre-
sponds to multiplication by ±2, hence naturality of the cup product shows that
π∗Z(a2) = g2

2 = ±2g4, but both are positive multiples of g4
1 by assumption, hence

g2
2 = 2g4. Poincaré duality tells us that g1g4 = 1

2g1g
2
2 = g5 = g2g3, hence g3 = 1

2g1g2.

Finally, we show that g2
1 = 3g2. To do this, we need to use the characteristic classes of

Z. By corollary 3.24, Z is Fano with Fano index a multiple of three. In fact, the Fano
index is exactly three, since it cannot be (greater or equal to) six by theorem 4.7,
since it is not even homotopy equivalent to CP5. Thus, c1(Z) = 3g1. This may be
used to study the ring structure of the cohomology through the Chern number c5

1[Z].
This number is fixed by the leading order term of the so-called Hilbert polynomial
P (r) = χ(Z, (Tπ)r): The Hirzebruch-Riemann-Roch theorem implies that it is a
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polynomial of order at most five whose coefficients are given by Chern numbers. In
fact, we have:

P (r) = 〈ch((Tπ)r) td(Z), [Z]〉 =
c5

1[Z]

29160
r5 + lower order terms

On the other hand, Semmelmann and Weingart [97] give an independent computa-
tion of the Hilbert polynomial. They found

P (r) =
3

20
r5 + lower order terms

and therefore c5
1[Z] = 4374. At the same time, c5

1[Z] = 35g5
1[Z], hence g5

1 = 18g5,
since the orientation is induced by the Kähler class (hence g5[Z] = 1). If we set
g2

1 = kg2 for k ∈ N+ (g2 is a positive multiple of g2
1 by construction), then g5

1 =
k2g1g

2
2 = 2k2g5; we deduce that k = 3, completing our proof.

Remark 6.12.

(i) Observe that the ring structure on cohomology differs from that of G2/U(2)−,
which proves that these manifolds are not even homotopy equivalent.

(ii) It seems more than likely that it is in fact possible to determine g2
1 = 3g2

without resorting to the Hilbert polynomial or other “heavy machinery”; in
that case, our results on the Chern classes (section 6.5) of Z would constitute
an alternative proof of Semmelmann and Weingart’s result. However, we were
unable to find a way to avoid relying on their work.

6.4. Chern classes and numbers of G2/U(2)−

Determining the Chern classes of the quadric Q is a routine exercise, using the
normal bundle sequence (as explained in chapter 4)

0 T Q ι∗T CP6 ι∗O(2) 0

Here, ι : Q ↪→ CP6 is the inclusion and O(d) denotes the d-fold tensor product of
the hyperplane bundle O(1) on CPn. It has first Chern class c1(O(d)) = d · H,
where the hyperplane class H generates H2(CPn;Z). The total Chern class c(CPn)
is given by (1 +H)n+1, so that the Whitney product formula yields

(1 + ι∗H)7 = c(Q)(1 + 2ι∗H)

Matching terms order by order yields:
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Proposition 6.13. The total Chern class of the quadric Q is given by

c(Q) = 1 + 5h+ 11h2 + 13h3 + 9h4 + 3h5 h = ι∗H

To obtain the Chern numbers, the only subtle point one has to keep in mind is that
the fundamental class [Q] ∈ H10(Q;Z) maps to twice the generator of H10(CP6;Z)
under ι∗, since Q is a quadric. The resulting Chern numbers are listed in table 2.

Proposition 6.14. In the notation of proposition 6.3, the total Chern class of P(TS6)
is given by

c(P(TS6)) = 1 + 3y + 3y2 + 2x+ 6xy + 6xy2

Proof. We employ the fibration p : P(TS6)→ S6 and decompose the tangent bundle
as TP(TS6) = Tp ⊕ p∗TS6, where Tp denotes the subbundle formed by tangent
vectors along the fiber. Clearly p∗c(S6) = 1 + 2x, so all that is left is to determine
c(Tp). Over each fiber F = CP2, the pullback bundle p∗TS6 restricts to the trivial
rank three complex bundle on CP2. Let L denote the tautological line bundle over
CP2. The fiberwise Euler sequences

0 L C3 L ⊗ TCP2 0

then glue together to the relative Euler sequence

0 L p∗TS6 L⊗ Tp 0

where L is the tautological line bundle over P(E). This implies that p∗TS6 ∼= L⊕(L⊗
Tp) as complex vector bundles. Twisting by H := L−1, we find H⊗p∗TS6 ∼= C⊕Tp.
Thus, we see that

c(Tp) = c(p∗TS6 ⊗H)

This Chern class is easily computed using the following formula, valid for any com-
plex vector bundle E and line bundle L:

ci(E ⊗ L) =
i∑

j=0

(
rankC E − j

i− j

)
cj(E)c1(L)i−j

We know that c(p∗TS6) = 1 + 2x and c(H) = 1 + y, where x, y were introduced in
proposition 6.3. This shows that c(Tp) = 1 + 3y+ 3y2. Now, we apply the Whitney
product formula and find

c(P(TS6)) = (1 + 3y + 3y2)(1 + 2x) = 1 + 3y + 3y2 + 2x+ 6xy + 6xy2

which was our claim.
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Using the fact that xy2 is the positive generator in top degree, the Chern num-
bers are easy to compute. Our results agree with those of Grama, Negreiros and
Oliveira [42]6, who calculated the Chern numbers of the invariant almost complex
structures of G2/U(2)± by Lie-theoretic means. with the Now, we apply the same
method to P(T ∗S6):

Proposition 6.15. In the notation of proposition 6.4, the total Chern class of P(T ∗S6)
is given by

c(P(T ∗S6)) = 1 + 3z + 3z2 + 2x+ 6xz + 6xz2

Proof. Denote the base point projection by q. As before, we write TP(T ∗S6) ∼=
Tq ⊕ q∗TS6 and compute c(Tq) from the formula c(Tq) ∼= c(q∗TS6 ⊗H), where H
now denotes the hyperplane bundle over P(T ∗S6) (as opposed to P(TS6)), with first
Chern class z. Proceeding as before, we find:

c(P(T ∗S6)) = (1 + 3z + 3z2)(1 + 2x) = 1 + 3z + 3z2 + 2x+ 6xz + 6xz2

This is what we wanted to show.

