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bellissimo condividere con voi un’esperienza cos̀ı bella,

• Wes, because you reminded me to not undersell myself,

• la Banda della Tartina & Co. : Ceci, Romano, Rizzuto, More, Donato,
Batti, Mathilde, Sanghi, Gshesh, Pablo Esala, Sasha, Thomas, Daniel,
Giovanni, Benny, Leo and Mazzu, you are and have been great friends
and I could always count on you,

• Tiziana e Giulia, so che mi pensate sempre e non so come ringraziarvi
per il vostro sostegno,

• Frau Gritta, because. . . you know,

i



ii

• Davide, ti taggerei volentieri nella mia tesi, ma non so come si fa,

• Azu, come farei senza i tuoi consigli?

• Michelangelo, il nonno Vander, Massimo, Pamela e bimbe, e papà, per
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Abstract

The KATRIN experiment major task is to probe the effective electron
anti-neutrino mass with a sensitivity of 200 meV at 90% confidence level.
The KATRIN setup, along with an upgraded detector and readout system, is
suitable for keV-scale sterile neutrino search. The signature of a sterile neu-
trino in the tritium beta decay spectrum is a minuscule kink-like distortion.
To enable a sensitive search for this characteristic feature, an ultra-precise
modeling of the entire tritium beta spectrum is necessary. For this reason, a
novel semi-analytical, multi-dimensional convolution technique has been de-
veloped. It tracks both the energy and angular distribution of the electrons
as they leave the windowless gaseous tritium source of KATRIN.

In this thesis the idea and first results obtained with this new technique
will be deeply discussed. Furthermore, we will present the concept of how to
integrate the results in a more general simulation framework for a keV-scale
sterile neutrino search with KATRIN.
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Chapter 1

Neutrino Physics

Despite being one of the most beautiful and powerful theories in physics,
the Standard Model (SM) has still some flaws, pointing to a theory beyond
it. Baryon asymmetry in the universe, the existence of Dark Matter (DM)
and the discovery of neutrino oscillations are some of the major experimental
evidences not explained by the SM. Interestingly, all of them are connected
to neutrino physics which makes it a very promising research field.

In order to set the ground for our discussion, in this chapter I give
a general overview on the present status of neutrino physics. In section
1.1 I will highlight the major steps in neutrino physics history up to their
description in the SM. In section 1.2 I will discuss neutrino oscillations and
their mathematical description. Finally, in section 1.3 I will talk about the
absolute neutrino mass scale, its importance and possible ways to determine
it.

1.1 Discovery of neutrino and some history

The history of neutrino physics started alongside with the theory of
radioactivity. While the α and γ decay show discrete spectra, the electron
energy spectrum for single β decay was found to be continuous [Cha14].

This fact was in contrast with the then assumed form of the β-decay:

n→ p+ e−. (1.1)

where n stands for neutron, p stands for proton and e− stands for elec-
tron.In fact, in a two body decay, the kinematics constrains the final energies
of the produced particles to be definite. An other inconsistency of this as-
sumption is the violation of spin conservation.

1



CHAPTER 1. NEUTRINO PHYSICS 2

Figure 1.1: Continuous energy spectrum of the β-decay from radium.
Source: [Sco35]

1.1.1 Postulation

In order to solve these puzzles, in a famous letter to the nuclear physics
community in 1930 [Pau30], Pauli came up with the idea of introducing a
new neutral, (almost) massless fermion, which he initially called neutron.
This particle would then be responsible for taking away some energy from
the electron and therefore for the continuous spectrum of the decay.

1.1.2 Description

After the discovery of the neutron in 1932 by Chadwick, which could
not be Pauli’s particle because of its mass, this still undetected particle was
named by Fermi ”neutrino” (Italian diminutive of neutron). The correct
form of the β-decay was then

n→ p+ e− + ν̄e (1.2)

where ν̄e is the electron antineutrino because of lepton number conser-
vation. After a couple of years, Fermi established the theory of β-decay,
giving a theoretical explanation for the β spectrum [Fer34]. Fermi theory,
or V -A theory, is now regarded as a low energy effective theory of weak in-
teraction and it is still valid for low energy processes as the tritium β decay
taking place in the KATRIN (KArlsruhe TRItium Neutrino) experiment.
According to such a theory, the decay rate of the β-decay is given by
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Γ = 2πG2
F |〈f |Mfi |i〉|2

dN

dE
, (1.3)

where GF is the Fermi constant, describing the effective weak interaction
coupling, Mfi is the transition matrix element between the initial state |i〉
and final state |f〉 and dN

dE is the final state density. In 1.4.3 the general form
of Fermi’s golder rule is used to derive the beta spectrum used in KATRIN.

1.1.3 Electron antineutrino detection

Neutrinos participate only in the weak interaction, which makes them
very challenging to detect. This is why the first detection of electron an-
tineutrinos took place more than 20 years after their postulation. In 1956 at
the Savannah River Nuclear Power Plant in South Carolina, USA, a team
guided by Cowan and Reines measured for the first time a signal which could
be explained only by inverse β-decay [Cow56]

ν̄e + p→ n+ e+. (1.4)

The Savannah River detector consisted of liquid scintillator tanks inter
spaced with a Cadmium-loaded (Cd) water target (H2O and CdCl2). The
electron antineutrinos coming from a near nuclear reactor, that produced
an electron antineutrino flux of the order of 1013 ν̄e/(s · cm2), interact with
the protons in the water target producing a positron and a neutron. The
positron immediately annihilates with an electron producing two monoen-
ergetic gammas of Eγ = 511 keV (the mass of the electron). Instead, the
neutron takes some milliseconds to thermalize (i.e. lose energy) until it is
captured by the Cadmium. Subsequently, the excited Cadmium decays by
emitting a γ-ray. The prompt (from the positron) and the delayed (from
the neutron) light signals represent a distinct coincidence signature of an
electron antineutrino interacting in the detector 1.2.

1.1.4 Discovery of νµ

Just six years later, in 1962, at the Brookhaven Alternating Gradient
Synchrotron (AGS), Long Island, NY, Lederman, Schwartz and Steinberger
proved the existence of a second neutrino flavor: the muon neutrino. In this
experiment, a beam of 15 GeV protons hit a beryllium target producing π’s
which subsequently decay through the channels

π+ → antilepton + lepton neutrino, (1.5)

π− → lepton + lepton antineutrino. (1.6)

To identify the flavor associated with the pion decay, the flavor of the
charged lepton had to be detected. Pions and muons were then stopped by



CHAPTER 1. NEUTRINO PHYSICS 4

Figure 1.2: An electron anti-neutrino interacts with a proton in what is
known as inverse β-decay (point 1) to a positron and a neutron. The positron
immediately annihilates with an electron and subsequently decays into two
photons with an energy of 511 keV (point 2). A delayed gamma signal is
coming from the neutron capture (point 3). Figure from [Hub15].
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a steel wall. Muon and electron neutrinos fly instead towards a spark cham-
ber made of 10 t of aluminum where the electron showers produced by the
impinging electron neutrinos are quickly stopped by the aluminium plates
and muons produced by the impinging muon neutrinos make a track and go
through all aluminium plates. As only tracks from muons and no electronic
showers were observed, the conclusion was, that the neutrinos produced to-
gether with a muon, i.e. muon neutrinos, are intrinsically different from
electron (anti-)neutrinos.

1.1.5 Discovery of ντ

In the year 2000, 25 years after the discovery of the tau lepton, the tau
neutrino ντ was detected in the DONUT (Direct Observation of Nu Tau)
experiment at Fermilab [Kod01]. A proton beam of 800 GeV onto a tungsten
target was used to create a particle shower. A small fraction of the particles
decays into τ leptons, which in turn produce ντ ’s when they decay. After
filtering all particles but the ντ ’s, the ντ ’s are guided towards an emulsion
lead target. There they produce τ leptons, which, due to their short lifetime
(3 × 10−13 s), produce a short track in the emulsion. All decay products
of the τ , but the neutrinos, leave a track in the emulsion with a different
direction than the τ . The famous signature of τ neutrinos is therefore a kink
in the particle tracks.

1.1.6 Are there more?

At this point, the picture of leptons in the SM seems rather complete:
three charged leptons paired with their respective neutrinos (and antipar-
ticles of both). This leads to the natural question: are there any more
neutrinos? The answer is related to the invisible width of the Z boson reso-
nance and the answer was actually known before the ντ discovery. In short,
the Z boson shows up as a peak of the total cross section of electron positron
scattering. Measuring the Z peak one can get the total width Γtot and the
cross section at the peak σpeak. Splitting Γtot in visible (decay into leptons
and quarks) and invisible (decay into neutrinos), Γtot = Γvis + Γinv, one
then has Γtot − Γvis = Γinv = NνΓ(Z → νν̄), where Nν is the number of
active light neutrinos. In 1989, the three generation picture with Nν = 3
was established by the ALEPH experiment at the LEP collider at CERN
[ALE06], see figure 1.3.

1.1.7 Is this the final picture?

Up to this point of our discussion, neutrinos are included in the SM as
left-handed, neutral, (only) weakly interacting fermions. A right-handed
interacting component of the neutrino is excluded as observed in the Gold-
haber experiment of 1958 [Gol58]. This implies that the neutrinos in the
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Figure 1.3: Measurement of the hadron production cross section σhad around
the Z resonance as a function of COM Ecm. The curves indicate the pre-
dicted cross section for two, three and four neutrino species with SM cou-
plings and negligible mass. Figure from [ALE06].
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SM are massless (fermions get a mass via the Higgs mechanism, coupling
their right-handed part with the Higgs doublet and the SU(2)L-doublet).
This means that, as their leptons partners, neutrino flavor (or weak inter-
action) eigenstates and mass eigenstates coincide. As I will discuss in the
next section, this was found not to be the case.

1.2 Neutrino Oscillations

The discovery of neutrino flavor oscillations (NFO) represents a mile-
stone in neutrino physics. It implies that neutrinos are not massless, point-
ing clearly to physics beyond the SM. Correspondigly to the three neutrino
flavor states e, µ and τ , there are three neutrino mass states labelled with
1, 2 and 3. Assuming a vanishing mass for ν1, NFO results provide a lower
mass bound. In 1.2.1 I will discuss one of the first evidences of NFO and in
1.2.2 I will show their theoretical description.

1.2.1 Solar neutrino problem

The solar neutrino problem refers to the observed deficit of elec-
tron neutrinos coming from the nuclear reactions taking place in the sun’s
core. Electron neutrinos in the sun are mainly produced via the pp-chain
and CNO-cycle and their flux is roughly 6 · 1010/(cm2· s). The first experi-
ment aimed at detecting electron neutrinos from the sun was located in the
Homestake Gold Mine in Lead, South Dakota, led by Ray Davis Jr. [Dav94].
Since the neutrinos produced in the sun are antineutrinos, inverse β-decay
(νe + N(A,Z) → N(A,Z + 1) + e−, where A is the mass number, Z is the
atomic number and N(A,Z) is an atom with Z protons and A-Z neutrons)
must be used. For this purpose, Homestake was equipped with a tank of
600 t of perchloroethylene, containing the stable isotope of chlorine 37Cl as
neutrino target, producing the argon radioactive isotope 37Ar and electrons:

νe + 37Cl→ 37Ar + e−. (1.7)

The produced argon was then extracted from the target.37Ar decays then
via electron capture producing again an electron neutrino and an excited
state of 37Cl:

37Ar + e− → νe + 37Cl∗. (1.8)

The excited chlorine then emits then X-rays and Auger electrons which
are counted. Surprisingly, the observed number of neutrinos was less than
the one predicted by the Solar Standard Model (SSM) [Bah05] and this result
was confirmed by later experiments, e.g. GALLEX [GAL99] , SAGE [SAG02]
and Kamiokande [Kam96]. This either pointed towards a new SSM or to
NFO, i.e. electron neutrinos change their flavor flying from the sun to the
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Earth. However, the Homestake experiment was only sensitive to electron
neutrinos. Therefore, a new flavor-sensitive experiment was needed to look
for NFO. For this purpose, the Subdury Neutrino Observatory (SNO), a
detector located in the Creighton mine (INCO Ltd.), near Sudbury (Ontario,
Canada), was built. It consists of 1000 t of almost pure D2O contained
inside a spherical 12 m diameter acrylic vessel. Cherenkov light is detected
by photomultiplier tubes.

The SNO experiment detects solar neutrinos through the three reactions

νe +D → p+ p+ e−, (1.9)

να +D → n+ p+ να, (1.10)

να + e− → να + e−, (1.11)

where α denotes the flavor of the neutrino. The neutral-current (NC)
reaction of deuterium in equation 1.10 is extremely important for checking
the neutrino oscillation hypothesis of the solar neutrino problem, because
it is equally sensitive to all active neutrinos. Hence, the NC reaction can
measure the total flux of active neutrinos coming from the Sun.

The results from the first so called D2O phase (Phase 1) confirmed the
deficit of solar electron neutrinos observed previously. The NC measurement
of the total flux of active neutrinos demonstrated that about two electron
solar neutrinos out of three change their flavor to νµ or ντ on their way
from the center of the Sun to the Earth. These important results have been
confirmed by the more precise salt phase data (Phase 2). Hence, the results
of the SNO experiment have proved that the solar neutrino problem is due
to neutrino flavor transitions [SNO02].

1.2.2 Theoretical description of neutrino oscillations in the
vacuum

In this part I will describe NFO in the vacuum following [Giu07]. From
a mathematical point of view, NFO are described in the same way one
describes quark mixing with the CKM matrix in the quark sector of the SM.
This phenomenon is called mixing because what one sees at the beginning
and at the end are bound states of quarks (e.g. K and B), and neutrino
mixing is called oscillations because they actually propagate as free states
and the probability of changing flavor oscillates as a function of the travelled
distance, as I will show in the following. The reason why neutrinos oscillate is
based on the fact that the flavor eigenstates, i.e. the one that are produced
in a weak interaction, are not equal to the ones that propagate through
space-time, i.e. the mass eigenstates1. The physical idea one should have

1Idea: remember that when you write Schrödinger equation, you write an eigenvalue
problem HΨ = EΨ where H is the Hamiltonian, i.e. the energy, but energy is equal to
mass.
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in mind is that at a vertex of a Feynman diagram representing a weak
interaction, the generated neutrino has a definite flavor. As soon as it starts
propagating, it has an oscillating probability of changing flavor; so what is
actually “propagating” is a superposition of flavor eigenstates, each with its
weight, which is the mass eigenstate. As this now massive state flies, due to
oscillations, it may participate in another weak interaction with a different
flavor than the starting one.

Now I would like to give the mathematical description of NFO in the
vacuum. Let us denote the flavor eigenstates with να where α = e, µ, τ ,
and the mass eigenstates with νi where i = 1, 2, 3. I will follow the usual
description that is given in literature, i.e. I will treat neutrinos as quantum
mechanical plane waves. This treatment is obviously not correct and it can
be improved by treating them as localized wave packets or even quantum
fields. However, it turns out this is accurate enough. Flavor and mass
eigenstates are related by the so called Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) unitary matrix U = (Uαi), which is the analogue of the CKM
matrix:

νeνµ
ντ

 =

U∗e1 U∗e2 U∗e3
U∗µ1 U∗µ2 U∗µ3

U∗τ1 U∗τ2 U∗τ3

ν1

ν2

ν3

 (1.12)

If neutrinos are not Majorana particles2 , the PMNS matrix is parametrized
by three mixing angles θij and a Dirac CP violating phase δD:

U =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδD

0 1 0
−s13e

−iδD 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

(1.13)

where cij = cos θij and sij = sin θij . Let us consider a concrete example
in which an electron neutrino νe is produced at time t = 0. According to
equation (1.12) one has

|νe〉 = |ν(t = 0)〉 = U∗e1 |ν1〉+ U∗e2 |ν2〉+ U∗e3 |ν3〉 . (1.14)

Now, each of the massive neutrino states |νi〉 is an eigenstate of the

Hamiltonian H with the energy eigenvalue Ei =
√
~p2 +m2

i , where ~p is the

neutrino momentum and mi its mass:

H |νi〉 = Ei |νi〉 . (1.15)

The Schrödinger equation (~ = 1)

i
d

dt
|νi(t)〉 = H |νi(t)〉 (1.16)

2that is, they are not their own antiparticles
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implies that the massive neutrino states evolve in time as plane waves:

|νi(t)〉 = e−iEit |νi〉 (1.17)

Combining equation (1.14) and (1.17) one then has

|νe(t > 0)〉 = U∗e1e
−iE1t |ν1〉+ U∗e2e

−iE2t |ν2〉+ U∗e3e
−iE3t |ν3〉 . (1.18)

The neutrino state in equation (1.18) is not necessarily an electron neu-
trino. It is just the time evolution of what once was an electron neutrino, so
the notation |νe(t > 0)〉 should not confuse the reader. To see clearly how
neutrinos can change their flavor, it is better to calculate

Pαβ(t) := P (να→β(t)), (1.19)

i.e. the probability that the state at time t να(t) is found in the state νβ.
Using equation (1.18) and equation (1.12) two times I can write

|να(t)〉 =
∑
i

U∗αie
−iEit |νi〉 (1.20)

=
∑
i

U∗αie
−iEit

 ∑
β=e, µ, τ

Uiβ |νβ〉

 (1.21)

=
∑

β=e,µ,τ

(∑
i

U∗αie
−iEitUiβ

)
|νβ〉 (1.22)

Now from quantum mechanics one has

Pαβ = |〈νβ|να(t)〉|2 (1.23)

=

∣∣∣∣∣∑
i

U∗αie
−iEitUiβ

∣∣∣∣∣
2

(1.24)

=
∑
i,j

U∗αiUiβUαjU
∗
jβ exp[−i(Ei − Ej)t]. (1.25)

Using now the ultrarelativistic approximation3 pi = p = E, I get the
standard formula for the oscillation probability

Pαβ(L/E) =
∑
i,j

U∗αiUiβUαjU
∗
jβ exp

[
−i∆m2

ij

L

2E

]
, (1.26)

3Here is where it gets confusing, because quantum mechanics is not a relativistic theory,
I am describing neutrinos as plane waves as if they had the speed of light, despite their
mass.. but hold on! we are almost done! (see p.253 [Giu07])
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where ∆m2
ij = m2

i − m2
j , L is the distance between the source and the

detector (in ultrarelativistic approximation: L = t if c = 1), and E is the
neutrino energy. This probability is thus determined by the parameters in
the PMNS matrix, the two mass splittings and L

The general three neutrino mixing can be simplified considering that
the mixing angle θ13 is small compared to the other two. Equation (1.26)
reduces then to the most readable two neutrino mixing probability:

P (νe → νµ) = sin2(2θ12) sin2

(
∆m2

12L

4E

)
. (1.27)

Equation (1.27) shows more clearly that the amplitude of the oscillation
depends on the mixing angle, while the frequency on the squared mass dif-
ference.

NFO were a remarkable result in recent years research. However, as the
above formulas show, oscillation experiments are only sensible to the squared
mass difference and not to the actual absolute mass scale. Before diving into
the KATRIN experiment, whose goal is investigating the absolute mass scale
of the neutrino, let us give an overview of how the neutrino mass can be
introduced theoretically, experimental current limits and in which way one
can effectively discover it.

1.3 Neutrino Mass theory

NFO alone do not provide any information about the absolute scale of
neutrino mass. However, to proceed in our discussion, I must anticipate now
that neutrino mass is very small, at most in the eV scale, as I will discuss
later.

