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Abstract

In this thesis I investigate the occurrence of additional constraints in a field theory, when
formulated in characteristic coordinates. More specifically, the following setup is considered:
Given the Lagrangian of a field theory, I formulate the associated (instantaneous) Hamiltonian
problem on a characteristic hypersurface (w.r.t. the Euler-Lagrange equations) and find that
there exist new constraints. I then present conditions under which these constraints lead
to symplectic submanifolds of phase space. Symplecticity is desirable, because it renders
Hamiltonian vector fields well-defined. The upshot is that symplecticity comes down to
analytic rather than algebraic conditions.
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1. Introduction

In classical mechanics, at some point every physicist-to-be is asked to calculate the motion of a
pendulum in three dimensions. The motion of the pendulum’s point-mass is easily seen to be
constrained to lie within a sphere of radius the length of the string. Usually, one then switches to
a spherical coordinate system with fixed radius and has the constraint thus implemented from the
start. We will briefly recall what happens when continuing in Cartesian coordinates.

[ST95] Take a free particle confined to the two-dimensional unit sphere in three-dimensional
ambient space. Using a Lagrange multiplier λ and coordinates qi, i = 1, 2, 3, the Lagrangian reads

L(qi, q̇i, λ, λ̇) =
m
2

q̇2 + λ(q2 − 1)

The Euler-Lagrange equations are of course

mq̈i − 2λqi = 0 (evolution equation)

q2 − 1 = 0 (constraint)

Trivially, the constraint equation has consequences on the initial position we may choose: It has
to lie on the sphere! But this is not the whole story. Quite formally, the whole system of equations
reads

mq̈i − 2λqi = 0 λ̈ = 0

qq̇ = 0 λ̇ = 0

q2 − 1 = 0 mq̇2 + 2λ = 0

In particular, the initial velocity needs to be tangent to the sphere. The Hamiltonian formalism
lives on the space of initial conditions - so let’s see what happens, when we switch to phase space.
For the canonically conjugate momenta pi, π, we calculate pi = mq̇i, π = 0. Hence, from the start
phase space is constrained to

P = {(qi, λ, pi, π) ∈ R8 | π = 0} � R7

π = 0 is called a primary constraint and P the primary constraint submanifold of phase space.
Primary constraints arise, when the Legendre transformation is not onto. The Hamiltonian
becomes

H : P −→ R

(qi, λ, pi, π) 7−→
1

2m
p2 − λ(q2 − 1)

Note, that being odd-dimensional, P is not a symplectic submanifold w.r.t. the canonical
symplectic form. The Hamiltonian is defined only on P, so we better restrict to initial values
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such that we do not flow off P by introducing new constraints: In view of more intricate
systems, Dirac1 has developed an algorithm based on Poisson brackets to tackle this problem. In
subsection 5.4 we introduce an algorithm due to Gotay, Nester and Hinds [GNH78] that is based
on the presymplectic structure of P.
In this case, also by simply using the Hamilton equations, we find the secondary constraints

q2 = 1 , pq = 0 , p2 = −2mλ

Secondary constraints are those that come from Hamilton’s equation by these considerations.
We call the submanifold satisfying all constraints the final constraint submanifold and denote
it by C. Finally, by a classification due to Dirac, all these constraints are second class and this
classification allows us to calculate the dynamical degrees of freedom via

DoF = DDim.conf.space − #1stClass −
1
2
· #2ndClass

= 4 − 0 −
1
2
· 4

Which is equal to two - the dimension of the sphere. The classification will be explained in
section 5.4.

Constraints are ubiquitous in field theory. In fact, if a field theory features gauge invariance, it
necessarily features constraints (Proposition 5.5.3). The furthest reaching attempt to characterize
the relationship between constraints and gauge invariance that the author is aware of, has been
made in [GM06]. From there we take the Hamiltonian formulation of a field theory, recapitulated
in section 6, and point out where the “gauge↔ constraints” correlation starts off. In particular,
we give an example in section 7.

So where do characteristics come in? Now, hyperbolic partial differential equations are pri-
marily defined through the existence of associated characteristic hypersurfaces. For physicists,
hyperbolic PDEs are formally defined as those PDEs, which feature unique solutions for an
initial-value problem and whose solutions propagate with finite speed. In section 4 we will make
the connection.

What makes characteristic hypersurfaces special in the theory of constraints is that they tend to
bring about new constraints. This was already noted by [Ste80], who investigated quantization
on characteristic hypersurfaces. We shall skip all the functional analysis involved for now (see
section 5) and take as an example the massless Klein-Gordon field on a 4-Minkowski background:

L(φ, ∂µφ) =

∫
1
2
ηµν∂µφ∂νφ , η Minkowski Metric

1P.A.M. Dirac. Generalized Hamiltonian dynamics. Can. J. Math., 2:129-148, 1950
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=

∫
1
2

(∂+φ∂−φ − ∂nφ∂nφ) , xn = xn , n = 2, 3 , x± :=
1
2

(x0 ± x1)

Now, in the first coordinate system we choose x0 as the evolution direction and {x0 = 0} as initial
value hypersurface. In the second, we choose x+ as the evolution direction and correspondingly
{x+ = 0} as initial value hypersurface. Latter, as we will see in section 3, is characteristic w.r.t.
the Euler-Lagrange equations. We calculate the canonical momenta π0 and π+, respectively

π0 :=
∂L

∂(∂0φ)

∣∣∣∣
x0=0

= ∂0φ
∣∣∣∣
x0=0

π+ :=
∂L

∂(∂+φ)

∣∣∣∣
x+=0

= ∂−φ
∣∣∣∣
x+=0

In the first case, it is clearly possible to substitute the canonical momentum π0 for the ve-
locity ∂0φ on the hypersurface and obtain the unconstrained phase space P0 = {(φ|x0=0, π0)}.
In the second case, this is not possible. Rather, we obtain the constrained subspace P+ =

{(φ|x+=0, π+) | π+ − ∂−φ|x+=0 = 0}, where again, π+ − ∂−φ|x+=0 = 0 is referred to as a primary
constraint.

This observation marks the starting point of this thesis: Is there a general property to this sort of
new constraint? As Dirac’s classification was introduced above, one could for instance wonder
whether the constraint is first class. It turns out to be second class. Dirac conjectured that first
class secondary constraints correspond to gauge freedom. Will this primary constraint give rise to
such a secondary constraint? Does gauge invariance then depend on the initial value hypersurface?
If, instead, it gives rise to a second class constraint, does the Klein Gordon field then have no
degree of freedom (by the DoF-formula)? These questions are, of course, oversimplified, but not
as much as one might think.

In fact, we found that the associated constraint submanifold of this particular setup is symplectic
w.r.t. the canonical symplectic structure. In particular this means (as explained in section 5.4)
that it will not give rise to a secondary constraint submanifold, whence all these questions are
answered at once! Thus, this is the situation one would hope for. It then seems possible to
ignore the fact that one is not working in the symplectic phase space, but rather in the symplectic
characteristic constraint submanifold of phase space and continue with the usual analysis. Finally,
we have set the stage for the question investigated in this thesis

Under which conditions is the characteristic constraint submanifold symplectic?

3



Char. Hypersurfaces and Constraint Theory Implicit Systems of Partial Differential Equations

Part I.
Mathematical Preliminaries

2. Implicit Systems of Partial Differential Equations

In this section we will give a short overview of the more general obstacles that arise when
analyzing general differential equations. What is described here is essentially the reason for most
of the machinery developed in later sections, just that the origin will be somewhat disguised. This
section is based on the introduction in [Sei12].

As customary, we will be using subscripts to denote derivatives and split coordinates (t, x) ∈ R×Rn,
where t is the “distinguished”coordinate. The way in which this coordinate is distinguished
becomes clear when one considers a normal system for an unknown function u : R × Rn → Rm

ut = φ(t, x, u, ux)

Such a system is also said to be in Cauchy-Kovalevskaya form, because a well known theorem
by the same name ensures local existence and uniqueness in case of analytic φ and initial con-
ditions. Formally, this is readily seen, as one may consider the partial differential equation in
normal form as an ordinary differential equation, in t, on an infinite dimensional space.

Physics is abound with non-normal systems, examples of which will be discussed in the course
of this work. Hence, we consider the implicit first order system

Φ(t, x, u, ut, ux) = 0

By the inverse function theorem, this system is equivalent to a normal system if and only if -
possibly after a transformation of the independent variables (t, x) - the Jacobian ∂Φ/∂ut is regular.
If this is not the case, one can separate the unknown function u = (v,w) such that already the
partial Jacobian ∂Φ/∂vt has the same rank as the full one ∂Φ/∂ut. We may then make use of the
implicit function theorem to obtain the semi-explicit form

vt = φ(t, x, v,w, vx,wx,wt) (1)

0 = ψ(t, x, v,w, vx,wx) (2)

This system yields so-called integrability conditions: Taking a derivative w.r.t. t of Equation 2,
we obtain

0 =
∂ψ

∂t
+
∂ψ

∂v
vt +

∂ψ

∂w
wt +

∂ψ

∂vx
vxt +

∂ψ

∂wx
wxt

4
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we can now substitute vt from Equation 1 to check consistency of the non-normal system: This
will either yield an identity or a new equation. Repetition of this process should lead to an identity
if the system is consistent.

Of course the process does not stop at this point, for Equation 2 is actually just another implicit
first order system, whence the above process has to be repeated until one is left with an ordinary
differential equation. The overall system is then said to be in Cartan normal form.2

In particular, it should be clear that one can not choose arbitrary initial data for the system.
Choosing v(0, x) = v0 and w(0, x) = w0, Equation 2 requires ψ(0, x, vx,wx) = 0 and this condition
is not even sufficient if integrability conditions are hidden in the system.

The most prominent examples of such systems are so called characteristic initial value problems.

3. The Characteristic Initial Value Problem

All of this section is taken from [zHS79]. In the first part of the section we will briefly review
some basic notions in the theory of partial differential equations.Then we give an example,
which illustrates the importance of the choice of hypersurface on which to place the initial data.
We conclude this section with an existence theorem for compact domains, to emphasize that
characteristic initial value problems can be well-posed problems and arise naturally in the realm
of general relativity.
For further study, [Hoe83] features a whole section on the characteristic Cauchy Problem. He
focuses on existence of a solution with values prescribed on a characteristic hyperplane, but does
not treat uniqueness. [Lun78] gives an analysis of the Klein-Gordon equation with Light-Cone
data, showing that this initial value problem is well-posed.

3.1. Basic Notions

Let S be the set of solutions u : M → Rn of the partial differential equation

L[u] = L(D2u,Du, u) = F(Du, u)

on a domain M with L a linear and F an arbitrary function. LetD be the data that is the set of
certain values of u on a hypersurface H. The correspondence

ϕ : S → D

u 7→ data[u] (the datum of u on H)

2When there is gauge invariance, one does not have enough equations to obtain the Cartan normal form - thus one
has to fix the gauges before the PDE can be solved.

5
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is (normally) a well-defined function and continuous in any natural topology. If the inverse, ϕ−1,
is

• Defined on the whole ofD, we have an existence property

• A function on ϕ(S) ⊂ D, we have a uniqueness property

• A continuous function, we have a stability property

Let B, B′ be topological function spaces. If

ϕ−1 : D∩ B(H)→ S ∩ B′(M)

is a continuous function, the search for the values of ϕ−1 is called a well-posed or properly
posed problem.

3.2. The Wave Equation

For (t, x, y) ∈ R3, consider the partial differential equation

∂2
t u = ∂2

xu + ∂2
yu

• Boundary-Value Problem in two Dimensions: Let M ∈ R2 3 (t, x) be the unit disk,
H := ∂M. This problem is improperly posed, consider e.g. ua := a(x2 + t2) − a. ua solves
the 2-dim. wave equation for all a ∈ R, but ua|H = 0.3

• The analytic Cauchy problem. H = {t = 0}: ϕ(x, y) = u|h, ψ(x, y) = ∂tu|H . Using the PDE,
all derivatives can be calculated algebraically from the data at any point of H:

∂2k
t u

∣∣∣
H = (∂2

x + ∂2
y)kϕ

∂2k+1
t u

∣∣∣
H = (∂2

x + ∂2
y)kψ

This problem is properly posed on suitable function spaces.

• The characteristic problem. H = {x = t}, introducing new coordinates, ξ := t + x, η = t − x,
the wave equation reads

4∂η∂ξu = ∂2
yu

Then, with ϕ(ξ, y) = u|H we obtain

4k∂k
ξ(∂

k
ηu) = ∂2k

y u (3)

∂ηu
∣∣∣
H(ξ, y) =

1
4

∫ ξ

∂2
yϕ(ξ, y)dξ (4)

3On the other hand, for e.g. Poisson’s equation, this is properly posed.

6
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t

x

t = δ + x t = δ − x
M

H = {x | x ∈ (−δ, δ)}

t

x
H1 ∩ H2 = {x = t = 0}

H2 = {t = −x} H1 = {t = x}
M

Figure 1: Two plots, the first of which picturing the analytic Cauchy problem (for bounded
H) and the second one the characteristic problem for the wave equation, both in two
dimensions. Compare this to Corollary 4.0.6ff.

∂k
ηu

∣∣∣
H =

(
1
4

)k ∫ ξ

(...)
∫ ξ′

∂2k
y ϕ(ξ, y)dξ

 dξ1...dξn (5)

Hence these derivatives neither can be arbitrarily given as another datum on H, nor can be
determined, as the constant of integration is not fixed.

Definition 3.2.1. A hypersurface H on which the kth outgoing derivative of a solution of Equa-
tion 3 is not determined by the derivatives up to the (k − 1)-st order given on H is called
characteristic. The lines along which the outgoing derivatives can be calculated by propagation
equations of the type of Equation 3 are called bicharacteristics.

Say, we define H = H1 ∪ H2, H1 = {0 ≤ t = x}, H2 = {0 ≤ t = −x} with data ϕ1(ξ, y) = u|H1 ,
ϕ(η, y) = u|H2 s.t. ϕ1(0, y) = ϕ2(0, y) (cpw. Figure 1). Then the constant of integration in
Equation 4 is fixed on H∩ := H1 ∩ H2 by ∂ηu|H1(0, y) = ∂ηϕ2(0, y).
Still, if we want to calculate the derivatives at points of H\H∩, then, in contrast to the non-char.
problem, we can not use an algebraic condition, but have to solve the propagation equations,
Equation 3. One can show (e.g. [Lun78]) that this problem is well-posed.

3.3. The more general Problem

[zHS79] is really based on more general considerations, which can be found in [zH90]. We chose
to stick with Lorentzian metrics as in [zHS79].
Let M be a compact C∞ 4-manifold with boundary ∂M, ĝ a metric of signature (− + ++),
defining an affine connection with covariant derivative D. g a metric of the same signature. For
raising/lowering indices, g will be used. Let H1 and H2 be two non-parallel g-null-hypersurfaces
that intersect along a 2-submanifold and define H = H1 ∪ H2 (see Figure 1). These will be
characteristic for the following PDE.4

4See 8.6 for the explicit calculation
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Char. Hypersurfaces and Constraint Theory The Characteristic Initial Value Problem

Assume M is a hyperbolic set based on H (cp. [HE75]). We consider the 2nd order hyperbolic
equation

L[u] = gabDaDbu + BaDau + Cu = F

With an unknown tensor field u.5 This equation is called

• linear if the coefficients B, C, F and the metrics g, ĝ are given tensor fields6

• weakly coupled quasi-linear if g, ĝ depend on u and the coefficients depend on u, Du.

Definition 3.3.1. Let W̃m(M) denote the set of functions having finite || · ||Mm -norm, where

(
||q||Mm

)2
:= ||q||Hm(M) +

∑
i=1,2

m−1∑
k=0

(
||(na

i Da)kq||H2(m−k)−1(Hi)

)2

with na
i the g-null vector field on Hi, i = 1, 2. Note that C∞(M) is dense in W̃m(M).

Theorem 3.3.2. Assume the following norms exist: ||ĝ||Mm+1, || · ||Mm for g and na
i , || · ||Mm−1 for B, C,

F. For the data u|H1 and u|H2 we require that || · ||Hm(Hi) is finite and u|H1 = u|H2 on H∩. Then

1. ∃ uniquely determined solution u

2. ||u||Mm < ∞.

3.3.0.1. Remark:
• Note the high differentiability requirements in the second term of || · ||Mm .

• There are local version of this theorem for the quasi-linear case

• There are existence and uniqueness theorems for the characteristic initial-value problem
for Einstein’s vacuum field equations

In the next section we will see that characteristics need not only be considered in characteristic
initial value problems. More generally, they lead to the most global statement one can make on
(hyperbolic) PDEs that at the same time goes to the very heart of physics.

5Note, that assuming D to be a covariant derivative of another metric is nothing fancy, for we could just as well
truncate the non-derivative parts of D into B and C.

6We could then write in index notation: L[u] = gabDaDbuA + ba
B

ADauB + cA
BuB = FA

8



Char. Hypersurfaces and Constraint Theory Characteristics

4. Characteristics

This section is based on [Rau97]. We give a version of one of the most prominent theorems of the
theory of partial differential equations, John’s Global Holmgren Theorem. For mathematicians
this theorem establishes uniqueness of solutions to a partial differential equation in its scope. For
physicists it establishes the mathematical formulation of causality.
We briefly mention another property of characteristics concerning uncontinuities (e.g. shock
waves) that will not be elaborated further: Suppose a solution, u, to a linear partial differential
equation, Pu = 0, is piecewise smooth along a hypersurface Σ. This basically means that for
every point of the hypersurface, the solution is smooth on either side of the hypersurface and can
be Cm- continued to the hypersurface from each side, respectively. Then, if u is Cm, Pu ∈ C∞,
and u is not C∞ on a neighborhood of x ∈ Σ, then Σ must be characteristic at x.

Let Ω ⊂ Rd be an open subset and P(x,D) an mth order linear partial differential operator on Ω

with coefficients in Cω(Ω).

Definition 4.0.3. The principal symbol of P =
∑

aα(x)Dα is the function

Pm(x, ξ) :=
∑
|α|=m

aα(x)ξα

Where we used multi-index notation. Note that Pm is a homogeneous polynomial of degree m in
ξ.

Definition 4.0.4. A smooth hypersurface, Σ ⊂ Ω, is characteristic at x ∈ Σ if Pm(x, ξ) = 0, for
all ξ ∈ N∗x(Σ). Here, N∗x(Σ) denotes the annihilator of TxΣ. A hypersurface which is characteristic
at all points is called a characteristic hypersurface.

Suppose that Σ ⊂ Ω is a non-characteristic immersed Cm hypersurface. We will now define a
continuous deformation of Σ through a one-parameter family of hypersurfaces Σλ, whose ends lie
in Σ.
We require that the hypersurfaces Σλ be images of a fixed set θ ⊂ Rd−1 by a map σ depending on
λ ∈ [0, 1]. We suppose that

1. θ ⊂ Rd−1 is open and σ : [0, 1] × closure(θ)→ Ω ⊂ Rd is continuous.

2. For each λ ∈ [0, 1], σ(λ, ·) : θ → Rd is a Cm immersion of a non-characteristic hypersurface,
Σλ.

3. The initial surface, Σ0 is a subset of Σ.

4. σ([0, 1] × ∂θ) ⊂ Σ, which expresses the fact that the edge σ(λ, ∂θ) of Σλ lies in Σ.

Then we have:

9
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Theorem 4.0.5. (John’s Global Holmgren Theorem). If u ∈ Cm(Ω), Pu = 0 in Ω and ∂αu|Σ = 0
for |α| ≤ m − 1, then for |α| ≤ m − 1, ∂αu = 0 on σ([0, 1] × closure(θ)).