The Chern numbers are once again easily obtained. All the Chern numbers com-
puted thus far are displayed in table 2. As announced, each can be distinguished
by the their Chern numbers—in fact, they are already distinguished by the Chern
number c5

1.

Chern Number Q P(TS6) P(T ∗S6)

c5 6 6 6
c5

1 6250 −486 486
c3

1c2 2750 −162 162
c2

1c3 650 18 18
c1c4 90 18 18
c1c

2
2 1210 −54 54

c2c3 286 6 6

Table 2: Chern numbers of the invariant almost complex structures Q, P(TS6) and
P(T ∗S6).

6.4.1. Flipping the fiber over S6

So far, we have encountered three out of the four invariant almost complex structures
on G2/U(2)−. The fourth is obtained from Q by flipping the fiber of the fibration
pQ : Q→ S6, as we will now show. As remarked in section 6.2, the tangent vectors

6The relevant table in [42] contains some sign errors, so our agreement here is up to sign.
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along the fibers define a complex subbundle of TZ. We obtain a decomposition
TQ ∼= TpQ ⊕ D, where D is a complementary complex subbundle. Recall that
c(Q) = 1+5h+11h2+13h3+9h4+3h5, and that h restricts to the hyperplane class on
each fiber, which is just a copy of CP2. Thus c1(TpQ) = 3h, which forces c1(D) = 2h.
Similarly, we find c2(TpQ) = 3h2 and c2(D) = 2h2. Since TpQ has rank two, we see
that c3(D) = h3 and c(Q) factorizes as c(Q) = (1 + 3h+ 3h2)(1 + 2h+ 2h2 + h3).

Now we flip the fiber, replacing TpQ by its conjugate TpQ. The resulting almost
complex manifold will be denoted by X, and its tangent bundle has (by definition)
a decomposition TX ∼= TpQ ⊕D ∼= (TpQ)−1 ⊕D. The following is then obvious:

Proposition 6.16. X has total Chern class

c(X) = c(Q)
1− 3h+ 3h2

1 + 3h+ 3h2
= 1− h− h2 + h3 + 3h4 + 3h5

Note that the flip does not change the orientation, since TpQ is a rank two subbundle.
Therefore, xy2 remains the positive generator of the cohomology in top degree.

It is already clear from the expression for the Chern class that the Chern numbers
X will be drastically different than those of Q, P(TS6) and P(T ∗S6). They are
shown in table 3. This proves that we have found a fourth invariant almost complex
manifold and therefore we have obtained a geometric description of every invariant
almost complex structure on G2/U(2)−. The precise significance of X in the general
geometric picture is not yet completely clear. For instance, we do not know whether
this almost complex structure admits any distinguished, compatible metrics.

We already worked out the Chern classes of the (complex) vertical subbundles of
TP(TS6) and TP(T ∗S6), so it is clear how to implement flipping the fiber of the
fibrations over S6 in these cases. We denote the resulting manifolds by R and S,
respectively.

Proposition 6.17. The total Chern class of R is

c(R) = c(P(TS6))
1− 3y + 3y2

1 + 3y + 3y2
= 1− 3y + 3y2 + 2x− 6xy + 6xy2

The total Chern class of S is

c(S) = c(P(T ∗S6))
1− 3z + 3z2

1 + 3z + 3z2
= 1− 3z + 3z2 + 2x− 6xz + 6xz2

Our definition of the almost complex structures on P(TS6) and P(T ∗S6) in sec-
tion 6.2 already makes it clear that we should find that R = P(T ∗S6) and S =
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P(TS6). This is confirmed by the Chern numbers (which uniquely identify the in-
variant almost complex structures), shown in table 3.

Chern Number R = P(T ∗S6) S = P(TS6) X

c5 6 6 6
c5

1 486 −486 −2
c3

1c2 162 −162 2
c2

1c3 18 18 2
c1c4 18 18 −6
c1c

2
2 54 −54 −2

c2c3 6 6 −2

Table 3: Chern numbers of the almost complex manifolds obtained after flipping the
fiber over S6.

6.4.2. Flipping the fiber over G2/SO(4)

Now, we go through the same procedure for the fibration over G2/SO(4) = M . The
fibers yield a complex rank one subbundle of the tangent bundle for any invariant
almost complex structure; after picking a complementary subbundle we obtain a
decomposition of the tangent bundle. We know that the Chern classes must obey
a Whitney sum formula, and in every case enforcing the factorization of the total
Chern class uniquely determines the Chern class of the line bundle of tangent vectors
along the fibers.

After flipping this complementary line bundle, we know that we must obtain one of
the four invariant almost complex structures. The easiest way to determine which
one is to compute the resulting Chern numbers. To do so, it is important to keep
in mind that replacing the line bundle with its conjugate changes the orientation of
the manifold. Hence, the positive generators of top degree cohomology switch sign.
The results are summarized in the following proposition, and table 4.

Proposition 6.18. After flipping the fiber, of πQ : Q → M , we obtain an almost
complex manifold X ′ with Chern class

c(X ′) = c(Q)
1− h
1 + h

= 1 + 3h+ 3h2 − h3 − 3h4 − 3h5

If we flip the fibers of p′ : P(TS6)→M and q′ : P(T ∗S6)→M , the resulting almost
complex manifolds R′ and S′ have Chern classes

c(R′) = c(P(TS6))
1 + y

1− y
= 1 + 5y + 11y2 + 13y3 + 9y4 + 3y5
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and

c(S′) = c(P(T ∗S6))
1− z
1 + z

= 1 + z − z2 − z3 + 3z4 − 3z5

Chern Number R′ = Q S′ = X X ′ = P(TS6)

c5 6 6 6
c5

1 6250 −2 −486
c3

1c2 2750 2 −162
c2

1c3 650 2 18
c1c4 90 −6 18
c1c

2
2 1210 −2 −54

c2c3 286 −2 6

Table 4: Chern numbers of the almost complex manifolds obtained after flipping the
fiber over G2/SO(4).