1.3.1 Higgs mechanism in the SM

In the SM it is a well established fact that all massive particles gain
their mass through the Higgs mechanism, which is a mechanism to get mass
terms in the lagrangian in a gauge invariant way. I focus here only on fermion
mass. At high energy (i.e. in the early universe) the gauge group of the SM
is (I do not consider the color charge here) SU(2)L × U(1)Y and the Higgs
potential has one minimum, where the Higgs field resides. Introducing in
the Lagrangian the so called Yukawa term (for simplicity, I write it just for
the electron flavor)

λeēRφ
†
(
νeL
eL

)
+ h.c. (1.28)

where λe is the Yukawa coupling for electrons, ēR is the right-handed part
of the electron field (gauge singlet), φ is the column Higgs complex SU(2)-



CHAPTER 1. NEUTRINO PHYSICS 12

doublet, and
(
νeL
eL

)
is the SU(2)L-doublet which takes part in the weak in-

teraction. At low energy (early universe transition: electroweak symmetry
breaking), the Higgs potential takes its typical Mexican hat shape and is
still SU(2)-symmetric. However, the Higgs field, choosing one of the min-
ima, breaks spontaneously the SU(2)-symmetry. Choosing a convenient
gauge, one can write this minimum as

φ0 ∝
(

0
v

)
, (1.29)

where v is the Higgs vacuum expectation value (VEV), and after some
algebra one gets

λev (ēReL + ēLeR) = λev ēe. (1.30)

A term like ψ̄ψ is a mass term in the Lagrangian of the SM for the field
ψ, so me ∝ λev. Measuring the Higgs VEV one then fine tunes the Yukawa
coupling, which is a parameter in the SM.

Now come the issues with neutrinos. There are two major problems.
First, to get a mass term, one needs the right-handed part of a fermion
field and, from the Goldhaber experiment in 1958, neutrinos were observed
to have only negative helicity which implies that they are only left-handed
(because they were assumed massless). Second, all charged fermions have
masses in the range from about 0.5 MeV (electron) up to 173 GeV (top
quark), so the respective Yukawa couplings span 6 orders of magnitude,
from λ ∼ 10−6 (for electron) to λ ∼ 1 (top quark) orders of magnitude.
There are many ways to address these issues and I present some of them
here. Whatever the solution is, it is obviously beyond the SM physics.

1.3.2 Neutrino mass term

In principle, one can introduce by hand a right handed neutrino com-
ponent νR. However, one can show that all its quantum numbers vanish so
it is a singlet under all SM interactions, that is why this is called sterile
neutrino. Assuming this νR exists, even if it is impossible to detect being
coupled only to gravity, then one could write the Yukawa coupling for neu-
trinos as in equation (1.28) (only for the electron neutrino for simplicity)
as4

λνe ν̄eRφ
T iσ2

(
νeL
eL

)
+ h.c. , (1.31)

4(1.31) looks different from (1.28) because one has to give mass to the upper component
of the SU(2)L-doublet
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where σ2 is the third Pauli matrix.
However, this is not very appealing because giving the smallness of neu-

trino masses, their Yukawa coupling would be all of the order of λν ∼ 10−13

leaving a big gap between the heaviest neutrino state and the electron. In
physics this is considered fine-tuning of the parameters and it is not very
nice. As a consequence, the question arises why the Higgs mechnanism is
good only for the MeV-GeV range and the ∼eV range. This fact points to
other mechanisms viable for neutrino mass. I describe here only the so-called
see-saw mechanism [Pet13].

See-saw mechanism

The main issue the Higgs mechanism has to address is the smallness of
neutrino mass. To do so, let us make the following observation. The mass
term one gets from the Yukawa coupling is called Dirac mass term, be-
cause it involves Dirac fields with left- and right-handed components. How-
ever, neutral fermions have the theoretical possibility of being Majorana
fermions. A fermion represented by the field

ψ =

(
ψL
ψR

)
(1.32)

is Majorana if ψR = ψcL, i.e. if it is equal to its own antiparticle. In
the SM this is only possible for neutrinos since they are the only neutral
fermions. Furthermore, if a fermion is Majorana, one can directly write a
mass term in the lagrangian without violating gauge invariance as Mψ̄RψR.
In the see-saw mechanism one introduces one or more right-handed heavy
neutrino field with the corresponding Majorana mass term. After symmetry
breaking, the mass terms in the Lagrangian look then like (ν = νe)

Lν,mass = mDν̄LνR +
M

2
ν̄RνR, (1.33)

where mD stands for Dirac mass and mM for Majorana mass, so left- and
right-handed parts mix. Thus, the mass eigenstates are those states that
diagonalize the matrix (

0 mD

mD M

)
. (1.34)

In the limit of mD �M , the two eigenvalues are

m1 ≈ mD, (1.35)

m2 ≈
m2
D

M
. (1.36)
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If the heavy neutrino mass is in the GeV scale, then m2 is in the eV
scale and can be interpreted as the SM neutrino mass.

Generalizing to the complete three flavor case, one can fine-tune the
three masses of heavy neutrino states to set the scale of light neutrinos.

However, no sterile neutrino has been detected yet.Other neutrino mass
generation mechanisms can be found in [Kin04].

1.4 Neutrino Mass: limits and determination

In this section I want to give an overview on the current limits on neu-
trino masses given by present experimental data and how it will be improved
in the future. The current best limit on neutrino mass comes from the Mainz
[Bon01] and Troitsk [Lob99] experiments and is given by

mν < 2 eV. (1.37)

An important question regarding neutrino masses is whether they are
hierarchical or degenerate. From oscillation experiments, it is known
that the numerical value of the difference of the squared masses is very
small (∆m2

12 ∼ 10−5eV2, ∆m2
23 ∼ 10−3eV2, so ∆m2

13 = ∆m2
12 + ∆m2

23).
Writing m2 and m3 as functions of m1

mi =
√
m2

1 + |∆m2
1i| i = 2, 3, (1.38)

one can see that if neutrino masses are in the eV scale, then they are degen-
erate (m1 ≈ m2 ≈ m3) because the m1 term in 1.38 dominates the ∆m2

1i

term; if instead neutrino masses lie in the sub-eV scale, then there is a pre-
cise hierarchy among them. However, having the mass splittings and not
knowing the sign of ∆m2

13, it is not clear whether the hierarchy is normal
(m1 < m2 < m3) or inverted (m3 < m1 < m2). Absolute neutrino mass
searches are then important to rule out one of the two scenarios, normal or
inverted.

If they lie in the eV scale, then they are degenerate. If they lie in the sub-
eV scale then they are hierarchical, either in normal or inverted hierarchy.

Unfortunately, it is important to stress, as I will discuss in the following,
that from cosmology, neutrinoless double β-decay (0νββ) and single β-decay
experiments one only gets upper bounds on an effective neutrino mass.

1.4.1 Cosmology

According to the current accepted cosmological model, the ΛCDM-model
[Ber03], the history of the Universe is the history of a very hot soup of in-
teracting particles, born at the Big Bang, that cools down while expanding.
Every time the expansion rate exceeds the collision rate for particular par-
ticle species, a freeze-out (or decoupling) takes place.
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Figure 1.4: Neutrino mass hierarchy and flavor content of mass eigenstates
for the two generic scenarios of normal (left) and inverted (right) hierarchy.
Figure from [Kin13].

A simple way to picture this scenario is thinking about a box full of
very fast interacting particles. If one expands slowly the box, the whole
plasma has the time to adapt to the distortion, so no decoupling occurs. If
one instead expands the box abruptly, then some of the particles will never
reach any other particle they can interact with, i.e. they will be decoupled
from the plasma.

The history of the Universe is then the history of subsequent decouplings
of all kinds of particles. The most famous decoupling, which is also one of the
most outstanding predictions of the ΛCDM-model, is the photon decoupling,
better known as Cosmic Microwave Background (CMB) radiation
[Alp48, Pen65]. It took place 300.000 years after the Big Bang leaving a
relic homogeneous (part per thousand) background of ∼400 photons/cm3 at
a temperature of 2.7 K.

Analogously to photon decoupling, the ΛCDM-model predicts neutrino
decoupling. When the Universe was only 1 s old (T ∼ 109 K, E ∼ 1 MeV),
these high energy, then relativistic, neutrinos would have frozen out from
thermal equilibrium leaving a density of about 336 neutrinos/cm3 in the
whole Universe. This means that neutrinos are the most abundant particles
in the Universe after photons. It is clear then that the knowledge of their
absolute mass scale is of major importance in determining their contribution
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to the matter density in the Universe. The contribution of relic neutrinos
Ων to the total energy density of the Universe Ωtot is given by

Ων =

∑
imνi

93.14h3 eV
(1.39)

where h is the dimensionless Hubble constant [Les12]. One see then that
cosmology is sensitive to the effective neutrino mass

mcosm =
∑
i

mνi . (1.40)

The best bound on this value comes from the Planck experiment [Pla14]
which sets

mcosm < 0.23 eV (95% C.L.). (1.41)

Unfortunately, due to their very low energy (sub-eV scale), these relic
neutrinos have not been detected yet. Furthermore, cosmological observa-
tions strongly rely on the underlying astrophysical models.

1.4.2 Neutrinoless double β-decay

In nature, there are some heavy nuclei (e.g.76Ge) for which a single β-
decay is energetically disfavoured, while a double β-decay

2n→ 2p+ 2e− + 2ν̄e (1.42)

is allowed. If the neutrino is a Majorana particle, i.e. its own antiparticle,
then it is in principle possible to observe the following decay mode, whose
Feynman diagram is shown in figure 1.5:

2n→ 2p+ 2e−. (1.43)

This rare decay, called neutrinoless double β-decay (denoted by
0νββ-decay), besides providing information on the neutrino mass, can also
tell us something interesting on neutrino nature. It violates lepton number
conservation and it would definitely be a proof for physics beyond the SM.

The rate of this very rare event is proportional to another effective (elec-
tron anti-)neutrino mass, called Majorana mass,

Γ0νββ ∝ mββ =

∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣ . (1.44)

Many experiments, like GERDA and Majorana Demonstrator
[GER06, MAJ14], are looking for a signal of this rare event, which would
reveal itself as a peak at the endpoint of the double beta decay spectrum. To
infer the parameter mββ from the data, the lifetime T1/2 of the process (1.43)
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Figure 1.5: Feynman diagram for the neutrinoless double β-decay. Two
neutrons decay simultaneously into two protons and two electrons via the W
boson by exchanging a virtual Majorana neutrino νm. Figure from [Sch13].

Figure 1.6: Energy spectrum of both electrons is shown for neutrinoless
(0ν) as well as for normal (2ν) double β-decay. The 0νββ-decay results in a
peak at the endpoint E0, which is broadened by the energy resolution of the
detector of here 5% and increased artificially for the shown example. Figure
from [Sch13].
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Figure 1.7: Energy spectrum of electrons from tritium β-decay normalized to
the endpoint E0. A non-zero neutrino mass (blue dashed line) would reduce
the maximal kinetic energy of the electron by mν . Figure from [Sch13].

is measured. Current results sets a lower bound of ∼1025 years for Tt/2
5,

which in turn implies an upper bound for the Majorana mass of 0.2 − 0.4
eV [GER13, Ago16].

However, these results rely on the assumption that the neutrino is a
Majorana particle and on detailed decay models.

A model-independent way of measuring the neutrino mass is indeed
needed and is presented in the following paragraph.

1.4.3 Single β-decay

Single β-decay experiments are the most model-independent way to mea-
sure neutrino mass, because they make only use of kinematics and energy-
momentum conservation. In such an experiment, one wants to measure the
β spectrum of the decay, i.e. the kinetic energy distribution of the produced
electrons. For neutrino mass searches, one needs only a high precision mea-
surement of the spectrum near the endpoint, that is the maximal kinetic
energy the electron can carry away. Being the energy divided between the
electron and the neutrino (and the daughter nucleus, but I will be more de-
tailed later), when the electron has almost all the kinetic energy, the neutrino
has enough energy only for its rest mass. Therefore, the kink-like signature
due to neutrino mass is more visible near the endpoint of the spectrum.

I want to derive now in more details the formula of the β-spectrum.

5as I once heard from GERDA people toasting: ”To nothing being detected!”
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Derivation of the β-spectrum

In this section I derive the differential spectrum of tritium β-decay closely
following [Dre13]. According to Fermis Golden Rule, the decay rate for a
β-decay is given by

Γ = 2π
∑∫

|M|2df (1.45)

where M is the transition matrix element and
∑∫

df represents the sum
(integral) over all possible discrete (continuous) final states f , respectively6.

First let us focus on the df term of formula (1.45). Let us define dn as the
number of different final states of outgoing particles inside a normalization
volume V into the solid angle dΩ with momentum in [p, p+ dp]. One has

dn =
V d3~p

h3
=

=
V p2dpdΩ

h3
= (E2

tot = m2 + p2 ⇒ pdp = EtotdEtot)

=
V pEtotdEtotdΩ

(2π)3
, (1.46)

where h is the Plank constant, which in natural units is equal to 2π, Etot

is the total energy (rest and kinetic) of the state n. The state density per
energy interval and solid angle will then be

dn

dEtotdΩ
=
V pEtot

(2π)3
. (1.47)

The mass of the daughter nucleus is much larger than the energies of
the two emitted leptons, so one can assume that the nucleus takes nearly no
kinetic energy, but balances all momenta (I will consider the recoil energy
of the nucleus later). Therefore, one can write only the state density of the
electron and the neutrino as

ρ(Ee, Eν ,dΩe, dΩν) =
dne

dEedΩe

dnν
dEνdΩν

=
V 2peEepνEν

(2π)6

=
V 2
√
E2
e −m2

eEe
√
E2
ν −m2

νEν
(2π)6

, (1.48)

where I have used formula (1.47) for the electron and neutrino energy Ee
and Eν , respectively.

62 and π were defined in (1.3)
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Let us now focus on the matrix element M of formula (1.45). It can be
divided into leptonic and nuclear part as

M = GF cos θCMlepMnucl (1.49)

where θC is the Cabibbo angle.
Let us focus here on allowed or superallowed transitions like those

of tritium. In this kind of decays, none of the leptons carries away angular
momentum, both leptons are treated as plane waves and the leptonic matrix
element is just the product of the probability of finding the neutrino at the
nucleus, which is 1/V , and the probability of finding the electron at the
nucleus, which is instead 1/V · F (E,Z ′):

|Mlep|2 =
1

V 2
F (E,Z ′). (1.50)

F (E,Z ′) is the Fermi function describing the Coulomb interaction of the
β-electron and the daughter nucleus with atomic number Z ′.

In an allowed or superallowed transition, Mnucl is independent of the
kinetic energy of the β-electron and the coupling of the lepton spins to the
nuclear spin is usually contracted into this term. The nuclear matrix element
of an allowed or superallowed transition can be divided into a Fermi part
(∆Inucl = 0) and into an Gamov-Teller part (∆Inucl = 0,±1, but no Inucl =
0→ Inucl = 0). In the former case, the spins of electron and neutrino couple
to S = 0, in the latter case to S = 1. What remains is an angular correlation
of the two outgoing leptons. Since charge current weak interactions like β-
decay maximally violate parity, they prefer, depending on velocity, negative
helicities for particles and positive helicities for antiparticles. Therefore, the
momenta or directions of the leptons are correlated with respect to their
spins and therefore to each other. This implies a (β, ν) angular correlation
factor

1 + a(~βe · ~βν) (1.51)

with the electron velocity βe = ve/c and the neutrino velocity βν = vν/c.
The angular correlation coefficient a amounts to a = 1 for pure Fermi tran-
sitions and to a = −1/3 for pure Gamov-Teller transitions within the SM
[Sev06].

The phase space density (1.48) is distributed over a surface in the two-
particle phase space which is defined by a δ-function conserving the decay
energy. Every decay has its decay channels, with a certain probability Pi of
taking place. As a consequence, one can write the decay rate as

Γ =
∑
i

PiΓi (1.52)

To start I compute the partial decay rate Γ0 from equation (1.45):
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Γ0 = 2πP0

∫
Ee,Eν ,Ωe,Ων

|GF cos θCMlepMnucl|2dnednν

=
P0

(2π)5

∫
Ee,Eν ,Ωe,Ων

G2
F cos2 θCF (E,Z ′)|Mnucl|2 ·

·
√
E2
e −m2

e · Ee ·
√
E2
ν −m2

ν · Eν · (1 + a(~βe · ~βν)) ·
·δ(Q− (Ee −me)− Eν − Erec)dEedΩedEνdΩν . (1.53)

Q is the Q-value of the process, i.e. the energy released in the decay.
According to the δ-function in equation (1.53), this energy is distributed
into the kinetic energy of the electron E := Ee − me, the total energy of
the neutrino Eν and the recoil energy of the daughter nucleus Erec. The
maximal kinetic energy an electron can take from Q for the case of zero
neutrino mass is called endpoint energy E0 which is defined by a vanishing
neutrino energy Eν :

E0 = max
mν=0

E. (1.54)

A correct integration over the unobserved neutrino variables in (1.53)
has to respect the (β, ν) angular correlation factor (1.51), which also has
to be considered when calculating the exact recoil energy of the nucleus
Erec. If one assumes that the β-electrons of interest have a certain minimal
kinetic energy Emin, then one can calculate the range of recoil energies of
the daughter nucleus of mass mdaughter: the recoil energy Erec is bound from
above by the case in which the outgoing electron takes the maximum kinetic
energy E0 (to understand this, think of it as the electron and the nucleus
recoiling back to back: if the electron takes all the kinetic energy it can,
then it will have 3-momentum ~pe and ~prec = −~pe)

Erec ≤ Erec,max

:=
p2

max

2mdaughter

=
(me + E0)2 −m2

e

2mdaughter

=
E2

0 + 2meE0

2mdaughter
(1.55)

and from below by the case, in which the electron of kinetic energy Emin

is emitted opposite to the direction of the neutrino, which has in this case
a momentum pν = Eν = E0 − Emin (neglecting for a moment the nonzero
value of the neutrino mass)
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Erec ≥ Erec,min

:=
(pe − pν)2

2mdaughter

=
(
√

(me + Emin)2 −m2
e − (E0 − Emin))2

2mdaughter

=

(√
E2

min + 2meEmin − (E0 − Emin)
)2

2mdaughter
. (1.56)

Being mdaughter very large for every electron energy below the endpoint
E0, according to (1.55) and (1.56) the recoil energy Erec does not change
much. A fortiori, in the region of interest below the endpoint, one can
assume Erec = const and (1.54) becomes

E0 = Q− Erec. (1.57)

Integrating then over the angles yields through (1.51) an averaged nu-
clear matrix element. Furthermore, one has to sum over all final states. For
the β-decay of an atom or a molecule it is a double sum: one summation
runs over all neutrino mass eigenstates mi with probabilities |Uei|2 which
are kinematically accessible (mi ≤ E0). The second summation runs over
all electronic final states of the daughter system each of which has proba-
bility Pj and excitation energy Vj . These include excitations of the electron
shell, but also, in the case of β-decaying molecules, which is the case for
KATRIN, rotational and vibrational excitations. The latter are caused by
the sudden change of the nuclear charge from Z to Z + 1 which requests a
rearrangement of the electronic orbitals of the daughter atom or molecule
and the interatomic distances in case of a molecule. They give rise to shifted
endpoint energies. Defining

ε := (E − E0), (1.58)

the total neutrino energy amounts to Eν,j = ε− Vj if the excitation energy
is Vj .

I am interested in writing a formula for the differential energy spectrum

dN

dtdE
=

dΓ

dE
(1.59)

which gives the number of counts per second per energy 7.