As an application we take the d+1-dimensional wave equation, P(∂t, ∂x) = ∂2
t − c2∆x := �. As an

immediate consequence we obtain

Corollary 4.0.6. If u ∈ C2(Rt × R
d
x) satisfies �u = 0 and u|t=0 = ∂tu|t=0 = 0 on |x| < R, then

u = 0 in
{
(t, x) : |x| < R − c|t|

}
And in the same spirit we can deduce

Corollary 4.0.7. Suppose that u ∈ C2(R1+d) satisfies �u = 0, and that K is the support of the
initial data

K = supp ∂tu|t=0 ∪ supp u|t=0 ⊂ R
d
x

Then
supp u ⊂

{
(t, x) | distance(x,K) ≤ c|t|

}
I.e. the waves (solutions u), propagate at speeds less than or equal to c. Now, the reader may go
back to Figure 1 to make a connection between this and the preceding section.

10
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5. Banach Spaces and Differential Calculus

The rest of this work will predominantly be concerned with vector space structures. In particular
the vector space structure certain function spaces are equipped with. While this might be familiar
to most readers, the generalization of calculus to functions on such vector spaces, let alone infinite
dimensional manifolds based on those, might be less so. This section gives a brief introduction
that turns quickly to symplectic structures. Here, readers acquainted with symplectic geometry
will find some basic results generalized to the infinite-dimensional realm. The following section
is based on [AMR88] and we will pick up citations again, once different sources come in.

5.1. Basics

Definition 5.1.1. Let (E, || · ||) be a normed space. If the associated metric d is complete, we say
(E, || · ||) is a Banach Space. If (E, 〈·, ·〉) is an inner product space, whose associated metric is
complete, we say (E, 〈·, ·〉) is a Hilbert Space.

But then, in a Hilbert space, we would of course like to know what orthogonal means

Proposition 5.1.2. If E is a Hilbert space and F a closed subspace, then E = F ⊕ F⊥. Thus
every closed subspace of a Hilbert space splits.

In finite dimensional vector spaces, one is used to identifying covectors with vectors. It turns out
that this is also possible in Hilbert spaces:

Theorem 5.1.3. (Riesz Representation Theorem) Let E be a real (resp. complex) Hilbert space.
The map e 7→ 〈·, e〉 is a linear (resp. anti-linear) norm-preserving isomorphism of E with E∗; for
short E � E∗.

This also implies that in a real Hilbert space E, every continuous linear function l : E → R can
be written l(e) = 〈e, e0〉 for some e0 ∈ E and ||l|| = ||e0||.7

In a general Banach space E, we do not have such an identification of E and E∗. We do, however
have a canonical map i : E → E∗∗ defined by i(e)(l) := l(e). One calls E reflexive if i is onto.
Every finite dimensional or Hilbert space is reflexive, as are the Lp-spaces for 1 < p < ∞.

Now, we are already set to start with the calculus part that really is ’only’ a very obvious
generalization of known concepts.

Definition 5.1.4. Let E, F be normed vector spaces, with maps f , g : U ⊂ E → F where U is
open in E. We say f and g are tangent at the point u0 ∈ U if

limu→u0

|| f (u) − g(u)||
||u − u0||

= 0

where || · || represents the norm on the appropriate space.
7|| · || also denoting the induced operator norm, ||l|| := sup{||le|| | ||e|| = 1}

11
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Proposition 5.1.5. For f : U ⊂ E → F and u0 ∈ U there is at most one L ∈ L(E, F) 8 such that
the map gL : U ⊂ E → F given by gL(u) = f (u0) + L(u − u0) is tangent to f at u0.

Definition 5.1.6. If, in Proposition 5.1.5, there is such an L ∈ L(E, F), we say f is differentiable
at u0 and define the derivative of f at u0 to be D f (u0) = L. If f is differentiable at each u0 ∈ U,
the map

D f : U → L(E, F); u 7→ D f (u)

is called the derivative of f .

As we will be working a lot with sections of fiber bundles, it is common to define

Definition 5.1.7. Suppose f : U ⊂ E → F is of class C1. Define the tangent of f to be the map

T f : U × E → F × F; T f (u, e) = ( f (u),D f (u)e)

It turns out that we can carry over many properties of the derivative that we are used to from
finite-dimensional calculus. To explicitly list two non-trivial ones

Proposition 5.1.8.

• T (g ◦ f ) = Tg ◦ T f (Chain Rule)

• Let fi : U ⊂ E → Fi , i = 1, 2 be differentiable maps and B ∈ L(F1, F2; G). Then the
mapping B( f1, f2) = B ◦ ( f1 × f2) : U ⊂ E → G is differentiable and

D (B( f1, f2)) (u)e = B (D f1(u)e, f2(u)) + B ( f1(u),D f2(u)e) (Leibniz Rule)

We can also carry over the differentiation along a path

Definition 5.1.9. Let f : U ⊂ E → F and let u ∈ U. We say that f has a derivative in the
direction e ∈ E at u if

d
dt

f (u + te)
∣∣∣∣
t=0

exists. We call this element of F the directional derivative of f in the direction e at u.

Proposition 5.1.10. If f is differentiable at u, then the directional derivatives of f exist at u and
are given by

d
dt

f (u + te)
∣∣∣∣
t=0

= D f (u)e

Finally, we state the implicit function theorem. This will become important later, when we look
at the Legendre transformation.

8L(E, F) denoting the normed space of all continuous linear maps of E to F

12
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Theorem 5.1.11. (Implicit Function Theorem) Let U ⊂ E, V ⊂ F be open and f : U × V → G
be Cr, r ≥ 1. For some x0 ∈ U, y0 ∈ V assume D2 f (x0, y0) : F → G is an isomorphism.9 Then
there are neighborhoods U0 of x0 and W0 of f (x0, y0) and a unique Cr map g : U0 ×W0 → V
such that for all (x,w) ∈ U0 ×W0,

f (x, g(x,w)) = w

5.2. The Functional Derivative and the Calculus of Variations

In view of the Euler-Lagrange equations the importance of the functional derivative in this work
can not be overstressed.

Definition 5.2.1. Let E and F be Banach spaces. A continuous bilinear functional 〈·, ·〉 : E×F →
R is called E-non-degenerate if 〈x, y〉 = 0 for all y ∈ F implies x = 0. Similarly, it is F-non-
degenerate if (...). If it is both, we say it is non-degenerate. Equivalently, the maps x 7→ 〈x, ·〉
and y 7→ 〈·, y〉 are one-to-one. If they are isomorphisms, 〈·, ·〉 is called E− or F− strongly
non-degenerate.
We say E and F are in duality if there is a non-degenerate bilinear functional 〈·, ·〉 : E × F → R,
also called a pairing of E and F.

Definition 5.2.2. Let E and F be normed spaces and 〈·, ·〉 : E × F → R be an E-weakly non-
degenerate pairing. Let f : F → R be differentiable at the point α ∈ F. The functional
derivative δ f /δα of f w.r.t. α is the unique element in E, if it exists, such that

D f (α)β =

〈
δ f
δα
, β

〉
, ∀β ∈ F

Suppose E is a Banach space of functions ϕ on a region Ω ⊂ Rn and f : E → R. The functional
derivative δ f

δϕ of f w.r.t. ϕ is the unique element δ f
δϕ ∈ E, if it exists, s.t.

D f (ϕ)ψ =

〈
δ f
δϕ
, ψ

〉
=

∫
Ω

(
δ f
δϕ

)
(x)ψ(x)dnx , ∀ψ ∈ E

Proposition 5.2.3. Let E be a space of functions, as above. A necessary condition for a differen-
tiable function f : E → R to have an extremum at ϕ is that

δ f
δϕ

= 0

9D2 denoting the partial derivative w.r.t. the second argument
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5.3. Symplectic Geometry

Analogously to finite dimensional manifolds, we define a possibly infinite dimensional Banach
manifold M, to be a a pair (S ,D), where S is a set and D is a differential structure on S , the
charts of which take their values in a Banach space E. E is then called the model space (cp.
[AMR88]).10

While the definition of differential forms directly carries over to the infinite dimensional case,
their exterior derivative does not. Rather than defining the exterior derivative directly, we will
define it through an operation whose definition does carry over directly to the infinite dimensional
case

Definition 5.3.1. If X ∈ X(M), we let £X be the unique differential operator on T (M) 11, called
the Lie derivative w.r.t. X, such that

1. For f : M → R differentiable, we have £X f (m) = d f (m) · X(m) for any m ∈ M.

2. If X,Y ∈ Xr(M), r ≥ 1, and X has flow Ft, £XY = [X,Y] := d
dt

∣∣∣∣
t=0

(F∗t Y)

Note, how this defines the operation of £X on covector fields α: Let α(Y) ∈ Cr(M) , r ≥ 1, Y ∈
X(M). Then £X(α(Y)) = (£Xα)(Y) + α(£X(Y)), because £X is a differential operator. This equation
is readily solved for £Xα. Now, we can formulate a global definition for the exterior derivative:

Definition 5.3.2. The exterior derivative of a differential k-form ω is the unique k+1-form dω
defined by

dω(X0, X1, ..., Xk) :=
k∑

l=0

(−1)l£Xl

(
ω(X0, ..., X̂l, ..., Xk)

)
+

∑
0≤i≤ j≤k

(−1)i+ jω
(
£Xi(X j), X0, ..., X̂i, ..., X̂ j, ..., Xk

)
where X̂l denotes that Xl is deleted.

In a coordinate neighborhood U, denoting elements of TU by (u, v), the definition reduces to the
more familiar expression

dω(u)(v0, ..., vk) =

k∑
i=0

(−1)i(Dω(u) · vi)(v0, ..., v̂i, ..., vk) , vi ∈ TuU

In particular one can check that Cartan’s magic formula holds in the infinite dimensional case,
namely
10For a short introduction to infinite dim. manifolds, see http://johncarlosbaez.wordpress.com/2012/03/
12/fluid-flows-and-infinite-dimensional-manifolds/

11T (M) denotes the full tensor algebra of M
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£Xα = iXdα + diXα

Definition 5.3.3. [GNH78] Let M be a manifold modeled on a Banach space E and suppose that
ω is a closed 2-form on M. Then (M, ω) is said to be a strong symplectic manifold if the linear
map [ : T M → T ∗M defined by [(X) =: X[ := Xyω is an isomorphism.
If [ is injective but not surjective, (M, ω) will be called a weak symplectic manifold, ω being
weakly nondegenerate.

Note that in the finite dimensional case, there is no distinction between weak and strong symplec-
tic forms. For brevity we will call strong symplectic manifolds simply symplectic manifolds,
while weakly nondegenerate and degenerate forms will be referred to as presymplectic. Finally,
we say that ω is topologically closed provided the map [ is a closed map.

In Physics, phase space is usually defined to be the cotangent bundle of configuration space (a
manifold). On a cotangent bundle, there exists a natural weakly symplectic structure:

Definition 5.3.4. [CM70] Let M be a manifold modeled on a Banach space E. Let T ∗M be its
cotangent bundle and τ : T ∗M → M the projection. The canonical 1-form on T ∗M is defined by

θ(αm) · w = αm · Tτ(w) , αm ∈ T ∗mM , w ∈ Tαm(T ∗M)

In a chart U ⊂ E, we have θ(x, α) · (e, β) = α(e), with (x, α) ∈ U × E∗, (e, β) ∈ E × E∗.
The canonical 2-form is defined by

ω : = −dθ , locally we have

ω(x, α) · ((e1, α1), (e2, α2)) = d
(
θ(e1, α1)

)
(e2, α2) − (1↔ 2)

= d
(
α(e1)

)
(e2, α2) − (1↔ 2)

= α2(e1) − α1(e2)

Of course, we will now have to justify the name given to the two-form defined above:

Theorem 5.3.5. [CM70] The canonical symplectic form is

1. Weakly symplectic on T ∗M

2. Strongly symplectic iff E is reflexive

Proof. For the proof we need a well-known corollary to the Hahn-Banach theorem, which we
will state as a lemma

Lemma 5.3.6. [AMR88] Let E be a normed vector space and e , 0. Then there exists f ∈ E∗

such that f (e) , 0. In other words, if f (e) = 0 for all f ∈ E∗, then e = 0; that is, E∗ separates
points of E.
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Using the lemma above for the expression of the canonical symplectic form in local coordinates,
the first part of the theorem holds trivially. For the second part we must show that the map

ω[ : E × E∗ → (E × E∗)∗ = E∗ × E∗∗ , ω[(e1, α1) · (e2, α2) = α2(e1) − α1(e2)

is onto, i.e. we assume that E is reflexive, then E∗ × E∗∗ � E∗ × E and the map is obviously
onto. Conversely, if ω[ is onto, then for (β, f ) ∈ E∗ × E∗∗, there is (e1, α1) s.t. f (α2) + β(e2) =

α2(e1) − α1(e2) , ∀e2, α2. Setting e2 = 0, we see f (α2) = α2(e1), so E → E∗∗ is onto. �

Of course, one is always interested in structure-preserving maps. In symplectic geometry, these
are called symplectomorphisms and it turns out that they describe the evolution of a physical
system. Without further citation, the rest of the section is based on [CM70].

Let (P, ω), (P′, ω′), be weak symplectic manifolds (ω, ω′ are weak symplectic). A (smooth) map
f : P → P′ is called canonical (usually in physics) or symplectic or a symplectomorphism
when f ∗ω′ = ω.
As an example that we will encounter again later, we show how to lift a function on a manifold to
a function on the associated cotangent bundle of that manifold, s.t. the latter is a symplectomor-
phism w.r.t to the canonical structure.

Proposition 5.3.7. Let M be a manifold and f : M → M a diffeomorphism; define the canonical
lift of f by

T ∗ f : T ∗M → T ∗M

T ∗ f (αm) · v := αm · (T f · v) , v ∈ T ∗f −1(m)M

Then T ∗ f is symplectic w.r.t. the canonical symplectic form.

Definition 5.3.8. Let (P, ω) be a strongly symplectic manifold and H : P → R a given smooth
function. We define the Hamiltonian vector field of H, XH , as the one satisfying

ωx (XH(x), v) = dHx · v , ∀x ∈ P , v ∈ TxP

It is easily seen that XH[H] = 0. In particular this means that along an integral curve of XH , H
will be constant (conservation of energy). But now to the familiar form of Hamilton’s equations:

Proposition 5.3.9. Suppose M is modeled on a reflexive space E. If P = T ∗M and H is a smooth
function on P, then locally

XH = (D2H,−D1H)

In a finite-dimensional symplectic space (M, ω) of 2n dimensions, say, one can proof that ωn is a
volume form. The following (valid also in infinite dimensions) will then directly lead to the well
known Liouville theorem

16



Char. Hypersurfaces and Constraint Theory Banach Spaces and Differential Calculus

Proposition 5.3.10. Let (P, ω) be a symplectic manifold, H : P → R, and let Ft be the flow of
XH . Then for each t, Ft is a symplectomorphism.

Proof.

0 = d
(
iXHω

)
= £XHω =

d
dt

∣∣∣∣
t=0

F∗t ω

Hence F∗t ω is constant. But Ft=0 = Id. �

5.3.0.2. Example: Klein-Gordon on flat background

We consider the Klein-Gordon field on Rn that is some function space E over Rn. On the tangent
space T E = E ⊕ E, we have the Lagrangian

L(φ, φ̇) =
1
2

∫
Rn

(
φ̇2 − (∇φ)2 + m2φ2 + 2F(φ)

)
dx

=
1
2

(
〈φ̇, φ̇〉L2(Rn) − 〈∇φ,∇φ〉L2(Rn) + m2〈φ, φ〉L2(Rn)

)
+

∫
Rn

F(φ)dx

Judging from the Lagrangian, a sensible model space for the tangent space of this theory might be
T E = H1(Rn) × L2(Rn).12 We do not need to switch to T ∗E, because in this case we can use the
metric associated to the L2-inner product13 to pull back the canonical symplectic structure from
T ∗E = E ⊕ E∗ (this is the reason why we will introduce L-subscripts to the canonical forms).14

The canonical forms on T E read

θL(x, e) · (α, β) = −〈e, α〉L2

ωL(x, e) · (α, β;α′, β′) = 〈α, β′〉L2 − 〈α′, β〉L2

Defining the Hamiltonian of the theory in the usual way,

H(φ, φ̇) =
1
2

∫
Rn

(
φ̇2 + (∇φ)2 + m2φ2 + 2F(φ)

)
dx

We seek the Hamiltonian vector field on E ⊕ E. We compute

dH(φ, φ̇) · (α, β) =

∫
Rn

(
φ̇β + ∇φ · ∇α + m2φα + F′(φ)α

)
dx

Writing XH(φ, φ̇) = (Y(φ, φ̇),Z(φ, φ̇)), we set

dH(φ, φ̇) · (α, β) = ωL(φ, φ̇) · (Y,Z;α, β)

12For a more complicated example, see [GNH78], where a well defined Lagrangian does not lead to a well defined
Hamiltonian theory.

13As the Lagrangian has to be well defined, we will in any case be inside some L2 subspace
14Note that this is what is usually done in introductory courses to mechanics. Though there of course in a finite-

dimensional setting.
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and, using some partial integration, find

Y(φ, φ̇) = φ̇

Z(φ, φ̇) = ∆φ − m2φ − F′(φ)

Now, if we take a 1-parameter family φt(x) = φ(t, x) and lift it to (φ, d
dtφ) ∈ T E, formally, it will

be the flow of XH , if
∂2φ

∂t2 = ∆φ − m2φ − F′(φ)

We emphasize ’formally’, because ∆, etc. are not continuous operations on most function spaces.

5.4. Geometric Constraint Theory

The following algorithm is due to Gotay, Nester and Hinds [GNH78]. As mentioned in the
introduction, Dirac came up with a first procedure to treat constrained dynamics. However,
Dirac’s method is based on ideas from (finite-dimensional) classical mechanics. Contrary to
common believe, it does not simply generalize to the infinite-dimensional realm. For discussion,
please refer to [Ste80], [Sun82], [ST95] and [Sei12].

We have seen in the last section that the Hamilton equations lead to the “equations of motion” for
a field theory - but what do we do if the underlying space is only presymplectic?

In this section we will investigate the question of what is meant by ”consistent equations of
motion”, given a presymplectic phase space (M, ω) and a Hamiltonian H. This section is based
on [GNH78] and everything that is not referenced otherwise will be assumed to be taken from
there, possibly with modifications.

Specifically, we will investigate the following system. Let N be a submanifold of the presym-
plectic manifold (M, ω) with inclusion j. The manifold N is called constraint submanifold. We
define the symplectic polar

T N⊥ : = {Z ∈ T M | ω|N(X,Z) = 0 , ∀X ∈ T N}

= {Z ∈ T M | j∗(Zyω) = 0}

Furthermore, given a subspace S of a Banach space E, we define the annihilator of S as

S ` := {β ∈ E∗ | β(v) = 0 , ∀v ∈ S } ⊂ E∗

Proposition 5.4.1. If M is reflexive and ω is topologically closed, then

(T N⊥)` = T N[

where we denoted T N[ := Im([|T N), with [ : T M → T ∗M, Z 7→ ω(Z, ·), as usual.
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Definition 5.4.2. The constraint submanifold N is said to be

1. isotropic if T N ⊂ T N⊥

2. coisotropic or first-class if T N⊥ ⊂ T N

3. weakly symplectic or second-class if T N ∩ T N⊥ = {0}

4. Lagrangian if T N = T N⊥

Locally, a fist-class constraint submanifold N can be described by the vanishing of functions
fi : U ⊂ N → R, s.t. d fi|N ·W = 0 for all W ∈ T N⊥. We call any function f (resp. 1-form γ)
on M such that f |N = 0 (resp. j∗γ = 0) a constraint function (resp. constraint form). And any
function g (resp. 1-form σ) on M such that dg|N(W) = 0 (resp. σ(W)|N = 0) for all W ∈ T N⊥ is
called first class. Functions, which are not first-class are called second-class and a second-class
constraint submanifold can locally be described by such.