As before, the Chern numbers uniquely identify the invariant almost complex struc-
tures: R′ = Q, while S′ = X and X ′ = P(TS6).

In summary, we have been able to realize all the invariant almost complex manifolds
in a geometric fashion, and to compute all of their Chern classes and numbers.
Moreover, the geometric interpretation of the invariant almost complex structures
leads to a complete description of the relations between them (see figure 2). Finally,
we collect the Chern numbers of all the invariant almost complex structures in a
single table for convenience.

Chern Number Q P(TS6) P(T ∗S6) X

c5 6 6 6 6
c5

1 6250 −486 486 −2
c3

1c2 2750 −162 162 2
c2

1c3 650 18 18 2
c1c4 90 18 18 −6
c1c

2
2 1210 −54 54 −2

c2c3 286 6 6 −2

Table 5: Chern numbers of all invariant almost complex structures on G2/U(2)−.

6.5. Rigidity and Chern classes of the twistor space

In this final section, we discuss the complex geometry of G2/U(2)+. Rather than
immediately launching into a computation of the Chern classes and numbers of
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its invariant almost complex structures, we start with a rigidity theorem for the
canonical, integrable complex structure that casts G2/U(2)+ as the twistor space
over G2/SO(4). This result is a precise analog of the classical uniqueness theorems
reviewed in chapter 4. Finally, we will compute the Chern numbers of both the
integrable twistor space structure and the nearly Kähler structure.

6.5.1. Rigidity of the canonical complex structure

Consider Z, i.e. the manifold G2/U(2)+ equipped with its canonical complex struc-
ture, which is Kählerian and even admits a G2-invariant Kähler-Einstein metric.
Our aim is to prove that it is characterized, among Kählerian complex manifolds,
by its topology. In order to do so, we need one more piece of information: the
Pontryagin classes. We determine them via the Pontryagin classes of the Wolf space
M = G2/SO(4).

Lemma 6.19. The Pontryagin numbers of M are p2
1[M ] = 4 and p2[M ] = 7.

Proof. This is an immediate consequence of the relations

1

45
(p2[M ]− p2

1[M ]) = 1

7p2
1[M ]− 4p2[M ] = 0

The first is an application of Hirzebruch’s signature theorem L[M ] = σ(M), com-
bined with the fact that σ(M) = 1. The second follows from the Lichnerowicz argu-
ment, a famous application of the Atiyah-Singer index theorem (for an exposition,
see [90]) which shows that the Â-genus of a spin manifold that admits a metric with
positive scalar curvature vanishes. This result applies to M due to proposition 3.15,
and the fact that M is Einstein with positive Einstein constant.

Our description of the map π∗Z on degree four and eight (in the proof of propo-
sition 6.11) now implies that π∗Zp(M) = 1 + 2εg2 + 14g4, where ε = ±1 is an
undetermined sign.

Lemma 6.20. The total Pontryagin class of Z is p(Z) = 1 + g2 + 2g4.

Proof. The decomposition TZ = π∗ZTM ⊕TπZ shows that the Pontryagin classes of
Z factorize: p(Z) = π∗Zp(M)p(TπZ). Since TπZ is a complex line bundle, p(TπZ) =
1 + c2

1(Tπ) = 1 + 3g2, where the final equality follows from the fact that c1(Z) =
3c1(Tπ) = 3g1 (cf. corollary 3.24). We conclude:

p(Z) = 1 + (3 + 2ε)g2 + (14 + 12ε)g4 = 1 + p1(Z) + p2(Z)
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On the other hand, we can express the Pontryagin classes in terms of the Chern
classes of Z:

p1(Z) = c2
1(Z)− 2c2(Z)

p2(Z) = c2
2(Z)− 2c1c3(Z) + 2c4(Z)

By theorem 4.22, c1c4[Z] = c1c4[CP6] = 90. We already know that c1(Z) = 3g1

and g1g4 = g5 by Poincare duality, hence c4(Z) = 30g4. Setting c2(Z) = d2g2 and
c3(Z) = d3g3 for d2, d3 ∈ Z, this translates to:

p1(Z) = (27− 2d2)g2

p2(Z) = (2d2
2 − 18d3 + 60)g4

Equating the two expression for the Pontryagin classes yields

27− 2d2 = 3 + 2ε

2d2
2 − 18d3 + 60 = 14 + 12ε

These equations for d2 and d3 admit no integer solutions if ε = 1, hence ε = −1 and
we conclude that p1(Z) = g2 and p2(Z) = 2g4.

Now we are ready to prove the main result of this section:

Theorem 6.21. If X is a Kähler manifold homeomorphic to the twistor space Z
(equipped with its canonical complex structure), then it is biholomorphic to Z.

Proof. Just as for the rigidity theorems of chapter 4, our strategy is to determine
the first Chern class. Since the cohomology of Z (and hence of X) is so simple, the
Hodge numbers are completely determined. In fact, they are equal to the Hodge
numbers of CP5: hp,p = 1 for p ≤ 5 and hp,q = 0 otherwise. By theorem 4.22, we
find c1c4[X] = c1c4[CP5] = 90. Let Gk be the positive generators of H2k(X;Z) with
respect to the (powers of the) Kähler class and set c1(X) = dG1; then d is a divisor
of 90 (here, negative numbers are also allowed). Since Z (and hence X) is not spin,
d must furthermore be odd. Kobayashi and Ochiai’s results 4.7 and 4.16 rule out
d ≥ 5, leaving the possibilities d ∈ {±1,±3,−5,−9,−15,−45}.