7However KATRIN measures the integral energy spectrum, i.e. the number of counts
per fixed retarding potential. I will go into details later.
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One can read the differential spectrum directly from (1.53) without per-
forming the second integration over E. Using (1.58) and summing over the
final states I get

dΓ

dE
= C · F (E,Z ′) · pe · (E +me) ·

√
(E +me)2 −m2

e ·

·
∑
i,j

|Uei|2 · Pj · (ε− Vj) ·
√

(ε− Vj)2 −m2
i (1.60)

where C =
G2

F cos2 θC|〈Mnucl〉angles|2
2π3 and a Θ-function Θ(ε−Vj−mi) to confine

the spectral component to the physical sector is assumed.
Considering now the fact that up to now one has not enough sensitivity

at our disposal to resolve the three neutrino mass eigenstates, the unitarity
of the PMNS matrix and that m2

i � (ε− Vj)2 , equation (1.60) becomes

dΓ

dE
= C · F (E,Z ′) · pe · (E +me) ·

√
(E +me)2 −m2

e ·

·
∑
j

Pj · (ε− Vj) ·
√

(ε− Vj)2 −m2
β (1.61)

where

m2
β =

∑
i

|Uei|2m2
i (1.62)

is the so called effective electron anti-neutrino mass, an incoherent sum
of neutrino masses, where, in contrast to mββ , no cancellations can occur.
One can immediately see that, contrarily to 0νββ experiments, single β-
decay experiments are not sensitive to the Majorana nature of the neutrino,
because any eventual Majorana phase in the PMNS matrix is wiped out by
the modulus over Uei. This fact stresses particularly the complementarity
of the approaches, from cosmology to laboratory experiments.

1.4.3.0.1 Tritium β-decay Let us now highlight how tritium as a β
emitter impacts the spectrum (1.61). In the next chapter, I will see addi-
tional reasons to use tritium in the KATRIN experiment.

Tritium β-decay is the following process

3H→ 3He+ + e− + ν̄e. (1.63)

Tritium has a half-life of 12.3 y. Tritium and Helium-3 are mirror nuclei
of the same isospin doublet; therefore, the decay is superallowed. Conse-
quently, the nuclear matrix element for tritium is close to that of the β-
decay of the free neutron and amounts to |M2

nucl(tritium)|2 = 5.55 [Rob88].
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Figure 1.8: Expanded β-spectrum of an allowed or superallowed β-decay
around its endpoint E0 for mν = 0 (red line) and for an arbitrarily chosen
neutrino mass of mν = 1 eV (blue line). In the case of tritium, the gray-
shaded area corresponds to a fraction of 2 · 10−13 of all tritium β-decays.
Figure from [Dre13].

Tritium is a good compromise between a long half-life and a low endpoint
(18.575 keV). Its simple electronic structure allows us to measure the the
tritium β spectrum with small systematic uncertainties. The recoil correc-
tion for tritium is not an issue. Up to now all tritium β-decay experiments
used molecular tritium, which gives a maximal recoil energy to the daughter
molecular ion of Erec,max = 1.72 eV. Even for the most sensitive tritium
β-decay experiment, the KATRIN experiment (see next chapter), the max-
imum variation of Erec over the energy interval of investigation (the last 30
eV below the endpoint) only amounts to Erec = 3.5 meV. It was checked
[Mas07] that this variation can be neglected and the recoil energy can be
replaced by a constant value of Erec = 1.72 eV, yielding a fixed endpoint
according to (1.57).

Concerning the calculation of the electronic final states with energies Vj ,
one has to take into account that in reality one works with molecular tritium
decay

T2 → (3HeT)+ + e− + ν̄e. (1.64)

Its wave functions are much more complicated, since in addition to two
identical electrons, they comprise also the description of rotational and vi-
brational states, which may be excited during the decay. The first group
of excited electronic states starts at around Vj = 25 eV. Therefore, excited
states play almost no role for the energy interval considered for the KATRIN
experiment: only the decay to the ground state of the (3HeT)+ daugh-
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ter molecule, which is populated with about 57% probability, has to be
taken into account. Due to the nuclear recoil, however, a large number of
rotational-vibrational states with a mean excitation energy of 1.7 eV and a
standard deviation of 0.4 eV are populated. These values hold for a pure T2

source without contamination by other hydrogen isotopes. Fortunately, a
contamination of the T2 molecules by DT or HT molecules does not matter
in first order8.

In conclusion, for a sufficiently precise formula for the decay of molecular
tritium near the endpoint, one can assume P0 = 1, Pj = 0 ∀j ≥ 1 and
Vj = 0 ∀j yielding

dΓ

dE
= C · F (E,Z ′) · pe · (E +me) ·

√
(E +me)2 −m2

e ·

·(E0 − E) ·
√

(E0 − E)2 −m2
β (1.65)

In the next chapter I will describe the measuring principle and the ex-
perimental setup of the next generation KATRIN experiment for neutrino
mass determination.

8Shift of the mean rotational-vibrational excitation of HT with respect to T2 is com-
pensated by a corresponding change of the nuclear recoil energy of HT with respect to the
1.5 times heavier T2 molecule.



Chapter 2

The KATRIN experiment

The KArlsruhe TRItium Neutrino experiment (KATRIN) is a large-
scale tritium β-decay experiment, whose main goal is to determine the effec-
tive electron anti-neutrino mass, as defined in (1.62) in a model-independent
way. It uses high precision spectroscopy of the β electrons produced in the
decay close to the endpoint E0. After 3 years of data taking, KATRIN will
reach a neutrino mass sensitivity of 200 meV (90% C.L.), improving current
laboratory limits (1.37) by one order of magnitude.

In this chapter, I will give an introduction to the measurement princi-
ple of KATRIN and an overview on the whole experimental setup. I will
conclude with a discussion about sources of statistical and systematic uncer-
tainties. More details about KATRIN, complementing the outline given in
this chapter, can be found in the original KATRIN design report [KAT05].

2.1 Measurement principle: MAC-E filter

A finite effective electron antineutrino mass reduces the endpoint of the
spectrum by a tiny amount (∼ eV). In order to detect this tiny distortion,
the spectrometer has to act as an electrostatic filter transmitting only the
electrons lying in the region of interest. The filtering technique used in KA-
TRIN is the so called Magnetic Adiabatic Collimation with Electro-
static filtering, shortly MAC-E filtering. The basis of a MAC-E filter
is an axially symmetric magnetic guidance field reaching from the source
to the detector, created by multiple sequentially arranged superconducting
magnets. In this section, I want to describe the physics of a MAC-E filter.
I will give a more quantitative description in the next section.

The MAC-E filter is for the β electrons produced in the source what
a hill is for rolling balls: a barrier they overcome only if they have enough
kinetic energy. This comparison is helpful, but obviously not quite accurate.

26
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Figure 2.1: Pictorial view of a β-decay in the source.

Magnetic guidance

A β electron is produced at a random point in the source, which is a
10 m long tube, with a random polar angle θ and a random kinetic energy1

E. I will denote these quantities without any subscript s, assuming that the
notation E, θ means E, θ in the source at generation time.

The polar angle θ is defined as the angle between the momentum of the
electron p and the tube axis2, which I set as the z axis of our coordinate
system

cos θ =
p · ẑ
|p|

(ẑ is the unit vector generating the z axis). (2.1)

The kinetic energy is related to the momentum via the non-relativistic3

relation E = p2

2me
.

Splitting the momentum into a parallel and a transversal component
p = p‖ + p⊥

4, I can also formally split the kinetic energy into parallel and
transversal kinetic energy5:

E = E‖(θ) + E⊥(θ) = E cos2 θ + E sin2 θ =
p‖

2

2me
+

p⊥
2

2me
(2.2)

The source is set to a uniform magnetic field Bs. Therefore, a β electron
experiences a Lorentz force F = q(v⊥ × Bs), where q is the charge of the
electron and v⊥ is the transversal component of its velocity v = v‖ + v⊥,
that guides it through the source towards the spectrometer6 in cyclotron

1Following the distribution given by the β spectrum.
2or the magnetic field lines, which in this case are parallel to the tube axis
3We are in a non-relativistic regime since the electron mass (∼500 keV) is much higher

than the highest allowed kinetic energy E0
4p‖ = |p| cos θ ẑ
5energy is a scalar, but there is no problem in doing this
6or towards the rear wall
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Figure 2.2: Cyclotron motion of a β electron in the source. Figure from
[Gro15]

motion with radius7

r =
m|v⊥|
qBs

=

√
2meE⊥
qBs

. (2.3)

Electrostatic filtering

The β electrons that make their way out of the source will eventually
enter the spectrometer. Since we are interested in the endpoint region of the
spectrum, only the electrons with kinetic energy in this region have to be
selected. This is achieved by setting the spectrometer vessel on negative high
voltage whose value is about −18.6 kV at the center of the spectrometer.
This creates a symmetric potential barrier with its maximum in the center
of the spectrometer, the so called analyzing plane. As the electric field
is aligned parallel to the magnetic field lines, only the longitudinal energy
E‖ of the electrons can be filtered. Considering that only ∼ 10−13 of the β
electrons lie in the region [E0 − 1eV, E0] and that nearly all of them have
a significant fraction of their kinetic energy in the transversal component,
one has to find a way to transform as much transversal energy as possible
into parallel energy, i.e. reduce the polar angle in the analyzing plane as
much as possible, to have the highest possible statistics. The reason one
uses the electrostatic filtering it to perform an integral measurement of the
spectrum, that is, a measure of counts per second at various voltages.

Magnetic Adiabatic Collimation

The solution to this problem is provided by the magnetic adiabatic col-
limation technique, which is implemented in the KATRIN setup.

Keeping small the magnetic and electric field gradients within a cyclotron
length of the electron

7this radius is small enough. It is at most ∼ 10−4m, while the diameter of the source
tube is 90 mm
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Figure 2.3: MAC-E filter principle. Superconducting magnets (green) pro-
duce a guiding field which is minimal in the center of the spectrometer. The
magnetic field gradient transforms the electrons (red) transversal momen-
tum into longitudinal momentum as indicated by the momentum arrows in
the lower part of the figure, as the magnetic moment remains constant along
the trajectory that is shown in exaggerated size. The electric field (blue)
acts on the longitudinal energy E‖ only, filtering out those electrons with
E‖ < qU0. Figure from [Wan13].
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∆B

B
� 1,

∆E

E
� 1, (2.4)

one can be sure that the magnetic moment of the electron is constant and
given by

µ := I · S
=

qv⊥
2πr
· πr2

=
qv⊥r

2
[using eq. (2.3)].

=
mv2
⊥

2B

=
E⊥
B

= const (2.5)

in non-relativistic approximation. The constraint in equation (2.4) is called
adiabatic hypothesis. It ensures that there is no abrupt change in the
magnetic (or electric) field within a cyclotron length, which would lead to
a chaotic motion of the electron in the spectrometer. The requirement of
adiabatic motion of the electrons constrains the length of the spectrometer.

According to equation (2.5), dropping the magnitude of the magnetic
field, the transversal kinetic energy will be transformed into parallel kinetic
energy, because of energy conservation. As this conversion takes place at
the same time as the electrostatic potential reduces the longitudinal kinetic
energy component E‖, the interplay between magnetic field and electric
potential needs to be adjusted and optimized so that electrons confront the
electrostatic barrier after the conversion E⊥ → E‖ has already occurred.
All the electrons that have not enough kinetic energy in their longitudinal
component are back reflected in the direction of the rear wall.

Magnetic mirroring

If on one hand β electrons are reflected back by the retarding potential in
the spectrometer, on the other hand they can be reflected magnetically even
before in what is known as magnetic mirroring. Let us briefly describe
it. In the KATRIN setup between the source and and the spectrometer,
there is a magnet, called pinch magnet, with generates a magnetic field of
magnitude Bp & Bs, where Bs is the magnitude of the magnetic field in the
source. According to equation (2.5) one has

E⊥,p(θp)

Bp
=
E⊥(θ)

Bs
, (2.6)

or
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sin2(θp)

Bp
=

sin2(θ)

Bs
, (2.7)

where p stands for pinch magnet (or any point). An electron is back reflected
at the point p, if θp = 90◦ and transmitted if θp < 90◦, regardless of the initial
kinetic energy E. Thus, using equation (2.7), an electron is transmitted
beyond the pinch magnet if

θ < θmax := arcsin

√
Bs

Bp
. (2.8)

The angle θmax is called acceptance angle. In nominal KATRIN mode,
one has Bs = 3.6 T and Bp = 6 T at the pinch magnet so that θmax = 51◦.
The magnetic field at the pinch magnet is set such that one gets this value.
It might seem contradictory that one lowers the statistics of two thirds. The
reason to do this in KATRIN is because electrons starting with a large polar
angle travel a longer path (due to cyclotron motion) through the source,
increasing their synchrotron losses and the scattering probability with the
gaseous source, enhancing then the systematic uncertainties.8

Energy resolution

Ideally, one would set Ba to zero to transform E⊥ completely into E‖
at the analyzing plane. However, this is not possible for a simple technical
reason. The conservation of magnetic flux imposes the further constraint
Bs · As = Ba · Aa, where Ai is the cross sectional area at point i = s,a, and
Aa cannot be infinitely large. The conservation of magnetic flux sets then
the radius of our spectrometer. This also implies that, unless a β electron
is generated with no polar angle, there is always a part of its kinetic energy
left in the transversal component at the analyzing plane, which cannot be
analyzed. Therefore, some electrons, which were born with a kinetic energy
in our region of interest, need a surplus energy, which depends on the polar
angle, to overcome the potential barrier. In other words, one cannot resolve
all the interesting electrons, because some of them are back reflected due to
their non-zero transversal energy component at the analyzing plane. The
technical challenge is then to have the best E⊥ → E‖ conversion possible,
or, better, to have the highest possible energy resolution.

Let us illustrate how this works.
After the pinch magnet, if θ < θmax, a β electron enters the spectrometer

with kinetic energy E and polar angle θp. Here the electrical potential U is

8 Another reason is that, letting only the electrons with polar angles less than 51◦

entering the spectrometer, in the worst case scenario one has E⊥ = E sin θmax at the
entrance of the spectrometer and it is easier to convert this energy into longitudinal,
instead of the whole E.
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non zero9 and it decreases from 0 at the entrance down to Ua . −18.6 kV at
the analyzing plane. The variable Ua is very important in KATRIN because
one performs an integral measurement of the spectrum at different retarding
potential Ua.

This electron is transmitted through the analyzing plane if

E‖,a ≥ 0. (2.9)

Considering the conservation of total energy E = Ea +qUa one can write

E‖,a ≥ 0⇔ E ≥ qUa + E⊥,a (2.10)

From this equation one can see that the surplus energy our electron needs
is exactly E⊥,a. Using the conservation of magnetic moment for adiabatic
motion one can express it as

E⊥,a = E sin2 θa = E
Ba

Bp
sin2 θp = E

Ba

Bs
sin2 θ. (2.11)

This surplus depends then on the initial kinetic energy and polar an-
gle. In the worst case, an electron needs the highest surplus energy ∆E,
called energy resolution, when it has the maximal kinetic energy E0 all
distributed in the transversal component (θp = 90◦)

∆E := max
E,θ

E⊥,a = E0
Ba

Bp
. (2.12)

In normal KATRIN mode one has ∆E = 0.93 eV.
Combining the transmission condition (2.10) with equation (2.11), one

can derive useful information:

• if one fixes the kinetic energy E, then the transmission condition turns
into a constrain on the initial polar angle, namely

sin2 θ ≤ Bs

Ba

(
E − qUa

E

)
. (2.13)

or, when it makes sense10,

θ ≤ θtr := arcsin

√
Bs

Ba

(
E − qUa

E

)
. (2.14)

An electron starting with energy E is transmitted at the analyzing
plane only if θ ≤ θtr.

9Whereas it is set to zero in the source and at the pinch magnet.
10basically always in the case of KATRIN, since E & qUa
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• if one fixes the initial polar angle θ (or equivalently θp), then the
transmission condition turns into a constrain on the initial kinetic
energy, namely

E ≥ Etr :=
qUa(

1−
Ba

Bp
sin2 θp

) =
qUa(

1−
Ba

Bs
sin2 θ

) (2.15)

This formula shows precisely the meaning of the energy resolution. In
fact, for an electron generated with maximal polar angle (θ = θmax,
i.e. θp = 90◦), one has that

Etr =
qUa(

1−
Ba

Bp

) ≈ (1 +
Ba

Bp

)
qUa ≈ qUa + ∆E, (2.16)

which shows that the energy resolution is exactly the surplus energy
needed to overcome the potential barrier.

Transmission function

Following [Gro15] I want to compute here the transmission function
which I will use in the following and in section 2.3. It is defined as the
probability that an electron, starting with a certain initial kinetic energy E
and polar angle θ, passes the analyzing plane set at a potential Ua

11.
If one fixes E and θ, then it is just

T (Ua) := P (E > Etr(Ua)) = Θ(E − Etr(Ua)) =

{
1 E > Etr(Ua)

0 E < Etr(Ua)
. (2.17)

If instead the initial kinetic energy follows a distribution whose density
is g(E), then one has

T (Ua) =

∫ ∞
Etr(Ua)

g(E)dE. (2.18)

Finally, if also the polar angle is randomly distributed with density ω(θ),
one has

T (Ua) =

∫ ∞
Etr(Ua)

(∫ θtr(E,qUa)

0
ω(θ)dθ

)
︸ ︷︷ ︸

=: t(E, qUa)

g(E)dE. (2.19)

11or equivalently as the fraction of electrons starting with a certain initial kinetic energy
E and polar angle θ, that passes the analyzing plane set at a potential Ua
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The inner integral can then be seen as a weighting factor for each single
energy E of the energy distribution g(E). The function t(E, qUa)12 is also
referred to as transmission function, but depending on the initial energy13.

Let us consider now our concrete case. The angular distribution in the
source is assumed to be isotropic, which implies

ω(θ)dθ = sin θdθ. (2.20)

The transmission function becomes then

t(E, qUa) = 1− cos(θtr(E, qUa))

[using eq.(2.14) and cos
(
arcsin

√
x
)

=
√

1− x]

= 1−

√
1−

(
E − qUa

E

)
Bs

Ba
. (2.21)

As the term in the square root can be negative or larger than one, both
implying unphysical results, three cases must be distinguished:

t(E, qUa) =



0 E − qUa < 0

1−

√√√√1−

(
E − qUa

E

)
Bs

Ba
0 < E − qUa < E

Ba

Bs

1 E − qUa > E
Ba

Bs

. (2.22)

It is zero, if the surplus energy of the electrons is negative, as one might
expect. As soon as the starting energy is as large as the retarding poten-
tial, electrons with zero polar angles are transmitted. Electrons with larger
polar angles are transmitted when the surplus energy increases, until finally
all electrons are transmitted. This will happen once the surplus energy is

larger than the energy resolution (at energy E), which is ∆E(E) = E
Ba

Bp
.

Considering that Bp > Bs, electrons starting with a large polar angle in
the source will not reach the detector, as they are reflected magnetically.
not transmitted. Therefore, the transmission function stops rising after all
electrons with polar angles below θmax are transmitted, which happens at a
surplus energy of ∆E(E). A normalization can then be applied to make sure
that the transmission function is a cumulative distribution function (i.e. a
probability), resulting in

12note that actually t(E, qUa) ≡ t(E − qUa) and θtr(E, qUa) ≡ θtr(E − qUa)
13in other KATRIN theses it is called still T
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Figure 2.4: Transmission function for an isotropic source and the KATRIN
design values of Ua = 18.6 kV, Bs = 3.6 T, Ba = 3 · 10−4 T and Bp = 6
T. The transmission starts at a surplus energy of Estart − qUa = 0 eV. For
larger surplus energies accordingly electrons with larger starting angles are
transmitted until the full transmission is reached at a surplus energy of
E = 0.93 eV. Figure from [Gro15]

t(E, qUa) =



0 E − qUa < 0

1−

√
1−

(
E − qUa

E

)
Bs

Ba

1−
√

1− Bs

Bp

0 < E − qUa < ∆E(E)

1 E − qUa > ∆E(E)

. (2.23)

For more details about the transmission function see [Gro15].