5.5. The Constraint Algorithm

Let (P, ω) be a presymplectic manifold and H : P → R a differentiable function (the Hamiltonian).
We investigate when it is possible to solve the canonical equations of motion,

iXω = dH

or, more generally, when we can solve
iXω = α

for some closed 1-form α on P such that the vector field X thus defined gives rise to a well
behaved flow. Now, in order for this equation to possess any solution at all, we must of course
restrict to the subspace

P2 := {m ∈ P | α ∈ TmP
[}

consequently we are led to solve the equation (iXω − α) ◦ j2 = 0, where j2 : P2 → P is the
inclusion. However, the solution to that equation needs to be tangent to P2, otherwise we will
not be able to define the flow of the resulting vector field X. Hence we are led to consider the
subspace P3 ⊂ P2 defined by

P3 := {m ∈ P2 | α(m) ∈ TP[2}

Finally, it is obvious how this algorithm is to proceed and we generate a string of submanifolds

C = Pk
jk
→ ...

j4
→ P3

j3
→ P2

j2
→ P with Pl+1 := {m ∈ Pl | α(m) ∈ TP[l }

Eventually this algorithm terminates in a (possibly zero dimensional) submanifold C, which we
will call the final constraint manifold.

Starting from this intuitive algorithm, we will now present a computationally more viable method
to arrive at C. Using Proposition 5.4.1 one can show

19



Char. Hypersurfaces and Constraint Theory Banach Spaces and Differential Calculus

Proposition 5.5.1. If ω is topologically closed and if P is reflexive we have

Pl+1 := {m ∈ Pl | 〈TP⊥l , α〉(m) = 0} with

TP⊥l := {W ∈ TP | k∗l (iWω) = 0}

with kl := j2 ◦ j3 ◦ ... ◦ jl and k1 := id |P.

The conditions 〈TP⊥l , α〉(m) = 0 are called secondary-, tertiary-,...., constraints.

Theorem 5.5.2. Assume ω is topologically closed and P reflexive. The equations (Xyω = α)|Pk

possess solutions tangent to Pk iff 〈TP⊥k , α〉 = 0.

Denote by X f the Hamiltonian vector field associated to f : P → R, i.e. satisfying X f yω = d f .

Proposition 5.5.3. [GM06]

1. Let f be a constraint. Then X f exists along C ⇔ TP⊥[ f ]|C = 0. If it exists, then
X f ∈ X(C)⊥.

2. Conversely, suppose (P, ω) is symplectic. Then ∀p ∈ C, TpC
⊥ is spanned by the Hamilto-

nian vector fields of constraints.

3. Let f be a first class constraint. Then X f exists along C and X f ∈ X(C) ∩ X(C)⊥.

4. Conversely, suppose (P, ω) is symplectic. Then ∀p ∈ C, TpC ∩ TpC
⊥ is spanned by the

Hamiltonian vector fields of first class constraints.

5. C first class⇔ Every constraint is first class.

6. C second class⇔ Every effective15 constraint is second class.

Note in particular point 3.: This led Dirac to conjecture that secondary first class constraints
generate all gauge transformations. See [GM06] or [Got83] for a extensive discussion - we will
give a brief outline taken from the former.

By gauge freedom is meant that a given a set of initial data (ϕ, π) ∈ Cλ does not uniquely
determine a dynamical trajectory. Now, take the Hamiltonian vector field X f ∈ X(Cλ) ∩ X(Cλ)⊥

as predicted by 3. and set X′λ = Xλ + X f , where Xλ solves Hamilton’s equations. We see that(
X′λyωλ − d(Hλ,ζ + f )

) ∣∣∣
Cλ

= 0

Whence, if Xλ is a tangential solution of Hamilton’s equations along Cλ with Hamiltonian Hλ,ζ ,
then X′λ is a tangential solution of Hamilton’s equations along Cλ with Hamiltonian H′λ,ζ + f . But

15A constraint, f , is effective, provided d f |C . 0.
(If f is any constraint, then f 2 is first class)
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H′λ,ζ |Cλ = Hλ,ζ |Cλ . Thus physically, both solutions are indistinguishable, as physically, the region
outside of Cλ is dynamically inaccessible.

Though we will not go into constraint theory as presented here, the first step of the algorithm
is one of the main motivations for the problem investigated in this work - see section 8.1. The
next section mainly serves to introduce the Legendre transformation generalized to the infinite-
dim. setting of field theory. The image of this Legendre transformation will turn out to be a
presymplectic manifold on which we define the usual Hamiltonian, which in turn brings us back
to the tools developed in this section and leads straight to the original work of this thesis.
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6. A Hamiltonian formulation of Classical Fields

The following is basically a recapitulation of [GM06], where we felt free to elucidate on parts
that were not treated explicitly there. Consequently we only reference third sources and will not
highlight small additions by the author. Before introducing the Lagrangian, we will first introduce
the Jet bundle - the space the Lagrangian will be defined on.

6.1. The Jet Bundle

See also [Sei12] for a very hands-on introduction to Jet bundles.
Let

πXY : Y → X , X oriented manifold

be a finite dimensional fiber bundle, the covariant configuration bundle and dim X = n + 1,
dim π−1

XY (x) = N , x ∈ X. Denote local coordinates

X ⊃ U → Rn+1 π−1
XY (x) ⊃ F → RN

x 7→ (xµ)µ=0,1,...,n y 7→ (yA)A=1,...,N

The first jet bundle, J1Y , of Y is defined as: Let φi , i = 1, 2, be local sections of Y .

φ1 ∼ φ2 :⇔φ1(x) = φ2(x)

Txφ1 = Txφ2 (as maps TxX → Tφ(x)Y)

J1Y := {Local sections of Y → X}/ ∼

J1Y is naturally identified with the affine bundle over Y defined by

πY J1Y : J1Y → Y

π−1
Y J1Y (y) =

{
γ : TxX → TyY linear

∣∣∣ TπXY ◦ γ = IdTxX
}

To see this, let j1(φ)(x) be the jet of φ at x ∈ X. Clearly, j1(φ)(x) depends only on the values of φ
in some neighborhood of x. Thus, if φ(x) = (x, y), we can find charts (U, ϕ) and (F, ψ) around x
and y, respectively, and easily observe that φ̃ ∈ j1(φ)(x) iff

T (ψ ◦ φ ◦ ϕ−1)(ϕ(p)) = T (ψ ◦ φ̃ ◦ ϕ−1)(ϕ(x))

where we dropped the identity ’x-component’ of φ(x). A jet j1(φ)(x) thus identified with T (φ)(x),
in local coordinates is an element of Rn+1 ⊕ RN ⊕ L(Rn+1,RN), where L(Rn+1,RN) denotes
the space of linear maps between the respective spaces. Consequently, J1Y itself is locally
diffeomorphic to an open set in Rn+1 ⊕ RN ⊕ L(Rn+1,RN). This construction immediately yields
induced coordinates on the fibers of J1Y , which we denote by vA

µ.
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Definition 6.1.1. [Lee12] Let F : M → N be a smooth submersion, where M and N are smooth
manifolds. A vector field V on M is said to be vertical if V is everywhere tangent to the fibers of
F.

We define the vertical subbundle, VY ⊂ TY ,

πYVY : VY → Y

π−1
YVY (y) =: VyY = ker(TπXY )

For later use, we also point out

γ ∈ J1
y Y ⇒ TyY = im γ ⊕ VyY (γ induces a connection on Y)

which can be seen immediately from the local expression above upon keeping the identity-
component that was dropped.

Concluding, if we let φ be a (local) section of Y , then Txφ ∈ J1
φ(x)Y and hence we can use local

coordinates and define

j1φ : X → J1
φ(x)Y

x 7→ Txφ

xµ 7→
(
xµ, φA(xµ), ∂νφA(xµ)

)
which is clearly a section of J1Y . We call j1φ the first jet prolongation. Finally, let φ̂ be a
section of J1Y . If φ̂ = j1φ is a first jet prolongation of some section φ of Y , it is called holonomic.

6.2. The Dual Jet Bundle

Definition 6.2.1. [Wik13]: An affine map f : A → B between two affine spaces, A and B, is a
map that determines a linear transformation, ϕ, s.t.

−−−−−−−−→
f (P) f (Q) = ϕ(

−−→
PQ)

E.g. f : Rn → Rm is affine iff it is of the form f (x) = Ax + c, A linear and c ∈ Rm constant.

The dual jet bundle, J1Y∗, is the vector bundle

πY J1Y∗ : J1Y∗ → Y

π−1
Y J1Y∗(yx) =

{
γ : J1

y Y → Λn+1
x X

∣∣∣ γ affine mapping
}

where Λn+1(X) denotes the bundle of (n + 1)-forms on X.
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γ ∈ π−1
Y J1Y∗

(yx) can be represented in coordinates by the affine mapping γ : vA
µ 7→

(
p + pµAvA

µ

)
dn+1x,

i.e. by the coordinates (p, pµA).

Let Λ := Λn+1Y and denote the fiber of Λ over y ∈ Y by Λy.

Zy :=
{
z ∈ Λy | iviwz = 0 , ∀v,w ∈ VyY

}
In coordinates

Z 3 z = pdn+1x + pµAdyA ∧ dnxµ
dnxµ := ∂µy dn+1x

i.e. z can be represented by (p, pµA).

Proposition 6.2.2. J1Y∗ � Z, canonically, as vector bundles over Y.

Proof. We will construct the canonical isomorphism. Let 〈·, ·〉 denote the dual pairing and define

Φ : Z → J1Y∗ such that

〈Φ(z), γ〉 = γ∗z ∈ Λn+1
x X

where z ∈ Zy, γ ∈ J1
y Y , x = πXY (y). By the rank-nullity theorem we need only show that if

γ∗z = 0 ∀z, then γ = 0. γ∗ : T ∗y Y → T ∗x X and we are free to choose z ∈ Λn+1
y Y s.t. ieiz , 0 for

some basis {ei} of TYx. �

We can of course do this calculation explicitly in coordinates: Let γ = vA
µ, then

γ∗dxµ = dxµ

γ∗dyA = vA
µdxµ

and thus
γ∗

(
pdn+1x + pµAdyA ∧ dnxµ

)
=

(
p + pµAvA

µ

)
dn+1x

So we are just equating the coordinates (xµ, yA, p, pµA) of Z and J1Y∗.

We define the canonical (n + 1)-form, ΘΛ, on Λ (= Λn+1Y), by

ΘΛ(z)(u1, ..., un+1) :=
(
π∗YΛz

)
(u1, ..., un+1)

where z ∈ Λ, u1, ..., un+1 ∈ TzΛ.

Define the canonical (n + 2)-form, ΩΛ, on Λ by

ΩΛ = −dΘΛ
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Let iΛZ : Z → Λ be the inclusion map. The canonical (n + 1)-form, Θ, on Z is defined by

Θ := i∗ΛZΘΛ (6)

and the canonical (n + 2)-form, Ω, on Z by

Ω := −dΘ = i∗ΛZΩΛ (7)

Or, in coordinates:

Θ = pµAdyA ∧ dnxµ + pdn+1x

Ω = dyA ∧ dpµA ∧ dnxµ − dp ∧ dn+1x

Definition 6.2.3. (Z,Ω) is called multiphase space or covariant phase space. It is an example
of a multisymplectic manifold.

Definition 6.2.4. A multisymplectic manifold, (M,Ω), is a manifold, M, endowed with a closed
k-form, Ω, which is nondegenerate i.t.s.t. ivΩ , 0 for 0 , v ∈ T M.16

Finally, through direct calculation, we observe that similar to the canonical (Liouville-) one-form
in symplectic geometry, we have

Proposition 6.2.5. If σ is a section of πXZ and φ = πYZ ◦ σ, then

σ∗Θ = φ∗σ

where φ∗σ means the pull-back by φ to X of σ regarded as an (n + 1)-form on Y along φ.

6.3. Lagrangian Dynamics

Let the Lagrangian density L : J1Y → Λn+1X be given in coordinates by a smooth bundle map
L = L(xµ, yA, vA

µ)dn+1x over X.17

In classical mechanics, the Legendre transform is defined through the fiber derivative of the
tangent space of the configuration space:

Definition 6.3.1. [BSF06]
Let M be a manifold (configuration space) and L : T M → R a smooth function. The fiber
derivative of L is a strong bundle map FL : T M → T ∗M defined by FL(vp)(wp) := dL(vp)(wp)
for all vp, wp ∈ TpM and p ∈ M, where wp on the right hand side is considered as an element in
Tvp(TpM) ⊂ T 2M.

16See http://ncatlab.org/nlab/show/multisymplectic+geometry for more information on multisymplectic
manifolds - there seems to be no general agreement on a proper abstract definition of a multisymplectic manifold
yet.

17Recall that we assume X to be oriented
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Of course we can express this as FL(vp)(wp) = d
dt

∣∣∣∣
t=0

L(p, vp + twp). Now, as J1Y is a vector
bundle and in the above we haven’t made use of the ’tangent-structure’ of the tangent bundle T M,
we may naturally generalize:

The covariant Legendre transformation for L is the fiber derivative

FL : J1Y → J1Y∗ � Z (8)

〈FL(γ), γ′〉 := L(γ) +
d
dε
L
(
γ + ε(γ′ − γ)

)∣∣∣∣
ε=0

(9)

where γ, γ′ ∈ J1
y Y . In coordinates:

pµA =
∂L
∂vA

µ
, p = L −

∂L
∂vA

µ
vA

µ (10)

where we call pµA the multimomenta and p the covariant Hamiltonian. To verify the coor-
dinate expression, suppose γ = vA

µ and γ′ = wA
µ. Then the right hand side of Equation 9

reads (
L(γ) +

∂L
∂vA

µ
(wA

µ − vA
µ)

)
dn+1x =

(
p + pµAwA

µ

)
dn+1x

Definition 6.3.2. The Cartan form is the (n + 1)-form, ΘL, on J1Y

ΘL : = FL∗Θ (11)

=
∂L
∂vA

µ

dyA ∧ dnxµ +

L −
∂L
∂vA

µ

vA
µ

 dn+1x (12)

We also define:

ΩL : = −dΘL = FL∗Ω

= dyA ∧ d
 ∂L
∂vA

µ

 ∧ dnxµ − d
L −

∂L
∂vA

µ

vA
µ

 ∧ dn+1x

The construction of ΘL might seem artificial at this point. There is, however, a more natural way
to arrive at ΘL: A direct calculation shows that

Corollary 6.3.3.
L( j1φ) = ( j1φ)∗ΘL

When we vary the Lagrangian in the following, ΘL appears naturally in the boundary term.
[MPS98] show that ΘL is the unique one-form ’generating’ a more general class of boundary
terms.
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Definition 6.3.4. Let φ be a section of Y . A variation of φ is a curve φλ = ηλ ◦ φ, where ηλ is
the flow of a vertical vector field V on Y which is compactly supported in X. One says that φ is a
stationary point of L =

∫
L , if

d
dλ

[∫
X
L( j1φλ)

] ∣∣∣∣∣∣
λ=0

= 0

for all variations φλ of φ.

The Euler-Lagrange equations in coordinates read

δL
δφA =

∂L
∂yA ( j1φ) −

∂

∂xµ

(
∂L
∂vA

µ
( j1φ)

)
= 0 (13)

for a (local) section, φ, of Y .

Theorem 6.3.5. Let φ be a section of the fiber bundle πXY : Y → X. The following are equivalent:

1. φ is a stationary point of the action integral∫
X
L( j1φ)

2. The Euler-Lagr. equ. hold in coordinates

3. For any vector field W on J1Y:

( j1φ)∗(WyΩL) = 0

6.3.0.3. Remark:

1. Since the E-L-Equ. is a PDE, this theorem holds if the section φ is only a local section,
φ : U → YU , where U ⊂ X, open. The integral is then only taken over U.

2. Because the Euler-Lagr. equations are equivalent to the intrinsic conditions, 1. and 3.,
above, they, too, must be intrinsic. One can, in fact, write the Euler-Lagr. derivative, δL

δφA ,
intrinsically in a direct way - see [MPS98] .

Corollary 6.3.6. For any vector field, W, on J1Y we have

( j1φ)∗(WyΩL) = −WA δL
δφA dn+1x
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6.4. Cauchy surfaces and Space of Sections

Now, that we have covered the Lagrangian formalism, we will move towards the Hamiltonian
formalism. For this, though, we need to define the space of initial conditions on which the
Hamiltonian formalism takes place. Throughout, let Σ denote a compact, oriented, connected,
boundaryless n-manifold. For a detailed exposition of spaces of sections the reader is referred to
[Pal68].

Definition 6.4.1. For τ ∈ Emb(Σ, X) ∩ {fixed char. class} 18, let Στ = τ(Σ). We view Σ as a
reference or model Cauchy surface. (Στ will eventually be a Cauchy surface for the dynamics)

Let πXK : K → X be a fiber bundle over X. Then we denote the space of sections of K by K and
Kτ := K|Στ⊂X , with Kτ denoting the space of sections of Kτ. Furthermore, we define the bundle

KΣ :=
{
Kτ | τ ∈ Emb(Σ, X)

}
→ Emb(Σ, X) (14)

The tangent space to K at a point σ is defined by19

TσK = {W : X → VK | W covers σ}

where VK denotes the vertical tangent bundle of K. Similarly, the smooth cotangent space

T ∗σK =
{
π : X → L(VK,Λn+1X) | π covers σ

}
where L(VK,Λn+1X) is the vector bundle over K defined by

πKL : L(VK,Λn+1X)→ K

π−1
KL(k) := {F : VkK → Λn+1

x X | F linear map}, k ∈ Kx

For π ∈ T ∗σK and V ∈ TσK , we naturally define

〈π,V〉 =

∫
X
π(V)

Similarly we define the (co-) tangent space of Kτ by replacing X with Στ and K with Kτ.

18Emb(Σ, X)...Smooth embeddings Σ → X. “Fixed char. class” meaning either char. or non-char. w.r.t. the Euler-
Lagrange equations. [GM06] require the surfaces to be spacelike, i.e. non-char. in physical applications. Refer to
section 8.1 for an explanation why the author chose to change this.

19The definition of a tangent bundle for an infinite-dim. manifold is not unambiguous. Following [AMR88]; the
definition of the tangent bundle to an (infinite) dimensional manifold: Let M be a smooth manifold modeled on
a Banach space E with smooth atlas {(Uα, φα) | α ∈ A}. Consider the collection of triples (α, p, v), where α ∈ A,
p ∈ Uα and v ∈ E and define

(α, p, v) ∼ (β, q,w) :⇔ p = q and w = D(φβ ◦ φ−1
α )(φα(p))v

the tangent bundle of M is the set of equivalence classes.
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Definition 6.4.2. If ξK is any πXK-projectable vector field on K, define the Lie-derivative of
σ ∈ K along ξK by

£ξKσ : = Tσ ◦ ξX − ξK ◦ σ ∈ TσK(
£ξKσ

)A
= σA

,µξ
µ − ξA ◦ σ

where, as usual, we denote ξK = (ξµ, ξA).

Note that −£ξKσ is exactly the vertical component of ξK ◦ σ (TπXK(£ζKσ) = ζX − ζX = 0).