Since the cohomology is torsion-free, the integral Pontryagin classes are homeo-
morphism invariants (in the presence of torsion, this only holds for the rational
Pontryagin classes), i.e. we have the relation p(X) = f∗p(Z), where f : X → Z is a
homeomorphism, which exists by assumption. Denoting the generators of H2k(Z;Z)
by gk as before, we have f∗p1(Z) = 1

2f
∗(g2

1) = 1
2G

2
1 = G2, since f∗g1 = ±G1. Simi-

larly, f∗p2(Z) = 2G4. Expressing the Pontryagin classes in terms of Chern classes,
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we have:

p1(X) = c2
1(X)− 2c2(X)

p2(X) = c2
2 − 2c1c3(X) + 2c4(X)

Using the Hirzebruch-Riemann-Roch theorem, the Todd (or arithmetic) genus

χ(X,O) =
∑
p

(−1)ph0,p = 1

yields another constraint on the Chern classes:

1 =

∫
X

td(X) =
1

1440

(
− c3

1c2[X] + c2
1c3[X] + 3c1c

2
2[X]− c1c4[X]

)
Plugging in c1c4[X] = 90, we find:

c2
1c3[X] = 1530 + c3

1c2[X]− 3c1c
2
2[X]

Together with the Pontryagin classes, this relation suffices to rule out all possible
values except d = 3, as we will now show.

First, assume d = ±1. Then c2(X) = G2, hence c2
1c3[X] = 1530 ± 4 while at the

same time

c2
1c3[X] =

1

2

(
c1c

2
2[X] + 2c1c4[X]− c1p2[X]

)
= 90

This is a contradiction. If d is a multiple of nine, we find 0 ≡ 1530 mod 27, which
is also a contradiction. For d = −15, we have c4(X) = −6G4 and the expression
for p1(X) yields c2(X) = 337G2. But then the expression for p2(X) shows that
c1c3(X) = 113562 ·G4, which is not divisible by 15 and therefore contradictory.

Now assume d = −5. Then c2(X) = 37G2 and we find c1c3(X) = 1350G4, which
implies that c2

1c3[X] = −6750. On the other hand, c2
1c3[X] > c3

1c2[X]− 3c1c
2
2[X] =

13320, ruling out this possibility. Finally, if d = −3 we find c2(X) = 13G2 and
c4(X) = −30G4. The two expressions for c2

1c3[X] then yield the values −411 and
2286. This leaves only the possibility that d = 3.

Now, we have established that X is a Fano manifold; its Fano index I(X) is three.
The Fano coindex dimX + 1− I(X) also equals three, and thus we may appeal to
the classification of Fano manifolds with coindex three, due to Mukai [78]. Under
a technical assumption which was later verified by Mella [75], Mukai [78, Prop. 1]
proves that X is what he calls an F -manifold of the first species with Fano genus
gX = 1

2G
5
1 + 1 = 10. In theorem 2 of the same paper, he establishes that this ma-

nifold is biholomorphic to the twistor space Z, equipped with its canonical complex
structure (see also remark 1 in Mukai’s paper). This completes our proof.

Remark 6.22. Using similar methods, it may be possible to prove analogous results
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for other Fano manifolds with low coindex and (extremely) simple cohomology.

6.5.2. Chern numbers of the invariant almost complex structures

The methods employed in the previous section allow us to quickly compute the Chern
classes of Z. Indeed, c1(Z) = 3g1 and since c1c4[Z] = 90, c4(Z) = 30g4. Using the
formulas for the Pontryagin classes (and recalling c5(Z) = e(Z)), the total Chern
class turns out to be

c(Z) = 1 + 3g1 + 13g2 + 22g3 + 30g4 + 6g5

Using the structure of the cohomology ring (cf. proposition 6.11), the Chern numbers
are now easy to compute (see table 6).

Finally, we compute the Chern numbers of the other invariant almost complex struc-
ture: the nearly Kähler manifold (which we denote by N), obtained from the stan-
dard twistor space structure by the now-familiar procedure of flipping the fiber.

Proposition 6.23. The total Chern class of N is

c(N) = 1 + g1 + g2 − 6g3 − 18g4 − 6g5

Proof. Recall (cf. chapter 3) that the fibers of the twistor projection πZ : Z →
G2/SO(4) are holomorphic submanifolds, hence the vertical tangent bundle TπZ is a
complex subbundle of TZ. We already know that its Chern class is c(TπZ) = 1+g2,
hence picking a complementary subbundle D we find c(Z) = (1 + g2)c(D) and
c(N) = (1 − g2)c(D). Working out c(N) = c(Z)1−g1

1+g1
, one obtains the claimed

formula.

While computing the Chern numbers of N , we keep in mind that the orientation is
opposite to that of Z, i.e. g5[N ] = −1. The results are given in table 6.

Chern Number Z N

c5 6 6
c5

1 4374 −18
c3

1c2 2106 −6
c2

1c3 594 18
c1c4 90 18
c1c

2
2 1014 −2

c2c3 286 6

Table 6: The Chern numbers of the two invariant almost complex structures on
G2/U(2)+. See also [42]7.

7The relevant table in this paper contains some errors in the Chern numbers of N .
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Appendix A.

Riemannian submersions

Besides the variational approach discussed in chapter 2, an important approach
to the study of invariant Einstein metrics is through the theory of Riemannian
submersions. However, these techniques find application in other areas of geometry
too, as exemplified by chapter 3. The first systematic exposition of the theory
was given by O’Neill [84], and subsequently expanded by Besse [15, Ch. 9], whose
notational conventions we will follow in this section.

A.1. O’Neill’s A and T tensors

Let (M, g) and (B, ǧ) be Riemannian manifolds and π : M → B a smooth submer-
sion. For x ∈ π−1(b) =: Fb, we call the vectors in TxM that are tangent to the fiber
Fb vertical, and doing this at each point we obtain the vertical subbundle V. Note
that, since the fibers are submanifolds, the vertical subbundle is always integrable.
Tangent vectors that lie in the complementary (orthogonal with respect to g) dis-
tribution H are called horizontal. It is clear that ker(Dxπ) = Vx, hence there is a
linear isomorphism Hx ∼= TbB.

Definition A.1. The triple ((M, g), (B, ǧ), π) is called a Riemannian submersion if,
for every b ∈ B, Dxπ

∣∣
Hx

:
(
Hx, gx|Hx

)
→ (TbB, ǧb) is an isometry for every x ∈ Fb.

Example A.2. Start from a Riemannian manifold (B, ǧ) and another manifold F ,
with a smooth family of metrics parametrized by B: {ĝ(b)}b∈B. Consider the product
manifold B×F with πi the canonical projection onto the i-th factor. Then define a

metric by g(b,v) = π∗1 ǧb+π∗2 ĝ
(b)
v to obtain the structure of a Riemannian submersion.