Response function

The transmission probability as a function of starting energy for a given
retarding potential is given by t(E, qUa). However, this simple description
of is only valid to first order, as multiple effects may change the transmission
probability of electrons.
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First, the electric potential has a radial dependency at the analyzing
plane. Second, the magnetic field in the source is not constant. Con-
sequently, the maximal polar starting angle is also not constant over the
source region, which leads to the necessity of summing up multiple trans-
mission functions and weighting them according to the corresponding tri-
tium density. Third, the acceleration of charged particles in electromagnetic
fields leads to energy loss due to synchrotron radiation. Although the max-
imal radiative energy losses are less than 100 meV (∼12 meV in the source,
∼130 meV in the transport section), the shape of the transmission function
gets modified significantly. All these modifications and their impacts are
deeply discussed in [Gro15].

Finally, and most importantly, the β electrons scatter off tritium molecules
in the source, losing energy at each collision and only about 40% of all elec-
trons reach the analyzing plane without any inelastic scattering (predomi-
nantly in the source). The scattered electrons consequently need a higher
starting energy E to be transmitted.

A better approximation of the transmission probability is then the so
called response function, which takes into account possible collisions in
the source. In order to compute it precisely, one needs to know with high
precision the average probability of scattering i times Pi and the energy-loss
function (i.e. the probability density of losing energy ε in a collision), given
by

f(ε) =
1

σtot,inel
· dσinel

dε
(2.24)

The response function is then given by

R(E, qUa) = P0 · t(E, qUa) +

P1 · (t ∗ f)(E, qUa) +

P2 · (t ∗ [f ∗ f ])(E, qUa) +

· · · (2.25)

where14

(t ∗G)(E, qUa) =

∫ E

0
t(E − ε, qUa)G(ε)dε, (2.26)

for any function G, and

(f ∗ f)(ε) =

∫
f(ε− η)f(η)dη. (2.27)

14note also that R(E, qUa) ≡ R(E − qUa)
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Figure 2.5: Response function as function of the surplus energy E− qU0 for
an isotropic source with θmax = 50.77◦ and a fixed spectrometer potential
of U0 = 18.55 kV. An inelastic cross section of σtot,inel = 3.4 · 10−22 m2 and
a column density of ρd = 5 · 1021 m−2 has been used for the calculation. As
only P0 = 0.418 of all electrons leave the source without experiencing any
inelastic scattering on tritium molecules, the response function rises only to
that level and stays at that plateau until after about 10 eV surplus energy
the first scattered electrons get transmitted, as this is the minimal energy
loss in inelastic scattering. Figure from [Gro15]
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Figure 2.6: The 70 m long beamline of the KATRIN experiment. (A) The
rear section, used for calibration of the experiment and monitoring of the
source; (B) the WGTS, a windowless gaseous tritium source; (C) the trans-
port section, used for differential and cryogenic pumping of tritium and
magnetic guidance of the signal electrons to the spectrometers; (D) the pre-
spectrometer, (possibly) used for rejection of low energy electrons; (E) the
main spectrometer used for precise spectroscopy of the signal electrons; (F)
detector section. Figure from [Gro15]

I will use all these tools in section 2.3 where I will discuss KATRIN
sensitivity.

For a detailed calculation of the response function see [Gro15]

2.2 Experimental setup

In order to detect the tiny distortion near the endpoint of the tritium
spectrum due to a non-zero effective electron antineutrino mass, the KA-
TRIN experiment implements a high luminosity (i.e. high count rate) stable
molecular tritium source combined with a variable retarding potential that
act as a high pass filter. Measuring the count rates at different retarding po-
tentials the shape of the integral spectrum (Γ(t) = Ṅ(t)) near the endpoint
is determined.

In the following I will describe in some detail the main components
and features of the KATRIN setup. A detailed discussion can be found in
[KAT05].

2.2.1 Tritium source section: features and implementation

In the KATRIN experiment the isotope 3H (denoted also as T ) of hy-
drogen, known as tritium, is used as a β emitter in its molecular form T2.
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The decay that takes place in the source is then

T2 → (3HeT)+ + e− + ν̄e. (2.28)

I highlight here the main reasons why molecular tritium is used as a β
emitter:

• Tritium has a rather low endpoint energy of E0 = 18.6 keV. Although
the total number of counts per second (cps), usually called just rate,
increases with E0 (Γ ∝ E4

0 for low E0, Γ ∝ E5
0 for high E0), the

relative number of cps near the endpoint decreases with E0 (∝ E−3
0 ).

Therefore a low endpoint energy is preferred [Giu07].

• Tritium β-decay is a superallowed transition between mirror nuclei15

with a relatively short half-life of about 12.3 years, which implies a
high statistics with rather low source density during the experiment
lifetime16 [Giu07]. Furthermore, the nuclear matrix element is energy
independent near the endpoint and easily computable.

• In tritium β-decay the molecular structure is less complicated than
those of heavier atoms, leading to a more accurate calculation of atomic
effects. In addition, Fermi function of the daughter nucleus is also
almost energy independent near the endpoint.

• Molecular tritium at low temperature can be used in gaseous form,
which lower the systematic effects as compared to the usage of a con-
densed source. However, rotational and vibrational excitations of the
daughter molecule need to be taken into account.

In KATRIN, tritium of high isotopic purity (>95%) is injected at the cen-
ter into a 10 m long tube, called Windowless Gaseous Tritium Source
(WGTS). The tritium molecules then diffuse towards both ends of the
WGTS and are pumped out at both ends by turbo-molecular pumps (TMP).
The pumped-out tritium will be collected and re-injected, thus forming a
closed tritium cycle. The total length of the WGTS is 16 m considering the
two pumping sections at both ends that reduce the gas flow of a factor of
102. The WGTS beam tube is situated in a nearly homogeneous magnetic
field of Bs = 3.6 T, oriented in beam direction, that guides the electron to-
wards the spectrometer (or towards the rear wall, depending on the angle).

15Superallowed transitions are allowed transitions between nuclei belonging to the same
isospin multiplet. Mirror nuclei are pairs of nuclei which have equal numbers of protons
and neutrons plus an extra proton in one case and an extra neutron in the other. In this
case, the overlap of the initial and final nuclear wave functions is close to one, leading to
a large nuclear matrix element.

16remember that N(t) ∝ e−t/t1/2 , so if the half-life is small, a small amount of time is
needed to have a lot of decays
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Figure 2.7: Schematic view of the WGTS, with central beam tube and
subsequent pumping stations. Figure from [KAT18]

The WGTS tube is made of stainless steel and has a diameter of 90 mm. It
is kept at a temperature T = 27 K. The low temperature assure a high col-
umn density ρd = 5 · 1017 cm−2 with a rate injection of 5 · 1019 molecules/s
and a smaller Doppler broadening. The main systematics of the WGTS
come from the stability of the column density. Its stability depends mainly
on the injection pressure (10−3 mbar) and the temperature, which therefore
need to be kept stable with high precision. To this end, a two phase Neon
cooling system is used. It was shown that the temperature variations are
much smaller than 30 mK, which is necessary for a stability of the column
density at the per mill level. A column density of ρd = 5 ·1017 cm−2 ensures
a source activity of 1011 cps.

2.2.2 Rear section

At least half of all electrons from the source will leave the WGTS in back-
wards direction because their starting polar angle is uniformly distributed.
Moreover, most of the electron emitted in forward direction will be reflected
either at a magnetic field larger than the source magnetic field (e.g. pinch
magnet) or at the analyzing plane. Therefore, almost all created electrons
will hit the rear wall, whose task, among others, is then to monitor the
tritium activity.

Further information about the rear section can be found in [Bab14].
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Figure 2.8: Differential pumping section. Four turbo molecular pumps (yel-
low) and the chicane geometry reduce the gas flow by 5 orders of magnitude,
while 5 super conducting coils (turquoise) create a magnetic field of up to
5.5 T to guide the signal electrons through the beam tube (red). Figure from
[Gro15]

2.2.3 Transport section

The transport section connects the WGTS and the spectrometer section.
Its main task is to reduce drastically the tritium flow and guide adiabati-
cally the β electrons to the spectrometer. First, one wants to avoid energy
losses of β electrons in the spectrometer due to scattering with remaining
tritiated molecules. Second, one wants to avoid background due to tritium
decay inside the spectrometer. To this end the tritium flow is reduced by
12-14 orders of magnitude to achieve a high vacuum of 10−11 mbar in the
spectrometer17.

The transport section consists of two fundamental units, the differential
pumping section (DPS) and the cryogenic pumping section (CPS),
both being described in the following.

DPS

As I anticipated in 2.7, Differential Pumping Sections (DPSs) sit both
at the rear section of the WGTS (DPS1-R) and at the front side (DPS1-F,
DPS2-F). To block all the neutral tritium molecules, the beam lines DPS2-F
cryostat is not straight, but has chicanes of 20◦ (see figure 2.8).

In this way the charged products are guided through the beamline,
whereas neutral products hit the walls of the beam tube and are pumped out
by turbomolecular pumps (TMPs). This process reduces the tritium

17this is the same vacuum there is on the moon
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Figure 2.9: The cryogenic pumping section reduces the gas flow of tritiated
molecules by 7 orders of magnitude. Tritiated molecules hit the cold beam
tube surfaces covered by argon snow and are adsorbed there. The signal
electrons are guided by 7 super conducting coils, producing a magnetic field
of up to 5.6 T. Figure from [Gro15]

flow of about 7 order of magnitudes.
However, TMPs are not efficient for charged products of the decay (such

as (3HeT)+). For this reason, a slightly more positive potential is set at the
end of the DPS2-F to block the positive ions.

The DPS-F is composed out of 5 beam tubes tilted by 20◦ against each
other to avoid a direct line-of-sight for propagating tritium molecules. Be-
tween the beam tubes 4 pump ports are situated, each containing a large
turbo molecular pump.

CPS

Following the beamline, after the DPS a cryogenic pumping section is
implemented. Its task is to block as much as tritiated molecules as possible.
It is made of 7 beams tubes tilted in parts by 15◦, to make sure that tritiated
molecules will hit the inner surface multiple times. The CPS does not employ
TMPs. The pumping of the CPS is based on the principle of cryo-sorption:
a 3 K cold layer of argon frost on the inner surface of several beam tube
elements to adsorb tritium molecules. This process reduces the tritium flow
of 7 orders of magnitude.
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2.2.4 Spectrometer section

In the spectrometer section ideally only electrons are left and analyzed
according to the MAC-E filter technique explained in 2.1 by the pre- and
main spectrometer.

Pre-spectrometer

The pre-spectrometer is a 3.4 m long vessel with a diameter of 1.7 m. It
acts as a MAC-E filter with retarding potential of −18.3 kV and a magnetic
field of 15.6 mT at its analyzing plane and a magnetic field of 4.5 T at both
ends. The task of the pre-spectrometer is to offer the option to be oper-
ated as pre-filter to discard β electrons with a kinetic energy below about
18.3 keV, since these electrons do not contribute to the experiments sensitiv-
ity on the effective antineutrino mass. The flux of signal electrons entering
the sensitive main spectrometer could be reduced by up to 7 orders of mag-
nitude. However, it was shown that with this setup a large Penning trap18

would form between pre- and main spectrometer, which can be avoided by
operating the pre-spectrometer at vanishing potential [Pra11].

Main Spectrometer

The main spectrometer (MS) is a 23.3 m long vessel with a diameter
of 10 m operating as a MAC-E filter. Its huge dimensions are due to the
energy resolution KATRIN wants to achieve: considering that the magnetic
flux along the whole setup is 191 T·cm2, the best compromise between a
good energy resolution, adiabaticity and conservation of magnetic flux is
given by setting Ba = 3 · 10−4 [KAT05], which yields an energy resolution
of ∆E = 0.93 eV (see 2.1).

A 4.5 T solenoid at the entrance and a 6 T solenoid at the end, provide the
magnetic guidance through the spectrometer section. These coils produce a
magnetic field at the analyzing plane of 0.179 mT. This value is however too
low, since it would bring the flux tube out of the MS, and corrections due
to Earth magnetic field need to be taken into account. Another problem is
the asymmetry of the flux tube given by the two different values of the the
magnetic field at the entrance and end of the MS.

Both these problems are significantly reduced and remedied by the air
coil system, consisting of two units: the earth magnetic field compensation

18In a Penning trap charged particles can be stored by a certain superposition of an
static electric and magnetic field. The magnetic field forces the particle to move in cy-
clotron paths and thus prevents the particles from leaving the trap radially. The electric
field confines the particle axially. The cyclotron frequency is mass dependent. Most of
todays high-precision mass measurements of charged particles come from Penning trap
measurements. At KATRIN however, Penning traps are a background causing effect.
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system (EMCS) and the low-field coil system (LFCS). The former compen-
sates the vertical and horizontal, non-axially symmetric components of the
earths magnetic field. The latter produces an axially symmetric magnetic
guiding field, enhancing the stray field of the super conducting solenoids in
the spectrometer to shape and fine-tune the flux tube.

At the center of the MS the retarding potential is varied in steps of 0.5 -
1 V close to the endpoint to perform an integral measurement of the tritium
spectrum.

Monitor Spectrometer

In parallel to the main KATRIN beam line, the former Mainz spectrom-
eter is set up in a second beam line, now acting as a monitor spectrometer.
It has a length of about 4.0 m, a diameter of about 1 m, but its MAC-E
filter has the same energy resolution as the main spectrometer. It is coupled
with a mono-energetic conversion electron source based on 83mKr source as
a nuclear standard. The voltage of the monitor spectrometer is directly fed
by the high voltage on the main spectrometer. Thus, by scanning the mono-
energetic, narrow 17.8 keV 83mKr (K-32) line, even small drifts of the high
voltage on the ppm or even sub-ppm scale can be detected. Therefore, the
stability of the retarding potential is continuously being monitored [Gou10].

2.2.5 Detector section

Once electrons overcome the analyzing plane they are guided through
the pinch magnet to the focal plane detector (FPD), a semi-conductor
based silicon PIN diode. The detector is divided into 148 pixels in order
to resolve radial and angular inhomogeneities of the retarding potential at
the analyzing plane and each pixel measures an independent spectrum. The
detector is situated in a magnetic field of 3.6 T.

An active veto system made of plastic scintillators reduces the back-
ground coming from cosmic rays.

The detector consists of a monolithic silicon wafer of 9 mm diameter and
an effective thickness of 500µm which counts the signal electrons with an
energy resolution of about 2 keV. This resolution is sufficient for KATRIN,
as the energy resolution is provided by the spectrometer section, and the
detector only counts the electrons. Its value ensures that the electrons are
coming from the tritium decay in the source [Har12].

An active veto system made of plastic scintillators reduces the back-
ground coming from cosmic rays.

As I will discuss later, this will not be enough for sterile neutrino search.
Therefore a new detector system is needed.
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Figure 2.10: Focal plane detector system, with the silicon PIN-diode seg-
mented into 148 pixels at the end. Figure from [Gro15]

2.3 Sensitivity of KATRIN experiment

In this section I give an overview on statistical and systematic uncer-
tainties in KATRIN.

2.3.1 Expected statistical uncertainty

The KATRIN experiment performs an integral measurement of the tri-
tium β spectrum measuring the convolution of the differential spectrum with
the response function19

NS(qU ;E0,m
2
β) = Ntot tU Γtot(qU ;E0,m

2
β)

= Ntot tU

∫ E0

qU

dΓ

dE
(E;E0,m

2
β)R(E − qU)dE.(2.30)

NS(qU ;E0,m
2
β) is the number of signal electrons at retarding potential

qU . Ntot and tU denote the total number of tritium nuclei and the mea-
surement time at retarding potential qU . The differential tritium spectrum

19Equation (2.30) can be written, calling R′(x) = R(x) as

N(qU ;E0,m
2
β) =

(
dΓ

dE
∗R′

)
(qU ;E0,m

2
β) (2.29)

It does not really matter whether one writes R(E − qU) or R(qU − E), but to stick with
my convention I introduce R′
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dΓ
dE (E;E0,m

2
β) represents the number of decays per second, per energy, per

nucleus. Variables and parameters are separated by semicolons.
In addition to the signal electrons also background events will be mea-

sured. A constant background is assumed, for the fitting of the spectral
shape. An overview on background sources will be given in the next section.

The number of theoretically predicted signal electrons is then

Nth(qU ;E0,m
2
β, Rs, Rb) = Rs ·NS(qU ;E0,m

2
β) +Rb ·Nb, (2.31)

where Rs and Rb are the relative fraction of signal and background re-
spectively, and Nb = Γb · tU is the number of background electrons, where
Γb is the total background rate.

For the simulation of a KATRIN-like spectrum, the expected value Nth

is randomly smeared according to a Gaussian distribution with σth(qU) =√
NS(qU) +Nb. The number σth(qU) is called statistical uncertainty

(note that it depends on the measuring time through Nb, so in general
it depends on the total measuring time. The single measuring times at
each retarding potential have to be optimized to minimize this statistical
uncertainty). The number of expected (or experimental) electron is then

Nexp(qU) = NS(qU ;E0,m
2
β) +Nb + RndGauss(σth(qU)). (2.32)

The analysis of simulated spectra is based on a minimization of the
function

χ2(E0,m
2
β, Rs, Rb) =

∑
i

(
Nth(qUi;E0,m

2
β, Rs, Rb)−Nexp(qUi)

σth(Ui)

)2

,

(2.33)
by varying E0,m

2
β, Rs and Rb independently. To avoid any bias, the

fitting procedure allows for negative, i.e. unphysical values of m2
β . One

deduces limits of confidence on m2
β in terms of frequency of occurrence by

repeating large samples of simulated experiment-like integral β spectra.

2.3.2 Sources of systematic errors

Looking at equations (2.30) and (2.31) one can identify the main sources
of systematic uncertainties:

• Theoretical corrections to the spectrum dΓ
dE (E;E0,m

2
β).

First, in the decay of molecular tritium, electronic and molecular ex-
citations of the daughter molecule can occur. Considering that the
lowest electronic excitation energy in the final state occurs at about
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10 eV, this effect plays a role only for measurement intervals more than
10 eV below the endpoint (this will then be an issue for keV sterile neu-
trino search). The vibrational and rotational excitation energies of the
daughter nucleus fall in the sub-eV regime, thus impacting the explo-
ration of neutrino mass. A theoretical computation of the final state
distribution can be found in [Dos06, Dos08].

Second, thermal motion of tritium molecules in the source induces a
Doppler shift of the β electron energies. A typical value of this shift
∆Edoppler = 100 meV. [Hoet09, Mer12].

Finally, moving away from the endpoint E0 the Fermi function F and
the nuclear matrix element both become energy dependent. Uncertain-
ties in their theoretical description would lead to a systematic errors
on the neutrino mass. This is not an issue for KATRIN , but it is for
a keV sterile neutrino search.

• Uncertainty on experimental parameters
A major source of systematic uncertainties is the uncertainty on ex-
perimental parameters, such as the retarding potential, the column
density and the magnetic field in the source.

The limit for relative allowed variation of the retarding potential is
∆V/V < 3 ppm, while the variation of the potential at the WGTS can
be in the per mill level.

The stability of the column density, which fixes the count rate, will be
measured with an electron gun on a regular basis by measuring the
response function at different surplus energies.

Finally, the magnetic field in the source has to be stable within ∆Bs/Bs

< 2 · 10−3. The reason is twofold: the transmission function and
consequently the response function depend on the magnetic field. In
fact, the scattering probabilities depend on the effective path of the
electrons in the source, which itself depends on the cyclotron radius
and hence on the magnetic field see equation (2.3).