Definition 6.4.3. If f : K → C∞(X), then define the ”formal” partial derivative

Dµ f : K → C∞(X)

Dµ f (σ) := f (σ),µ

6.5. Canonical Forms on T ∗Yτ and Zτ

The following construction should be compared to the construction of the canonical symplectic
form in section 5.3.4. In the notation introduced above:

Definition 6.5.1. For τ ∈ Emb(Σ, X), we call Yτ the τ-configuration space and T ∗Yτ the
τ-phase space.

Definition 6.5.2.

θτ(ϕ, π)(V) :=
∫

Στ

π
(
TπYτ,T ∗YτV

) (
=

∫
Σ

τ∗(...)
)

where (ϕ, π) ∈ T ∗Yτ, V ∈ T(ϕ,π)T ∗Yτ and πYτ,T ∗Yτ : T ∗Yτ → Yτ. Moreover, we define the
symplectic form

ωτ := −dθτ

Making (T ∗Yτ, ωτ) a symplectic manifold.

Next, we will give a coordinate representation. The forms depend on the hypersurface Στ. So
naturally, we will start by choosing special coordinates of X that already conveniently describe
the hypersurface.20

Definition 6.5.3. A chart (x0, x1, ...) on X is adapted to τ if Στ is locally a level set of x0.

20Note: Easily choosing adapted coordinates works only if the Lagrangian is somewhat parametrization invariant (ref.
to section 8.1). Practically, one works in adapted coordinates from the start.
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By definition of a submanifold, such coordinates always exist. For an adapted chart, (x0, x1, ...),
on X, π ∈ T ∗ϕYτ, regarded as a map π : Στ → L(VYτ,ΛnΣτ), is expressible as

π = πAdyA ⊗ dnx0 (15)

Thus, for an adapted chart on X:

θτ(ϕ, π) =

∫
Στ

πAdϕA ⊗ dnx0

ωτ(ϕ, π) =

∫
Στ

(
dϕA ∧ dπA

)
⊗ dnx0

e.g. for T(ϕ,π)(T ∗Yτ) 3 V = (VA,WA) (in adapted coordinates):

θτ(ϕ, π)(V) =

∫
Στ

πAVAdnx0

The rest of the preliminary part of this work will be concerned with finding a Hamiltonian system
(Pτ, ωτ,H) ⊂ (T ∗Yτ, ωτ), such that its solutions correspond to solutions of the Euler-Lagrange
equations Equation 13. For this, we will need to relate T ∗Yτ to J1Y . As a first step, we relate
T ∗Yτ toZτ.

Definition 6.5.4. We define the canonical one-form, Θτ, onZτ, by

Θτ(σ)(V) :=
∫

Στ

σ∗ (iVΘ)

where σ ∈ Zτ, V ∈ TσZτ and Θ the canonical one-form on Z (cp. Equation 6).
The canonical two-form, Ωτ, onZτ, is

Ωτ := −dΘτ

Lemma 6.5.5. At σ ∈ Zτ and with Ω the canonical (n + 2)-form on Z (Equation 7)

Ωτ(σ)(V,W) =

∫
Στ

σ∗(iW iVΩ)

6.6. Reduction of Zτ to T ∗Yτ

We define

Rτ : Zτ → T ∗Yτ (16)

〈Rτ(σ),V〉 :=
∫

Στ

ϕ∗(iVσ) (17)
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where ϕ = πYZ ◦ σ and V ∈ TϕYτ. Fixing σ, we may also interpret Rτ(σ) as a map Στ →

L(VYτ,ΛnΣτ) which covers ϕ, given by

〈Rτ(σ)(x), v〉 = ϕ∗ivσ(x)

where v ∈ Vϕ(x)Yτ.
In adapted coordinates:

Zτ 3 σ =
(
pA

µ ◦ σ
)

dyA ∧ dnxµ + (p ◦ σ)dn+1x (18)

 Rτ(σ) =
(
pA

0 ◦ σ
)

dyA ⊗ dnx0 (19)

Since one can always choose adapted coordinates, we have

Corollary 6.6.1. Rτ is a surjective submersion with

ker Rτ =
{
σ ∈ Zτ | pA

0 ◦ σ = 0
}

Comparing Equation 15 with Equation 19, we see that the instantaneous momenta, πA, corre-
spond to the temporal components of the multimomenta pA

µ.

Proposition 6.6.2.
R∗τθτ = Θτ

Proof. Let V ∈ TσZτ, then

〈(R∗τθτ)(σ),V〉 = 〈θτ (Rτ(σ)) ,TRτV〉

= 〈Rτ(σ),TπYτ,T ∗YτV〉

Using the definition of Rτ from above and noting that π∗YZσ = Θ ◦ σ yields the claim. �

Corollary 6.6.3. 1. R∗τωτ = Ωτ

2. ker TσRτ = ker Ωτ(σ)

3. The induced quotient map, Zτ/ ker Rτ = Z/ ker Ωτ → T ∗Yτ is a symplectic diffeomor-
phism.

6.7. Initial Value Analysis of Field Theories

Now, that we have discussed the “space of initial values”, we are of course interested in “time
evolution”. For this, we need to choose a direction of time and equal-time-hypersurfaces.

Definition 6.7.1. A slicing of an (n + 1)-dim. spacetime, X, consists of an n-dim. mfd. Σ (the
reference Cauchy surface) and a diffeomorphism

sX : Σ × R→ X
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For λ ∈ R,

Σλ := sX(Σ × {λ})

τλ : Σ→ Σλ ⊂ X

τλ(x) := sX(x, λ)

Definition 6.7.2. The generator, ζX , of sX is the vector field on X defined by

∂

∂λ
sX(x, λ) =: ζX (sX(x, λ))

Definition 6.7.3. Given a bundle K → X and a slicing sX of X, a compatible slicing of K is a
bundle KΣ → Σ and a bundle diffeomorphism sK : KΣ × R→ K, s.t.

KΣ × R K

Σ × R X

sK

sX

nat nat

For λ ∈ R,

Kλ := sK(KΣ × {λ})

sλ : KΣ → Kλ ⊂ K

sλ(k) := sK(k, λ)

ζK := TsK
∂

∂λ

Corollary 6.7.4. Every compatible slicing, (sK , sX) of K → X defines a 1-param. group of bundle
automorphisms: The flow, fλ, of the generating vector field ζK , which is given by

fλ(k) = sK
(
s
−1
K (k) + λ

)
”+λ”...addition of λ to second factor of KΣ × R.

Recall the definition of KΣ from Equation 14. We are of course mainly interested in a curve of
embeddings λ 7→ τλ, for λ ∈ R resembling time (and not the space of all embeddings). We define

Kτ :=
⋃
λ∈R

Kλ ⊂ K
Σ

where we have dropped τ from the notation on the r.h.s..
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Corollary 6.7.5. The slicing sK : KΣ × R→ K induces a trivialization

sK : KΣ × R→ K
τ

sK (σΣ, λ) := sλ ◦ σΣ ◦ τ
−1
λ

And, as above, we again define the generator ζK := TsK ∂
∂λ . Using the definition of sK , we

observe
ζK (σ) = ζK ◦ σ

6.7.0.4. Remarks

1. Slicings of the configuration bundle Y → X naturally induce slicings of certain bundles
over it. E.g.:

a) If ζY generates sY , then sZ is generated by the canonical lift, ζZ , of ζY to Z. That is if
ηY : Y → Y is a πXY -bundle automorphism, its canonical lift ηZ : Z → Z is defined
by ηZ(z) = (η−1

Y )∗z. If V is a vector field on Y whose flow ηλ maps fibers of πXY to
fibers, its canonical lift to Z is the vector field VZ that generates the canonical lift of
this flow to Z ( £ζZ Θ = 0).

b) A slicing of J1Y is generated by the jet prolongation ζJ1Y = j1ζY of ζY to J1Y .21

2. By a theorem due to Geroch:22

If X is a globally hyperbolic spacetime, then X � Σ × R.

3. Sometimes one can also allow for more general curves of embeddings that are not slicings.
This need arises for instance when working with characteristic initial value problems,
where hypersurfaces need to intersect in order to have a well-posed initial value problem (s
is not a diffeomorphism in this case)- see [GM06] for references.

For future reference we note that there are two special classes of slicings:

Definition 6.7.6. If a slicing is induced by a 1-param. subgroup of the gauge group G of the
theory, it is called a G-slicing.
For a given field theory, a slicing, sY , is Lagrangian if the Lagrangian density L is equivariant
w.r.t. the 1-param. groups of automorphisms associated to the induced slicings of J1Y and Λn+1X.
I.e., let fλ be the flow of ζY , so that j1 fλ is the flow of ζJ1Y , then equivariance means

L
(

j1 fλ(γ)
)

=
(
h−1
λ

)∗
L(γ)

where hλ is the flow of ζX .

21To prolong ζY to J1Y , let fλ be the flow of ζY . We know what j1 fλ is and define ζJ1Y to be its generator.
22Smoothness, i.e. that the spaces are actually diffeomorphic, was proven rather recently by Bernal and Sanchez

(2005, arXiv :gr-gc/0404084)
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Now, in principle slicings can be chosen arbitrarily, not necessarily according to a given a priori
rule. Thus they can be chosen as to implement certain ”gauge conditions” on the fields. Most
prominently, one can impose the Coulomb gauge condition ∇ · A = 0 in Maxwell’s theory by
adding the corresponding equations (restrictions) for the slicing to equations for the fields.
One may also use ’adaptive slicings’ for numerical calculations to improve accuracy.

Thus one is lead to consider the initial value problem for slicings and its interplay with the
dynamics of the field. While we will not investigate the former, it turns out that the instantaneous
formalism only needs the Cauchy data of the slicing, whence we make the following definition

Definition 6.7.7. An infinitesimal slicing of a spacetime X consists of a Cauchy surface, Στ,
along with a spacetime vector field, ζX , defined over Στ, which is everywhere transverse to Στ.
An infinitesimal slicing of a bundle K → X consists of Kτ along with a vector field ζK ,...
The infinitesimal slicings (Στ, ζX) and (Kτ, ζK) are called compatible if ζK projects to ζX .

Fix an infinitesimal slicing (Yτ, ζ := ζY ) of Y and denote 23

ϕ := φ|Στ ϕ̇ := £ζφ|Στ (20)

ϕA = φA|Στ ϕ̇A =
(
ζµφA

,µ − ζ
A ◦ φ

)∣∣∣∣
Στ

(21)

We define an affine bundle map

βζ : (J1Y)τ → J1(Yτ) × VYτ

βζ
(

j1φ(x)
)

:=
(

j1ϕ(x), ϕ̇(x)
)
, x ∈ Στ

βζ
(
xi, yA, vA

µ

)
=

(
xi, yA, vA

j, ẏA
)

(in adapted coordinates with ζ = ζ0∂0)

If ζ |Yτ = ∂
∂x0

, then ẏA = vA
0. Thus (since one can always choose adapted coordinates)

Proposition 6.7.8. If ζX is transverse to Στ, then βζ is an isomorphism.

If ζX is transverse to Στ, the bundle isomorphism βζ is called jet decomposition map and its
inverse the jet reconstruction map.

Corollary 6.7.9. βζ induces an isomorphism

(
j1Y

)
τ

:=
{

j1φ
∣∣∣∣
Στ

∣∣∣∣∣∣ φ ∈ Γloc(Y)
}
� TYτ

Proof. Denoting by iτ : Στ → X the inclusion, βζ( j1φ ◦ iτ) = ( j1ϕ, ϕ̇) ∈ J1(Yτ) × TϕYτ as
ϕ̇ : Στ → VYτ covers ϕ. The claim follows from the previous proposition. �

23cp. Definition 6.4.2
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6.8. The Instantaneous Legendre Transform

The Lagrangian is a top-degree form on the oriented manifold X. From differential geometry we
know that an oriented manifold features a special class of top-degree forms, which induce the
orientation. To show that the definition of the instantaneous Lagrangian hereafter is natural, we
quote the following proposition

Proposition 6.8.1. [Lee12] Suppose M is an oriented smooth n-manifold with or without bound-
ary, S is an immersed hypersurface with or without boundary in M, and N is a vector field
along S that is nowhere tangent to S . Then S has a unique orientation such that for each p ∈ S ,
(E1, ..., En−1) is an oriented basis for TpS if and only if (Np, E1, ..., En−1) is an oriented basis for
TpM. If dVol is an orientation form for M, then i∗S (Ny dVol) is an orientation form for S w.r.t.
this orientation, where iS : S → M is inclusion.

Using the jet reconstruction map, we may decompose the Lagrangian as follows: Define

Lτ,ζ : J1(Yτ) × VYτ → ΛnΣτ

Lτ,ζ

(
j1ϕ(x), ϕ̇(x)

)
:= i∗τ

(
ζXyL

(
j1φ(x)

))
where j1φ ◦ iτ is the reconstruction of ( j1ϕ, ϕ̇).

Definition 6.8.2. The instantaneous Lagrangian, Lτ,ζ , is defined as

Lτ,ζ : TYτ → R

Lτ,ζ(ϕ, ϕ̇) =

∫
Στ

Lτ,ζ

(
j1ϕ, ϕ̇

)
=

∫
Στ

L
(

j1ϕ, ϕ̇
)
ζ0dnx0 (in adapted coordinates with ζ = ζ0∂0)

and the instantaneous Legendre transform as usual through the fiber derivative

FLτ,ζ : TYτ → T ∗Yτ

FLτ,ζ(v)w :=
d
dt

∣∣∣∣
t=0

Lτ,ζ(v + tw) , v,w ∈ TϕYτ

Note that FLτ,ζ is fiber-preserving. In a local chart, the fiber derivative is given by

FLτ,ζ(ϕ, ϕ̇) =
(
ϕ,D2Lτ,ζ(ϕ, ϕ̇)

)
Where D2 denotes the partial derivative w.r.t. the second argument. In adapted coordinates:
π = πAdyA ⊗ dnx0 with πA =

∂Lτ,ζ
∂ẏA .24 We call

Pτ,ζ := imFLτ,ζ ⊂ T ∗Yτ

the instantaneous or τ-primary constraint set.
24Here it was used that L is of first order
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Assumption 6.8.3. (Almost regularity)
Assume that Pτ,ζ is a smooth, closed, submanifold of T ∗Yτ and that FLτ,ζ is a submersion onto
its images with connected fibers.

Notice that we already defined a covariant Legendre transformation on J1Y in Equation 9. It is
natural to ask in which sense it ’agrees’ with the one operating on TYτ. A direct calculation in
adapted coordinates shows

Proposition 6.8.4. Assume ζX is transverse to Στ. Then

(
j1Y

)
τ

Zτ

TYτ T ∗Yτ

FL

FLτ,ζ

βζ Rτ

Where Rτ : (Zτ,Ωτ)→ (T ∗Yτ, ωτ) was defined in Equation 16.

Hence it makes sense to call the following the covariant primary constraint set

N := FL
(
J1Y

)
⊂ Z

and, by abuse of notation,

Nτ := FL
(
( j1Y)τ

)
⊂ Zτ (22)

As direct consequence of Corollary 6.7.9 and Proposition 6.8.4 we obtain

Corollary 6.8.5. If ζX is transverse to Στ, then

Rτ(Nτ) = Pτ,ζ

In particular, Pτ,ζ =: Pτ is independent of ζ.

Denote ωPτ := i∗ωτ, i : Pτ → T ∗Yτ inclusion. (Pτ, ωPτ) will in general be only presymplectic.
However, the fact that FLτ,ζ is fiber preserving together with Assumption 6.8.3 imply that

Corollary 6.8.6. kerωPτ is a regular distribution on Pτ (i.t.s.t. it defines a subbundle of TPτ).

For this work, all concepts needed to understand the results have been covered at this point.
However, without having defined the Hamiltonian system, there is of course no motivation for the
results.
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6.9. Hamiltonian Dynamics

The instantaneous Hamiltonian is defined

Hτ,ζ : Pτ → R

Hτ,ζ(ϕ, π) := 〈π, ϕ̇〉 − Lτ,ζ(ϕ, ϕ̇)

Of course we want to investigate the relationship between the covariant and instantaneous
formalism, with ultimate goal of showing in which way solutions of the Euler-Lagrange equations
relate to solutions of the Hamilton equations by the end of this section. Obviously, Rτ will be of
central importance again:

Definition 6.9.1. A holonomic lift, σ, of (ϕ, π) ∈ Pτ is any element σ ∈ R−1
τ {(ϕ, π)} ∩ Nτ. They

always exist by virtue of Proposition 6.8.4.

A straight forward calculation in adapted coordinates shows

Proposition 6.9.2. Let (ϕ, π) ∈ Pτ. Then for any holonomic lift, σ, of (ϕ, π),

Hτ,ζ(ϕ, π) = −

∫
Στ

σ∗
(
iζZ Θ

)
=:

∫
Στ

Hτ,ζ(ϕ, π)

where ζZ is the canonical lift of ζ to Z (cp. Remark 6.7.0.4).

Now, fix compatible (Lagrangian) slicings, sY and sX of Y and X with generating vector fields ζ
and ζX , respectively. As before, let τ be the curve of embeddings, i.e.

τ : R→ Emb(Σ, X)

τ(λ)(x) := sX(x, λ)

and denote
Pτ := ∪λ∈RPτ(λ)

We view the (n + 1)-evolution of the fields as being given by a curve, c, such that25

R Pτ

Emb(Σ, X)

c : λ 7→ (ϕ(λ), π(λ))

τ proj

25Dashed arrows mean that the diagram commutes.
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But this leads us to the question on how exactly we can take the structures we have defined on
T ∗Yτ(λ) and Pτ(λ) and extend them to the spaces T ∗Yτ and Pτ, respectively. In more general
terms, the problem is stated in [GLSW83] as follows:

A bundle of symplectic manifolds is a differentiable fibre bundle F → E
π
→ B whose structure

group26 preserves a symplectic structure on F. In particular this means that the vertical subbundle
V = Ker(Tπ) ⊂ T E carries a field of bilinear forms which we call the symplectic structure
along the fibers and denote by ω. Of course we can restrict any 2-form Ω on E to V; if this
restriction is ω, we call Ω an extension of ω.

In [GLSW83] it is investigated when such a closed extension exists, which eventually comes
down to a cohomology condition. In the following we explicitly construct such a form in a very
natural way.

Definition 6.9.3. A trivialization is (pre-) symplectic if the associated flow restricts to a (pre-)
symplectic isomorphism on the fiber.

Recall from Corollary 6.7.5 and the remark thereafter that the slicing sY of Y gives rise to a
trivialization, sY of Yτ and hence induces trivializations

• s j1Y of ( j1Y)τ by jet prolongation

• sZ ofZτ (presymplectic) and sT ∗Y of T ∗Yτ (symplectic) by pullback.

To picture the latter, suppose Y = X × F is a trivial bundle. Define a slicing on Y by R × Σ × F →
X × F, i.e. YΣ = Σ × F. We have YΣ = {ϕΣ : Σ→ F} and Yτ = {ϕ : Στ → F}. Then

sY(ϕΣ, λ) = sY ◦ ϕΣ ◦ τ
−1
λ =: sY ◦ ϕλ = ϕλ : Στ(λ) → F

The fiber of T ∗Yτ over τ(λ) is simply T ∗Yτ(λ). sT ∗Yτ := (s−1
Y

)∗ : T ∗Yτ × T ∗R→ T ∗Yτ. We have

s
∗
T ∗YτωT ∗Yτ = s∗T ∗Yτdπ

∗
Yτ,T ∗Yτ

πλ = d(πYτ,T ∗Yτ ◦ sT ∗Yτ)
∗πλ = d(πYΣ,T ∗YΣ

)∗πΣ = ωT ∗YΣ

with πλ and πΣ denoting elements of T ∗ϕYτ(λ) and T ∗ϕΣ
YΣ, respectively.