This construction has some well-known special cases. If we set ĝb = ĝ for some fixed
metric ĝ on F , we obtain a Riemannian product. If, instead, we consider a strictly
positive, smooth function f : B → R and set ĝb = f(b)ĝ, we obtain a so-called
warped product.

The notion of Riemannian submersion is dual to that of a Riemannian (or isometric)
immersion, which have been studied since the early days of differential geometry. It
was already understood by Gauss that such immersions can be described by a tensor
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field, the second fundamental form, that describes to what extent the tangent bundle
of the immersed manifold fails to be preserved by the Levi-Cività connection of the
ambient space.

Taking inspiration from the theory of isometric immersions, one may hope to build
up an analogous theory for Riemannian submersions ((M, g), (B, ǧ), π), describing
them in terms of certain tensor fields which connect the curvatures of M , B and the
fibers Fb via analogs of the Gauss-Codazzi equations. Indeed, O’Neill defined two
tensor fields to precisely this end.

Definition A.3. Consider a Riemannian submersion π : M → B. We collect the
second fundamental forms of all fibers Fb, together with their adjoints, into a tensor
field T ∈ Ω1(Hom(TM)). Denoting the projections onto the vertical and horizontal
subbundles by V and H, we define T by:

TEF = H(∇VEVF ) + V(∇VEHF ) E,F ∈ Γ(TM)

where ∇ is the Levi-Cività connection on M .

Lemma A.4. Let E,F,K ∈ Γ(TM) be arbitrary vector fields. The tensor field T
has the following properties:

(i) When restricted to vertical vector fields U, V , the tensor T is the second fun-
damental form of the corresponding fiber. In particular, TUV = TV U .

(ii) TE = TVE .

(iii) TE is skew-symmetric, i.e. g(TEF,K) + g(F, TEK) = 0. Furthermore, TE
interchanges V and H.

Proof.

(i) Since HU = HV = 0 and VU = U , VV = V , we see TUV = H(∇UV ), which
is precisely the definition of the second fundamental form of the fiber. The
symmetry property can be seen directly, using the fact that ∇ is torsion-free
and V is integrable:

TUV − TV U = H(∇UV −∇V U) = H([U, V ]) = 0

The last step uses the fact that integrability implies involutivity of V.

(ii) This is obvious.

(iii) The fact that TE interchanges V and H is clear. Therefore we may assume
either that F is vertical and K horizontal, or vice versa. We may also assume
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E is vertical. Thus, in the first case we find:

g(TEF,K) + g(F, TEK) = g(H(∇EF ),K) + g(F,V(∇EK))

= g(∇EF,K) + g(F,∇EK) = E(g(F,K))

= 0

where we used metric-compatibility of ∇. If F is horizontal and K vertical,
analogous manipulations lead to the same result.

From the first property, it is clear that T ≡ 0 implies that every fiber has vanishing
second fundamental form, i.e. is totally geodesic. The third property implies the
converse. Thus, T vanishes if and only if all fibers are totally geodesic.

Definition A.5. Interchanging V and H, we define another (1, 2)-tensor field A by:

AEF = V(∇HEHF ) +H(∇HEVF ) E,F ∈ Γ(TM)

Some of its properties are similar to those of T and the proofs are analogous:

Lemma A.6. Let E,F,K be vector fields. The tensor field A ∈ Ω1(Hom(TM)) has
the following properties:

(i) AE = AHE .

(ii) AE is skew-symmetric, i.e. g(AEF,K) + g(F,AEK) = 0. Furthermore, AE
interchanges V and H.

The interpretation of A is as the obstruction to integrability of the horizontal sub-
bundle, as justified by the following result:

Proposition A.7 (O’Neill, [84]). Let X,Y ∈ TpM be horizontal. Then AXY =
1
2V[X,Y ], or equivalently AXY = −AYX.

Proof. Since ∇ is torsion-free, we find:

V[X,Y ] = V(∇XY −∇YX) = AXY −AYX

establishing our claim of equivalence. It suffices to show that AXX = 0. Since A
is a tensor, we may extend X to a convenient vector field. We call a vector field
X basic if it is horizontal and π-related to a vector field X̌ on B. Note that any
vertical vector field is π-related to the zero section of TB, and that naturality of
the Lie bracket implies that Dπ([X,Y ]) = [X̌, Y̌ ]. In particular, if U is vertical then
[X,U ] is vertical.
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Now take X to be basic. Then its length is constant along fibers because its square
equals ǧ(X̌, X̌) and therefore U(g(X,X)) = 0 = 2g(∇UX,X) when U is vertical.
On the other hand:

g(∇UX,X) = g(∇XU,X) + g([U,X], X) = X(g(U,X))− g(U,∇XX)

= g(U,AXX)

Since AXX is vertical, we conclude that in fact AXX = 0.

Thus, A ≡ 0 if and only if H is integrable.

The tensors A and T appear in the decomposition of covariant derivatives on M
in terms of horizontal and vertical components. Some straightforward but tedious
computations (carried out in [43, 84]) then yield expressions for the curvature of M
in terms of the curvatures of the fibers and base, as well as the tensors A and T .

Due to the symmetries of the curvature, all information is contained in five “fun-
damental” equations, which correspond to the number of horizontal vector fields
present in the expression g(R(E,F )K,L) (here, R is the Riemannian curvature of
M). Having no horizontal fields corresponds the analog of the Gauss equation, while
taking one horizontal field yields the Codazzi equation. They relate the curvature of
M to that of the fibers through T . When three or four vector fields are horizontal,
one obtains the “dual” equations, which Gray humorously calls the “Cogauss and
Dazzi equations”. They relate R and the curvature of the base. The intermediate
case yields the analog of the Ricci equation. These results are neatly repackaged in
terms of the sectional curvature:

Theorem A.8 (O’Neill, [84]). Let π : M → B be a Riemannian submersion with
fibers F , let X,Y denote horizontal vectors (and X̌ := Dπ(X), Y̌ := Dπ(Y ) the
corresponding vectors on B) and U, V vertical vector fields, all of them mutually
orthonormal. Then the sectional curvatures K, K̂, Ǩ of the total space, fibers and
base satisfy the following relations:

K(U, V ) = K̂(U, V ) + |TUV |2 − g(TUU, TV V )

K(X,U) = g((∇XT )UU,X)− |TUX|2 + |AXU |2

K(X,Y ) = π∗Ǩ(X,Y )− 3|AXY |2

Corollary A.9. Sectional curvature is non-decreasing under Riemannian submersions.
More precisely, for basic vector fields X,Y , K(X,Y ) ≤ Ǩ(X̌, Y̌ ).