• Uncertainties in the response function
The response function is one of the main source of systematic uncer-
tainties. As I show, it encodes the energy loss probability f(ε). β
electrons can experience energy losses in their way to the detector due
to:

1. inelastic scattering in the WGTS: εinel > 13.6 eV,

2. elastic scattering in the WGTS: 〈εel〉 = 20 meV (σel ≈ 10−1 ·σinel),

3. synchrotron losses due to their cyclotron motion, which in turn
depends on the magnetic field. One has [Mer12] εsyn, max= 130 meV
in the transport section and εsyn, max= 12 meV in the WGTS.
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2.3.3 Background sources

I give an overview on background sources in a different section because
they represent a topic on their own. Possible countermeasures to these are
given in [Mer12].

The main source of background originates are the spectrometer section
and partly the detector section. A very low background level is essential
to minimize the systematic errors. The higher the background rate, the
further away from the endpoint one has to measure the spectrum in order
to optimize the signal to background ratio N/Nb. However, further away
from the endpoint systematics on the spectral shape take over.

To achieve the desired sensitivity (see next section) a background level
of 0.01 cps is aimed for. Such a low background is needed for KATRIN
because the background should be at most as much as the count rate of
signal electrons (total decays per second ∼ 1011, decays per second in the
region of interest ∼ 10−13).

Detector background

KATRIN detector has an energy resolution of about 2 keV, therefore
all non-signal electrons in the energy range 17 - 19 keV contribute to back-
ground. These electrons are produced by: cosmic muons (and subsequent
neutrons and gammas), high energetic gammas of environmental radioac-
tivity in the surrounding area and decays of radio-nuclei in the detector
material. Therefore, the detector is surrounded by a muon veto and post
acceleration is used to better discriminate signal electrons.

Spectrometer background

All low energy electrons being created by several processes in the spec-
trometer are accelerated on their way to the FPD to tank potential and,
therefore, lie in the energy region of interest, contributing significantly to
background.

2.3.4 Sensitivity

In normal KATRIN mode, the quadratic sum of all known systematic
uncertainties is expected to be σsys,tot = 0.017 eV2, where the largest contri-
bution comes from systematic uncertainties in final states distribution. For
determining the statistical errors experimental data are simulated, which
take into account all relevant processes. By fitting the theoretical curve
to the simulated spectrum, the neutrino mass parameter can be inferred.
Repeating this procedure many times, one generates a neutrino mass dis-
tribution. The width of this distribution then corresponds to the statistical
error. The measurement time of KATRIN is chosen such that the statistical
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Figure 2.11: Discovery potential of the KATRIN experiment. The horizontal
line represents the 1.64σ or 90% C.L. Figure from [KAT05]

error is of the same order as the systematic error. This is reached after three
full beam years measurement time. Adding systematic and statistical error
quadratically one gets a number known as sensitivity, i.e. a total error
whose value is σtot ≈ 0.025 eV2.

Assuming a vanishing neutrino mass, this uncertainty translates into an
upper limit, which one calls L(90%C.L.), which is connected to the error on
m2
β via L(90% C.L.) =

√
1.64 · σtot. After three years of measuring time,

this limit becomes

mβ < 0.2 eV (90%C.L.) (2.34)

with no finite neutrino mass being observed. Within a few weeks of
effective β spectrum scanning, the KATRIN statistical accuracy will exceed
the accuracy of the Mainz and Troitsk experiments by an order of magnitude,
see 2.11.

Figure 2.11 demonstrates the discovery potential of KATRIN as signif-
icance in units of σtot for an effective electron anti-neutrino mass in the
sub-eV range. For example, a potential neutrino mass mβ = 0.4 eV could
be seen by KATRIN with a 6.5σtot significance.



Chapter 3

Sterile Neutrinos

The SM includes both left- and right-handed part of massive fermions in
order to include a generation mechanism for their mass. As I showed in the
first chapter, a minimal extension of the SM that could explain the smallness
of neutrino mass was given by the introduction of a (heavy) sterile right-
handed neutrino state, labelled νs. This is a minimal extension of the SM
considering that neutrinos are the only fermions lacking of a right-handed
component. Such a sterile neutrino would be a singlet under all interaction in
the SM and then interacting only via gravity. The state νs can be considered
as a new ”flavor” eigenstate (even if it has no flavor) which corresponds then,
through oscillations, to a fourth mass eigenstate ν4 with mass m4. This ν4

is therefore a mixture of νe, νµ, ντ and νs which I will call sterile meaning
mostly sterile. Therefore, when one discusses sterile neutrino detection, one
actually refers to the measurement of its mass and mixing angle, given the
fact that by definition one cannot detect a non-interacting particle. It is
not known yet whether such a particle exists. However, there are several
hypothesis on its mass scale, all motivated by experimental measurements
and observation.

In the following I will illustrate the most popular hypothesis on the mass
scale of a sterile neutrino, their motivation and the relation to dark matter.

3.1 eV Sterile Neutrinos

The existence of one or more eV sterile neutrinos is still today a hot
topic of discussion [Aba12]. They are widely disfavored as dark matter
candidates: due to the smallness of their mass they would make up hot
dark matter (HDM) with a free streaming length of ∼1 Mpc. In a Universe
dominated by such DM1, galaxy clusters form at an earlier stage, while
galaxies are washed out and form at a later stage. This is the so called

1as a reference, the size of a galaxy is of the order of kpc, while the size of a galaxy
cluster is of the order of Mpc

50
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top-down scenario. However, there are galaxies which are older than the
cluster they sit in, therefore the top-down scenario is basically ruled out: a
HDM dominated universe is not realized in nature.

The major motivations for an eV scale sterile neutrino come from short
baseline oscillation experiments. For example, MiniBooNE experiment re-
sults show a low energy excess in the energy spectrum of electron neutrinos
[Min07]. This anomaly can be accommodated with the addition of a light
sterile neutrino that mixes through oscillations with the active neutrinos
[Kop11, Men11].

The Short Baseline Neutrino program at Fermilab has among its goals a
followup on this MiniBooNE anomaly and will in the near future shed light
on this puzzle [Bas17].

3.2 GeV Sterile Neutrinos and Dark Matter

Particles with mass in the GeV scale and free streaming lengths of ∼1 kpc
are good candidates for the so called cold dark matter (CDM). In a
Universe dominated by CDM, galaxies form at an earlier stage, while galaxy
clusters form at a later stage. This is the so called bottom-up scenario.

GeV right-handed neutrinos as described in the see-saw mechanism would
be a good candidate for CDM. Other famous candidates are the hypothet-
ical Weakly Interacting Massive ParticleS (WIMPS). The most promising
WIMPS are the LSP (lightest supersymmetric particles), which are degrees
of freedom of the supersymmetric extension of the SM that cannot decay
into SM particle because of the conservation of R-parity[Jun96].

However, neither WIMPS nor GeV-scale right handed neutrinos have
been detected yet, which leaves this scenario wide open.

3.3 keV Sterile Neutrinos and Dark Matter

The warm dark matter scenario is, as the name suggests, a scenario
between hot and cold dark matter. Warm dark matter would be composed
of particles in the keV scale and lfs ∼ 10 kpc. This mass scale is a good
compromise between hot and cold dark matter and can solve issues affecting
both scenarios. A keV sterile neutrino is therefore good warm dark matter
candidate2: it is in the right mass range and it is ”mostly” sterile. The
parameters of interest are its mass m4 and its active-sterile mixing amplitude
sin2 θs (I will be more specific in the next paragraph). The main effort
of cosmological observation and laboratory experiments is to constrain the
allowed region of the parameter space (the plane (m4, sin

2 θs) where these
two “free” parameters live (one can actually already guess that sin2 θs is
very small and m4 is in the keV range).

2it could also be cold dark matter, depending on its production mechanism.
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There are at the moment very good reasons to look for a dark matter
particle in the keV range. First of all, the phase-space density evolution of
dwarf spheroidal satellites in the Milky Way provides a model-independent
lower bound to fermionic dark matter and respectively for the sterile neu-
trino mass of m4 > 2 keV [Hub15].

DM should be stable. However, if it is made of keV sterile neutrinos, it
can theoretically decay via the channel

νs → να + γ, (α = e, µ, τ). (3.1)

This decay is loop-suppressed, so its branching ratio is very low. This
decay would take place in relativistic regime, therefore the decay energy is
divided equally into the two products, giving the photon an energy equal
to half m4. Such radiation could in principle be detected as X-rays. There
are two main observations which allow for such a process. First, the results
of XMM-Newton and Chandra telescopes gave an upper bound for m4 and
constrained sin2 2θs [Boy12]

m4 < 50 keV (3.2)

10−13 < sin2 2θs < 10−7 . (3.3)

Second, the XMM-Newton telescope observed a weak X-ray emission
line from stacked galaxy clusters, which could be the first evidence for relic
sterile neutrinos. The results set the sterile mass to 7.1 keV and the active-
sterile mixing amplitude to 7·10−11 [Bul14]. The same emission line has been
observed also from the Andromeda galaxy and the Perseus galaxy cluster
[Boy14].

However, these astrophysical observations are strongly model-dependent
and have to be firmly supported by laboratory experiments.

In conclusion, it is possible to construct a model with three sterile neu-
trinos, one per flavor, solving a large number of puzzles. The one with the
lowest mass in the keV range (which I called m4) would solve the dark mat-
ter puzzle. If one then allows the remaining two neutrino massive state to
be in the GeV region, then one would potentially solve the open question
of matter-antimatter asymmetry in the Universe and give mass to active
neutrinos via see-saw mechanism.

As I said, these are interesting speculations that have to be supported
by observations and experiments.

In the next section I will show how the KATRIN experiment has the
potential to further constrain the current experimental bounds.

3.3.1 Signature of a keV-sterile neutrino in KATRIN

An observation before going on. When I refer to keV sterile neutrino I
actually mean keV sterile neutrino (the mass state) which is mostly sterile,
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Figure 3.1: Neutrino mixing angles in the 3+1 model. Figure from IceCube
Collaboration [Ice18]

as one can see in figure 3.1.
With an endpoint of E0 = 18.6 keV, the tritium β spectrum is a perfect

tool to probe the impact of an hypothetical sterile neutrino with mass up to
E0. Let us now show how a fourth neutrino state would impact the shape
of the β spectrum. The mixing of four neutrino states is described by an
extended PMNS matrix


νe
νµ
ντ
νs

 =


U∗e1 U∗e2 U∗e3 U∗e4
U∗µ1 U∗µ2 U∗µ3 U∗µ4

U∗τ1 U∗τ2 U∗τ3 U∗τ4

U∗s1 U∗s2 U∗s3 U∗s4



ν1

ν2

ν3

ν4

 . (3.4)

One can then write

1 =
3∑
i=1

|Uei|2 + |Ue4|2 := cos2 θs + sin2 θs, (3.5)

where θs is the active-sterile mixing angle. It can be considered as an
effecting mixing of an active neutrino with mass mlight and a sterile one with
mass m4, since one is not able to resolve the three light massive states yet3.

Starting from formula (1.60) and considering a 4 flavor mixing I get

3mlight is not the same as mβ in KATRIN. One might think that they are the same
thing, but this is not the case because the elements of a 4-flavor mixing matrix are different
from those of a 3 flavor mixing one. The confusion rises because their elements are both
called Uαi
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dΓ

dE
= cos2 θs

dΓ

dE
(m2

light) + sin2 θs
dΓ

dE
(m2

4), (3.6)

where

dΓ

dE
(m2

light) = C · F (E,Z ′) · pe · (E +me) ·
√

(E +me)2 −m2
e ·

·(E0 − E) ·
√

(E0 − E)2 −m2
light (3.7)

(which has the same form of equation (1.65)) and

dΓ

dE
(m2

4) = C · F (E,Z ′) · pe · (E +me) ·
√

(E +me)2 −m2
e ·

·(E0 − E) ·
√

(E0 − E)2 −m2
4. (3.8)

The spectrum of a decay into the sterile neutrino (3.8) would have a
lower endpoint, precisely E0 −m4 and a really tiny amplitude sin2 θs.

Therefore, the imprint of a sterile neutrino on the entire β spectrum
shows up as a kink-like signature at E0 − m4 and a tiny distortion of the
amplitude in the region [0, E0 −m4] as one can see in figure 3.2.

3.3.1.1 KATRIN as is

In contrast to the nominal KATRIN mode, the entire tritium β-decay
spectrum has to be measured to search for a keV sterile neutrino, as dis-
cussed in the previous section. To enable a full spectrum measurement with
KATRIN major parameter and design changes are required.

The first approach to search for keV sterile neutrino is to use the KA-
TRIN setup as is tuning some parameter in a convenient way. I refer to the
measurement phase using the current KATRIN setup as Phase-0.

The Phase-0 measurement, which will most likely take place before the
neutrino mass measurement, is characterized by a low statistics because
the present KATRIN detector cannot handle the total decay rate from the
WGTS.

Here I will discuss the reduction of signal count rate and optimization
of the magnetic field configuration.

Reduction of signal count rate

The first idea would be to just turn off the retarding potential, such that
all β electrons get to the detector. However, the KATRIN FPD, as well as
the readout system, are only designed to handle a maximum rate of 106 cps,
which is 4 orders of magnitude lower than the source activity in normal
KATRIN mode.
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Figure 3.2: The differential tritium β spectrum without mixing with a fourth
neutrino state (dashed curve) and with a 10keV sterile neutrino with un-
physical mixing angle of sin2 θs = 0.2 (red curve). Figure from [Mer14].
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The reduction of the count rate is achieved in two ways.
First, the column density density in the WGTS can be lowered. A lower

gas density reduces the number of scatterings of β electrons in the source.
However, at very low gas densities the source stability can no longer be
guaranteed. A good compromise is a reduction of 2 orders of magnitude of
the column density which ensures the same stability performance as for the
full column density.

Second, the acceptance angle given by

θmax = arcsin

√
Bs

Bp
. (3.9)

can be reduced.
In this way the electrons that start with a pitch angle smaller than θmax

reach the detector while the remaining electrons (in this case almost all!)
are magnetically backreflected and fly backwards to the rear wall. However,
the source magnetic field is constrained by the requirement of adiabatic
guidance through the entire KATRIN setup. A viable value, used as a
benchmark point for the studies of this work is Bs = 0.045 T which yields
an acceptance angle θmax of ∼ 5◦.

parameter benchmark value

Bsource 0.045 T
θmax 4.97◦

ρd 3 · 1015 cm−2

ρd reduction factor 167
rate at detector 106 cps

Table 3.1: Benchmark values for the Phase-0 measurement.

Optimization of magnetic field configuration

The magnetic field layout needs to optimized along the whole KATRIN
setup with respect to the following aspects:

• a tiny magnetic field strength is needed at the rear wall of the exper-
iment, in order to prevent electron backscattering from the rear wall
to reach the detector, which would then increase background;

• as already discussed, a reduced magnetic field in the source, reduces
the acceptance angle and hence the total count rate;

• a small source magnetic field and increased spectrometer magnetic
field assure adiabatic transport through the main spectrometer;

a large enough source magnetic field, on the other hand, is needed to
assure adiabatic transport of electrons through the WGTS;
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• the detector magnetic field is chosen to match source magnetic field,
in order to fully map the source onto the detector.

On the road to Phase-0 measurement

Besides the study of the optimal magnetic field configuration, extensive
studies have been carried out on the major systematic errors and on the
possible measurement modes (differential, exploiting the KATRIN detector
energy resolution, and integral, as in normal KATRIN mode) [Mer14].

The major steps towards a Phase-0 measurement will be the investigation
of the source stability and adiabaticity of the electron transport along the
beamline during the next STSIIIa measurement campaign (∼ first months
of 2018).

On the software side the major challenge is the development of a new
model capable of simulating the entire tritium spectrum, including as many
experimental effects as possible, that will be used for the fitting of the data.

The development and description of such a software are the major goals
of this thesis.

3.3.1.2 The TRISTAN project

As the name suggests, Phase-0 will be followed by a Phase-1 measure-
ment. By Phase-1 I refer to the realization of a new detector and readout
system capable of handling the full rate coming from the WGTS in normal
KATRIN mode.

The measurement campaign with the TRISTAN (TRItium Beta Decay
to Search for STerile (A?) Neutrinos) detector is planned to take place after
the neutrino mass measurement.

The final TRISTAN detector is designed to have ∼20 cm diameter and
21 modules. Each module should have 168 pixel and be ∼4 cm. Each pixel
has ∼3 mm diameter.

At the present moment, a number of 7-pixel silicon drift detector sys-
tem have been realized by the Halbleiterlabor of the Max Planck Society.
Currently, they provide two running systems, one equipped with ASIC from
CEA Saclay and one with ASIC from XGLab.

The performance and features of these prototypes are currently under
investigation.



Chapter 4

Modeling of the full tritium
spectrum

The goal of this final chapter is to present a new simulation software for
the modelling of the entire tritium spectrum. In section 4.1 I will shortly
describe the current model used by the KATRIN collaboration to compute
the integral tritium spectrum after the source, in the last 30 eV. In section
4.2 I will describe in detail the new simulation software called Convolution
code developed by Martin Slezák and Dr. David Radford. The goal of
this software is the implementation of source related effects for the precise
modelling of the entire tritium β-spectrum. In section 4.3 I will discuss
the comparison of SSC and the Convolution code in the last eV’s of the
spectrum: this comparison is essential to test the validity of the new model.
In section 4.4 I will present the concept of how to integrate the results in
a more general simulation framework, which makes use of the Convolution
code, for a keV-scale sterile neutrino search with KATRIN.

4.1 SSC

The software framework developed and utilized in KATRIN for most
simulations and analysis studies is called KASPER. It is a software written
in C++ and it is made up of several modules that can be used individually,
nevertheless, thanks to the cmake build system, they are forced to remain
compatible and link correctly together.

KASPER has been initially developed by Kaefer and M. Hoetzel and
later widely upgraded and extended by Groh and Kleesiek over the past ten
years [Gro15, Kle14]. The only relevant KASPER module that is used in
this thesis is the Source Spectrum Calculation module, shortly SSC.

The SSC module of KASPER allows the computation of the integral
tritium spectrum in the vicinity of its endpoint1.

1it is very important to stress this fact, because it implies that many parameters (recoil

58
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Figure 4.1: Structure of the configuration file for SSC.

A simulation run with SSC is completely defined by a configuration file
where all simulation input data are defined and created. This includes,
among others, the magnetic field configuration of the source, gas dynamics
properties and the spatial resolution of the flux tube. The configuration file
for SSC is based on the Extensible Markup Language (XML) 4.1.

In chapter 2 I described analytically the transmission and response func-
tion, providing an exact formula for both. However, they are only an (ac-
curate) approximation: non-uniformity of the column density and magnetic
field’s inhomogeneities are, for example, key factors that change the shape
of transmission and response function significantly [Gro15]. More sophisti-
cated versions of the transmission and response function can be implemented
through the xml configuration file used in SSC.

It is important to stress that the integral spectrum computed with SSC

energy of the nucleus, cross sections, Fermi function, radiative corrections, etc. . . ) are
energy independent. This will not be the case for the full tritium spectrum calculation.
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is not the result of a Monte Carlo simulation. Its instead the ”exact” com-
putation of the convolution of the differential spectrum with the response
function: ∫ E0

qU

dΓ

dE
R(E; qU)dE. (4.1)

The differential spectrum in SSC is computed exactly according to the
formula (1.65). In order to have a more precise description in the endpoint
region further corrections have to be taken into account:

• Fermi function

It describes the electric interaction between the daughter nucleus and
the outgoing electron with energy E. In the decay, the outgoing elec-
tron is attracted by the nucleus, thus shifting the endpoint to slightly
lower energies.

• Radiative corrections

An electron emitted within the Coulomb field of a nucleus experiences
energy losses due to their interaction with virtual and real photons.