Proposition 6.9.4. If sY is Lagrangian and Assumption 6.8.3 holds, then Pτ is a subbundle27 of
T ∗Yτ and the symplectic trivialization sT ∗Y on T ∗Yτ restricts to a presymplectic trivialization,
sP, of Pτ.

26Let (φi,Ui) be a trivializations of the fiber bundle. Consider φiφ
−1
j : (Ui ∩ U j) × F → (Ui ∩ U j) × F. If

φiφ
−1
j (x, ξ) = (x, ti j(x) · ξ), with ti j : Ui ∩ U j → G and G a group (with action ”·”), then G is called the structure

group.
27Though not always as a vector bundle. For the relativistic particle, for instance, we have πµπν = −m2. However,

[GM06] give conditions under which this holds as a vector bundle.
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The examples throughout this text will convince you that in the usual cases Pτ is a subbundle of
T ∗Yτ. The second part then follows directly by including the inclusion i : Pτ → T ∗Yτ in the
calculation above: Since the inclusion is not even a submersion in general, we can not expect the
pulled back form ωPτ := i∗ωT ∗Yτ to be still symplectic.

We use sP to coordinatize Pτ by (ϕ, π, λ) and in subscripts abbreviate τ(λ) with λ. Using ζP
(”∂/∂λ on Pτ(λ)”), we can uniquely extend the forms ωλ along the fibers Pλ to a (degenerate)
closed 2-form, ω, on Pτ by

ω(V,W) := ωλ(V,W)

ω(ζP, ·) := 0

∀(ϕ, π) ∈ Pλ, whereV andW are vertical vectors on Pτ (i.e. tangent to Pλ) at (ϕ, π).

Similarly, Hζ : Pτ → R

Hζ(ϕ, π, λ) := Hλ,ζ(ϕ, π)

and Lζ : TYτ → R

Lζ(ϕ, ϕ̇, λ) := Lλ,ζ(ϕ, ϕ̇)

If we take the slicing to be Lagrangian, from the definition of a Lagrangian slicing, it will be
obvious that L can not explicitly depend on the slicing parameter, λ. From the definition of Lλ,ζ
we see that Lλ,ζ then only depends on the infinitesimal slicing, meaning the embedding τ(λ) and
the slicing generator ζX(x, λ). This yields

Corollary 6.9.5. Assume ζY is associated to a Lagrangian slicing. Then Lζ is independent of λ.
From the definition of Hλ,ζ , we then have ζP

[
Hζ

]
= 0.

Consider the 2-form ω + dHζ ∧ dλ on Pτ. By construction:

£ζP
(
ω + dHζ ∧ dλ

)
= 0

Definition 6.9.6. c : R→ Pτ, as above, is a dynamical trajectory if c(λ) covers τ(λ) and

ċ(λ)y
(
ω + dHζ ∧ dλ

)
= 0

Note that the tangent, ċ, to any curve, c, in Pτ covering τ can uniquely be split as

ċ =: X + ζP

where X is vertical in Pτ. Set Xλ := X|Pλ . Plugging this into the respective equations, we verify:
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Proposition 6.9.7. A curve, c, in Pτ is a dynamical trajectory iff Hamilton’s equations

Xλyωλ = dHλ,ζ

hold at c(λ) for every λ ∈ R.

Corollary 6.9.8. LetV be a vector field on Pτ, whose integral curves are dynamical trajectories.
Let Fλ1,λ2 : Pλ1 → Pλ2 be its flow. Then Fλ1,λ2 is symplectic, i.e.

F ∗λ1,λ2
ωλ2 = ωλ1

Proof. Using the standard formula d
dλψ

∗
λα = ψ∗λ£Vα for some form α and ψλ the flow ofV, we

have

0 = ψ∗λ£V(ω + dH ∧ dλ) =
d

dλ
ψ∗λ(ω + dH ∧ dλ)

by integration over [λ1, λ2], we find

ψ∗λ1
ω = ψ∗λ2

ω + (ψ∗λ2
− ψ∗λ1

)dH ∧ dλ

Applying the trivialization sP yields the claim. �

At this point we are ready to formulate the relation between solutions to the Euler-Lagrange-
equations and Hamilton’s equations from above. First, we need to relate elements of Y (e.g.
solutions to the E-L-equ.), to elements of Pλ.

Definition 6.9.9. Given φ ∈ Y, set σ := FL( j1φ) and define the canonical decomposition of φ
w.r.t. a given slicing28

cφ(λ) := Rλ(σλ)

where σλ := σ ◦ iλ, iλ : Σλ → X the inclusion.

Corollary 6.9.10. By Proposition 6.8.4: cφ(λ) ∈ Pλ

Finally, we state the theorem giving the relation of solutions to the Euler-Lagrange-equation and
Hamilton’s equation. Unfortunately, the proof is rather involved and in any case not relevant to
this work.

Theorem 6.9.11. 1. φ ∈ Y solution of Euler-Lagrange equ.
⇒ cφ satisfies Hamilton’s equ. w.r.t. any Lagrangian slicing.

2. c solution of Hamilton’s equ.
⇒ c = cφ with φ a solution of the Euler-Lagrange equ.

28Recall: J1Y∗ � Z.
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6.10. Constraint Theory

We have now arrived in the setting of subsection 5.5, searching in the presymplectic manifold
(Pλ, ωλ) for solutions of Hamilton’s equations

Xλyωλ = dHλ,ζ (23)

Denote the final constraint manifold by C that is

C := Pl
λ , with Pl

λ s.t.
(
TpP

l
λ

)⊥
[H] = 0 ∀p ∈ Pl

λ

With the sequence of constraint submanifolds

Cτ,ζ = Pl
τ,ζ ⊂ ... ⊂ P

2
τ,ζ ⊂ Pτ ⊂ T ∗Yτ

in the notation of the constraint algorithm in subsection 5.5.

6.10.0.5. Remark
1. While in finite dimensions, (iXωλ − dHλ,ζ)|C = 0 is a system of ODEs and integrability

follows automatically, the previous results do not imply integrability in the infinite di-
mensional case. That X can actually be integrated to a flow is then a difficult analytic
problem.

2. We assume that each Pl as well as C are smooth submanifold of P. In practice, Pl>1 and
hence C typically have quadratic singularities.
While singularities remain important for questions of linearization stability, quantization,
etc., they present no problem in calculating the constraint set.

3. Solutions X, when they exist, are usually not unique:
If X is a solution, then so is X + V for any V ∈ kerωλ ∩ X(C). Thus, besides being
overdetermined, signaled by C ( P, Equation 23 is in general also underdetermined,
signaling the presence of gauge freedom in the theory as was already mentioned following
Proposition 5.5.3.

Finally, we need another definition of well-posedness that will not yield any system with gauge
freedom ill posed, as does the definition in section 3. One possibility is to call a system well-posed
if it is well-posed after fixing gauges, i.e. introducing new constraints until

kerωλ ∩ X(C ∩ {new constraints}) = ∅

[GM06] chose a more straight forward definition that is easily seen to include this class of
systems.

Definition 6.10.1. The Euler-Lagrange equations are well-posed relative to a slicing sY if every
(ϕ, π) ∈ Cλ,ζ can be extended to a dynamical trajectory c : R ⊃ (λ − ε, λ + ε) → Pτ with
c(λ) = (ϕ, π) and that this solution trajectory depends continuously (in a chosen function space
topology) on (ϕ, π).
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Part II.
Thesis

7. Warm up: Parametrization- Invariant Theories

Constraints in field theories are not mere mathematical peculiarities. In fact, there is a close
relationship between local gauge transformations (a.k.a. gauge transformation of the second kind)
and constraints, the starting point of which is the following theorem

Theorem 7.0.2. [Sun82, Noether’s 2. theorem] If the action is invariant under infinitesimal
transformations of an infinite continuous group parametrized by r arbitrary functions there exist r
independent algebraic or differential identities for the Euler derivatives of the Lagrange function.

By Euler derivatives are meant the Euler-Lagrange equations, denoted by LA below. We will
not show here, how the relation may be facilitated, but rather take the specific example of
parametrization-invariant theories and do an explicit calculation. For a more general treatment,
please refer to [Sun82], where also the definition of a param.-inv. theory was taken from, follow-
ing below. For coordinate free and general results on the correspondence between Gauge groups
and constraint submanifolds, please refer to [GM06].

Take a Lagrangian of the form

L =

∫
X

dn+1x L
(
φA,

∂φA

∂xµ

)
note in particular that L has no explicit x-dependence. Now, if we reparametrize to new coordi-
nates, y(x), say, the Lagrangian changes to

L =

∫
Y

dn+1y det
(
∂xµ
∂yν

)
L

(
φA,

∂yµ
∂xν

∂φA

∂yµ

)
We say that the corresponding field theory is parametrization invariant, if

L
(
φA, λµ

ν∂νφ
A
)

= det
(
λµν

)
L

(
φA, ∂µφ

A
)

with the consequence, that the Lagrangian above actually look the same, just with x and y
switched.29 One can show that the condition is equivalent to30

∂L

∂(∂µφA)
∂νφ

A = δµνL (24)

29Note that in physics something similar is referred to as “generally covariant”. That notion does not always agree
with parametrization invariant as defined here.

30Look up homogeneous function, e.g. on Wikipedia. In one dimension one can show for a function L(ẋ)

L(λẋ) = λL(ẋ)⇔
∂L
∂ẋ

ẋ − L = 0
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There are only a few theories which are parametrization-invariant. Notably, Einstein’s gravity,
the relativistic point particle and the relativistic string. In this section we will apply some of the
tools developed in the preceding part of this thesis to a general param.-inv. theory, so that the
subsequent sections become more clear.

The Euler-Lagrange equations are as usual

LA :=
∂L

∂φA − ∂µ
∂L

∂(∂µφA)
= 0

However, a straight forward calculation reveals that the equations are not independent for a
param.-inv. theory. We have for any φ the so called generalized Bianchi identities (the identities
for the Euler-derivatives as predicted by Theorem 7.0.2)

LA∂µφ
A = 0

These n + 1 equations already suggest that there will be n + 1 primary constraints (cp. [Sun82]).
Assuming that L = L(φ, ∂µφ) has no explicit coordinate dependence we calculate

∂µ
∂L

∂(∂µφA)
=

∂L

∂φB∂φA
,µ

∂µφ
B +

∂L

∂φB
,ν∂φ

A
,µ

∂µ∂νφ
B

And read off the symbol Fµν
AB of the Euler-Lagrange equation by assuming the following expression

to be nonvanishing for some indices

∂L

∂φB
,ν∂φ

A
,µ

:= Fµν
AB

The reader may check that the following definition of a characteristic hypersurface in fact
coincides with Definition 3.2.1.31 A hypersurface (locally) given by z(x) = 0 is characteristic
w.r.t. the Euler-Lagrange equations if we have for the symbol

det
(
∂z
∂xµ

∂z
∂xν

Fµν
AB

) ∣∣∣∣∣∣
z(x)=0

= 0 (25)

Continuing to the instantaneous formalism we choose local coordinates (z, zi) of X, s.t. the
hypersurface Σz is (locally) parametrized by (0, zi) : X ⊃ Σz → Σ, and verify

Lz,ζ(ϕ, ϕ̇) =

∫
Σ

i∗z iζ
(
L(φA, ∂µφ

A)dn+1x
)

Note, if L = L(x, ẋ) was a Lagrangian this implies for the associated Hamiltonian

H(x, p) :=
∂L
∂ẋ

ẋ − L = 0

That the associated Hamiltonian vanishes “weakly” (i.e. on the constr. submfd.) is a general feature of param.-inv.
(field) theories.

31Use the inverse function theorem.
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=

∫
Σ

L

(
φA,

∂zν
∂xµ

∂φA

∂zν

) ∣∣∣∣∣∣
z(x)=0

ζσΦσdnz

=

∫
Σ

L

ϕA,
∂φA

∂z

∣∣∣∣∣∣
z(x)=0

,
∂ϕA

∂zi

 det
(
∂zν
∂xµ

)
ζσΦσdnz

=

∫
Σ

L

ϕA,

(
ϕ̇A − S A

)
ζε ∂z

∂xε

,
∂ϕA

∂zi

 det
(
∂zν
∂xµ

)
ζσΦσdnz

Where we have truncated some parts. In particular, the definition of S A becomes clear upon
revisiting Equation 21. Denoting the integrand by Lz,ζ , we calculate the instantaneous momenta
by

πA :=
∂Lz,ζ

∂ϕ̇A =
1

ζµ ∂z
∂xµ

∂L

∂(∂zφA)
(ϕA, ϕ̇A) (26)

But then, because the theory is param.-inv., by Equation 24, we have

πA∂iϕ
A = 0 (n primary constraints)

πAϕ̇
A − ζµ

∂z
∂xµ
L − πAS A = 0 (1 primary constraint)

Setting ζ = ∂z this last constraint becomes the vanishing of the Hamiltonian

0 = πAϕ̇
A − L = H

Hence any param.-inv. theory has n + 1 primary constraints. But how can one investigate with
this general expression whether a characteristic hypersurface yields new primary constraints, i.e.
connect Equation 25 with Equation 26? From Equation 25 we know that there exist functions KA,
such that

∂z
∂xµ

∂z
∂xν

∂2L

∂φA
,µ∂φ

B
,ν

KA = 0

From this, we would like to derive an identity for the πA of the form ∂z
∂xµ

∂L

∂φA
,µ

NA =

 πANA = something

for some functions NA. We leave this investigation open for future research and proceed with a
different class of Lagrangians in the next section.

8. Characteristic Hypersurfaces and Constraint Theory

As announced in the main introduction, in the following, we will investigate under which
conditions the additional constraint due to a characteristic hypersurface yields a symplectic
submanifold.
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8.1. Introduction

We start off with a technical remark that goes back to Definition 6.4.1: [GM06] require the
Cauchy surfaces to be spacelike that is, they require them to be non-characteristic. We believe that
this is not used explicitly in the first two parts of [GM06] - the parts we are essentially covering.
Of course, if the initial value problem is not well-posed32, we potentially run into trouble. So we
assume that the initial-value hypersurfaces were chosen w.r.t. to the Euler-Lagrange equations,
such that the characteristic initial value problem is well-posed (ref. to section 3).

Furthermore, we need the primary constraint manifolds for different times to be diffeomorphic
(see Proposition 6.9.4). For this, it should suffice to require that the Cauchy surfaces be of the
same class (spacelike, null; i.e. non-char. or characteristic) as the characteristic hypersurfaces
vary just as smoothly as the non-characteristic ones do and thus do the constraints under the same
reasonable (physical) assumptions made in the non-char. case. These assumptions become clear
in section 8.3. In conclusion, we will use the procedure of section 6 on characteristic Cauchy
surfaces in the following.

We consider a field theory consisting of an appropriate function space F (M) over a n + 1 - dim.
manifold M. We choose a coordinate neighborhood U of M with coordinates x : U → X ⊂ Rn+1

and assume a Lagrangian of the form

L =

∫
X

(
Fµν

AB(x)∂µφA∂νφ
B + G(φ, x)

)
dn+1x (27)

with φ ∈ F (X), F,G at least continuous and s.t. the integral is defined and not divergent. When it
comes to choosing neighborhoods we chose to be less rigorous in keeping count favoring shorter
notation instead. As in the integral above, we will ignore the fact that we are actually considering
many neighborhoods, Ui, and should therefore sum over the Xi - this we hide by simply writing
X.

Most field theories have an associated constrained Hamiltonian system: For non-constrained
systems, the Hamiltonian dynamics take place on the whole cotangent bundle over a configuration
manifold and are defined through the canonical symplectic form of the cotangent bundle. The
dynamics of constrained Hamiltonian systems is restricted to a submanifold which is, in general,
only presymplectic.

Using characteristic hypersurfaces for the space of Cauchy data introduces new constraints
for field theories of the form above, as was already shown in the main introduction for the
Klein-Gordon field. It seems natural to investigate, under which conditions these constraints
yield symplectic submanifolds: They would then not give rise to secondary constraint manifolds

32I.t.s.o Definition 6.10.1. In most cases this should be equivalent to well-posedness after gauge-fixing (i.e. adding
constraints by hand) , see discussion following Proposition 5.5.3 and section 9.
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(see Proposition 5.5.1) and this means one could possibly (see section 9) carry over any result
from the non-char. hypersurface case that only makes use of the symplectic structure of the
cotangent bundle. In more physical terms, they would not be introducing additional gauges (cpw.
Proposition 5.5.3). Whence, we will investigate under which conditions the additional constraint
yields a symplectic submanifold in the following.

On the other hand, one might be able to turn this around in the sense that a reasonable physical
theory should, when restricted to char. hypersurfaces, only introduce constraints that lead to
symplectic submanifolds - but we will not pursue this route.

In a finite dimensional vector space setting, it is easy to see that a constraint, which is linear in
the momenta, can not yield a symplectic submanifold. That this holds for the case at hand is
shown in Corollary 8.4.2. Under certain circumstances on a non-char. hypersurface, it is shown
in [GM06] that all primary constraints are linear in the instantaneous momenta. Proposition 8.3.6
gives a tangible condition under which the new constraints due to a char. hypersurface are always
non-linear in the inst. momenta.

As the example of a Klein-Gordon-type field on a general background shows (cp. section 8.6)
there can be no easy algebraic condition on whether a theory will feature symplectic constraints
due to a char. hypersurface. Proposition 8.4.1 gives the sufficient condition for a constraint to
yield a symplectic manifold. Finally, since there may be several new constraints with a char.
hypersurface (cp. EM, section 8.7), we show in Lemma 8.4.3 that the intersection of symplectic
constraints is itself symplectic and combine the last two statements in Proposition 8.4.4.

8.2. The Characteristic Hypersurface(s)

In section 3 we stated that a condition for well-posedness of the characteristic initial value problem
associated to the Euler-Lagrange equations corresponding to the Lagrangian in Equation 27 could
be33 that data be given on two intersecting transverse characteristic hypersurfaces. Let these
hypersurfaces (locally) be described by

H1 = {z1(x) = 0} and H2 = {z2(x) = 0}

s.t. H1 ∩ H2 is a 2-dim. submfd.

Of course, the instantaneous Lagrangian will now split in two parts:

Lz1/2ζ(ϕ, ϕ̇) =

∫
H1∪H2

i∗H1∪H2
iζL

=

∫
H1

i∗z1
iζL +

∫
H2

i∗z2
iζL

33Note, that in section 3 the Lagrangian is assumed such that all Euler-Lagrange equations are lin. independent
equations of second order. As we have shown, this will not be the case in most applications we consider.
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Hence, calculating the instantaneous momenta is not as straight forward as in the preceding
example from the last section. Recalling that the Legendre transform is defined as a map

FLz1/2,ζ : TYz1/2 → T ∗Yz1/2

with T ∗ϕYz1/2 :=
{
π : H1 ∪ H2 → L

(
VY |H1∪H2 ,Λ

n(H1 ∪ H2)
)}

The way to go is
πA = π1

Aδ (z1(x)) + π2
Aδ (1 − z1(x))

where πi
A, i = 1, 2, are the “usual” instantaneous momenta for the respective integral. The first

question that comes into mind now, is, whether πi
A agree on H1 ∩ H2. This is obviously the case

as they are defined through restrictions of functions defined on H1 ∪ H2. The more important
question concerns derivatives and continuity at the intersection. For instance, in Figure 1, H1∪H2
is not a differentiable manifold, but a manifold with corner! We chose to dodge this question and
refer to e.g. D. Joyce, arXiv:0910.3518 for more information. Since all functions that go into
the Legendre transformation are assumed smooth on X, we should be allowed to “smoothen out”
the corner when handling the space of initial data on H1 ∪ H2. The instantaneous formalism is
mostly concerned with functionals that are defined through some integration over H1 ∪ H2. In
this case, H1 ∩ H2 is of measure zero and can be ignored (see also 3. of Remark 6.7.0.4).