To understand the Ricci curvature, it is most convenient to introduce some additional
notation:
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Definition A.10. Let {Xi}i∈I be a local orthonormal basis for H (near x ∈M) and
{Uj}j∈J a local orthonormal basis for V. Let U, V denote vertical vectors and X,Y
horizontal vectors. Now we define the following shorthands:

(AX , AY ) :=
∑
i

g(AXXi, AYXi) =
∑
j

g(AXUj , AY Uj)

(AX , TU ) :=
∑
i

g(AXXi, TUXi) =
∑
j

g(AXUj , TUUj)

(AU,AV ) :=
∑
i

g(AXiU,AXiV )

(TX, TY ) :=
∑
j

g(TUjX,TUjY )

For any (1, 2)-tensor field E we furthermore define:

δE := δ̌E + δ̂E δ̂E := −
∑
j

(∇UjE)Uj δ̌E := −
∑
i

(∇XiE)Xi

Remark A.11. The second equalities in the first two definitions follow directly from
skew-symmetry of A, T .

Definition A.12. Recall that, for an isometric immersion, the mean curvature vector
is given by the trace of the second fundamental form. Collecting the mean curvature
vectors of every fiber into a single object, we define the vector field N :=

∑
j TUjUj .

Observe that N is horizontal.

Lemma A.13. Let X,Y be horizontal vectors and {Uj}j∈J a local orthonormal basis
of V, as before. Then

(i) δ̂A = AN .

(ii) δ̌T ≡ 0.

(iii)
∑

j g((∇ET )UjUj , X) = g(∇EN,X) for any vector E.

(iv) 2
∑

j g((∇UjA)XY, Uj) = g(∇YN,X)− g(∇XN,Y ).

Proof.

(i) Let E,F be arbitrary vectors. Because AF = AHF , we find

(∇UjA)UjE = ∇Uj (AUjE)−A∇Uj
UjE −AUj (∇UjE) = −ATUj

UjE

Therefore δ̂A =
∑

j ATUj
UjE = AN .

(ii) All terms of δ̂T vanish individually: (∇XjT )XjE = −TAXj
XjE = 0.
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(iii) As before, we use (∇ET )UjUj = ∇E(TUjUj) − T∇EUjUj − TUj (∇EUj). After
summing over j, the first term yields the required result. It remains to show
that ∑

j

g(T∇EUjUj + TUj (∇EUj), X) = 0

Since we are taking the inner product with a horizontal vector, only the vertical
parts of both vectors that T acts on contribute. Since T is symmetric when
acting on vertical vectors, the two terms contribute equally and we should
therefore show that

∑
j g(TUjV(∇EUj), X) = 0:∑

j

g(TUjV(∇EUj), X) = −
∑
j

g(V∇EUj , TUjX)

= −
∑
j,m

g(∇EUj , Um)g(TUjX,Um)

where we expanded V(∇EUj) and TUjX in terms of the vertical basis vectors to
obtain the last equality. The first factor is anti-symmetric under interchanging
j with m, since

g(∇EUj , Um) = E(g(Uj , Um))− g(Uj ,∇EUm) = −g(Uj ,∇EUm)

But the second factor is symmetric under this switch:

g(TUjX,Um) = −g(X,TUjUm) = −g(X,TUmUj) = g(TUmX,Uj)

Relabeling the summation variables to interchange j and m then shows:

−
∑
j,m

g(∇EUj , Um)g(TUjX,Um) = −
∑
j,m

g(∇EUm, Uj)g(TUmX,Uj)

=
∑
j,m

g(∇EUj , Um)g(TUjX,Um)

This means that the expression vanishes.

(iv) After using the previous identity on the right hand side, this follows from the
identity

2g((∇UA)XY, U) = g((∇Y T )UU,X)− g((∇XT )UU, Y )

as can by seen by setting U = Uj and summing over j. This result follows from
a long computation. We start by rewriting both sides separately:

2g((∇UA)XY,U〉 = 2g(∇U (AXY )−A∇UXY −AX(∇UY ), U)

= 2g(∇U (AXY ), U)− 2g(H(∇Y U),H(∇UX)) + 2g(H(∇XU),H(∇UY ))
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and

g((∇Y T )UU,X)− (X ↔ Y )

= g(∇Y (TUU), X)− g(T∇Y UU,X − g(TU (∇Y U), X)− (X ↔ Y )

= g(∇Y (TUU), X) + 2g(∇Y U,V(∇UX))− (X ↔ Y )

We used the Leibniz rule, skew-symmetry of A and T and their special prop-
erties when restricted to horizontal and vertical vectors, respectively. We sub-
tract the second result from the first and now have to prove that the following
expression vanishes:

g(∇UV([X,Y ]), U)− 2g(∇Y U,∇UX) + 2g(∇XU,∇UY )

− g(∇YH(∇UU), X) + g(∇XH(∇UU), Y )

Now we use metric compatibility of ∇ in the first and last two terms to obtain

U(g([X,Y ], U)− g([X,Y ],V∇UU)− 2g(∇Y U,∇UX) + 2g(∇XU,∇UY )

− Y (g(∇UU,X)) + g(H∇UU,∇YX) +X(g(∇UU, Y ))− g(H∇UU,∇XY )

The terms involving horizontal and vertical projections combine and we find

U(g([X,Y ], U))− g([X,Y ],∇UU)− 2g(∇Y U,∇UX) + 2g(∇XU,∇UY )

− Y (g(∇UU,X)) +X(g(∇UU, Y ))