• Nuclear recoil

The daughter molecule has not an infinite mass. Therefore, after the
decay it will gain a small amount of kinetic energy, subtracting it from
the beta electron. In the vicinity of the endpoint, this energy is nearly
constant (∼1.7 eV).

• Final State Distribution

Contrarily to an atomic decay, in the molecular decay of tritium the
daughter molecule can find itself being in a rotational and/or vibra-
tional excited states. Each of these final states come with its proba-
bility and will accordingly reduce the maximum kinetic energy of the
emitted electron, modifying then the spectrum. The resulting spec-
trum is thus a superposition of a large number of single branches,
each one with a lower endpoint, weighted by the final states probabil-
ity. From the practical point of view, the source will also incorporate
small amounts of the tritiated hydrogen isotopologues DT and HT,
whose corresponding final state distributions will have to be taken
into account.

For a more detailed description of SSC see [Gro15, Kle14].
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4.2 Convolution code

The KASPER framework along with the SSC module provides a very
sophisticated tool for simulations of the whole KATRIN apparatus, and in
particular of the integral tritium spectrum, near the endpoint of the beta
spectrum. This is motivated by the fact that, as discussed, the spectral
distortion due to neutrino mass is maximal near the endpoint.

Tritium decay in the KATRIN setup can be exploited for keV sterile
neutrino search, as discussed in chapter 3. Such a sterile neutrino would
impact the shape of the spectrum far from the endpoint region, therefore
the simulation software requires substantial modifications.

In this section I will discuss the new simulation tool developed by Martin
Please write Slezák and Dr. David Radford for keV sterile neutrino search
with KATRIN along with the modifications I made during the work that
led to this thesis.

4.2.1 Motivation

The main reason why a new simulation software is needed is because
it describes a different physics. The physical effects taken into account
in SSC are very specific to the endpoint region of the spectrum, that is
the region of interest for neutrino mass measurement. On the contrary,
the Convolution code, among other features I will describe in the following
paragraphs, takes into account energy dependent effects which are relevant
far from the endpoint and track the angular distribution of electrons.

The physics differences

The most important feature to take into account regarding β-electrons
from the source is that they scatter off tritium molecules before entering the
spectrometer. These electrons can scatter inelastically (leading to ionization
or excitation of the tritium molecule) or elastically. Corresponding to each
scattering, elastic or inelastic, an energy loss and a polar angle change take
place, leading to a substantial modification of the energy spectrum and of
the angular distribution. These effects need to be taken into account in a
neutrino mass measurement and in a keV sterile neutrino search.

In the first case, where one focuses on the endpoint region, some simplifi-
cations can be made. First, at ∼ 18 keV the elastic cross section is more than
one order of magnitude smaller that the inelastic one (〈εloss, inel〉 ∼ 13.6 eV
and for all purposes < 30 eV, [Gro15]). One can then include only the in-
elastic cross section in the model in a first approximation. Second, for a
neutrino mass measurement, one wants to detected only the most energetic
electrons. Therefore, the electrons that make their way towards the detector
are those that scatter (inelastically) few times (≤ 2) and therefore do not
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undergo significant angle changes (due to inelastic scattering)2.
In the case of a model for a sterile neutrino search, these simplifications

are not applicable and a more accurate description is needed. First, far from
the endpoint the total inelastic cross section is energy dependent. Second,
considering that one wants to scan the whole spectrum and the kink-like
signature of a sterile neutrino is very small, the entire energy spectrum of the
electrons after the source has to be precisely modelled, taking into account
all energy losses (inelastic or elastic) and polar angle change regardless of
their size.

Missing pieces in SSC

In SSC, the source related effects are included in the response function
(2.25), or more precisely into the energy loss function f(ε) and in the av-
erage probability of scattering i times in the source Pi. For neutrino mass
measurement, the most prominent energy loss β-electrons can undergo is
due to inelastic scattering off tritium molecules. The energy loss function is
given by

f(ε) =
1

σtot,inel
· dσinel

dε
. (4.2)

In SSC a constant value (in energy) is used by default for the total inelastic
cross section, that is σtot,inel = (3.40±0.07) ·10−18 cm2 at ∼ 18 keV [Ase00].
In the configuration file one can also include the elastic cross section, which
anyway has a minor impact.

Besides including energy-independent parameter, the major limitations
of SSC are mainly two: first, the maximum number of scatterings is fixed
at the beginning of the simulation3; second, the angular related effects that
change the shape of the spectrum are not taken into account and when they
are, as I will discuss in the next paragraph, they are taken wrongly into
account.

Nevertheless, in [Gro15] substantial changes have been applied to SSC
to make it a more powerful simulation tool, as I will discuss in the next
paragraph.

Inclusion of angular related effects in SSC

In [Gro15], among other effects, it is investigated how one can include
angular related effects into SSC.

2The mean angular change due to inelastic scattering for energy losses below 30 eV is
only 0.61◦ [Gro15].

3the response function is a finite sum, not a series, therefore it needs to be truncated
at some point.
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On one hand, the transmission function is modified. Considering that an
electron generated with polar angle θ has a probability Pi(θ) of leaving the
source after i inelastic scatterings, one can define a transmission function
for each i substituting

ω(θ)dθ = sin θdθ −→ ωi(θ)dθ = sin θ · Pi(θ)dθ (4.3)

in equation (2.19). This modification leads to the implementation of a de-
tailed transmission function for i scatterings T ∗i (E, qU − a). As [Gro15]
shows, the major impact of this modification is due to T ∗0 .

On the other hand, the angular change due to inelastic scattering and
energy loss and angular change due to elastic scattering are included.

However, even when angular related effects are taken into account, it
it still made the assumption that after each scattering the polar angle of
the electron is uniformly distributed. This assumption can still make sense
in the endpoint region of the spectrum, but leads to wrong results in the
modelling of the entire spectrum. I will show the modification I brought to
the model in 4.2.3.

4.2.2 Idea of the Convolution code

In this section I want to give a general overview on how the Convolution
code models the spectrum after the source, while in the next section I will
go into the details of the code. The main goal of this new tool is the
modelling of the entire tritium spectrum after source related effects. To
this end, as I already mentioned, one has to take into account the fact that
electrons can scatter many times (opposite to the fixed number of times
in SSC) and that the angular change after scattering has a fundamental
role. Therefore, instead of using a one-dimensional distribution (i.e. the
differential energy spectrum) as in SSC, in the Convolution code one works
with a two-dimensional distribution in energy and (cosine of the) polar angle.

At the beginning of the calculation the initial spectrum is isotropic in
the angular variable and shaped as the differential spectrum in the energy
variable. The result of the calculation will be a two-dimensional distribution
with a modified shape, which will not be isotropic in the angular variable.

The basic idea of the simulation is that one starts binning the source
(in the z direction) and fills each bin with the initial distribution4. At each
step of the calculation, one redistributes the electrons born in a certain
z bin in the neighbouring (or in the same) bins according to their initial
polar angle and scattering probability5. In this way, as the simulation goes
along, the z bins are emptied and two two-dimensional distributions are

4one can think of this as filling the source with electrons.
5which depends on the fraction of column density in the z bins, which itself is defined

to be uniform.
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to	DPSto	RS

× =

initial	spectrum scattering	probability part	of	spectrum	that	
gets	scattered

Figure 4.2: In the first step of the Convolution code one calculates for
each energy bin the scattered (green) and unscattered (blue - green) part of
the spectrum multiplying the initial distribution by the absolute scattering
probability. Figure adapted from [Sle17]

generated: one for the lost electrons, which exit the source from the left6,
and one for the electrons that exit the source from the right, heading to
the detector. The fact that one has a two-dimensional distribution is very
important here, because the transmission probability at the analyzing plane
(and the detector response for instance) depends on both energy and angle.

At each step of the simulation, for each z bin, one multiplies the two-
dimensional distribution in that z bin by the energy-dependent scattering
probability, which is the probability of scattering at all. In this way one
divides the distribution (or spectrum) in two parts, the part that gets scat-
tered and the part that does not, see figure 4.2.

The part of the spectrum that get scattered is then convoluted with the
double differential cross section, which describes the energy loss and angular
change. In this way we get the part of the spectrum that gets scattered after
scattering, see figure 4.3.

At this point, calling f the probability of scattering in the same z bin,

6i.e. they hit the rear wall.
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to	DPSto	RS

⨂ =

part	of	spectrum	that	
gets	scattered

differential	 scattering	
probability

part	of	spectrum	after	
scattering

Figure 4.3: As second step one takes the part of the spectrum that scatters
(green) and convolutes it with the double differential cross section to get the
scattered part of the spectrum after scattering. Figure adapted from [Sle17]
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to	DPSto	RS

=

not scattered	part	of	
spectrum	Sns

scattered part	of	
spectrum	Ss

+

in	same	bin:	𝑓 ⋅ 𝑆$
in	next bin:	𝑆%$ + (1 − 𝑓) ⋅ 𝑆$

Figure 4.4: The part of the spectrum left in the same bin will be a fractio f
of the scattered part of the spectrum Ss. In the next bin there will be the
unscattered part of the spectrum Sns and the fraction (1 − f) of electrons
that scatter Ss. Figure adapted from [Sle17]
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the fraction of electrons left in the same bin will be f · Ss, where Ss is the
scattered part of the spectrum, while the fraction of electrons that goes into
the neighbouring bin (left or right) will be Sns + (1 − f) · Ss, where Sns

is the not-scattered part of the spectrum, see figure 4.4. f is calculated
as P/P where P is the probability to scatter after passing the distance of
one z bin and P is the probability averaged over the bin width to scatter
in the same bin. More precisely, P = 1 − exp(−ρdeff · σ) and P =

∫ 1
0 1 −

exp(−ρdeff · σ x) dx = 1 − P/(ρdeff · σ), where ρdeff is the effective column
density traversed by an electron starting with polar angle θ given by ρdeff =
ρd/ cos θ and σ is the total cross section.

All these steps take place until the source gets empty, or better until the
fraction of electrons in the z bins gets smaller that a fixed tolerance. The
two-dimensional distributions that comes out of the last z bin is the result
of the Convolution code simulation.

The model provided by the outlined procedures exhibits several advan-
tages: one can keep track of the energy and angular distribution, there is no
randomization, therefore no statistical uncertainties, the transmission func-
tion becomes a transmission condition, i.e. a yes or no question for each
energy and angle and last, but not least, the angular change is taken into
account at each scattering (even if it can be refined, as I will show in 4.2.3).
On the downside, the complexity of the calculation grows exponentially with
each new dimension [Sle17].

4.2.3 Structure of the Convolution code

Before going into the details of the code, I want to give here the outline
of the code so that it can be used as a reference. One starts the simulation
setting the output distribution D1(E, θ, z)to zero and creating an initial
distribution D0(E, θ, z) flat in z, isotropic in θ and distributed as dΓ

dE in
energy. After that, the main loops of the calculations have the following
structure:

Loop over angular values θi

Loop over energy values Ei

Calculate total scattering probability (probability of scattering
at all) P1(Ei, θi)

Calculate probability P0 that a β electron gets to the next z bin
before scattering

Loop over angular change dθ (θf = θi + dθ)

Loop over energy loss dE = 0 . . . Ei ((Ef = Ei − dE))

Calculate scattering probability P2(Ei, dE,dθ)

Federico Roccati
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Loop over z bins

Increment D1(Ef , θf , z) by (1−P0)·P1 ·P2 ·D0(Ei, θi, z)

If the electron goes right (cos θi > 0), then increment
D1(Ef , θf , z + 1) by P0 · P1 · P2 ·D0(Ei, θi, z)

If the electron goes left (cos θi < 0), then increment
D1(Ef , θf , z − 1) by P0 · P1 · P2 ·D0(Ei, θi, z)

End loop on z

End loop on energy loss

End loop on angular change

If the electron goes right (cos θi > 0), then incrementD1(Ei, θi, z+
1) by (1− P1) ·D0(Ei, θi, z)

If the electron goes left (cos θi < 0), then increment D1(Ei, θi, z−
1) by (1− P1) ·D0(Ei, θi, z)

End loop on Ei

End loop on θi

If the source is empty, quit.
Set D0 = D1.

The two variables of interest for us are the kinetic energy E of the betas
and their polar angle θ. I will work in a reference frame where the z axis
overlaps with beam axis and points to the detector. The information about
the (E, θ) distribution needs to be kept until the detector section where
angular related effects still matter.

Considering that in this reference frame the polar angle lies in the range
[0, π], I will rather use the cosine of the polar angle cos θ ∈ [−1, 1]. The
reason to use cos θ instead of θ is that all the cross sections become easier
and the isotropic distribution is just flat in cos θ. From now on, when I
will say the word “angle” I will instead mean “cosine of angle”,
or use them interchangeably.

It is perfectly fine to assume that when a beta electron is produced in
a decay, its angular distribution is isotropic. The goal of the Convolution
code can be summarized in the following problem:

p(E, cos θ) =
dΓ

dE
× Unif [−1, 1]

scattering effects−−−−−−−−−−→ p′(E, cos θ) = ? (4.4)

Or in words:
If an electron in the source starts isotropically with energy distribution

dΓ
dE , what is the probability that after the source it has energy E and polar
angle θ?
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1. Initialize eMin = 0, eMax = E0; !
2. Initialize EB, TB, zB; !
3. Initialize tolerance ε and column density of the source ρd; !
4. Initialize spectrum (dΓ/dE); !
5. Initialize the vector scattprobs = (Elastic,Excit,Ion); !
6. Initialize the object scattEff(scattprobs,EB,TB,eMin,eMax) !
7. Initialize the sourceSim object: sourceSim(zB,scattEff); !
8. Initialize the Distribution spec_after_source(EB,TB); !
9. (caveat: for mono-energetic simulations initialize it as !
10. vector of Distributions) !
11. If(FULL SPECTRUM) !
12.  spec_after_source = sourceSim.DoFullSpecSim(dΓ/dE, ε, ρd); !
13. If(MONO) !
14.  spec_after_source = sourceSim.DoMonoESim(ε, ρd);!

!
	

Figure 4.5: Pseudo-code of the main function of the convolution code.

In this section I will explain how the Convolution code computes the
probability p′(E, cos θ). I will discuss how the main functions of the code
work and what is the idea behind them. Not all the small details of the code
will be discussed due to its complexity and no source code will be shown for
the sake of readability. However, I will make use of pseudo-code to guide
the reader through the steps and to provide a documentation of the actual
source code.

I hope that using this reference one could easily navigate through the
actual code, if needed.

tristanSourceSim

The Convolution code is a software written in C++ and it is made up
of several modules that can be used individually, that, thanks to the cmake
build system, are forced to remain compatible and link correctly together.

The main function lies in a file called tristanSourceSim.cpp. I will
here show the pseudo-code of the main function and subsequently explain
the functionality step by step.

In line 1 one sets the energy range of our interest, which will either be
[E0 − 10 eV, E0] or [0, E0]. I chose 10 eV to make the comparison near the
endpoint with SSC.

In line 2 one declares the number of energy (EB), angular (TB) and
z (zB) bins used in the simulation. EB and TB will be used to bin the
initial distribution dΓ

dE × Unif [−1, 1], as I will soon explain, while zB will
be used for the binning of the source along the beam axis. Usual values are
EB = 100, TB = 100 and zB = 40, but I will specify their values again for
each simulation.

In line 3 the tolerance ε and the column density of the source ρd are set.
The use of the tolerance will be clear in the next parts. The column density
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is in cm−2 units and typical values are 5× 1017 for nominal KATRIN mode
and 3× 1015 for the Phase-0 measurement.

In line 4 one declares the spectrum object of type KTSpectrumBeta. In
its default constructor the formula (3.6) is implemented.

In line 5 one initializes a vector whose entries are the effects that take
place in the source. These effects are pushed back one by one into the
scattering probabilities (scattprobs) object, so that if one is interested
only in one effect, for example Ionization, one can just push back this effect
and forget about the others. Although not displayed in the pseudo-code,
each effect is constructed using the column density in one z bin (= ρd/zB).
In the WGTS electrons can undergo elastic and inelastic collisions with
tritium. The latter can lead to either ionization of the tritium molecule or
to excitation of electrons in the tritium shells. Therefore the three possible
effects are elastic scattering (Elastic) and inelastic scatterings (Excit,Ion).

From the scattprobs vector one then initializes the scattering effects
(scattEff) object (line 6). This object is initialized also using the number
of angular and energy bin and our energy range of interest.

In line 7 one finally initializes our simulation tool sourceSim. It is
constructed using the number of bins the source is divided into and the
scattering effects. The type of the object sourceSim is the class template
KTSourcSim<template>. The template argument can either be the class
KTDistribution or KTDistributionPhi. One can think of KTDistribution
as a prototype for KTDistributionPhi considering that it was developed
earlier and it did not include the right formula to compute the angular
change after each scattering (I will come back to this problem in 4.2.3).

In line 8 one initializes the spectrum after the source (spec_after_source)
object whose type is KTDistributionPhi (or KTDistribution). The data
member of this object is a EB×TB matrix that whose elements will be the
binned content of the initial distribution. At the moment of its declaration,
spec_after_source is null matrix. As the caveat in 4.5 lines 9-10 says, if
one wants to simulate mono-energetic electrons, one would instead initial-
ize spec_after_source as a vector of distributions (one for each starting
energy).

Finally (lines 11-on), if one want to simulate starting from the tritium
differential spectrum one calls the DoFullSpecSim method of the sourceSim
object. This method takes the differential spectrum dΓ

dE , the tolerance ε
and the column density ρd as parameters, returns a KTDistributionPhi

(or KTDistribution) which is a binned version of p′(E, cos θ) (see (4.4))
and assigns it to spec_after_source. If instead one wants to simulate
mono-energetic electrons one calls the DoMonoESim method of the sourceSim
object that does not need the tritium spectrum and will instead return a
vector of KTDistributionPhi (or KTDistribution).

In the next part I will describe how the function DoFullSpecSim per-
forms the simulation. The DoMonoESim function works in a similar fashion,
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1. DoFullSpecSim(dΓ/dE, ε, ρd) $
2. { $
3.  Initialize an isotropic Distribution (which is     

essentially a matrix) A storing in it the binned   
differential spectrum dΓ/dE; $

4.  Return DoSimulation(A, ε, ρd); $
5. } $
	

Figure 4.6: Pseudo-code of the DoFullSpecSim function of the convolution
code.

therefore I will not discuss it here.

DoFullSpecSim

The main goal of the DoFullSpecSim is to transform the nice theoretical
spectrum dΓ

dE (×Unif [−1, 1]) into a matrix A that one can actually use for
the simulation through the DoSimulation function.

I will describe now the binning of the differential spectrum and how one
initializes an isotropic distribution. The binning procedure introduces an
intrinsic approximation in our calculation, whose impact will be discussed
in 4.3.

The first step is to represent the continuous spectrum dΓ
dE with a discrete

version of it:

(E,
dΓ

dE
(E))→ (Ei, si) i = 0, . . . , EB − 1. (4.5)

In order to do so, the energy range [em, eM] is divided into EB intervals
whose width is ew = eM−em

EB . One then has EB intervals numbered from 0
to EB − 1 and EB + 1 points ej = em + j · ew, j = 0, . . . , EB (e0 = em,
eEB = eM). One then choose the midpoints of each interval as the points
where one wants to approximate the spectrum. I will denote the midpoint
of the ith interval as Ei = em +i ·ew +ew/2. The exact value of the spectrum
at Ei is then dΓ

dE (Ei). One approximates this value with the bin content of
the ith interval, which is given by:

si ≡
∫ ei+1

ei

dΓ

dE
(E)dE i = 0, . . . EB − 1. (4.6)

It is worth noticing that while dΓ
dE (Ei) has units of counts per energy (per

second), si has units of counts (per second). Therefore si should be thought
as number of beta electrons (per second) in the energy range [ei, ei+1].