In the following section we will be concerned with local questions and consequently assume
that we are on either null-hypersurface. In fact, for readability, we will be ignoring the other
null-hypersurface right from the start, in the understanding that πA has “property” should be
substituted by πi

A, i = 1, 2, have “property”, respectively.

8.3. The Constraints

From the Euler-Lagrange equations associated to Equation 27, we can read off the principal
symbol of the differential operator by neglecting lower derivative terms:

∂L
∂φA

,µ
= Fµν

ABφ
B
,ν + Fνµ

BAφ
B
,ν

∂

∂xµ

(
∂L
∂φA

,µ

)
=

(
Fµν

AB + Fµν
BA

)
φB

,µν + ...

= 2Fµν
ABφ

B
,µν + ...

Where in the last step we realized that due to the form of the Lagrangian, F can be assumed to
feature this symmetry. Now, let a hypersurface Σz ⊂ X (locally) be described by z(x) = 0. Usually,
Σz is said to be characteristic for the E-L-Equ. if

det
(
∂z
∂xµ

∂z
∂xν

Fµν
AB

) ∣∣∣∣∣∣
z(x)=0

= 0
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whence dxz ∈ T ∗x X belongs to the characteristic variety. But for most field theories, this holds
independent of the choice of hypersurface (cp. Vacuum Electrodynamics, section 8.5). Thus we
will make the following definition

Definition 8.3.1. We refer to a hypersurface Σz as a characteristic hypersurface34 only if this
choice of hypersurface further lowers the rank of the symbol, i.e. there exists through every point
of Σz another hypersurface Σz̃, s.t.

Rank
∂z
∂xµ

∂z
∂xν

Fµν
AB < Rank

∂z̃
∂xµ

∂z̃
∂xν

Fµν
AB

Unfortunately, we need to restrict to special coordinates35 for reasons that will become clear
when we calculate the instantaneous momenta. For a hypersurface, one can always choose (local)
coordinates (z, zi) : X ⊃ V → I × Σ ⊂ Rn+1 (i = 1, ..., n) such that V ∩ Σz = z−1(0), as above. We
will again drop the neighborhoods V from the notation.
For an infinitesimal slicing (Σz, ζ) and denoting by iz : Σ → Σz ⊂ X the inclusion, the instanta-
neous Lagrangian reads (neglecting non-derivative terms)

Lz,ζ(ϕ, ϕ̇) =

∫
Σ

i∗z iζL

=

∫
Σ

(
∂z
∂xµ

∂z
∂xν

Fµν
AB
∂φA

∂z
∂φB

∂z
+

∂z
∂xµ

∂zi

∂xν
Fµν

AB
∂φA

∂z
∂φB

∂zi
+
∂zi

∂xµ
∂z
∂xν

Fµν
AB
∂φA

∂zi

∂φB

∂z

+
∂zi

∂xµ
∂z j

∂xν
Fµν

AB
∂φA

∂zi

∂φB

∂z j
+ (...)

)
ζσΦσ dnz , i, j = 1, ..., n

where Φµ := (−1)µ det
(
∂xν
∂zi

∣∣∣∣
ν,µ

)
, dnz := dz1 ∧ dz2 ∧ ... ∧ dzn

=

∫
Σ

(
1
ζ2

z

∂z
∂xµ

∂z
∂xν

Fµν
AB

(
ϕ̇A − S A

) (
ϕ̇B − S B

)
+

1
ζz

∂z
∂xµ

∂zi

∂xν
Fµν

AB

(
ϕ̇A − S A

) (
Diϕ

B
)

+
1
ζz

∂zi

∂xµ
∂z
∂xν

Fµν
AB

(
Diϕ

A
) (
ϕ̇B − S B

)
+ (...)

)
ζσΦσ dnz , with ζz := ζµ

∂z
∂xµ

Where S A denotes the ”rest terms” upon solving for ∂φA/∂z (cpw. Equation 21) and Di denoting
formal partial derivatives w.r.t. zi (cpw. Definition 6.4.3). Taking the Frechet derivative of the
second argument of Lz,ζ , i.e. w.r.t ϕ̇, the instantaneous momenta read

1
ζµΦµ

πA =

(
1
ζz

)2
∂z
∂xµ

∂z
∂xν

(
Fµν

AB + Fµν
BA

) (
ϕ̇B − S B

)
34This is this papers definition and does not agree with the usual one.
35We are not working in adapted coordinates from the start. In our case the Lagrangian is not form-invariant for a

general change of coordinates. We will choose an “adapted embedding” instead, which of course amounts to a
coordinate change of the Lagrangian to adapted coordinates.
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+
1
ζz

∂z
∂xµ

∂zi

∂xν
Fµν

AB

(
Diϕ

B
)

+
1
ζz

∂zi

∂xµ
∂z
∂xν

Fµν
BA

(
Diϕ

B
)

Because Σz is characteristic, there exists a constraint vector KA(z1, ...) s.t.36

1
ζµΦµ

πAKA =
2
ζz

∂z
∂xµ

∂zi

∂xν
Fµν

ABKA
(
Diϕ

B
)

Hence we can choose E s.t. KE , 0 and substitute

πE =
1

KE

(
− πEKE + ζσΦσ

2
ζz

∂z
∂xµ

∂zi

∂xν
Fµν

AB︸                    ︷︷                    ︸
=:Ξi

AB

KA
(
Diϕ

B
) )
, E , E (28)

which is a primary constraint. We can readily read off the following result:

Proposition 8.3.2. The primary constraint associated to KA is linear in the instantaneous
momenta iff Ξi

ABKA = 0.

One might be tempted at this point to define a class of special, hypersurface independent con-
straint vectors, as those satisfying Fµν

ABp
KA , 0 (for some BP). Unfortunately, this class seems

to be of little interest, as already for electromagnetism on a general background the constraint
vectors depend on the hypersurface chosen (cp. section 8.7).

For future reference and for a better understanding of the following, we show

Lemma 8.3.3. Let KA be a constraint vector. If the associated constraint is linear in the
instantaneous momenta, then the mappings [B : vµ 7→ Fµν

ABKAvµ are degenerate, with ∂µz an
element of the kernel.

Proof. We have Ξi
ABKA = [B(∂z/∂xµ)∂zi/∂xµ = 0 (i.e. that it is linear in the inst. mo-

menta). {∂z/∂xµ, ∂zi/∂xµ} span a basis and we have [B(∂z/∂xµ)v = 0 for any basis ele-
ment v, as [B(∂z/∂xµ)∂z/∂xµ = 0 by assumption. Hence [B is degenerate for all B, with
∂z/∂xµ ∈ Ker([B). �

Lemma 8.3.4. Let zs(x) define a smooth family of hypersurfaces given by zs(x) = 0. Then the
constraint vectors Kis vary smoothly with s.

Proof. The Kis are defined by

∂µzs∂νzsF
µν
ABKA

is
= 0

And thus depend smoothly on s.37 �

36Recalling the preceding section: How does KA(z1, ...) behave when transitioning through the intersection to the
other null-hypersurface?

37I.g. eigenvectors and alike need not vary smoothly with a smooth 1-param. family of matrices
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Lemma 8.3.5. For every characteristic hypersurface, z, there exist for every point a neighborhood
and a family of non-characteristic hypersurfaces, zs, s.t. zs → z in that neighborhood.

Proof. By the definition of characteristic hypersurface, there exist through every point of z at
least one non-characteristic hypersurface, z0, intersecting z transversely - otherwise the char.
hypersurface would not be lowering the rank at this point.
Fix a point and using both hypersurface’s (local) orthogonal vector fields, nz and nz0 , choose a
neighborhood that is a tubular neighborhood for both hypersurfaces, respectively. By definition
of tubular neighborhoods both orthogonal vector fields are now continued to non vanishing
vector fields on the whole neighborhood, which we still denote by nz and nz0 . Define a vector
field a(x)(snz + (s − 1)nz0), with a(x) s.t. points on z0 will be mapped to points on z1 by the
time-one-flow and a(x) = 0 for x on the intersection. In particular, a(x) will have to change sign
there. The s = const. hypersurfaces are the ones we were looking for. �

Proposition 8.3.6. Assume rank(∂µ f Fµν
AB) = const. , ∀ν and all functions f with d f , 0 that

define hypersurfaces in a half open neighborhood whose boundary coincides with the char.
hypersurface. Then the new, characteristic constraint vectors, K̃i, resulting from choosing a
characteristic hypersurface, z, yield constraints non-linear in the momenta.

Proof. Let zs be a smooth family of non-characteristic surfaces, s.t. zs → z, which exists by
virtue of Lemma 8.3.5. As shown in Lemma 8.3.4, the Kis depend smoothly on s. By assumption

rank
(
∂µzFµν

AB

)
= rank

(
∂µzsF

µν
AB

)
Thus we can choose the Kis so that they define an orthonormal frame varying smoothly with s.
The only things that could go wrong w.r.t. to the conclusion of the prop. is that two constraint
vectors, say K1s and K2s converge to the same element or one of them vanishes.38 Because by
assumption we would then get at least two new constraint vectors,39 K̃1/2, with one of which, K̃1,
say, satisfying ∂µzFµν

ABK̃A
1 = 0.

By smoothness, however, K1s and K2s have to stay orthogonal (the eucl. scalar product is a
smooth function). Since we furthermore chose them normalized (w.r.t. eucl. scalar product), they
can not vanish. In conclusion a new constraint, (i.p. linear independent of the Ki), K̃1, can not
belong to the kernel. �

In the setting of [GM06], the primary constraint manifolds of a non-char. slicing are independent
of the slicing chosen - in particular the number of constraint vectors is constant along non-
char. hypersurfaces. [GM06] give conditions under which the constraints are linear in the inst.
momenta (these are the theories they focus on). Via Lemma 8.3.3, the constant rank assumption
in Proposition 8.3.6 is then satisfied for f defining non-char. hypersurfaces. It would be nice to
show something along the lines of:

38”creating space for a new vector in the kernel”
39By definition of constraint hypersurface we need to end up with more constraint vectors than before
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In the setting of [GM06]. If for non-char. hypersurfaces all constraints are linear in the inst.
momenta and (...) then the new constraints due to choosing a char. hypersurface are non-linear in
the instantaneous momenta.
To show this we ’only’ need to show that the rank will still be the same in the limit to the char.
hypersurface - possibly by introducing another assumption ”(...)”.

8.4. Symplecticity of the Constraint Submanifold

Now, we will take a closer look at the constraint submanifold (PK
z , i
∗

PK
z
ωz) ⊂ (T ∗Yz, ωz), created

by a constraint vector K. We recall that (T ∗Yz, ωz) is in fact symplectic. The symplectic form
ωz is, in particular, a bilinear anti-symmetric form. We assume that for vector fields (V, Ṽ),
(W, W̃) ∈ T (T ∗Yz), ωz is of the form

ωz
(
(V, Ṽ), (W, W̃)

)
= 〈VA, W̃A〉 − 〈WA, ṼA〉

for a dual pairing 〈·, ·〉 satisfying

〈Div, w̃〉 = −〈v,Diw̃〉 and 〈v, w̃〉 = 〈vw̃, 1〉

The most prominent example of such a pairing is the L2(Σz) inner product with vanishing boundary
terms. The L2 inner product is usually also the one encountered in field theories. In fact, going
back to section 6.5, will convince the reader that we are usually in this environment. What is
more, the symplectic form consists of an integral over the initial value surface. Going back
to section 8.2, we see, that we can ignore the problem of continuity at the intersection, as the
intersection is of measure zero in the integral. Furthermore, the symplectic form will split

ωz =

∫
H1

(...) +

∫
H2

(...) (29)

Thus, we may again focus on one term and ignore the second.

In this section we will proof the following proposition and discuss its meaning using some
examples.

Proposition 8.4.1. In the setting above we have: (PK
z , i
∗

PK
z
ω) is symplectic iff the only solution to

0 =

[
Di

( 1

KE

)2

Ξi
ABKAKB

 ]LE + 2
[ (

1

KE

)2

Ξi
ABKAKB

]
DiLE (30)

in the appropriate function space40 is LE = 0.

40LE should be the component of a vector in TPK
z . In the proof, one can read off the remaining components (depending

on LE). Then, one can check whether (L, L̃) ∈ TPk
z .
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Proof. We need to show: ∀(V, Ṽ) ∈ TPK
z ⊂ T (T ∗Yz), there exists (W, W̃) ∈ TPK

z s.t. ωz((V, Ṽ), (W, W̃)) ,
0.41 So first, we need to figure out what TPk

z actually is. As taking variational derivatives before
and after substituting πE = 1/KE(...) (Equation 28) needs to agree, it is readily seen

TPK
z =

{
LA δ

δϕA + L̃A
δ

δπA

∣∣∣∣∣∣ L̃E =
1

KE

(
−L̃EKE + Ξi

ABKA
(
DiLB

))
, E , E

}
Thus for (L, L̃), (M, M̃) ∈ TPK

z and denoting by 〈·, ·〉 the L2(Σ) inner product, we get

ω
(
(L, L̃), (M, M̃)

)
= 〈LA, M̃A〉 − 〈MA, L̃A〉

= 〈LE , M̃E〉 + 〈LE ,
1

KE

(
Ξi

ABKA(DiMB) − KE M̃E
)
〉

− 〈ME , L̃E〉 − 〈ME ,
1

KE

(
Ξi

ABKA(DiLB) − KE L̃E
)
〉

= 〈LE −
KE

KE
LE , M̃E〉

− 〈Di

(
1

KE
Ξi

AEKALE
)

+ L̃E ,ME〉

− 〈Di

(
1

KE
Ξi

AE
KALE

)
+

1

KE

(
Ξi

ABKA(DiLB) − KE L̃E
)
,ME〉

!
= 0 , ∀(M, M̃) ∈ TPK

z

For this to hold, the left hand side of each inner product has to vanish, respectively. Plugging the
first two resulting equations into the last yields

0 = Di

(
1

KE
Ξi

AE
KALE

)
+

1

KE

(
Ξi

AEKA
(
Di

[
KE

KE
LE

])
+ Ξi

AE
KA(DiLE)

)
+

1

KE
KEDi

(
1

KE
Ξi

AEKALE
)

=

[
Di

(
1

KE
Ξi

AE
KA

)
+

1

KE
Ξi

AEKA
(
Di

[
KE

KE

])
+

1

KE
KEDi

(
1

KE
Ξi

AEKA
) ]

LE

+ 2
[

1

KE
Ξi

AE
KA +

(
1

KE

)2

Ξi
AEKAKE

]
DiLE

=

[
Di

( 1

KE

)2

Ξi
ABKAKB

 ]LE + 2
[ (

1

KE

)2

Ξi
ABKAKB

]
DiLE

(PK
z , ω) is symplectic iff the only solution is LE = 0. �

41We are only showing this for one term in Equation 29. So what if the two terms happened to cancel each other? In
general theories this is extremely unlikely: For one thing, Fµν

AB(x) would probably have to feature some H1 ↔ H2

symmetry. Then, still, one could choose a different parametrization of z2 or change ζ.
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The easiest example where the condition is satisfied, is for(
1

KE

)2

Ξi
ABKAKB = c(z1, ..., ẑ j, ..., zn) · δi j , no sum over j, z j excluded

Then the only solution in any differentiable function space will obviously be the null solution. This
is for instance the case for the Klein-Gordon - and electromagnetic field on a Minkowski back-
ground (cp. 8.5). With more general backgrounds, however, one can not expect the coefficients to
be independent of a coordinate.
We can rewrite the general condition to

DlL
E +

Al

Al
DlLE +

1

2Al
(DlAl)LE = 0 , sum over l , l

By the Cauchy-Kowalevski Theorem, we know that this equation has a unique solution if the
coefficients are real analytic.42 In general, we should expect to find a solution that is not the null
solution. One then has to check whether the solution is actually in the function space (vector
space) considered. In the case of a Klein-Gordon field on (half) de-Sitter background (cp. section
8.6), the solution can, for example, be readily discarded as failing this essential requirement.

For future reference we note that when all coefficients in the condition vanish, it will be satisfied
for any function. As an immediate consequence of Proposition 8.3.2 we get

Corollary 8.4.2. Constraints that are linear in the instantaneous momenta yield non-symplectic
submanifolds.

Of course, now that we have established criteria for the symplecticity of a single constraint
manifold, we are interested in the nature of their intersections. After all, the field dynamics (i.e.
the Hamiltonian formalism), are taking place in the intersection of all constraint manifolds.

Lemma 8.4.3. Let (V, 〈·, ·〉) be a separable Hilbert space and consider the symplectic vector
space (V × V, ω) with the obvious symplectic form ω. Let Wi ⊂ V × V be symplectic subspaces.
Then W =

⋂
Wi is a symplectic subspace of (V × V, ω).

Proof. By assumption we can choose an orthonormal basis B = {u1, u2, ...} of V . Let W1 =

span{ui} , i ∈ σW1 , where σW1 denotes the corresponding index set for W1 and define σW2 , σW

analogously.
Assume ∃(k, l) ∈ σW s.t. ∀(i, j) ∈ σW : 0 = ω((uk, ul), (ui, u j)). Then there exist (m, n) ∈
σW1/σW2 and (o, p) ∈ σW2/σW1 such that

0 , 〈uk, un〉 − 〈ul, um〉

0 , 〈uk, up〉 − 〈ul, uo〉

42I.p. there are counter examples with coefficients that are merely smooth, e.g. ”Lewys example”
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Whence k = n, l = o or l = m, k = p (otherwise (um = uo, un = up) ∈ W). Choose the
first option, in particular: (o, n) < σW (otherwise, we would be done already). But, since by
assumption (k, l) ∈ σW , we have (n, o) ∈ σW . This is a contradiction, as it is easy to show that:
(ui, 0) ∈ W ⇔ (0, ui) ∈ W and thus (n, o) ∈ σW ⇔ (o, n) ∈ σW . �

Proposition 8.4.4. If all characteristic constraints satisfy Proposition 8.4.1 and provided we
are working in a separable Hilbert space, then the characteristic constraint manifold - the
intersection of the respective constraint manifolds - is symplectic.

8.5. Vacuum Electrodynamics on Minkowski (−1, 1, 1, 1):

Fµσ
νε =2

(
ηµσηνε − ηµεηνσ

)
⇒Fµσ

νε = Fσµ
εν = Fνε

µσ , Fµσ
νε = −Fµε

νσ

z =
1
2

(x0 + x1) − x+ , x+ = const.

z1 =
1
2

(x0 − x1)

zm =xm , m = 2, 3

Using the formulas from above we calculate

πµ =
1
ζz

1
4

[ (
F00
µν + F00

νµ

) (
ϕ̇ν − S ν)

+
(
F01
µν + F10

νµ

) (
ϕ̇ν − S ν) +

(
F10
µν + F01

νµ

) (
ϕ̇ν − S ν)

+
(
F11
µν + F11

νµ

) (
ϕ̇ν − S ν) ]

+ (...)