Now that we no longer have any projections in our expression, we use metric
compatibility once again (going “backwards”), which yields:

g(∇U [X,Y ], U)− 2g(∇Y U,∇UX) + 2g(∇XU,∇UY )

− g(∇Y∇UU,X)− g(∇UU,∇YX) + g(∇X∇UU, Y ) + g(∇UU,∇XY )

In the last and third-to-last terms we recognize [X,Y ], which we combine with
the first term. We once more use metric compatibility, on the first term and
on one-half of the second and third terms:

U(g([X,Y ], U))− U(g(∇Y U,X)) + g(∇U∇Y U,X)− g(∇Y U,∇UX)

+ U(g(∇XU, Y ))− g(∇U∇XU, Y ) + g(∇XU,∇UY )

− g(∇Y∇UU,X) + g(∇X∇UU, Y )

The terms that feature double derivatives of U are almost curvature tensors
acting on U , so we add a compensating term to make this true. Note that the
first, second and fifth terms cancel out because we may move the covariant
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derivatives to the second entry of g at the cost of a sign. We have found:

g(R(U, Y )U,X) + g(∇[U,Y ]U,X)− g(∇Y U,∇UX)

− g(R(U,X)U, Y )− g(∇[U,X]U, Y ) + g(∇XU,∇UY )

The symmetries of the curvature tensor R imply that the first and fourth terms
vanish so we are left with

g(∇U [U, Y ], X) + g([[U, Y ], U ], X)− g(∇Y U,∇UX)

− g(∇U [U,X], Y )− g([[U,X], U ], Y ) + g(∇XU,∇UY )

after using the vanishing of torsion on the second and fifth terms. Since we
may extend X,Y to basic vector fields, [U,X] and [U, Y ] are vertical. Integra-
bility of V means that the second and fifth terms now vanish. Expanding the
commutators in the first and fourth term gives

g(∇U∇UY,X)− g(∇U∇Y U,X)− g(∇Y U,∇UX)

− g(∇U∇UX,Y ) + g(∇U∇XU, Y ) + g(∇XU,∇UY )

Metric compatibility, applied to the last term on each line, yields:

g(∇U∇UY,X)− U(g(∇Y U,X))− g(∇U∇UX,Y ) + U(g(∇XU, Y ))

Since we may choose X,Y basic, we have g(∇XU, Y ) = g(∇UX,Y ); we apply
this to the second and last terms, then use metric compatibility to find

g(∇U∇UY,X)− U(g(∇UY,X))− g(∇U∇UX,Y ) + U(g(∇UX,Y ))

= g(∇UY,∇UX)− g(∇UX,∇UY ) = 0

which is what we needed to show. Note that, by polarization, the above actu-
ally shows that

g((∇UA)XY, V ) + g((∇VA)XY,U) = g((∇Y T )UV,X)− g((∇XT )UV, Y )

This identity appears in [43], with incorrect signs and without proof.

Using these identities, one straightforwardly computes the Ricci curvature from
the fundamental equations for the Riemann curvature tensor (written out in [15,
p. 241]):

Proposition A.14. In the notation of theorem A.8, the Ricci curvatures r, r̂ and
ř of the total space, fibers and base space of a Riemannian submersion satisfy the
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following relations:

r(U, V ) = r̂(U, V )− g(N,TUV ) + (AU,AV ) +
∑
i

g((∇XiT )UV,Xi)

r(X,U) = g((δ̂T )U,X) + g(∇UN,X)− g((δ̌A)X,U)− 2(AX , TU )

r(X,Y ) = π∗ř(X,Y )− 2(AX , AY )− (TX, TY ) +
1

2
(g(∇XN,Y ) + g(∇YN,X))

Taking the trace of these equations and introducing the new notations

|A|2 :=
∑
i

(AXi , AXi) =
∑
j

(AUj , AUj)

|T |2 :=
∑
i

(TXi, TXi) |N |2 := g(N,N)

δ̌N := −
∑
i

g(∇XiN,Xi)

one easily finds:

Corollary A.15. The scalar curvatures s, ŝ and š of the total space, fibers and base
of a Riemannian submersion satisfy

s = π∗š+ ŝ− |A|2 − |T |2 − |N |2 − 2δ̌N

A.2. Einstein metrics and the canonical variation

We will use the theory of Riemannian submersions in the context of twistor spaces
of quaternionic Kähler manifolds (see chapter 3), which give rise to Riemannian
submersions with totally geodesic fibers. When T ≡ 0, the simplification in the
formulas for the Ricci curvature makes it easy to find the conditions under which
the total space is an Einstein manifold:

Proposition A.16. Let π : M → B be a Riemannian submersion with totally
geodesic fibers Fb. The total space (M, g) is Einstein if and only if there exists
a constant λ ∈ R such that

(i) r̂(U, V ) + (AU,AV ) = λg(U, V ) for all vertical vectors U, V .

(ii) δ̌A = 0.

(iii) π∗ř(X,Y )− 2(AX , AY ) = λg(X,Y ) for all horizontal vectors X,Y .

Proof. This is the special case T ≡ 0 of proposition A.14.

Corollary A.17. If the total space (M, g) of a Riemannian submersion π : M → B
is Einstein, then ŝ and |A|2 are constant on M , and š is constant on B.
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Proof. Tracing the first and last equations separately, we have

ŝ+ |A|2 = λdimF π∗š− 2|A|2 = λ dimB

In the second equation, π∗š is constant on each fiber, hence |A|2 is too, and finally
ŝ as well, by the first equation. Because all fibers are isometric, ŝ does not depend
on the fiber, and therefore both |A|2 and π∗š cannot, either. Thus, ŝ is constant on
M , as is |A|2. š is constant on B.

One of the main uses of the formalism of Riemannian submersions derives from the
fact that it gives a simple way of constructing new distinguished metrics from old
ones. This is done by means of the so-called canonical variation.

Definition A.18. Let π : M → B be a Riemannian submersion with metric g. The
canonical variation of g is the family {gt}t∈R+ of metrics obtained by “scaling the
fibers”, i.e. defined by

gt(U, V ) = tg(U, V ) gt(X,Y ) = g(X,Y ) gt(X,U) = 0

where X,Y are horizontal tangent vectors and U, V are vertical, as usual.