At this point a vector (s0, . . . , sEB−1) that approximates our theoretical
spectrum is created.
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Considering the initial isotropic angular distribution, the matrix A is
simply given by

A =


s0 s0 . . . s0

s1 s1 . . . s1
...

...
. . .

...
sEB−1 sEB−1 . . . sEB−1

 (4.7)

up to a normalization constant. This matrix has EB rows and TB
columns reflecting the energy and angular binning respectively. The angular
range [−1, 1] is discretized similarly to the energy range: it is divided into TB
intervals whose width is tw = 2

TB . In total one has TB intervals numbered
from 0 to TB − 1. The midpoints of each interval are the points where
one wants to approximate the angular distribution: the midpoint of the ith

interval is cos θi = −1 + i · tw + tw/2. This procedure provides a discrete
uniform distribution of the values cos θ0, . . . , cos θTB−1.

The structure of A (Aij = si ∀j) reflects exactly the isotropy of the
angular distribution: for a particular energy, the probability of having a
certain angle is the same for all angles.

After the matrix A is built, one can give it as a parameter to the
DoSimulation function.

DoSimulation

The DoSimulation function is the function that takes the initial binned
spectrum A as an input and returns a final binned spectrum (a matrix) that I
will denote by B. The calculation is performed in the KTDistribution(Phi)
method Convolution that I will discuss in the next section.

As one can see from figure 4.7, in the DoSimulation function one first
initializes the object specPre, which is a vector of KTDistribution(Phi)’s
(matrices EB × TB), with A:

specPre =
index 0 1 . . . zB − 1

value A A . . . A

specPre represent the starting object of the simulation. One can think
of this initialization as filling each z bin of the source with the right amount
of beta electrons7.

The main idea of the simulation is that at each step, these electrons will
move right or left into the source changing the number of electrons per z
bin. As eventually all these electrons will be guided out of the source, the

7Remember that the sourceSim object is initialized with the scattEff object, which
itself is initialized with the scattprobs object, which itself (almost there!) is initialized
with the column density in one z bin! So it all makes sense!
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1. DoSimulation(A, ε, ρd) #
2. { #
3.  initialize the vector of distributions (EBxTB) specPre with zB entries: specPre = (A,…,A); #
4.  initialize the vector of distributions (EBxTB) specPost with zB entries: specPost = (0,…,0); #
5.  initialize the distributions (EBxTB) specFinal and specLost; #
6.  initialize sumAll summing up all the elements of specPre; #
7.  initialize sumFinal, sumLost to 0; #
8.  while(there are still more than “enough” electrons in the source) #
9.  { #
10.  sumAll=0; #
11.  #
12.  For each zBin do #
13.  { #
14.  For internal bins (i=1,…,zB-2) do #
15.  specPre[i].Convolution(scattEff, specPost[i-1], specPost[i], specPost[i+1]); #
16.  For the first bin (i=0) do #
17.  { #
18.  specPre[0].Convolution(scattEff, specLost, specPost[0], specPost[1], false, true); #
19.  sumLost = sum up all the elements of specLost; #
20.  } #
21.  For the last bin (i=zB-1) do #
22.  { #
23.  specPre[zB-1].Convolution(scattEff, specPost[zB-2], specPost[zB-1], specFinal, true, false); #
24.  sumFinal = sum up all the elements of specFinal; #
25.  } #
26.  #
27.  } #
28.  // update infos: #
29.  For each zBin (i=0,…,zB-1) #
30.  { #
31.  specPre[i] = specPost[i]; #
32.  reset specPost[i]; #
33.  increment sumAll by the sum of all elements in specPre[i]; #
34.  } #
35.  increment sumAll by sumLost and sumFinal; #
36.  return spectrumFinal; #
37. } #

#
	

Figure 4.7: Pseudo-code of the DoSimulation function of the convolution
code.

simulation stops when the number of remaining betas is under the fixed
tolerance (that depends on ε).

From specPre one builds the specPost and in the end sets specPre =
specPost (lines 29 - 31 figure 4.7).

The specPost object is initialized as a null vector of distributions:

specPost =
index 0 1 . . . zB − 1

value 0 0 0 0

where every 0 is a EB × TB matrix.
In line 5 one initializes the specFinal and specLost KTDistribution(Phi)

objects. specFinal will be the final output of the DoSimulation: it repre-
sent the electron distribution that comes out of the source and goes towards
the spectrometer section. specLost represents the electrons that at each
iteration leave the source from the left. sumAll is the number of electrons in
the source at each iteration step. It is initialized summing up all elements of
all matrices of specPre. sumFinal and sumLost keep track of the electrons
that at each step leave the source from the right and left, respectively. They
are both initialized at 0.

The condition to enter in the while loop (line 8) depends on sumAll,
sumLost, sumFinal and the tolerance ε, and it is easily read as while there
are still more than ”enough” electrons in the source do . . . .
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Inside the while loop the first thing is setting the total number to 0 as it
will be incremented at each step summing up what is left in specPre (lines
33,35).

At this point for each z bin one calls the KTDistribution(Phi) method
Convolution. Its task is to distribute the electrons of a z bin into itself or
into the neighbouring z bins according to the (scattering) effects that take
place.

Three cases need to be distinguished:

line 14 if the current z bin is an internal bin (i = 1, . . . , zB−2) then one calls
the Convolution method from the specPre[i] distribution object. The
result of this operation will be splitting the distribution specPre[i]
into specPost[i − 1], specPost[i] and specPost[i + 1], which means
distributing the electrons that are in the ith z bin into the (i − 1)th,
ith and (i+ 1)th z bins.

line 16 if the current z bin is the first bin (i = 0) then one calls the Con-
volution method from the specPre[0] distribution object. The re-
sult of this operation will be splitting the distribution specPre[0] into
specLost (because the electrons that go left are lost), specPost[0]
and specPost[1], which means distributing the electrons that are in
the first z bin into electrons that go out from the left, first and second
z bins.

Here one also keeps track of the number of lost electrons saving it into
the sumLost variable.

line 21 if the current z bin is the last bin (i = zB−1) then one calls the Con-
volution method from the specPre[zB−1] distribution object. The re-
sult of this operation will be splitting the distribution specPre[zB−1]
into specPost[zB− 2], specPost[zB− 1] and specFinal (because af-
ter the last bin they just go out of the source from the right side),
which means distributing the electrons that are in the last z bin bin
into the second-last and last bin, and into ”electrons that go out from
the right”.

Here one also keeps track of the number of electrons that exit the
source from the right side storing it into the sumFinal variable.

Finally, one updates specPre with specPost (line 31), resets specPost

to zero (line 32), increases sumAll with the number of electrons left in the
source (line 33) and returns specFinal (which is still a matrix that I will
call B).
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Figure 4.8: Pictorial representation of how the Convolution function dis-
tributes the electrons in one z bin into the same and neighbouring z bins.

Convolution

In this section I will sketch how the Convolution method works. This is
the most technical part of the code and, instead of showing a pseudo-code,
I will show the underlying logic and the formulas implemented. A pictorial
description of this function is shown in figure 4.8.

The Convolution method, called from the specPre[i] object, takes scattEff,
specPost[i− 1], specPost[i] and specPost[i+ 1] as parameters. From now
on I will refer to them as Pre, left, middle and right for simplicity.

The idea of this method is that each beta will eventually scatter some-
where in the source (that is, in some z bin). One can then divide the
electrons in two classes (see figure 4.9):

SCATT Electrons that scatter either in the same z bin they are born or in the
next z bin (either left or right).

NO SCATT Electrons that scatter neither in the same z bin they are born nor in
the next z bin. Since they will eventually scatter in some other z bin,
at each step of the iteration these electrons will be move left of right
according to they polar angle.
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SCATT:	
Electrons	that	sca.er	in	the	same	bin		
or	in	the	next	one	(e.g.	right)	

NO	SCATT:	
Electrons	that	sca.er	neither	the	same	bin		
nor	in	the	next	one.	At	the	next	step	of	the		
itera:on	they	will	again	follow	in	the	SCATT		
or	NO	SCATT	category	

Figure 4.9: Pictorial representation of how the SCATT and NO SCATT
category.
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For each energy bin iE and angular bin iT , the code distinguishes two
cases:

• if(SCATT)

if the electron goes right (or left) then one declares the pointer to
double value and makes it point to right[iE][iT ] (or left[iE][iT ]). Fur-
thermore, if we are in the last (or first) z bin, then one sets the double
variable fac to 0.

At this point, looping over all allowed angular and energy changes, one
computes the convolution of the Pre distribution with the scattering
cross section and assign it to value. This is mathematically given by
the formula8:

∗value =
∑
idT

∑
idE

Pre[iE − idE][iT + idT ] · P (iE − idE, iT + idT )

·DDP (iE − idE; idE, idT )

·FracNextBin(iE − idE, iT + idT )(·fac), (4.8)

where
∑

idT and
∑

idE represent the sum over all allowed energy and
angular changes, P (E, T ) is the absolute probability that an electron
in the energy bin E and angular bin T scatters at all, DDP (E,dE,dT )
is the Double Differential Probability (which encodes the double differ-

ential cross section d2σ
dEd(cos θ)), that is the probability that an electron

in the energy bin E undergoes an energy change of dE and an angular
change of dT due to scattering, and finally FracNextBin(E, T ) is the
fraction of electrons with energy E and angle T that scatter in the
next z bin. The factor fac makes sure that if the electron is going
right (or left) and we are at the last (or first) z bin then ∗value = 0.

The electrons that scatter in the same z bin will keep being in the
same z bin, therefore one computes middle[iE][iT ] as

middle[iE][iT ] =
∑
idT

∑
idE

Pre[iE − idE][iT + idT ] · P (iE − idE, iT + idT )

·DDP (iE − idE; idE, idT )

·FracSameBin(iE − idE, iT + idT ), (4.9)

where FracSameBin(E, T ) is the fraction of electrons with energy E
and angle T that scatter in the same z bin.

8the star operator in front of value is there because it is a pointer
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• if(NO SCATT)

Each electron goes either right or left. Let us assume for the sake of
simplicity that it goes right. Then one updates the value of the right
distribution in the following way:

right[iE][iT ] =
∑
iT

∑
iE

Pre[iE][iT ] ·
[
(1− P (iE, iT )) +

+P (iE, iT ) · FracNextBin(iE, iT )︸ ︷︷ ︸
if we are in the last z bin

]
,(4.10)

this formula represents the fact that, in the NO SCATT case, then
one convolutes the current distribution with the absolute probability of
not scattering. If furthermore we are in the last z bin, then one needs
to add also the leftovers, which are the electrons that will scatter in
the would-be next z bin.

This completes our discussion on how the most important components
of the Convolution code work. From now on I will only discuss modifications
of it and use it to produce useful results.

Convolution 2.0: The ϕ-problem

It has now come the moment to discuss the so called ϕ-problem. As
sophisticated as the convolution code is, up to now there is still a missing
ingredient. It is still making the wrong assumption, as in SSC, that at each
scattering the new polar angle is uniformly distributed.

I will now show how to get the right formula for the polar angle of
electrons after scattering and its distribution. Let us work in a frame of
reference where the z axis is parallel to the experiment axis and points to
the detector. Given the cylindrical symmetry of the source it does not matter
how the x and y axis are oriented as long as the system is right-handed. Let
us assume that an electron is generated at some point O, which I set as the
origin of our reference frame, with a polar angle θ0 (cos θ0 ∼ Unif[−1, 1]) and
an azimuthal angle ϕ0 (ϕ0 ∼ Unif[0, 2π]). This electron will then scatter at
a point O′ and go to the point P . At O′ a new uniform polar angle θp and
azimuthal angle ϕp will be generated. However, they refer to the reference

frame of the electron, where
−−→
OO′ defines the z axis. Therefore the problem

is the following: what is the polar angle of the electron with respect to the
beam axis?

As it turns out, this is a simple geometry exercise.

Let us set up a bit of notation referring to figure 4.10. Let ~v ≡
−−→
OO′ and

v = |~v|. I define also û = ẑ×~v
|ẑ×~v|

9.

9for any vector ~v = (v1, v2, v3) one defines v̂ = ~v
|~v| and v = |~v|
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Figure 4.10: Geometry of the scattering.

The coordinates of O′ in the Oz reference frame are

O′ ∼
−−→
OO′ = (R0 cosϕ0, R0 sinϕ0, v cos θ0) (4.11)

whereR0 = v sin θ0. One then has that v̂ = (sin θ0 cosϕ0, sin θ0 sinϕ0, cos θ0).
Let us now define Ru(θ) as the (right-handed) rotation around û of an

angle θ. From its definition one has that û = (− sinϕ0, cosϕ0, 0). Ru(θ0) is
the rotation that brings ẑ on v̂ and is given by

Ru(θ0) =

cos θ0 + sin2 ϕ0(1− cos θ0) − sinϕ0 cosϕ0(1− cos θ0) cosϕ0 sin θ0

− sinϕ0 cosϕ0(1− cos θ0) cos θ0 + cos2 ϕ0(1− cos θ0) sinϕ0 sin θ0

− cosϕ0 sin θ0 − sinϕ0 sin θ0 cos θ0


Calling the first and second column â and b̂ one has that â = Ru(θ0)x̂

and b̂ = Ru(θ0)ŷ, and the third column is v̂ = Ru(θ0)ẑ by construction.
Setting up this machinery, our initial problem has turned in the following

simple question: what is the angle Θp between
−−→
O′P and ẑ?

Let us set ~w ≡
−−→
O′P and Rp = w sin θp. One has that

P ∼
−−→
OP =

|
−−−→
OO′′|︷ ︸︸ ︷

(v + w cos θp) v̂︸ ︷︷ ︸
vector

−−−→
OO′′

+Rp cosϕpâ+Rp sinϕpb̂. (4.12)
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Considering that ~w =
−−→
O′P = P −O′ and that cos Θp = ŵ · ẑ = w3, then

one gets

cos Θp = cos θp cos θ0 − sin θp sin θ0 cos(∆ϕ) (4.13)

where ∆ϕ = ϕp − ϕ0. The angle ϕ0 in formula (4.13) has no particular
meaning, since it can always be set to 0 rotating the x and y axes. Therefore
the variable ∆ϕ is uniformly distributed in [0, 2π].

It is true in general that given a uniformly distributed variable x and a
function f , the distribution of y = f(x) is given by d

dyf
−1(y). Therefore the

distribution of cos Θp, given that ∆ϕ ∼ Unif[0, 2π], is

d(∆ϕ)

d(cos Θp)
=

1

sin θp sin θ0

√
1− cos θp cos θ0−cos Θp

sin θp sin θ0

(4.14)

To include the distribution d∆ϕ
d(cos θ) in the convolution code the additional

library KTDistributionPhi.h is implemented. It implements a method also
called Convolution, whose structure is exactly the same as the one discussed
in 4.2.3. The only difference is that one replaces the double differential cross
section with its convolution with the d∆ϕ

d(cos θ) distribution in formula (4.8):

d2σ

dEd(cos θ)
−→ d2σ

dEd(cos θ)
⊗ d∆ϕ

d(cos θ)
. (4.15)

From the theoretical point of view there is no issue in doing this. How-
ever, from the point of view of computational time this procedure lengthens
the runtime of the Convolution code considerably10.

4.3 Comparison of SSC and Convolution code in
the last 10 eV

Before performing any meaningful calculation with our Convolution code,
I tested its validity. I start from the assumption that SSC is a model of the
integral spectrum sophisticated enough to test the accuracy of the Con-
volution code. The idea is then to compare the integral and differential
spectra computed with SSC and the Convolution code in the last 10 eV of
the spectrum with various parameter configurations.

If they give the same result in this energy range, one can conclude that
the Convolution code can be used to model the entire tritium spectrum.

10because we are adding a 5th for loop inside 4 nested for loops
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1. AnalyzPlane(spec_after_source,Bs,BP,BA,Emin) !
2. { !
3.  For retarding potential qU from E0-Emin up to E0 !
4.  { !
5.  Initialize temporary distribution temp; !
6.  For angular bin iT from 0 to TB-1 !
7.  { !
8.   PM = electrons in this angular bin pass the pinch magnet; !
9.  For energy bin iE from 0 to EB-1 !
10.   { !
11.   AP = electrons in this energy and angular bin pass the analyzing plane; !
12.   if (PM and AP) temp[iE][iT] = spec_after_source[iE][iT]; !
13.   else temp[iE][iT] = 0; !
14.  } !
15.  } !
16.  write into a file qU and temp.Sum(); !
17.  } !
18. } !
19.  !

 !
	
Figure 4.11: Pseudo-code of the AnalyzPlane function of the convolution
code.

4.3.1 The transmission condition

Up to now I did not showed any integral spectrum with the Convolution
code. According the figure 4.5, after the call of the DoFullSpecSim method
in line 12, the KTDistribution(Phi) object spec_after_source has the
EB × TB matrix B as data member (see 4.2.3). Each element Bij is the
probability11 that an electron after the source has energy Ei and cosine of
the polar angle cos θj .

As already mentioned, in the Convolution code, source and transmission
effects are implemented separately. The matrix B is computed only tak-
ing into account scattering effects in the source. I will show now how to
get an integral spectrum from it, that is, how I implemented implement a
transmission condition.

I defined a new method called AnalyzPlane in the KTDistribution(Phi)
class. Here is its pseudo-code:

The idea of this method is fairly simple and it makes use of the transmis-
sion condition at the pinch magnet (where the magnetic field is maximal)
and at the analyzing plane12:

cos θ > cos

(
arcsin

√
Bs/Bp

)
transmission at the pinch magnet, (4.16)

(
1−

Ba

Bs
sin2 θ

)
· E > qU transmission at the analyzing plane. (4.17)

11or the number of electrons if not normalized
12see (2.8) and (2.15)
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For each retarding potential qU ranging in [E0 − Emin, E0], one loops
over all angular and energy bin and sets the bin value to zero if that bin does
not fulfil either (4.16) or (4.17). One then sums the remaining elements in
our distribution to get the number of electrons that make their way to the
detector at the fixed retarding potential. One then saves the values of the
integral spectrum into a text file.

I will now proceed with the comparison of the spectra produced with
SSC and the Convolution code under the following assumptions:

• energy range = [E0 − 10 eV, E0] with E0 = 18575 eV,

• m2
β = 0,

• no sterile mixing,

• F (E,Z ′) = 1 (because in the Convolution code it is not implemented
yet),

• no final state corrections.

4.3.2 Differential spectra

At first one wants to make sure that both software have the same starting
point. Although the theoretical formula for the differential spectrum should
be the same, tiny differences can depend on the implementation. A minor
difference is the way the codes implement the physical constants (~, Cabibbo
angle, etc. . . ). The major difference comes instead from the binning of the
Convolution code.

In SSC the differential spectrum is implemented choosing n points in the
energy range and then applying (1.65).

In the Convolution code the differential spectrum is computed setting
eMin = E0 − 10 eV and TB = 113 in tristanSourceSim.cpp.

Finally, in the DoFullSpecSim function, instead of returning
DoSimulation(A, ε, ρd), one returns A. This is equivalent to just binning
the spectrum given by (1.65).

Given that the only calculation involved in the Convolution code is the
integration over the energy bin width, I chose to use EB = 10000 and
therefore to compute the SSC differential spectrum in 10000 points.

The plot of the relative difference and ratio are shown in figure 4.12 and
4.13. The relative difference is more than 0.01% only in the last 0.03 eV and
it is therefore due to the binning of the theoretical spectrum.

13using one angular bin is the same thing of not resolving the angular distribution.
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Figure 4.12: Relative difference of SSC and Convolution code’s differential
spectra in log scale.
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Figure 4.13: Ratio of SSC and Convolution code’s differential spectra
(Conv/SSC) in log scale.
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4.3.3 Differential spectra + Transmission

The previous results are promising. I now want to add an ingredient to
the pure differential spectrum and compare the results again.