And by using the symmetries of Fµσ
νε above,

πµ =
1
ζz

1
2

(
F00
µν + F01

µν + F10
µν + F11

µν

) (
ϕ̇ν − S ν) + (...)µ (31)

We check that the usual constraint holds, namely for the ”evolution direction”, K = (1, 1, 0, 0),
we get πµKµ = 0. This holds also for non-characteristic, spacelike hypersurfaces. For these this
is the only constraint.
For the characteristic hypersurface z = 0, we verify that for Kµ = δµµ , µ , 0, 1, πµKµ =

(...)µKµ , 0, i.e. the part we have written out in Equation 31 vanishes, while the rest, (...)µKµ,
does not. Continuing our algorithm with this K, we have43(

1
Kµ

)2

Ξi
µνK

µKν = Ξi
µµ

43We still sum µ, ν = 0, .., 3
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=
1
2

(
δµ0 + δµ1

)
δi1 (δν0 − δν1) Fµν

µµ
+

(
δµ0 + δµ1

)
δimFµm

µµ
, m , 1

= −δi1

So as noted following the proof of Proposition 8.4.1, the constraint submanifold associated to the
characteristic constraint is symplectic.

8.6. Fµν
AB ∝

√
−ggµν with Lorentz Metric g

We will first show that the symplecticity condition can in general be reduced to an ordinary
differential equation whose solution is then given and explicitly calculated as an example for the
’half De Sitter’ spacetime metric.

The characteristic hypersurfaces are exactly the null hypersurfaces for g (cp. [HE75, p.44]) that
is, let Σz ⊂ X be locally given by z(x) = 0 and denote dz = nadxa. Then the induced metric on Σ,
i∗zg, will be degenerate if gµνnµnν = 0, in which case Σz is called a null hypersurface. We can
proceed directly with the algorithm and calculate(

1

KE

)2

Ξi
ABKAKB = Ξi = ζµ det

(
∂xν
∂z j

∣∣∣∣
ν,µ

)
1

ζσ ∂z
∂xσ

∂z
∂xµ

∂zi

∂xν
gµν
√
−g

Where of course we do not have any ’A, B-components’. Defining Lν := ∂z
∂xµ

gµν, we have

〈L, L〉g = 0 (By construction)

〈L,V〉g = dz(V) = 0,∀V ∈ TΣz (Σz is given by z(x) = const.)

As 〈·, ·〉g is non-degenerate, and codim Σz = 1, we have

〈L,N〉g , 0⇔ N ∈ Span
(
∂z
∂xµ

)
= TΣ⊥z

Whence L ∈ TΣz. Note that L defines a smooth, non-vanishing vector field on Σz. Define
L̂ := L/||L||2Eucl. The flow of L̂ induces a foliation ψ : Σz

�
−→ I × U ⊂ R × R2. Choosing zi = ψi,

we verify: ∂µz1 = L̂µ, L̂µ∂µzi = 0 , i = 2, 3 (the leaves of the foliation are given by z1 = const.).
In these coordinates we immediately obtain:

Ξi = ζδ det
(
∂xκ
∂z j

∣∣∣∣
κ,δ

)
1

ζσ ∂z
∂xσ

√
−gδi1

Since this term is not constant, we actually need to look at Equation 30, which reads (changing
LE to f and using h in an obvious way)

0 = (D1h) f + 2h(D1 f )
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⇒ f = c(z2, z3)h−
1
2

So that we can write down the solution in our special coordinates:

f = c(z2, z3)

 ζσ ∂z
∂xσ

ζδ det
(
∂xκ
∂z j

∣∣∣∣
κ,δ

)
√
−g


1
2

(32)

Since we actually did find a solution, we need to check whether it is in the vector space we
considered. Below we will do this explicitly for the de Sitter metric using special coordinates that
only cover half of the spacetime.

8.6.0.6. ”Half De Sitter”
Presumably our universe becomes a de Sitter universe for large times. In coordinates covering
only half of de Sitter (cp. [HE75]):

g = −dx0 ⊗ dx0 + a(x0)2dxi ⊗ dxi

Σz := {z(x) = const.} is characteristic if

0 =
∂z
∂xµ

∂z
∂xν

gµν = − (∂0z)2 +
1
a2 (∂iz)2

With the ansatz z = z(x0, x1), this becomes 0 = ∂0z± 1
a∂1z. For de Sitter, we take a = ex0 , yielding

z± = c(x2, x3)ee−x0±x1 . We define new coordinates:

z = ee−x0 +x1

z1 = ee−x0−x1

zi = xi , i = 2, 3

These are valid coordinates:

det
(
D

(
z
z1

))
= det

(
−e−x0z z
−e−x0z1 −z1

)
= 2e−(x0+2e−x0 ) , 0

Or, more directly

x0 = − ln
(
ln
√

zz1
)

x1 = ln
(√

z
z1

)
Thus the coordinates are only defined for {z1, z ∈ R | zz1 > 1}. We calculate

∂x0

∂z
= −

1
2z ln

√
zz1
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∂x1

∂z
=

1
2z

and for the other derivatives

(
∂xν
∂z j

)
=


− 1

2z1 ln
√

zz1
− 1

2z1
0 0

0 0 1 0
0 0 0 1



ζµ det
(
∂xν
∂z j

∣∣∣∣
ν,µ

)
= ζ0

(
−

1
2z1

)
+ ζ1

(
−

1
2z1 ln

√
zz1

)
1

ζσ ∂z
∂xσ

=
(
−ζ0z ln

√
zz1 + ζ1z

)−1

and we can finally write down

Ξi = ζµ det
(
∂xν
∂z j

∣∣∣∣
ν,µ

)
1

ζσ ∂z
∂xσ

∂z
∂xµ

∂zi

∂xν
gµν
√
−g

=
ζ0 + 1

ln
√

zz1
ζ1

ln
√

zz1ζ0 − ζ1

(
ln
√

zz1
)−1

:= h

Plugging these calculations into the more general formula Equation 32, we require f ∈ L2(Σz),
i.e.

∞ >

∫
Σz

f 2d3z =

∫
R2

dz2dz3c(z2, z3)2
∫
{zz1>1}

dz1
1
|h|

But it is easily verified that

1
h

= ln
√

zz1
ln
√

zz1ζ
0 − ζ1

ζ0 + 1
ln
√

zz1
ζ1

z1→∞

−−−−−−−−−→ ∞

Whence our solution, f , can not be in e.g. L2(Σz) and the only solution in L2(Σz) is f = 0. Ad hoc,
one would even expect the function space to be more restricted in order for the Lagrangian with
diverging metric part to be well defined. Note that it is also that factor,

√
−g, which is responsible

for the divergence above.

8.7. EM on curved spacetime

In this section we will see that the analysis from the last section carries over to electromagnetism
on a curved background. Through the same procedure we will again be able to reduce the
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symplecticity condition to an ordinary differential equation and explicitly calculate the solution
for the ’half De Sitter’ spacetime metric.

L = −

∫
X

1
4
√
−ggµνgσε∇[µAσ]∇[νAε] = −

∫
X

1
4
√
−ggµνgσε∂[µAσ]∂[νAε]

Expressing the Lagrangian through covariant derivatives, the Christoffel symbols will cancel
from the Lagrangian due to all the anti-symmetries involved. We can read off right away that

Fµν
σε = −

1
2
√
−g(gµνgσε − gµεgσν)

= Fνµ
σε = −Fµε

σν = −Fσν
µε

Before calculating a characteristic hypersurface, we note that actually for any vector Vµ we have

det
(
VµVν

(
Fµν
σε + Fνµ

εσ

))
= det

(
2VµVνF

µν
σε

)
= 0

To see this, assume that g is diagonal, which, at a point, one is always free to do. Take a vector
K , 0 and calculate(

VµVνF
µν
σε

)
Kσ =

(
(Vµ)2gµµgσε − VσVεgσσgεε

)
Kσ (no sum over ε)

Setting K = V the expression vanishes. For VµVνgµν , 0, V itself spans the kernel. Note that
VµFµν

σεVσ = 0, but VµFµν
σεVε , 0.

Since the principal symbol is degenerate for a generic choice of V , we want to find a special
choice that further lowers the rank. As our findings above suggest, we see that for V a null-vector,
does not only V itself lie in the kernel, but additionally any vector in {K | gµνVµKν = 0}, which,
since g is nondegenerate, is a subspace of codimension one. This, in turn, means that the coimage
of the principal symbol is one-dimensional and seen to be spaned by Ṽν = gµνVµ.

Consequently, the characteristic hypersurfaces coincide again with the g-null hypersurfaces. We
have already found the 3-dim. null-subspace and can now choose three constraint vectors Ki to
span this space. We choose Kµ

1 = ∂µz and some K2, K3 such that we end up with an orthogonal
frame. Since K1 is the ’old constraint’44, we will pick e.g. Kµ

2 =: Vµ with gµν∂µzVν = 0, and get(
1

KE

)2

Ξi
σεK

σKε = 2ζλΦλ
1
ζz

∂z
∂xµ

∂zi

∂xν
Fµν
σεK

σ
2 Kε

2

= ζλΦλ
1
ζz

∂z
∂xµ

∂zi

∂xν

√
−g(gµνgσε − gµεgσν)VσVε

44Yielding, as is easily seen, a constraint that is linear in the inst. momenta
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= ζλΦλ
1
ζz

∂z
∂xµ

∂zi

∂xν

√
−ggµνgσεVσVε

Thus with the same special choice of coordinates zi from section 8.6, we obtain(
1

KE

)2

Ξi
σεK

σKε = ζλΦλ
1
ζz

√
−ggσεVσVεδi1

Analogous to Equation 32, we can simply solve the now ordinary differential equation Equation 30
and obtain the solution

LE = c(z2, z3)
(
ζλΦλ

1
ζz

√
−ggσεVσVε

)− 1
2

Whence, again, we can not make a general prediction but need to investigate the specific spacetime.

8.7.0.7. ”Half De Sitter”
Using the calculations from the end of section 8.6 and setting V = ∂

∂z2
, we find

LE = c(z2, z3)

 ζ
0 + 1

ln
√

zz1
ζ1

ln
√

zz1ζ0 − ζ1

(
ln
√

zz1
)−1

ln
√

zz1


− 1

2

= c(z2, z3)

 ζ
0 + 1

ln
√

zz1
ζ1

ln
√

zz1ζ0 − ζ1


− 1

2
zy→∞
−→ ∞

as in section 8.6.
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8.8. More General

In order to also account for theories with covariant derivatives in the Lagrangian, where the
Christoffel symbols do not cancel, or theories that are coupled, we need to add a new, single
derivative term. The Lagrangian now reads:

L =

∫
X

(
Fµν

AB(x)∂µφA∂νφ
B + Gµ

AB(x)∂µφAφB + H(φ, x)
)

dn+1x

The change has no effect on the top-degree derivative term in the E-L-Equations. In fact, the
procedure for the new Lagrangian is so similar to the ’old’ procedure that we will be able to
abbreviate calculations tremendously using obvious short-hand notation.

Lz,ζ(ϕ, ϕ̇) =

∫
Σ

(
(...) +

1
ζz

∂z
∂xµ

Gµ
AB

(
∂φA

∂z

)
φB + (...)

)
ζσΦσd3z

=

∫
Σ

(
(...) +

1
ζz

∂z
∂xµ

Gµ
AB

(
ϕ̇ − S A

)
ϕB + (...)

)
ζσΦσd3z

From which we read off the instantaneous momenta

πA =

(
1
ζz

)2

(...) +
1
ζz

(...) + ζσΦσ
1
ζz

∂z
∂xµ

Gµ
AB︸               ︷︷               ︸

:=GAB

ϕB

And choosing E and KA as before,

πE =
1

KE

(
−πEKE + Ξi

ABKADiϕ
B + GABϕ

BKA
)

L̃E =
1

KE

(
(...) + GABLBKA

)
ω

(
(L, L̃), (M, M̃)

)
= 〈LA, M̃A〉 − 〈MA, L̃A〉

= (...) + 〈LE ,
1

KE
GABKAMB〉 − 〈ME ,

1

KE
GABKALB〉

= (...) + 〈
1

KE
GAEKALE ,ME〉 + 〈

1

KE
GAEKALE ,ME〉

!
= 0 , ∀(M, M̃) ∈ TP0

z

Hence the old condition from the M̃E-term does not change, while the ME- and ME-terms pick
up additional terms. The final equations reads

0 =

[
Di

( 1

KE

)2

Ξi
ABKAKB

 + 2
(

1

KE

)2

GAEKAKE
]
LE + 2

[ (
1

KE

)2

Ξi
ABKAKB

]
DiLE
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8.8.1. Charged Scalar Field

L =
√
−g

(
gµν(Dµφ)(Dνφ)∗ − V(φ)

)
, Dµ = (∂µ − ieAµ)

=
√
−ggµν

(
δAB∂µφ

A∂νφ
B + 2εAB∂µφ

AAνφB
)

+ (...) , A = 1, 2

where we substituted φ = φ1 + iφ2 and neglected non-derivative terms. We immediately read off

Fµν
AB =

√
−ggµνδAB and Gµ

AB = 2
√
−ggµνAνεAB.

This section was just meant to show that a first generalization to more general Lagrangians is
straight forward and to serve as a starting point for further investigation, which, however, will not
be carried out in this work.

9. Conclusion

In the introduction to section 8, we have noted that “well-posedness” of a theory with gauge
freedom of course means well-posedness of the associated Cauchy-problem after fixing gauges.
Following the preceding discussion it does not seem all too obvious that the gauge freedom (i.e.
the gauge groups) should stay the same on a characteristic hypersurface. Proposition 8.3.6 points
in this direction and at least for the vacuum Maxwell field on a Minkowski background, this
is seen to hold (cp. subsection A.2). However, if the characteristic constraint gives rise to a
symplectic submanifold, then at least it does not contribute to gauge freedom. We have shown
that there should be a large class of theories for which the char. constr.submfd. is symplectic.
Thus, a next question that could be tackled may be formulated as:

Assuming the characteristic constraint submanifold to be symplectic, under which conditions do
we recover the same gauge groups as on a non-characteristic hypersurface and does fixing these
gauges alone give rise to a well-posed system as in the non-char. case?
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A. Appendix

Here, we are including calculations done in the very beginning to get a feel for the way [GM06]
behaves on characteristic initial value hypersurfaces. Essentially, we calculated every object
defined in [GM06] for the example of a Klein Gordon field on a light cone and electromagnetism
on a characteristic hypersurface, both on a Minkowski background.

A.1. Klein Gordon on a Light Cone

X = R2

Y = πR2,R , J1(Y) = πR2,R3

Coordinates on J1(Y) are denoted (x+, x−, φ, φ+, φ−).

L =

(
φ+φ− −

1
2

mφ2
)

dx+ ∧ dx−

θL = φ−dφ ∧ dx+ + φ+dφ ∧ dx− −
(
φ+φ− +

1
2

mφ2
)

dx+ ∧ dx−

ΩL = dφ ∧
(
dφ− ∧ dx+ + dφ+ ∧ dx− + mφdx+ ∧ dx−

)
+ (φ−dφ+ + φ+dφ−) ∧ dx+ ∧ dx−

The Euler-Lagr. equ.: mφ + 2∂+∂−φ = 0.

It is easy to see that the Lagrangian is equivariant w.r.t. to the following group actions:

(R2,+) 3 (a, b) acts on Y = πR2,R with

ηY ((a, b), x+, x−, φ) = (x+ + a, x+ + b, φ)

ηJ1Y (...) = (x+ + a, x− + b, φ, ...)

ξY (x, φ) = (ξ, 0)

and the corresp. Noether current reads:

J(ξ)(z) = p(ξ+dx− − ξ−dx+) − (p+ξ− − p−ξ+)dφ

( j1φ)∗JL(ξ) =
(
∂−φ(−∂+φξ

+ − ∂−φξ
−) + Lξ+)dx− + (± interchanged)dx+

And, of course, SO(1, 1),45 i.e.(
x0
x1

)
7→

1
2

(
λ + 1

λ λ − 1
λ

λ − 1
λ λ + 1

λ

) (
x0
x1

)
45The non-char. Lagrangian is equivariant w.r.t. this action.
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which in light-cone coordinates diagonalizes:
GL(1) = (R/{0}, ·) 3 λ acts on Y = πR2,R with

ηY (λ, x+, x−, φ) = (λx+,
1
λ

x−, φ)

ηJ1Y (λ, x+, x−, φ, φ+, φ−) = (λx+,
1
λ

x−, φ,
1
λ
φ+, λφ−)

Te(GL(1)) � T1(R/{0}) � R 3 α

exp(tα) = etα ⇒ αY (x, φ) = (αx+,−αx−, 0)

and the corresp. Noether current reads:

J(α)(z) = αp(x+dx− + x−dx+) + α(p+x− + p−x+)dφ

( j1φ)∗JL(α) =
[
∂−φ − (∂−φx−α − ∂+φx+α) + αx+L

]
dx− −

[
∂+φ(∂−φx−α − ∂+φx+α) − αx−L

]
dx+

We check: 0 = d( j1φ)∗JL(α) = d( j1φ)∗JL(ξ).

Slicing: Σ is a 1-mfd., Emb(Σ, X) 3 τ a parametrized curve.

Yτ 3 ϕ (= φ|Στ)

Zτ 3 (ϕ, p, pµ)

T ∗Yτ 3 (ϕ, π)

We verify that a slicing generated by ζµ ∂
∂xµ is Lagrangian, i.e. equivariant w.r.t. its flow, iff

0 =
1
2

mφ2(ζ+
,+ + ζ−,−) + φ+φ+ζ

+
,− + φ−φ−ζ

−
,+

However, from hereon we will choose a slicing with x+ = const., which amounts to working in
adapted coordinates.

ϕ̇ := £ζφ|Στ :=
(
ζµφ,µ − ζ ◦ φ

)
|Στ =

(
ζ+∂+φ + ζ−∂−φ

)
|Στ

Now, choosing Στ = Σx+ := {x+ = const.} we calculate:

Lx+,ζ(ϕ, ϕ̇) =

∫
Στ

i∗x+ iζXL( j1φ(x)) , ix+ : Σx+ → X inclusion

=

∫
Σx+

[
Dϕ

(
ϕ̇ − ζ−Dϕ

ζ+

)
−

1
2

mϕ2
]
ζ+ dx−, where Dϕ := ∂−ϕ
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=

∫
Σx+

[
Dϕ(ϕ̇ − ζ−Dϕ) −

1
2
ζ+mϕ2

]
dx−

π :=
∂Lx+,ζ( j1ϕ, ϕ̇)

∂ϕ̇
dϕ ⊗ dx− = Dϕ dϕ ⊗ dx−

Px+ := ImFLx+,ζ = Im
(
(ϕ, ϕ̇) 7→ (ϕ,Dϕ)

)
=

{
(ϕ, π) ∈ T ∗Yx+

∣∣∣∣ π − Dϕ = 0
}

Where, by abuse of notation, we also denote by π its density function. We note that Px+ is a
linear subspace of T ∗Yx+ . The same calculation shows that adding more spacetime dimensions
or scalar fields to the Klein-Gordon Lagrangian has no effect on the primary constraint set on a
null hyperplane.

Hx+,ζ(ϕ, π) : = 〈π, ϕ̇〉 − Lx+,ζ(ϕ, ϕ̇)

=

∫
Σx+

(
ζ−(Dϕ)2 +

1
2
ζ+mϕ2

)
dx−

The Space of Cauchy data: We choose Yx+ = H1(Σx+

)
as the space of initial data46 and

assume ζ± to be bounded functions. Since H1(Σx+) is a complete vector space, we know that
d

dλ fλ(x) ∈ H1(Σx+) for any continuous path fλ in H1(Σx+). Hence, TϕYx+ = H1(Σx+

)
. By the

Riesz representation theorem we may then identify T ∗ϕYx+ � L2(Σx+). Finally, T(ϕ,π)(T ∗Yx+) �
T (TϕYx+) ⊕ Tπ(T ∗ϕYx+) � H1(Σx+) ⊕ L2(Σx+).
If we identify the tangent space with the space of variational derivatives, then, because taking
variational derivatives before and after substituting Dϕ = π needs to agree,

TPx+ =

{
X

∣∣∣∣ X = f
δ

δϕ
+ D f

δ

δπ
, f : Px+ → H1(Σx+

)}
Meaning δϕ = f and δπ = D f .