For every t ∈ R+, this defines a Riemannian submersion with the same horizontal
distribution H and a scaled metric along the fibers Fb: ĝ

t
b = tĝb. Note that, if (M, g)

has totally geodesic fibers, then (M, gt) does too (∀t ∈ R+).

Lemma A.19. Under the canonical variation, the corresponding tensors At and T t

are related to A and T as follows:

AtXY = AXY AtXU = tAXU T tUX = TUX T tUV = tTUV

where X,Y are horizontal and U, V are vertical.

Proof. We only prove the first two relations to demonstrate the general procedure.
Everything is proven using the Koszul formula. Recall that [X,U ] is vertical since
we may extend X to a basic vector field, and similarly U(g(X,Y )) = 0, since we
may take X,Y basic, so that g(X,Y ) = π∗ǧ(X,Y ), which is constant along fibers.
Keeping these things in mind, we find:

2g(AtXU, Y ) = 2gt(∇tXU, Y ) = −gt([X,Y ], U) = −tg([X,Y ], U) = 2g(t∇XU, Y )

= 2g(tAXU, Y )

Thus, we deduce that AtXU = tAXU . Similarly

2tg(AtXY,U) = 2gt(∇tXY,U) = gt([X,Y ], U) = 2tg(AXY,U)

shows that AtXY = AXY .
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In identical fashion, one can deduce more involved identities featuring ∇tAt and
∇tT t, expressing them in terms of A, T , ∇A, ∇T and powers of t. One should take
particular care in distinguishing orthonormal bases with respect to gt from those
orthonormal with respect to g to obtain the correct powers of t. We will assume
that T ≡ 0 from now on for simplicity, since this is the case of main interest to us.
After some computations, proposition A.14 yields:

Proposition A.20. Let π : M → B be a Riemannian submersion with totally
geodesic fibers. Then the Ricci curvature rt and the scalar curvature st of the
canonical variation are given by:

rt(U, V ) = r̂(U, V ) + t2(AU,AV )

rt(X,U) = tg((δ̌A)X,U)

rt(X,Y ) = π∗ř(X,Y )− 2t(AX , AY )

st = π∗š+
1

t
ŝ− t|A|2

where X,Y are horizontal and U, V are vertical.

An Einstein metric is a critical point of the total scalar curvature functional (at least
on a compact manifold), and therefore certainly a critical point of this functional
restricted to the canonical variation. We already showed that any Einstein metric
must have constant ŝ, š and |A|. Thus, after a natural normalization, the total
scalar curvature functional restricted to the canonical variation takes on the form of
the following function, defined on R+:

ϕ(t) =
vol(M, gt)

2/ dimM

vol(M, g)2/dimM
· st = t

dimF
dimM

(
π∗š+

1

t
ŝ− t|A|2

)
The critical points of this functional are found by solving a quadratic equation
(assuming that none of A, ŝ, š vanishes identically):

−|A|2(1 + c)t2 + cπ∗št− ŝ(1− c) = 0 c :=
dimF

dimM

The solutions are given by

t =
1

2|A|2(1 + c)

(
cπ∗š±

√
c2π∗š2 − 4ŝ|A|2(1− c)(1 + c)

)

We are primarily interested in the case where ϕ(t) has two critical points (with
t ∈ R+!). For this, it is first of all necessary that š > 0 and ŝ ≥ 0. Moreover, ŝ 6= 0
since otherwise the quadratic equation degenerates to a linear equation. Thus, ŝ > 0
and š > 0, and finally the discriminant must be positive, which is equivalent to the
condition

(dimF · π∗š)2 − 4ŝ|A|2 · dimB(dimB + 2 dimF ) > 0 (A.1)
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Plugging the expressions from proposition A.20 into proposition A.16 yields, after
some work (see [38, p. 152]), the following result:

Theorem A.21 (Bérard-Bergery). If π : M → B is a Riemannian submersion with
metric g with totally geodesic fibers, A 6≡ 0, and assume (A.1) holds. Then there
are two Einstein metrics in the canonical variation of (M, g) if and only if:

(i) δ̌A = 0.

(ii) Both ĝ and ǧ are Einstein metrics with positive Einstein constants λ̂ and λ̌.

(iii) There are constants µ, ν ∈ R such that (AU,AV ) = µg(U, V ) and (AX , AY ) =
νg(X,Y ), where U, V are vertical and X,Y are horizontal (note that |A|2 =
µdimF = ν dimB, and therefore ν, µ > 0).

(iv) The positive numbers µ, ν, λ̂ and λ̌ satisfy λ̌2 − 3λ̂(µ+ 2ν) > 0.
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Norm. Supér (4) 31 (1914), pp. 263–355.

[28] S.-s. Chern. “Minimal Surfaces in an Euclidean Space of N Dimensions”.
In: Differential and Combinatorial Topology (A Symposium in Honor of
Marston Morse). Princeton Univ. Press, Princeton, N.J., 1965, pp. 187–198.

[29] V. Cortés. “Alekseevskian Spaces”. Differential Geom. Appl. 6 (1996),
pp. 129–168.

[30] V. Cortés, ed. Handbook of Pseudo-Riemannian Geometry and
Supersymmetry. European Mathematical Society, Zürich, 2010.
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[47] H. Herrera and R. Herrera. “Â-Genus on Non-Spin Manifolds with S1

Actions and the Classification of Positive Quaternion-Kähler 12-Manifolds”.
J. Differential Geom. 61 (2002), pp. 341–364.

99



References

[48] F. Hirzebruch. “Komplexe Mannigfaltigkeiten”. In: Proc. Internat. Congress
Math. 1958. Cambridge Univ. Press, New York, 1960, pp. 119–136.

[49] F. Hirzebruch. Topological Methods in Algebraic Geometry. Springer-Verlag
New York, Inc., New York, 1966.

[50] F. Hirzebruch and K. Kodaira. “On the Complex Projective Spaces”. J.
Math. Pures Appl. (9) 36 (1957), pp. 201–216.
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