I previously said that in SSC the scattering effects in the source and the
transmission probability through the spectrometer are tied together in the
response function (see 2.1) and cannot be treated separately. However, this
is not quite true.

One can introduce these two ingredients into the response function in
steps. In fact, if one set the column density ρd = 0 (that is, if the source
is empty) in SSC, then the response function reduces to the transmission
function. Setting then the column density to a non zero value one gets back
the whole response function (see next section).

In this section I will then compare the following spectra:

• SSC differential spectrum convoluted with the transmission function
(ρd = 0),

• the result of AnalyzPlane(A,Bs, Bp, BA, E0 − 10 eV) where A is just
the binned differential spectrum (that is, scatterings are OFF).

The values of the magnetic field for both simulations are Bs = 3.6 T
(source), Bp = 6 T (pinch magnet, maximal B field) and BA = 3 · 10−4 T
(analyzing plane). The plot of the relative difference and ratio are shown in
figure 4.14 and 4.15.

One can see from 4.14 that the difference is still less than 1%.

4.3.4 Differential spectra + Scatterings + Transmission

I can finally add the final ingredient to the comparison: scattering effects.
In this section I will then compare the following spectra:

• SSC integral spectrum,

• the result of AnalyzPlane(B,Bs, Bp, BA, E0−10 eV) where B is result
of DoSimulation(A, ε, ρd).

The parameter settings are shown in table 4.1. Let us discuss shortly
the parameters D and A.

D stands for detailed transmission for D scatterings. This is a parameter
in the configuration file of SSC and it can take values from -1 up to the max
number of scatterings14. For D = −1 the usual analytical transmission
function as in (2.21) is used. For D = i (i = 0, 1, 2,...) the formula (2.19) is
modified in the following way:

14in the configuration file of SSC one fixes a priori the maximal number of times an
electron can scatter in the source, so that the sum in (2.25) has a finite number of terms.
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Figure 4.14: Relative difference of SSC and Convolution code’s differential
spectra plus transmission in log scale. SSC parameters: ρd = 0, 1000 points.
Convolution parameters: EB = TB = 1000, zB = 100, Bs = 3.6 T, Bp =
6 T and BA = 3× 10−4 T.

Model
ρd

(cm−2)
Bs

(T)
Bp

(T)
BA

(T)

EB
TB
zB

Elastic
scatterings

Inelastic
scattering

# of
points

D A ϕ-convolution

SSC 5 · 1017 3.6 6 3 · 10−4 X ON ON 1000
-1,1
or 5

True or
False

X

Conv.
1000
200
100

X X X OFF

Table 4.1: Parameter values for the comparison of the complete integral spectra.
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Figure 4.15: Ratio of SSC and Convolution code’s differential spectra plus
transmission in log scale. SSC parameters: ρd = 0, 1000 points. Convolution
parameters: EB = TB = 1000, zB = 100, Bs = 3.6 T, Bp = 6 T and
BA = 3× 10−4 T.
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t(E, qUa) −→ t∗i (E, qUa) =

∫ θtr(E,qUa)

0
ωi(θ)dθ (4.18)

where now ωi(θ) = Pi(θ) sin θ and Pi(θ) is the probability that an elec-
tron that is born with polar angle θ leaves the source after i (inelastic)
scatterings [Gro15]. Therefore, setting D to a non-negative value is equiv-
alent to resolve an angular dependent effect for electrons that scatter D
times. A transmission function computed with non negative D is called de-
tailed transmission function. I chose the representative values of D = −1,
D = 1 and D = 5 for my simulation.

A stands for angular change which is a boolean parameter in the con-
figuration file of SSC. If A = true one includes the angular change due to
elastic scattering; if A = false one does not.

The main goal of this comparison is to see if, including a detailed trans-
mission for D > 0 scatterings, one gets a better agreement with the convo-
lution code which includes angular effects automatically.

In figure 4.16, 4.17, 4.18 and 4.19 the plots of the comparison are dis-
played.

In plot (d) I chose to use D = 1 instead of 5 for two reasons. First, the
major impact on the shape of the transmission function comes from setting
D = 1 and increasing its value does not increase the precision since scattering
effects takes over (see [Gro15]). Second, the simulation time of the integral
spectrum in SSC is already huge including A = true (∼ a day), therefore a
detail transmission for 5 scattering does not add any useful information.

Looking at the plots, one can see that the angular change parameter A
has no sizable impact on the comparison The number of scatterings for which
one uses the detailed version of the transmission function really matters.
From D = −1 to D = 1(or 5) one can see an improvement of 10%. For
D = −1 the relative difference is greater than 10% in the last eV regardless
of angular change. For D = 1(or 5) the relative difference is greater than
1% in the last 0.4 eV regardless of angular change15.

All these results are very promising and suggest that the Convolution
code provides a good model for the entire tritium spectrum. However, some
issues arose in this study.

First, in SSC there is no such thing as a ϕ-convolution. Therefore it
did not make sense to include it in our comparison. Although it is clear (as
we will see in the next section) that the convolution code provides mean-
ingless results without the ϕ-convolution, which modifies the final angular
spectrum only for large polar angles θ (that is, small cos θ), our comparison
was meaningful. That is because, in normal KATRIN mode, only electrons

15for a sterile neutrino search, the discrepancy very very close to the endpoint is not
an issue. Remember that the Convolution code is designed to model the entire spectrum.
Far from the endpoint it is precise enough.
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(a)

(b)

Figure 4.16: Relative difference of SSC and Convolution code’s integral
spectra using the analytical transmission function in log scale. (a): no
angular change in SSC. (b): including angular change in SSC.



CHAPTER 4. MODELING OF THE FULL TRITIUM SPECTRUM 90

(a)

(b)

Figure 4.17: Relative difference of SSC and Convolution code’s integral spec-
tra using the detailed transmission function in log scale. (a): detailed trans-
mission for 5 scatterings, no angular change in SSC. (b): detailed transmis-
sion for 1 scattering, including angular change in SSC.
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(a)

(b)

Figure 4.18: Ratio of SSC and Convolution code’s integral spectra using the
analytical transmission function in log scale. (a): no angular change in SSC.
(b): including angular change in SSC.
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(a)

(b)

Figure 4.19: Ratio of SSC and Convolution code’s integral spectra using the
detailed transmission function in log scale. (a): detailed transmission for
5 scatterings, no angular change in SSC. (b): detailed transmission for 1
scattering, including angular change in SSC.
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born with θ < 51◦ make their way out of the source, and the ϕ-convolution
modifies the angular distribution only for θ & 65◦ (see figure 4.2).

Second, the whole simulation with the convolution code with a reason-
able number of angular and energy bins (∼ 100 for both) including the ϕ-
convolution takes days. This represents a major problem for fitting because
one would have to run a simulation for each parameter setting16.

These issues led to the idea of using the convolution code as a generator
of response matrices of the source (and eventually the spectrometer) that
can can be use as a database to later calculate the whole tritium spectra.

This new framework/idea is called SSC-Sterile and I am going to dis-
cuss it in the next section.

4.4 SSC-Sterile

With the term SSC-Sterile I refer to a new way of calculating the model
of the tritium spectrum for sterile neutrino searches.

In this section I want to discuss the general idea and the role of the
Convolution code in SSC-Sterile.

The underlying idea is that one can separate the KATRIN setup in
different sections: source, spectrometer, detector, etc... Each components
comes with its own response which is just a property of the component and
has nothing to do with the tritium spectrum. The response is always given
in terms of response ”to something”, for example, response to electrons with
definite energy and/or angle.

Here I will focus on the response to mono-energetic (and subsequently
mono-angular) electrons. The response of a component, for example the
source, to mono-energetic electrons is given by the energy distribution af-
ter the source. It describes how a mono-energetic line is spread after the
scatterings in the source. The structure of the response depends on what
one is looking for. For example, if one just focuses on the energy and forget
about the angles, then for each energy EI one will get a vector of proba-
bilities (s0, s1, . . . , sI−1, sI , 0, . . . , 0), where si =probability that the electron
starting with EI has energy Ei after the source i = 0, . . . I17. The more
information one wants to keep track of, the bigger the response becomes
(matrix, tensor,...)

Theoretically, having the responses of all components to all variables
of interest, starting with a binned differential tritium spectrum, as in the
Convolution code, one can apply on it the responses of each component one
by one:

M = . . . Rdetector × . . .×Rspectrometer ×Rsource × S (4.19)

16neutrino mass, endpoint, etc ...
17the i index runs up to I because the electron can only lose energy in the source
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where S is the binned initial differential spectrum, Ri’s are the response
matrices of each component and M is our final model for the tritium spec-
trum used for data fitting.

Equation (4.19) is at the moment very vague because neither the dimen-
sions of these objects nor the meaning of ”×” is specified. One can rather
think of equation (4.19) in this way: applying all the responses one by one
to the initial spectrum one gets the final model for the integral spectrum.

4.4.1 Response matrices of the source

In this section I show how to compute the response matrices of the source
and how they are used to build a spectrum after the source. This can be
used as a guideline on how to add the responses of other components of the
experiment.

Response of the source to mono-energetic electrons

Let us discuss first the easier case of mono-energetic electrons. Our goal
is to find the response of the source to each energy and build a tritium
spectrum after the source18.

To this goal one can make use of our Convolution code. I am interested
in how the source responds to a single energy, therefore I will make use of
the method DoMonoESim instead of DoFullSpecSim in tristanSourceSim.
Remember that the only differences are that DoMonoESim does not have the
tritium spectrum as a parameter and it works with a vector of distributions
(one per each initial energy).

I will not write pseudo-code here again because once the DoFullSpecSim
method is understood, it is straightforward to understand DoMonoESim. I
will just show the mathematical approach which reflects what goes on in the
code.

Starting with mono-energetic electrons with energy EI
19, the input ma-

trix A for the convolution code will be

18the REAL goal is to build the response. I show how to build the spectrum for illus-
tration, as this will be the last thing one does after all the responses are provided (see
(4.19))

19I will use capital indices for starting energy
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AI =



cos θ0 cos θ1 · · · cos θTB−1

E0 0 0 · · · 0
...

...
...

. . .
...

EI−1 0 0 · · · 0
EI sI sI · · · sI
EI+1 0 0 · · · 0
...

...
...

. . .
...

EEB−1 0 0 · · · 0


where sI is the probability of starting with energy EI

20 and I have dis-
played on the side of the matrix the energies and angles the elements cor-
respond to. The matrix AI represent the binned probability distribution
of mono-energetic electrons starting isotropically. Using this matrix as an
input to the Convolution code one will output what I called the B matrix
which will have the form

BI =



cos θ0 · · · cos θTB−1

E0 BI
0,0 · · · BI

0,TB−1
...

...
. . .

...
EI BI

I,0 · · · BI
I,TB−1

... 0 · · · 0

...
...

. . .
...

EEB−1 0 · · · 0


where BI

ij is the probability that an electron, starting isotropically with
energy EI , has energy Ei and cosine of polar angle cos θj after the source.

The matrix BI represent the response of the source to mono-energetic
isotropically-born electrons. For each starting energy (a number) there is a
matrix:

sI −→ BI . (4.20)

How can one build the tritium spectrum from this information?
Binning the initial tritium spectrum as I did in 4.2.3, one gets a vector

(s0, . . . , sEB−1) where si is the bin content of the ith energy bin, that is,
the probability that an electron starts with energy Ei. Repeating the just
outlined procedure, one can build a response matrix for each starting energy:

20it should be 1 being a mono-energetic distribution. However, its actual value changes
if one normalizes the two-dimensional distribution including the angles. Therefore I will
keep calling it sI .
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s0

s1
...

sEB−1

 −→


B0

B1

...
BEB−1

 (4.21)

If one now weights each response BI with its probability sI and sum
over all I’s one will get the same result one would get if one used the whole
tritium spectrum as an input to the Convolution code21. Symbolically:

B = ConvolutionCode(A)⇐⇒
EB−1∑
I=0

sIB
I (4.22)

where B is the same as in section 4.2.3. Although equivalent, the re-
sponse matrices method has several advantages. Calculating all these BI

matrices provides a database that can be easily reused. If for instance one
would like to fit the spectrum after the source with some measured spectrum,
in the case of the Convolution code one would have to simulate the whole
spectrum for each parameter set (neutrino mass, final state distribution,
etc. . .), while using the response matrix one only needs to bin the differen-
tial spectrum for each parameter set, because all the response matrices are
already calculated. This looks like a great advantage!

To show that these two methods are indeed equivalent, I plot the result
of both simulations in figures 4.21 and 4.22 and their relative difference in
figure 4.23.

In the next sections I will show some plots of the responses to mono-
energetic electrons and outline how one can further extend the response
matrices method.

Plots of the response functions

In this section I want to show how a typical response function to mono-
energetic isotropically-generated electrons looks like. In the previous section
I showed how one generates a response matrix BI from the probability sI .
BI represents also a binned two-dimensional probability distribution22.

Marginalizing either the angles or the energies, one gains information on
the final energy or angular distribution, in fact:

• the vector (BI
0 , . . . , B

I
I−1, B

I
I , 0, . . . , 0) with BI

i =
TB−1∑
j=0

BI
ij for

i = 0, . . . , I and BI
i = 0 for i = I + 1, . . . , EB − 1 is the energy

21this has been checked and it is true.
22the key fact to keep in mind is that for mono-energetic electrons the concepts of

response and distribution after the source are actually the same object
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Figure 4.20: Initial spectrum A. EB = TB = 100. From this plot we can
see that the initial spectrum is isotropic and distributed as dΓ/dE along the
energies.
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Figure 4.21: Distribution ConvolutionCode(A) from eq (4.22) where A is
displayed in figure 4.20. EB = TB = 100. I use a small number of energy
and angular bins because the goal is just to show the equivalence of the two
methods.
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Figure 4.22: Distribution
EB−1∑
I=0

sIB
I from eq (4.22) built using the response

matrices of the source to mono-energetic electrons. EB = TB = 10. No
secondary electrons are included. I use a small number of energy and angular
bins because the goal is just to show the equivalency of the two methods.



CHAPTER 4. MODELING OF THE FULL TRITIUM SPECTRUM 100

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
)θ cos(

2000

4000

6000

8000

10000

12000

14000

16000

18000

 E
ne

rg
y 

(k
eV

)

0

0.02

0.04

0.06

0.08

0.1

3−10×
Relative difference (Conv-RespMatMeth)/Conv

Figure 4.23: Relative difference of the final spectra built with the convolution
code and with the response matrices method. EB = TB = 10. The relative
error is comparable to the tolerance of the simulation (ε ∼ 10−5).
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distribution after the source marginalizing the angle. More specifically,
BI
i is the probability that an electron, isotropically-generated and with

initial energy EI , has energy Ei after the source.

• the vector (ΘI
0, . . . ,Θ

I
EB−1) with ΘI

j =
EB−1∑
i=0

BI
ij for j = 0, . . . , TB− 1

is the angular distribution after the source marginalizing the energy.
More specifically, ΘI

j is the probability that an electron, isotropically-
generated and with initial energy EI , has cosine of the polar angle
cos θj after the source.

I plot here the marginalized energy and angular distribution after the
source for electrons starting with energies E1 ∼ 6.2 keV, E2 ∼ 11.6 keV and
E3 ∼ 17 keV. These are just representative values chosen to show how a
response function looks like.

Table 4.2: Parameter values used in the simulation of response matrices to
mono-energetic electrons.

ρd (cm−2) EB,TB, zB Effects included ϕ-convolution

3 · 1015 (Phase-0) 100, 100, 40 Elastic, Excitation, Ionization ON

In table 4.2 I display the values I used for our simulation of the response
matrices. In figures 4.24, 4.25 and 4.26 one can see the results of the simu-
lation.

Future steps

Finally I want to outline how to further extend the response matrices
method. Until now this method makes strong use of the assumption on the
initial angular distribution of electrons in the source: isotropic distribution.
However, electrons back scattering from the rear wall, which then also pass
through the source, are not generated isotropically simply because they can
just go right. Therefore, it would be useful to create a database of response
matrices of the source to mono-energetic mono-angular electrons. The ex-
tension to an other dimension is theoretically straightforward. Starting from
a non-isotropic two-dimensional binned distribution

Anon-iso =

 s00 . . . s0,TB−1
...

. . .
...

sEB−1,0 . . . sEB−1,TB−1

 (4.23)

where sij is the bin content of bin (i, j), one can define the matrix AIJnon-iso

in the following way
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Figure 4.24: Simulation of the response to mono-energetic isotropically-
generated electrons with starting energy EI ∼ 6.2 keV. ϕ-convolution: in-
cluded. (a): energy distribution (response) marginalizing the angle variable
in log scale. (b): angular distribution (response) marginalizing the energy
variable in log scale.
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Figure 4.25: Simulation of the response to mono-energetic isotropically-
generated electrons with starting energy EI ∼ 11.6 keV. ϕ-convolution: in-
cluded. (a): energy distribution (response) marginalizing the angle variable
in log scale. (b): angular distribution (response) marginalizing the energy
variable.
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Figure 4.26: Simulation of the response to mono-energetic isotropically-
generated electrons with starting energy EI ∼ 17 keV. ϕ-convolution: in-
cluded. (a): energy distribution (response) marginalizing the angle variable
in log scale. (b): angular distribution (response) marginalizing the energy
variable.
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AIJnon-iso, ij =

{
sij if i = I and j = J

0 otherwise
, (4.24)

that is, AIJnon-iso has only one non-zero element and that is sIJ . AIJnon-iso

is a mono-energetic and mono-angular two-dimensional binned distribution.
Giving it as an input to the Convolution code one will get a matrix BIJ

which is the response and corresponds to sIJ . Doing this for all I’s and J ’s
one gets a matrix of matrices:

 s00 . . . s0,TB−1
...

. . .
...

sEB−1,0 . . . sEB−1,TB−1

 −→
 B00 . . . B0,TB−1

...
. . .

...
BEB−1,0 . . . BEB−1,TB−1

 (4.25)

If one now, as previously done, weights each response BIJ with its prob-
ability sIJ and sums over all I’s and J ’s one gets the final two-dimensional
binned spectrum after the source:

EB−1∑
I=0

TB−1∑
J=0

sIJB
IJ (4.26)

Although the extension to mono-energetic and mono-angular electrons
was straightforward, from the computational time point of view this is really
an issue. To put that into perspective one would now have to launch the
Convolution code EB × TB times to calculate all the BIJ matrices. If one
uses the usual values for EB and TB (∼ 100) this might take months, if not
years. Also the size of the data grows considerably.

Perhaps one could bypass this issue reducing the number of angular bins.
As one can see from figures 4.24, 4.25 and 4.26, the angular distribution is
flat after cos θ ∼ 0.5, therefore one might not want to bin that part. One
could reduce the total number of angular bins and have a finer binning for
cos θ ∈ [0, 0.5]. All these hypotheses are currently under investigation and
object of discussion.

4.4.2 Conclusion

In this chapter I presented in details the Convolution code and its struc-
ture. The major modifications I brought during this work to the code where
the inclusion of the ϕ-convolution and the AnalyzPlane method. I com-
pared the integral spectra from SSC and the Convolution code and the
result confirmed that the Convolution code can be used to produce a model
of the tritium spectrum for sterile neutrino search. It was observed that
the inclusion of the ϕ-convolution into the code slows down considerably
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the computation time of the integral spectra. This lead to the idea of using
the Convolution code as a response matrices generator for the source. I
explained how to build a database of response matrices to mono-energetic
electrons and how to build a spectrum after the source out of them. I also
discussed the possibility of calculating response matrices to mono-energetic
and mono-angular electrons for a more precise modelling of the spectrum,
highlighting its advantages and disadvantages.
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