ωPx+ := i∗ωx+ , i : Px+ → T ∗Yx+ inclusion

That is, for ( f ,D f ), (g,Dg) ∈ TPx+ ,

ωx+

(
( f ,D f ), (g,Dg)

)
= 〈 f ,Dg〉L2 − 〈g,D f 〉L2

= −2〈D f , g〉L2

= 0 ∀g ∈ H1(Σx+)⇔ D f = 0 a.e.

Whence (Px+ , ωx+) (ωx+ now denoting the pulled back form) is a symplectic subspace of T ∗Yx+

and the constraint algorithm terminates. Since the δ/δφ-part fixes the δ/δπ part, we shall hence-
forth drop the latter.

46Cf. Lars-ErikLundberg. The Klein-Gordon Equation with light-cone data. Communications in Mathematical
Physics, 62:107-118, 1978
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Check: Upon choosing the usual evolution direction, ζ = ζ+ ∂
∂x+ , the Hamiltonian equations of

motion yield for X =
dϕx+

dx+
δ
δϕ :

iXωx+ = dHx+,ζ+

⇔ ωx+

(
dϕx+

dx+
, g

)
= g

δ

δϕ

[
Hx+,ζ+

]
, ∀g ∈ TPx+

⇔ −2
〈
D

dϕx+

dx+
, g

〉
L2

= m〈ϕ, g〉L2

⇔ −2D
dϕx+

dx+
= mϕ a.e.

Calculating the instantaneous energy-momentum map:

• (R2,+):

〈Ex+(σ), ξ〉 : =

∫
Σx+

σ∗〈J, ξ〉 , σ ∈ Zx+

=

∫
Σx+

(
pξ+ −

(
p+ξ− − p−ξ+) Dϕ

)
dx−

〈Ex+(ϕ, π), ξ−
∂

∂x−
〉 = 〈Jx+(ϕ, π), ξ−

∂

∂x−
〉 , as ξ−

∂

∂x−
is everywhere tangent to Σx+

= −ξ−
∫

Σx+

(Dϕ)2dx−

〈Ex+(ϕ, π), ξ+ ∂

∂x+
〉 = −Hx+,ξ+ , as ξ+ ∂

∂x+
is everywhere transverse to Σx+

= −
1
2

mξ+

∫
Σx+

ϕ2dx−

• GL(1):

〈Ex+(σ), α〉 : =

∫
Σx+

σ∗〈J, α〉 , σ ∈ Zx+

= α

∫
Σx+

(
px+ + (p+x− + p−x+)Dϕ

)
dx−

〈Ex+(ϕ, π), α〉 = α

∫
Σx+

(
−

1
2

mϕ2x+ + (Dϕ)2x−
)

dx− (diverges i.g.)

No Gauge Groups:

• ξY is constant, hence it can not be localizable
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• αY (x, φ) = (αx+,−αx−, 0) is obviously not localizable

⇒ No Gauge groups i.t.s.o. [GM06].
As Cx+ = Px+ is symplectic, we have X(Px+)⊥ = ∅ (w.r.t. itself), so that the fullness assumption
is trivially satisfied.

We can still calculate the instantaneous generators:

ξP+
x
yωx+ − d〈Ex+ , ξ〉 = 0

Yielding:

ξ−
Px+

= −ξ−Dϕ
δ

δϕ
a.e.

ξ+
Px+

= f
δ

δϕ
, D f =

1
2

mξ+ϕ a.e.

αPx+ = ( f1 + f2)
δ

δϕ
, D f1 = −

1
2

mαx+ϕ , f2 = αx−Dϕ a.e.

Vanishing Theorem (this is posed for any hypersurface, i.p. characteristic ones):

• (R2,+):∫
Στ

τ∗( j1φ)∗JL(ξ) =

∫
Στ

τ∗
[
(∂−φ(−∂+φξ

+ − ∂−φξ
−) + Lξ+)dx− + (± interchanged )dx+]

= −

∫
x+= const.

(
(Dϕ)2ξ− +

1
2
ξ+mϕ2

)
dx−

(
taking Στ = {x+ = const.}

)
= 0 ⇔ ϕ = 0 a.e.

As expected, for this group action is not localizable.

• GL(1) ∫
Στ

τ∗( j1φ)∗JL(ξ) = α

∫
Σx+

(
(Dϕ)2x− − Dϕ∂+φx+ + x+L

)
dx−

= α

∫
Σx+

(
(Dϕ)2x− −

1
2

x+mϕ2
)

dx−

= 0 ⇔ ϕ = 0 a.e.

Again, this group action is not localizable and in this case the integral even diverges in
general - as expected from the Poincare group.
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Primary Constraints and the Momentum Map:
In this case:

px+ :=
{
ξ ∈ gx+

∣∣∣∣ ξYx+ = 0 and [ξ, g] ⊂ gx+

}
= ∅

i.e. there exist no (non-triv.) infinitesimal generators ξ of the above symmetry groups satisfying:

ξµ|Yx+ = 0 = ξA|Yx+ and ξ+
,+|Yx+ = 0

Hence ġx+ = ∅, whence for J̇x+ : T ∗Yx+ → ġ∗x+ we can only define J̇−1
x+ (0) = T ∗Yx+ . Because

our primary constraint is not linear in π, whereas J̇x+ is, the construction could not have worked
to begin with.
As gx+ = {ξ− ∂

∂x− }, we get

〈Jx+(ϕ, π), ξ−〉 = 〈π, ξ−
Yx+

(ϕ)〉 =

∫
Σx+

π
(
ξ−
Yx+

(ϕ)
)

=

∫
Σ+

πA((ξ−)A ◦ ϕ − ϕA
,i (ξ
−)i) dx− = ξ−

∫
Σx+

πDϕ dx−

And as stated already in [GM06, p.188], the zero set of Jx+ need not vanish on Px+ . Actually,
J−1

x+ (0) ∩ Px+ = {Dϕ = 0}.
Since (p.197): J−1

x+ (0) ⊂ J̇−1
x+ (0), our results for both zero sets are in agreement and we could not

have gotten Px+ as a zero set of J̇x+ .

A.2. Vacuum Maxwell on a null hypersurface

• We are considering the case in X = R4 with a Minkowski background metric, i.e. the theory
is not parametrized.

L = −
1
4

FµνFµνd4x

G = C∞(X) 3 f acts on Y = Λ1X 3 A as ( f · A)(x) = A(x) + d f (x)
For χ ∈ g � C∞(X),

χY = χ,ν
∂

∂Aν
The action is obviously vertically transitive. We have J : Z → g∗,

〈J(xµ, Aν, p,F µν), χ〉 = F µνχ,ν d3xµ

( j1A)∗JL(χ) = ( j1A)∗
(
Fµνχ,ν d3xµ

)
=

(
Aµ,ν − Aν,µ

)
χ,ν d3xµ

d
[
( j1A)∗JL(χ)

]
= ∂µ

(
Aµ,ν − Aν,µ

)
χ,ν d4x
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= 0 ∀χ ∈ g⇔ ∂µ
(
Aµ,ν − Aν,µ

)
= 0

which are simply the E-L-Equ. (cp. Vanishing Thm.).47

We take Σx+ := {x+ = const.} and denote T ∗Yx+ 3 (Aν,Eν) with the embedding

ix+ :Σ→ Σx+ ⊂ X(
x−

xi

)
7→


1
2 (x+ − x−)
1
2 (x+ + x−)

xi

 , i = 2, 3

s :Σ × R
�
−→ X , ((x−, xi), x+) 7→ ix+(x−, xi)

Any slicing of X induces a slicing of Y by ’push forward’:
If x = s(x+, x−, xi) and Ax ∈ Λ1

xX, then

s
(
s−1(x) − (ε, 0, 0)

)∗
Ax ∈ Λ1

x̃X

where x̃ = s(x+ + ε, x−, xi).
Hence the most general generator of a slicing reads

ζY = ζµ
∂

∂xµ
+

(
χ,α − Aνζν,α

) ∂

∂Aα

where ζX must be a Killing vector field for the slicing to be Lagrangian. In our Minkowski case
we thus require ζX to be a generator of the Poincare group48.

Ȧµ =
[
ζ0D0Aµ + ζ iDiAµ − χ,µ + Aνζν,µ

] ∣∣∣∣
Σx+

= ζ+D+Aµ + ζ−D−Aµ + ζmDmAµ − χ,µ + Aνζν,µ︸                                       ︷︷                                       ︸
=:S µ

, m = 2, 3

Note, because S µ so defined is linear in Aµ, we can simply write A± with the obvious meaning.49

Lx+,ζ(A, Ȧ) =

∫
Σ+

i∗x+ iζXL , ix+ : Σ+ → X inclusion

=

∫
Σ+

[
1
2

(F+−)2 − (F+m)(F−m) −
1
4

(Fmn)2
]
ζ+d3x+ , with D+Aµ :=

Ȧµ − S µ

ζ+

Denoting the instantaneous momenta by E, we get

E
+ = 0

47The χ,µν-term vanishes due to (anti-) symmetry
48If we assume ζµ to be bounded, does this exclude all but translations?
49We have not been consistent with the sum convention, at some times we sum with η, at others not.
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E
m = −F−m

E
− =

(
Ȧ− − S −
ζ+

− D−A+

)
We verify that the first two equations are constraint equations, whence

Px+ =
{
(A,E) ∈ T +Y+ | E

+ = 0 and Em = −F−m
}

Because variational derivatives need to agree and Em = DmA− − D−Am, we have

T(A,E)P+ =

{
Lµ

δ

δAµ
+ Mµ

δ

δEµ

∣∣∣∣ M+ = 0 , Mm = DmL− − D−Lm

}
for Lµ, Mµ : P+ → C∞(Σ+).

Let (L, L̃), (G, G̃) ∈ X(P+). We calculate, denoting by 〈·, ·〉 the L2 inner product

ω
(
(L, L̃), (G, G̃)

)
= 〈L−, G̃−〉 + 〈Lm, G̃m〉 − 〈G−, L̃−〉 − 〈Gm, L̃m〉

= 〈L−, G̃−〉 − 〈G−, L̃−〉 − 〈DmLm,G−〉 + 2〈D−Lm,Gm〉 − 〈DmL−,Gm〉

!
= 0 ∀(G, G̃) ∈ X(P+)

⇒ L−
!
= 0 for G̃− is independent of the other components. We have

0 !
= −〈DmLm + L̃−,G−〉 + 〈2D−Lm,Gm〉

⇒ D−Lm = 0 a.e.

⇒ L̃− = 0 a.e.

⇒ X(P+)⊥ = Span
{

δ

δA+

}
We note that the constraint due to the characteristic slicing does not lower the rank of ωP+

= ω+

(by abuse of notation).

Hx+,ζ =

∫
Σ+

〈E, Ȧ〉 − Lx+,ζ

=

∫
Σ+

E
− (

(E− + D−A+)ζ+ + S −
)
− F−mȦm −

1
2
ζ+(F+−)2 + (F+m)(F−m)ζ+ +

1
4

(Fmn)2ζ+

=

∫
Σ+

1
2
ζ+(E−)2 + E−

(
D−A+ζ

+ + S −
)
− F−m

(
S m + ζ+DmA+

)
+

1
4

(Fmn)2ζ+

Since X(P+)⊥ = Span{ δ
δA+
}, we require ∀L : P+ → C∞(Σ)

0 !
= L

δ

δA+

[
Hx+,ζ

]
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=

∫
Σ+

E
−ζ+(DL) + E−(D−ζ+)L − F−m(Dmζ

+)L − F−mζ
+DmL

=

∫
Σ+

ζ+L(DmF−m − D−E−)d3x+

⇒ DmF−m − D−E−
!
= 0 a.e. (Secondary Constraint)

⇒ P2
x+,ζ =

{
(A,E) ∈ Px+,ζ

∣∣∣∣ DmF−m − D−E− = 0
}

T(A,E)P
2
x+,ζ =

{
(L, L̃) ∈ T(A,E)Px+,ζ

∣∣∣∣ DmD−Lm − D2
mL− = D−L̃−

}
We are searching for (G, G̃) ∈ T(A,E)Px+,ζ , s.t.

0 = ω+

(
(L, L̃), (G, G̃)

)
, ∀(L, L̃) ∈ T(A,E)P

2
x+,ζ

= 〈L−, G̃−〉 − 〈G−, L̃−〉 − 〈DmLm,G−〉 + 2〈D−Lm,Gm〉 − 〈DmL−,Gm〉

Setting G− = D−g−, for any g− : Px+,ζ → C∞(Σ+), we have

0 = 〈G̃− − D2
mg− + DmGm, L−〉 + 〈2D−Dmg− − 2D−Gm, Lm〉

⇒ Dmg− = Gm a.e.

⇒ G̃− = 0 a.e.

⇒ X(P2
x+,ζ)

⊥ = Span
{

δ

δA+

}
∪

{
D−g

δ

δA−
+ Dmg

δ

δAm

∣∣∣∣ g : P2
x+,ζ → C∞(Σ+)

}
⊂ X(P2

x+,ζ)

Again, we require

0 !
=

(
D−g

δ

δA−
+ Dmg

δ

δAm

) [
Hx+,ζ

]
=

∫
Σ+

E
− (
ζ−(D−D−g) + ζm(DmD−g) + (D−g)(D−ζ−)

)
+(DmD−g)(S m + ζ+DmA+) − F−m(Dg)(Dmζ

−)

+E−(Dmg)(D−ζm) − (D−Dmg)(S m + ζ+DmA+)

−F−m(ζ−(D−Dmg) + ζm(DmDmg) + (Dmg)(Dmζ
m)

+ (DlDmg)(DlAm − DmAl)︸                         ︷︷                         ︸
=0

=

∫
Σ+

E
− (
ζ−(D−D−g) + ζm(DmD−g) + (D−g)(D−ζ−) + (Dmg)(D−ζm)

)
−F−m

(
(Dg)(Dmζ

−) + ζ−(D−Dmg) + ζm(DmDmg) + (Dmg)(Dmζ
m)

)
=

∫
Σ+

(DmF−m − D−E−)(ζ−(D−g) + ζm(Dmg))
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= 0

because we are inside P2
x+,ζ . As a result we find for the final constraint set Cx+ = P2

x+,ζ .

〈Rx+(σ),V〉 : =

∫
Σ+

ϕ∗(iVσ) , σ ∈ Zx+ , i.e. σ : Σ+ → Z|Σ+
, ϕ := πYZ ◦ σ , V ∈ TϕYx+

=

∫
Σ+

σ∗π∗YZ(F µνVµd3xν)

=

∫
Σ+

(F µνVµ) ◦ (πYZ ◦ σ)σ∗d3xν

=

∫
Σ+

(F µ0 + F µ1Vµ ◦ (πYZ ◦ σ))d3x+

⇒ Rx+ : Zx+ → T ∗Yx+

F µν 7→ Eµ = (F µ0 + F µ1) ◦ σ

We define Ex+ : Zx+ → g∗ by

〈Ex+(σ), χ〉 : =

∫
Σ+

σ∗〈J, χ〉

=

∫
Σ+

σ∗(F µνχ,νd3xµ)

=

∫
Σ+

(F ν0 + F ν1)χ,νd3x+

Choosing a holonomic lift, σ, we obtain

〈Ex+(A,E), χ〉 =

∫
Σ+

E
νχ,νd3x+

=

∫
Σ+

(E−χ,− + Emχ,m)d3x+

Having used E0 = E+ + E−, E1 = E+ − E−, ∂0 = 1
2 (∂+ + ∂−).

Noting that G = G+, we have Jx+ = Ex+ and by Cor.7C.3

〈Ex+(A,E), χ〉 = 〈E, χYx+ 〉 =

∫
Σ+

E

(
χ,α

δ

δAα

)
=

∫
Σ+

E
−χ,− + Emχ,m on Px+
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where we used 74.C to obtain χYx+ . Alternatively, because G acts by ( f , (A,E)) 7→ (A + d f |Σ+
,E),

we have for χ ∈ g

χT ∗Yx+ = χ+

δ

δA+

+ D−χ
δ

δA−
+ D−χ

δ

δAi
, where χ+ :=

∂χ

∂x+

∣∣∣∣
Σ+

We have P2
x+ = Cx+ = E−1

x+ (0) as expected50 as gCx+ is full, i.e.

gCx+ = X(Cx+) ∩ X(Cx+)⊥

where gCx+ := {ξCx+ | ξ ∈ g} with ξCx+ given by(
ξCx+yωx+ − d〈Ex+ , ξ〉

) ∣∣∣∣
Cx+

= 0

Explicitely, denoting χCx+ = (F, F̃), we require for all (G, G̃) ∈ X(Px+):

ω
(
(F, F̃), (G, G̃)

)
= (G, G̃)

[
〈Ex+ , χ〉

]
on Cx+

l.h.s. = 〈F−, G̃−〉 − 〈G−, F̃−〉 − 〈DmFm,G−〉 + 2〈D−Fm,Gm〉 − 〈DmF−,Gm〉

r.h.s. = (G, G̃)
[∫

Σ+

(
E
−χ,− − (D−Am − DmA−)Dmχ

)
d3x+

]
= 〈G̃−,D−χ〉 − 〈D−Gm,Dmχ〉 + 〈DmG−,Dmχ〉

⇒ F− = D−χ , Fm = Dmχ , F̃− = 0

⇒ gCx+ is full

Px+ : =
{
ξ ∈ gx+

∣∣∣ ξYx+ = 0 and [ξ, g] ⊂ gx+︸       ︷︷       ︸
trivial

}
=

{
χ ∈ C∞(X)

∣∣∣ χYx+ = 0
}

=
{
χ ∈ C∞(X)

∣∣∣ ∂αχ|Σ+
= 0

}
, as χYx+ = χ,α

∂

∂Aα

ġx+ : = SpanC∞(Yx+ )

{
[ζ, ξ]Yx+

∣∣∣ ξ ∈ Px+

}
, ζ...generator of slicing

= SpanC∞(Yx+ )

{[
χYx+ , ζYx+

] ∣∣∣ χ ∈ Px+

}
where in the last step we used a standard identity for lie algebras.

ζYx+ = ζµ
∂

∂xµ
+ (ϕ,α − Aνζν,α)

∂

∂Aα
, for some ϕ ∈ C∞(Σ+)

50Check with requirement that constraints be first class. I.p. the char. constraint
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χYx+ = χ,α
∂

∂Aα

Finally, we can calculate

[χYx+ , ζYx+ ] = −χ,βζ
β
,α

∂

∂Aα
− ζµχ,αµ

∂

∂Aα

= −
(
χ,βζ

β
,α + ζβχ,αβ

) ∂

∂Aα

= −ζβχ,αβ
∂

∂Aα
, as ∂αχ|Σ+

= 0

= ζ+χ,++

∂

∂A+

, for the same reason

whence

〈J̇x+(A,E), χ̇T ∗Yx+ 〉 = −

∫
Σ+

E

(
χ,++

δ

δA+

)
=

∫
Σ+

E
+χ,++

= 0∀χ⇔ E+ = 0

⇒ Px+ = J̇−1
x+ (0) ∩ {Em = −F−m}
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